1
|
Jaspers JPM, Romero AM, Yaakoubi AE, van Werkhoven E, Nout RA, van den Bent MJ, Satoer D. Longitudinal analysis of cognitive function in patients treated with postoperative radiotherapy for grade 2 and 3 IDH mutant diffuse glioma. Radiother Oncol 2025; 207:110847. [PMID: 40090418 DOI: 10.1016/j.radonc.2025.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/18/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Postoperative radiotherapy and chemotherapy improve survival in IDH mutant diffuse glioma. We investigated whether neurocognitive function declines over time, and whether mean dose to the brain outside of CTV (mean brain dose) is related to neurocognitive function. PATIENTS AND METHODS Patients that underwent resection and postoperative radiotherapy for grade 2 or 3 IDH mutant diffuse glioma were tested using the Hopkins Verbal Learning Test, Letter Fluency and Trail Making Test before surgery and afterwards up until disease progression. Mixed effects models were fitted for each of three cognitive test scores, using time from surgery, mean brain dose, CTV volume, and tumor grade as fixed effects. RESULTS Between 1-10-2013 and 31-12-2022, 49 patients underwent longitudinal neurocognitive testing. Average mean dose to brain minus CTV was 17.8 Gy (95 % CI 16.1 - 19.4). At the time of analysis, median follow-up in patients free from disease progression was 5.8 years (range 1.1 - 20.8). Attrition rate during the first five years of follow up was 14.1 %. There was no decline of test performance over time (p ≥ 0.526). However, there was a negative effect of increasing mean brain dose on TMT score A (-0.11, p = 0.008) and TMT score B (-0.13, p = 0.004). CONCLUSIONS In this study, no effect of time after resection on test scores was found. Multivariable modelling indicates an negative relationship between mean brain dose and specific neurocognitive test scores, accounting for effects of tumor grade and CTV volume.
Collapse
Affiliation(s)
- J P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - A Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Holland Proton Therapy Center, Delft, the Netherlands
| | - A El Yaakoubi
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - E van Werkhoven
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - R A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Holland Proton Therapy Center, Delft, the Netherlands
| | - M J van den Bent
- Neurology Department, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - D Satoer
- Neurosurgery Department, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Mesny E, Jacob J, Noël G, Bernier MO, Ricard D. Specific radiosensitivity of brain structures (areas or regions) and cognitive impairment after focal or whole brain radiotherapy: A review. Cancer Radiother 2025; 29:104625. [PMID: 40378621 DOI: 10.1016/j.canrad.2025.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/19/2025]
Abstract
Delayed neurocognitive impairment is observed following encephalic radiotherapy, including brain parts (areas), leading to a substantial deterioration of the quality of life. These delayed radiotherapy side effects are variable in terms of intensity of symptoms and time of occurrence, characterized by minor-to-severe cognitive deficits, such as attention or memory disorders and/or dysexecutive syndrome. However, the precise mechanisms leading to these cognitive disorders remain mostly unknown. Various tissue alterations have been reported after brain radiotherapy, in specific brain structures as the hippocampus, the cerebral white matter or the cerebral cortex. Sparing these structures during brain radiotherapy may be a potential approach to limit the development of late cognitive impairment; however, few dose constraints have been published regarding brain areas (regions) involved in cognitive functions. The main purposes of this literature review are to report the pathophysiological process leading to the radiation-induced cognitive impairment, to describe the tolerance and radiological modifications induced by radiation of specific healthy cerebral tissues, to better understand their radiosensitivity and to describe potential improvements.
Collapse
Affiliation(s)
- Emmanuel Mesny
- Université Paris Saclay, université Paris Cité, ENS Paris Saclay, CNRS, SSA, Inserm, centre Borelli, 91190 Gif-sur-Yvette, France; Radiation Oncology department, Hospices civils de Lyon, centre hospitalier Lyon Sud, Oullins-Pierre-Bénite, France.
| | - Julian Jacob
- Sorbonne Université, hôpital de La Pitié-Salpêtrière, Department of Radiation Oncology, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - Georges Noël
- Radiotherapy Department, Institut de cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, BP 23025, 67033 Strasbourg, France; Faculté de médecine, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Europe (ICANS), Radiobiology Laboratory, Unicancer, 67000 Strasbourg, France; Université de Strasbourg, ICube, imagerie multimodale intégrative en santé (Imis), 300, boulevard Sébastien-Brant, 67400 Illkirch-Graffenstaden, France
| | - Marie-Odile Bernier
- Institut de radioprotection et de sûreté nucléaire, Fontenay-aux-Roses, France
| | - Damien Ricard
- Université Paris Saclay, université Paris Cité, ENS Paris Saclay, CNRS, SSA, Inserm, centre Borelli, 91190 Gif-sur-Yvette, France; Service de neurologie, Service de santé des armées, hôpital d'instruction des armées Percy, 92140 Clamart, France; Service de santé des armées, École du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
3
|
Gutiérrez-García B, Cáceres CM, Núñez-Marín F, Molero J, Prats L, Mestre N, Martínez S, Teixidor P, Comas S, Balañà C, Villà S. Early region-specific impact of adjuvant radiation therapy on cognition and quality of life in adult patients with primary brain tumors. Clin Transl Oncol 2025; 27:2143-2159. [PMID: 39367900 DOI: 10.1007/s12094-024-03740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment. METHODS/PATIENTS Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response. RESULTS The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation. CONCLUSIONS There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-García
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - Cynthia M Cáceres
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Jaume Molero
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Lluis Prats
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Neus Mestre
- Biostatistics, Centro de Regulación Genómica, Barcelona, Spain
| | - Silvia Martínez
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pilar Teixidor
- Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carme Balañà
- Medical Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Salvador Villà
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
4
|
Nataf F, Scher N, Bollet M, Mulier G, Birladeanu A, Sopanda L, Lambert J, Bouilhol G, Guey S, Adle-Biassette H, Bernat AL, Abbritti R, Passeri T, Mandonnet E, Froelich S. Improving methodology of radiosurgery for posterior fossa cavernomas: higher volume, lower dose. Acta Neurochir (Wien) 2025; 167:29. [PMID: 39891775 PMCID: PMC11787227 DOI: 10.1007/s00701-024-06409-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/27/2024] [Indexed: 02/03/2025]
Abstract
Cavernous malformations (CM) of the brain are vascular abnormalities that carry a risk of bleeding, posing significant neurological and life-threatening challenges, particularly in posterior fossa. The efficacy of radiosurgery for cavernomas still remains a matter of debate, largely due to technical and statistical limitations. In this study, we present a series of posterior fossa cavernomas treated using CyberKnife radiosurgery, employing an innovative approach that integrates both technical and statistical advancements. PATIENTS AND METHODS We conducted a prospective series involving 35 posterior fossa cavernomas in 33 patients treated with low-dose radiosurgery protocols (12 Gy in a single fraction or 18 Gy in 3 fractions). Compared to previously published series, our approach targeted a larger treatment volume, encompassing the entire hemosiderin ring surrounding the cavernoma. Radiosurgery was indicated for cases of hemorrhage or progressive neurological deficits in anatomically challenging, nonsurgical areas. The statistical analysis was designed to address the unknown onset time of cavernoma prior to radiosurgery, enabling a more accurate calculation of the hemorrhage incidence rate before treatment. Follow-up evaluations, including clinical assessments and MRI, were conducted at 3-6-9-12-18-24 months and subsequently on an annual basis. RESULTS With a mean follow-up duration of 26 months, exceeding the previously described latency period, and a median [IQR] follow-up of 13 months [8.7-30.4] which represents approximately half the latency period, only one patient experienced a recurrence of hemorrhage, occurring 20 months post-treatment and remaining asymptomatic. No patients exhibited radio-induced parenchymal changes or clinical deterioration following radiosurgery. CONCLUSIONS These preliminary results support the strategy of increasing the target volume while reducing the radiation dose for cavernous malformations. We further recommend incorporating sensitivity analyses to evaluate the robustness of results, particularly in the context of uncertainties surrounding the time of onset of cavernomas.
Collapse
Affiliation(s)
- François Nataf
- Department of Neurosurgery, Lariboisière Hospital, Paris, France.
- CERVCO: Centre de Reference Des Maladies Rares du Cerveau Et de L'oeil, Paris, France.
| | - Nathaniel Scher
- Department of Radiotherapy, Institut de Radiothérapie Hartmann, Paris, France
| | - Marc Bollet
- Department of Radiotherapy, Institut de Radiothérapie Hartmann, Paris, France
| | - Guillaume Mulier
- CERVCO: Centre de Reference Des Maladies Rares du Cerveau Et de L'oeil, Paris, France
| | | | - Lucian Sopanda
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
| | - Jérôme Lambert
- Department of Neurology, Lariboisière Hospital, Paris, France
| | - Gauthier Bouilhol
- Department of Radiophysics, Institut de Radiothérapie Hartmann, Paris, France
| | - Stéphanie Guey
- Department of Neurology, Lariboisière Hospital, Paris, France
- CERVCO: Centre de Reference Des Maladies Rares du Cerveau Et de L'oeil, Paris, France
| | - Homa Adle-Biassette
- Department of Neuropathology, Lariboisière Hospital, Paris, France
- Department of Biostatistics and Medical Information, Unité de Recherche Clinique, Hôpital Saint-Louis, 1 Av Claude Vellefaux, 75010, Paris, France
| | | | - Rosaria Abbritti
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
| | - Thibault Passeri
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
| | | | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Paris, France
- CERVCO: Centre de Reference Des Maladies Rares du Cerveau Et de L'oeil, Paris, France
| |
Collapse
|
5
|
Habibi AT, Alaya IB, Tensaouti F, Baudou E, Arribarat G, Pollidoro L, Péran P, Chaix Y, Labidi S, Laprie A. Impact of Pediatric Posterior Fossa Tumor Treatments on Working Memory Tracts Using Resting-State fMRI and Tractography. J Neuroimaging 2025; 35:e70007. [PMID: 39789950 DOI: 10.1111/jon.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND AND PURPOSE Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography. METHODS This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450). Working memory tracts were identified by combining seed masks from rs-fMRI maps and whole-brain tractography from diffusion MRI. Connectivity alterations were assessed qualitatively and quantitatively, alongside neuropsychological evaluations and correlations with behavioral outcomes and mean supratentorial dose. RESULTS Compared to controls, MB survivors exhibited significant impairments in the working memory network, including reductions in tract volume (TV), fiber density, fiber cross-section (FC), mean streamline length (MLS), and fractional anisotropy (FA) (all p = 0.04). Lower working memory scores were correlated with reduced TV and FA in MB survivors. Higher mean supratentorial doses were associated with lower TV, FC, and FA values across multiple tracts, particularly in the arcuate and superior longitudinal fasciculi. CONCLUSIONS Tractography-derived features highlighted white matter damage as a biomarker of treatment-related neurotoxicity in PFTs survivors. These findings underscore the detrimental impact of RT and CT on working memory networks and emphasize the importance of preserving cognitive function during treatment planning.
Collapse
Affiliation(s)
- Abir Troudi Habibi
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Research Laboratory of Biophysics and Medical Technologies LR13ES07, Tunis, Tunisia
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
| | - Ines Ben Alaya
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Research Laboratory of Biophysics and Medical Technologies LR13ES07, Tunis, Tunisia
| | - Fatima Tensaouti
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute, Oncopole, Toulouse, France
| | - Eloïse Baudou
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
- Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
| | - Lisa Pollidoro
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
| | - Yves Chaix
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
- Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Salam Labidi
- University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Research Laboratory of Biophysics and Medical Technologies LR13ES07, Tunis, Tunisia
| | - Anne Laprie
- Toulouse NeuroImaging Center (ToNIC), INSERM, University of Toulouse Paul Sabatier, Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute, Oncopole, Toulouse, France
| |
Collapse
|
6
|
Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, Troost EGC. Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. Radiother Oncol 2024; 199:110459. [PMID: 39069087 DOI: 10.1016/j.radonc.2024.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Radio(chemo)therapy (RCT) as part of the standard treatment of glioma patients, inevitably leads to radiation exposure of the tumor-surrounding normal-appearing (NA) tissues. The effect of radiotherapy on the brain microstructure can be assessed by magnetic resonance imaging (MRI) using diffusion tensor imaging (DTI). The aim of this study was to analyze regional DTI changes of white matter (WM) structures and to determine their dose- and time-dependency. METHODS As part of a longitudinal prospective clinical study (NCT02824731), MRI data of 23 glioma patients treated with proton or photon beam therapy were acquired at three-monthly intervals until 36 months following irradiation. Mean, radial and axial diffusivity (MD, RD, AD) as well as fractional anisotropy (FA) were investigated in the NA tissue of 15 WM structures and their dependence on radiation dose, follow-up time and distance to the clinical target volume (CTV) was analyzed in a multivariate linear regression model. Due to the small and non-comparable patient numbers for proton and photon beam irradiation, a separate assessment of the findings per treatment modality was not performed. RESULTS Four WM structures (i.e., internal capsule, corona radiata, posterior thalamic radiation, and superior longitudinal fasciculus) showed statistically significantly decreased RD and MD after RT, whereas AD decrease and FA increase occurred less frequently. The posterior thalamic radiation showed the most pronounced changes after RCT [i.e., ΔRD = -8.51 % (p = 0.012), ΔMD = -6.14 % (p = 0.012)]. The DTI changes depended significantly on mean dose and time. CONCLUSION Significant changes in DTI for WM substructures were found even at low radiation doses. These findings may prompt new radiation dose constraints sparing the vulnerable structures from damage and subsequent side-effects.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Wesemann
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Funer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
7
|
Vidyadharan S, Rao BVVSNP, Yogeeswari P, Kesavadas C, Rajagopalan V. Accurate low and high grade glioma classification using free water eliminated diffusion tensor metrics and ensemble machine learning. Sci Rep 2024; 14:19844. [PMID: 39191905 PMCID: PMC11350135 DOI: 10.1038/s41598-024-70627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma, a predominant type of brain tumor, can be fatal. This necessitates an early diagnosis and effective treatment strategies. Current diagnosis is based on biopsy, prompting the need for non invasive neuroimaging alternatives. Diffusion tensor imaging (DTI) is a promising method for studying the pathophysiological impact of tumors on white matter (WM) tissue. Single-shell DTI studies in brain glioma patients have not accounted for free water (FW) contamination due to tumors. This study aimed to (a) assess the efficacy of a two-compartment DTI model that accounts for FW contamination and (b) identify DTI-based biomarkers to classify low-grade glioma (LGG) and high-grade glioma (HGG) patients. DTI data from 86 patients (LGG n = 39, HGG n = 47) were obtained using a routine clinical imaging protocol. DTI metrics of tumorous regions and normal-appearing white matter (NAWM) were evaluated. Advanced stacked-based ensemble learning was employed to classify LGG and HGG patients using both single- and two-compartment DTI model measures. The DTI metrics of the two-compartment model outperformed those of the standard single-compartment DTI model in terms of sensitivity, specificity, and area under the curve of receiver operating characteristic (AUC-ROC) score in classifying LGG and HGG patients. Four features (out of 16 features), namely fractional anisotropy (FA) of the edema and core region and FA and mean diffusivity of the NAWM region, showed superior performance (sensitivity = 92%, specificity = 90%, and AUC-ROC = 90%) in classifying LGG and HGG. This demonstrates that both tumorous and NAWM regions may be differentially affected in LGG and HGG patients. Our results demonstrate the significance of using a two-compartment DTI model that accounts for FW contamination by improving diagnostic accuracy. This improvement may eventually aid in planning treatment strategies for glioma patients.
Collapse
Affiliation(s)
- Sreejith Vidyadharan
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - B V V S N Prabhakar Rao
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - P Yogeeswari
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - C Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, 695011, India
| | - Venkateswaran Rajagopalan
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
8
|
van Grinsven EE, Cialdella F, Gmelich Meijling Y, Verhoeff JJC, Philippens MEP, van Zandvoort MJE. Individualized trajectories in postradiotherapy neurocognitive functioning of patients with brain metastases. Neurooncol Pract 2024; 11:441-451. [PMID: 39006520 PMCID: PMC11241367 DOI: 10.1093/nop/npae024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Background The increasing incidence of brain metastases (BMs) and improved survival rates underscore the necessity to investigate the effects of treatments on individuals. The aim of this study was to evaluate the individual trajectories of subjective and objective cognitive performance after radiotherapy in patients with BMs. Methods The study population consisted of adult patients with BMs referred for radiotherapy. A semi-structured interview and comprehensive neurocognitive assessment (NCA) were used to assess both subjective and objective cognitive performance before, 3 months and ≥ 11 months after radiotherapy. Reliable change indices were used to identify individual, clinically meaningful changes. Results Thirty-six patients completed the 3-month follow-up, and 14 patients completed the ≥ 11-months follow-up. Depending on the domain, subjective cognitive decline was reported by 11-22% of patients. In total, 50% of patients reported subjective decline in at least one cognitive domain. Intracranial progression 3 months postradiotherapy was a risk-factor for self-reported deterioration (P = .031). Objective changes were observed across all domains, with a particular vulnerability for decline in memory at 3 months postradiotherapy. The majority of patients (81%) experienced both a deterioration as well as improvement (eg, mixed response) in objective cognitive functioning. Results were similar for the long-term follow-up (3 to ≥11 months). No risk factors for objective cognitive change 3 months postradiotherapy were identified. Conclusions Our study revealed that the majority of patients with BMs will show a mixed cognitive response following radiotherapy, reflecting the complex impact. This underscores the importance of patient-tailored NCAs 3 months postradiotherapy to guide optimal rehabilitation strategies.
Collapse
Affiliation(s)
- Eva E van Grinsven
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Fia Cialdella
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yoniet Gmelich Meijling
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle E P Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martine J E van Zandvoort
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, The Netherlands
| |
Collapse
|
9
|
Palmer JD, Perlow HK, Lehrer EJ, Wardak Z, Soliman H. Novel radiotherapeutic strategies in the management of brain metastases: Challenging the dogma. Neuro Oncol 2024; 26:S46-S55. [PMID: 38437668 PMCID: PMC10911796 DOI: 10.1093/neuonc/noad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The role of radiation therapy in the management of brain metastasis is evolving. Advancements in machine learning techniques have improved our ability to both detect brain metastasis and our ability to contour substructures of the brain as critical organs at risk. Advanced imaging with PET tracers and magnetic resonance imaging-based artificial intelligence models can now predict tumor control and differentiate tumor progression from radiation necrosis. These advancements will help to optimize dose and fractionation for each patient's lesion based on tumor size, histology, systemic therapy, medical comorbidities/patient genetics, and tumor molecular features. This review will discuss the current state of brain directed radiation for brain metastasis. We will also discuss future directions to improve the precision of stereotactic radiosurgery and optimize whole brain radiation techniques to improve local tumor control and prevent cognitive decline without forming necrosis.
Collapse
Affiliation(s)
- Joshua D Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Haley K Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zabi Wardak
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Mohammadi M, Banisharif S, Moradi F, Zamanian M, Tanzifi G, Ghaderi S. Brain diffusion MRI biomarkers after oncology treatments. Rep Pract Oncol Radiother 2024; 28:823-834. [PMID: 38515826 PMCID: PMC10954263 DOI: 10.5603/rpor.98728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/04/2023] [Indexed: 03/23/2024] Open
Abstract
In addition to providing a measurement of the tumor's size and dimensions, magnetic resonance imaging (MRI) provides excellent noninvasive radiographic detection of tumor location. The MRI technique is an important modality that has been shown to be useful in the prognosis, diagnosis, treatment planning, and evaluation of response and recurrence in solid cancers. Diffusion-weighted imaging (DWI) is an imaging technique that quantifies water mobility. This imaging approach is good for identifying sub-voxel microstructure of tissues, correlates with tumor cellularity, and has been proven to be valuable in the early assessment of cytotoxic treatment for a variety of malignancies. Diffusion tensor imaging (DTI) is an MRI method that assesses the preferred amount of water transport inside tissues. This enables precise measurements of water diffusion, which changes according to the direction of white matter fibers, their density, and myelination. This measurement corresponds to some related variables: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and others. DTI biomarkers can detect subtle changes in white matter microstructure and integrity following radiation therapy (RT) or chemoradiotherapy, which may have implications for cognitive function and quality of life. In our study, these indices were evaluated after brain chemoradiotherapy.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shabnam Banisharif
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fatemeh Moradi
- Department of Energy Engineering & Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Ghazal Tanzifi
- Department of Nuclear Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
12
|
Salans M, Karunamuni R, Unnikrishnan S, Qian A, Connor M, Gudipati S, Yip A, Huynh-Le MP, Tibbs M, Reyes A, Stasenko A, Schadler A, McDonald C, Hattangadi-Gluth JA. Microstructural Cerebellar Injury Independently Associated With Processing Speed in Adult Patients With Primary Brain Tumors: Implications for Cognitive Preservation. Int J Radiat Oncol Biol Phys 2023; 117:1107-1117. [PMID: 37414262 DOI: 10.1016/j.ijrobp.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE The cerebellum's role in posttreatment neurocognitive decline is unexplored. This study investigated associations between cerebellar microstructural integrity using quantitative neuroimaging biomarkers and neurocognition among patients with primary brain tumors receiving partial-brain radiation therapy (RT). METHODS AND MATERIALS In a prospective trial, 65 patients underwent volumetric brain magnetic resonance imaging, diffusion tensor imaging, and memory, executive function, language, attention, and processing speed (PS) assessment before RT and at 3, 6, and 12 months after RT. Delis-Kaplan Executive Function System-Trail Making (D-KEFS-TM) visual scanning and number and letter sequencing and Wechsler Adult Intelligence Scale, Fourth Edition, coding were used to evaluate PS. The cerebellar cortex and white matter (WM) and supratentorial structures subserving the previously mentioned cognitive domains were autosegmented. Volume was measured within each structure at each time point along with diffusion biomarkers (fractional anisotropy and mean diffusivity) in WM structures. Linear mixed-effects models assessed cerebellar biomarkers as predictors of neurocognitive scores. If associated, cerebellar biomarkers were evaluated as independent predictors of cognitive scores controlling for domain-specific supratentorial biomarkers. RESULTS Left (P = .04) and right (P < .001) cerebellar WM volume declined significantly over time. Cerebellar biomarkers were not associated with memory, executive function, or language. Smaller left cerebellar cortex volume was associated with worse D-KEFS-TM number (P = .01) and letter (P = .01) sequencing scores. A smaller right cerebellar cortex volume correlated with worse D-KEFS-TM visual scanning (P = .02) and number (P = .03) and letter (P = .02) sequencing scores. Greater right cerebellar WM mean diffusivity, indicating WM injury, was associated with worse D-KEFS-TM visual scanning performance (P = .03). Associations remained significant after controlling for corpus callosum and intrahemispheric WM injury biomarkers. CONCLUSIONS Injury to the cerebellum as measured with quantitative biomarkers correlates with worse post-RT PS, independent of corpus callosum and intrahemispheric WM damage. Efforts to preserve cerebellar integrity may preserve PS.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Alexander Qian
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Suma Gudipati
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anthony Yip
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, California
| | - Adam Schadler
- Department of Psychiatry, University of California, San Diego, California
| | - Carrie McDonald
- Department of Psychiatry, University of California, San Diego, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California.
| |
Collapse
|
13
|
Unnikrishnan S, Karunamuni R, Salans MA, Gudipati S, Qian AS, Yu J, Connor M, Huynh-Le MP, Tibbs MD, Hermann G, Reyes A, Stasenko A, Seibert TM, McDonald CR, Hattangadi-Gluth JA. Dose-Dependent Atrophy in Bilateral Amygdalae and Nuclei After Brain Radiation Therapy and Its Association With Mood and Memory Outcomes on a Longitudinal Clinical Trial. Int J Radiat Oncol Biol Phys 2023; 117:834-845. [PMID: 37230430 DOI: 10.1016/j.ijrobp.2023.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Amygdalae are bilateral, almond-shaped structures located anterior to the hippocampi, critical to limbic system functions of emotional processing and memory consolidation. The amygdalae are heterogeneous, composed of multiple nuclei with distinct structural and functional properties. We prospectively assessed associations between longitudinal changes in amygdala morphometry, including component nuclei, and functional outcomes in patients with primary brain tumors receiving radiation therapy (RT). METHODS AND MATERIALS On a prospective longitudinal trial, 63 patients underwent high-resolution volumetric brain magnetic resonance imaging and testing for mood (Beck Depression Inventory and Beck Anxiety Inventory), memory (Brief Visuospatial Memory Test-Revised [BVMT] Total Recall and Delayed Recall; Hopkins Verbal Learning Test-Revised [HVLT] Total Recall and Delayed Recall), and health-related quality-of-life outcomes (Functional Assessment of Cancer Therapy-Brain Social/Family Well-Being and Emotional Well-Being) at baseline and 3, 6, and 12 months after RT. Amygdalae, including 8 nuclei, were autosegmented bilaterally using validated techniques. Linear mixed-effects models assessed longitudinal change in amygdalae and nuclei volumes and associations with dose and outcomes. Wilcoxon rank sum tests compared amygdala volume change between patient groups with worse and more stable outcomes at each time point. RESULTS Atrophy was found in the right amygdala at 6 months (P = .001) and the left amygdala at 12 months (P = .046). A higher dose was associated with atrophy of the left amygdala (P = .013) at 12 months. The right amygdala showed dose-dependent atrophy at 6 months (P = .016) and 12 months (P = .001). Worse BVMT-Total, HVLT-Total, and HVLT-Delayed performance was associated with smaller left lateral (P = .014, P = .004, and P = .007, respectively) and left basal (P = .034, P = .016, and P = .026, respectively) nuclei volumes. Increased anxiety at 6 months was associated with greater combined (P = .031) and right (P = .007) amygdala atrophy. Greater left amygdala atrophy (P = .038) was noted in patients with decreased emotional well-being at 12 months. CONCLUSIONS Bilateral amygdalae and nuclei undergo time- and dose-dependent atrophy after brain RT. Atrophy in amygdalae and specific nuclei was associated with poorer memory, mood, and emotional well-being. Amygdalae-sparing treatment planning may preserve neurocognitive and neuropsychiatric outcomes in this population.
Collapse
Affiliation(s)
- Soumya Unnikrishnan
- University of California San Diego School of Medicine, La Jolla, California; Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Mia A Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Suma Gudipati
- University of California San Diego School of Medicine, La Jolla, California; Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Alexander S Qian
- University of California San Diego School of Medicine, La Jolla, California; Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Justin Yu
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | | | - Michelle D Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Gretchen Hermann
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Alena Stasenko
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
| |
Collapse
|
14
|
Connor M, Salans M, Karunamuni R, Unnikrishnan S, Huynh-Le MP, Tibbs M, Qian A, Reyes A, Stasenko A, McDonald C, Moiseenko V, El-Naqa I, Hattangadi-Gluth JA. Fine Motor Skill Decline After Brain Radiation Therapy-A Multivariate Normal Tissue Complication Probability Study of a Prospective Trial. Int J Radiat Oncol Biol Phys 2023; 117:581-593. [PMID: 37150258 PMCID: PMC10911396 DOI: 10.1016/j.ijrobp.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE Brain radiation therapy can impair fine motor skills (FMS). Fine motor skills are essential for activities of daily living, enabling hand-eye coordination for manipulative movements. We developed normal tissue complication probability (NTCP) models for the decline in FMS after fractionated brain radiation therapy (RT). METHODS AND MATERIALS On a prospective trial, 44 patients with primary brain tumors received fractioned RT; underwent high-resolution volumetric magnetic resonance imaging, diffusion tensor imaging, and comprehensive FMS assessments (Delis-Kaplan Executive Function System Trail Making Test Motor Speed [DKEFS-MS]; and Grooved Pegboard dominant/nondominant hands) at baseline and 6 months postRT. Regions of interest subserving motor function (including cortex, superficial white matter, thalamus, basal ganglia, cerebellum, and white matter tracts) were autosegmented using validated methods and manually verified. Dosimetric and clinical variables were included in multivariate NTCP models using automated bootstrapped logistic regression, least absolute shrinkage and selection operator logistic regression, and random forests with nested cross-validation. RESULTS Half of the patients showed a decline on grooved pegboard test of nondominant hands, 17 of 42 (40.4%) on grooved pegboard test of -dominant hands, and 11 of 44 (25%) on DKEFS-MS. Automated bootstrapped logistic regression selected a 1-term model including maximum dose to dominant postcentral white matter. The least absolute shrinkage and selection operator logistic regression selected this term and steroid use. The top 5 variables in the random forest were all dosimetric: maximum dose to dominant thalamus, mean dose to dominant caudate, mean and maximum dose to the dominant corticospinal tract, and maximum dose to dominant postcentral white matter. This technique performed best with an area under the curve of 0.69 (95% CI, 0.68-0.70) on nested cross-validation. CONCLUSIONS We present the first NTCP models for FMS impairment after brain RT. Dose to several supratentorial motor-associated regions of interest correlated with a decline in dominant-hand fine motor dexterity in patients with primary brain tumors in multivariate models, outperforming clinical variables. These data can guide prospective fine motor-sparing strategies for brain RT.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Alexander Qian
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Issam El-Naqa
- Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California.
| |
Collapse
|
15
|
Alirezaei Z, Amouheidari A, Iraji S, Hassanpour M, Hejazi SH, Davanian F, Nami MT, Rastaghi S, Shokrani P, Tsien CI, Nazem-Zadeh MR. Prediction of Normal Tissue Complication Probability (NTCP) After Radiation Therapy Using Imaging and Molecular Biomarkers and Multivariate Modelling. J Mol Neurosci 2023; 73:587-597. [PMID: 37462853 DOI: 10.1007/s12031-023-02136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 09/24/2023]
Abstract
The aim of this study was to design a predictive radiobiological model of normal brain tissue in low-grade glioma following radiotherapy based on imaging and molecular biomarkers. Fifteen patients with primary brain tumors prospectively participated in this study and underwent radiation therapy. Magnetic resonance imaging (MRI) was obtained from the patients, including T1- and T2-weighted imaging and diffusion tensor imaging (DTI), and a generalized equivalent dose (gEUD) was calculated. The radiobiological model of the normal tissue complication probability (NTCP) was performed using the variables gEUD; axial diffusivity (AD) and radial diffusivity (RD) of the corpus callosum; and serum protein S100B by univariate and multivariate logistic regression XLIIIrd Sir Peter Freyer Memorial Lecture and Surgical Symposium (2018). Changes in AD, RD, and S100B from baseline up to the 6 months after treatment had an increasing trend and were significant in some time points (P-value < 0.05). The model resulting from RD changes in the 6 months after treatment was significantly more predictable of necrosis than other univariate models. The bivariate model combining RD changes in Gy40 dose-volume and gEUD, as well as the trivariate model obtained using gEUD, RD, and S100B, had a higher predictive value among multivariate models at the sixth month of the treatment. Changes in RD diffusion indices and in serum protein S100B value were used in the early-delayed stage as reliable biomarkers for predicting late-delayed damage (necrosis) caused by radiation in the corpus callosum. Current findings could pave the way for intervention therapies to delay the severity of damage to white matter structures, minimize cognitive impairment, and improve the quality of life of patients with low-grade glioma.
Collapse
Affiliation(s)
- Zahra Alirezaei
- Medical Physics Department, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Amouheidari
- Research & Education, Department of Radiation Oncology, Isfahan Milad Hospital, Isfahan, Iran
| | - Sajjad Iraji
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Hassanpour
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hosein Hejazi
- Skin Diseases and Leishmaniosis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fariba Davanian
- Radiology Department, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Sedighe Rastaghi
- Biostatistics Department, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Shokrani
- Medical Physics Department, Isfahan University of Medical Science, Isfahan, Iran
| | - Christina I Tsien
- Radiation Oncology Department, Washington University, St. Louis, MO, USA
| | - Mohammad-Reza Nazem-Zadeh
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Ng S, Duffau H. Brain Plasticity Profiling as a Key Support to Therapeutic Decision-Making in Low-Grade Glioma Oncological Strategies. Cancers (Basel) 2023; 15:3698. [PMID: 37509359 PMCID: PMC10378506 DOI: 10.3390/cancers15143698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The ability of neural circuits to compensate for damage to the central nervous system is called postlesional plasticity. In diffuse low-grade gliomas (LGGs), a crosstalk between the brain and the tumor activates modulations of plasticity, as well as tumor proliferation and migration, by means of paracrine and electrical intercommunications. Such adaptative mechanisms have a major impact on the benefits and risks of oncological treatments but are still disregarded by current neuro-oncological guidelines. In this review, the authors first aimed to highlight clinical, radiological, and oncological markers that robustly reflect the plasticity potentials and limitations in LGG patients, including the location of the tumor and the degree of critical white matter tract infiltration, the velocity of tumor expansion, and the reactional changes of neuropsychological performances over time. Second, the interactions between the potential/limitations of cerebral plasticity and the efficacy/tolerance of treatment options (i.e., surgery, chemotherapy, and radiotherapy) are reviewed. Finally, a longitudinal and multimodal treatment approach accounting for the evolutive profiles of brain plasticity is proposed. Such an approach integrates personalized predictive models of plasticity potentials with a step-by-step therapeutic decision making and supports onco-functional balanced strategies in patients with LGG, with the ultimate aim of optimizing overall survival and quality of life.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 34295 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, Centre National de le Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale 1191, 34094 Montpellier, France
| |
Collapse
|
17
|
Franco D, Granata V, Fusco R, Grassi R, Nardone V, Lombardi L, Cappabianca S, Conforti R, Briganti F, Grassi R, Caranci F. Artificial intelligence and radiation effects on brain tissue in glioblastoma patient: preliminary data using a quantitative tool. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01655-0. [PMID: 37289266 DOI: 10.1007/s11547-023-01655-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE The quantification of radiotherapy (RT)-induced functional and morphological brain alterations is fundamental to guide therapeutic decisions in patients with brain tumors. The magnetic resonance imaging (MRI) allows to define structural RT-brain changes, but it is unable to evaluate early injuries and to objectively quantify the volume tissue loss. Artificial intelligence (AI) tools extract accurate measurements that permit an objective brain different region quantification. In this study, we assessed the consistency between an AI software (Quibim Precision® 2.9) and qualitative neruroradiologist evaluation, and its ability to quantify the brain tissue changes during RT treatment in patients with glioblastoma multiforme (GBM). METHODS GBM patients treated with RT and subjected to MRI assessment were enrolled. Each patient, pre- and post-RT, undergoes to a qualitative evaluation with global cerebral atrophy (GCA) and medial temporal lobe atrophy (MTA) and a quantitative assessment with Quibim Brain screening and hippocampal atrophy and asymmetry modules on 19 extracted brain structures features. RESULTS A statistically significant strong negative association between the percentage value of the left temporal lobe and the GCA score and the left temporal lobe and the MTA score was found, while a moderate negative association between the percentage value of the right hippocampus and the GCA score and the right hippocampus and the MTA score was assessed. A statistically significant strong positive association between the CSF percentage value and the GCA score and a moderate positive association between the CSF percentage value and the MTA score was found. Finally, quantitative feature values showed that the percentage value of the cerebro-spinal fluid (CSF) statistically differences between pre- and post-RT. CONCLUSIONS AI tools can support a correct evaluation of RT-induced brain injuries, allowing an objective and earlier assessment of the brain tissue modifications.
Collapse
Affiliation(s)
- Donatella Franco
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Research & Development and Medical Oncology Division, Igea SpA, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122, Milan, Italy
| | - Valerio Nardone
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Laura Lombardi
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Salvatore Cappabianca
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Renata Conforti
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Francesco Briganti
- Advanced Biomedical Sciences Department, Federico II University, Naples, Italy
| | - Roberto Grassi
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Ferdinando Caranci
- Division of Radiology, Department of Precision Medicine, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
18
|
Li B, Yabluchanskiy A, Tarantini S, Allu SR, Şencan-Eğilmez I, Leng J, Alfadhel MAH, Porter JE, Fu B, Ran C, Erdener SE, Boas DA, Vinogradov SA, Sonntag WE, Csiszar A, Ungvari Z, Sakadžić S. Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter. GeroScience 2023; 45:1491-1510. [PMID: 36792820 PMCID: PMC10400746 DOI: 10.1007/s11357-023-00735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 μm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.
Collapse
Affiliation(s)
- Baoqiang Li
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ikbal Şencan-Eğilmez
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Biophotonics Research Center, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ji Leng
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Mohammed Ali H Alfadhel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jason E Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Sefik Evren Erdener
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, 1083, Hungary.
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Matsui JK, Perlow HK, Upadhyay R, McCalla A, Raval RR, Thomas EM, Blakaj DM, Beyer SJ, Palmer JD. Advances in Radiotherapy for Brain Metastases. Surg Oncol Clin N Am 2023; 32:569-586. [PMID: 37182993 DOI: 10.1016/j.soc.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Radiotherapy remains a cornerstone treatment of brain metastases. With new treatment advances, patients with brain metastases are living longer, and finding solutions for mitigating treatment-related neurotoxicity and improving quality of life is important. Historically, whole-brain radiation therapy (WBRT) was widely used but treatment options such as hippocampal sparing WBRT and stereotactic radiosurgery (SRS) have emerged as promising alternatives. Herein, we discuss the recent advances in radiotherapy for brain metastases including the sparing of critical structures that may improve long-term neurocognitive outcomes (eg, hippocampus, fornix) that may improve long-term neurocognitive outcome, evidence supporting preoperative and fractionated-SRS, and treatment strategies for managing radiation necrosis.
Collapse
|
20
|
Mash LE, Kahalley LS, Raghubar KP, Goodrich-Hunsaker NJ, Abildskov TJ, De Leon LA, MacLeod M, Stancel H, Parsons K, Biekman B, Desai NK, Grosshans DR, Paulino AC, Chu ZD, Whitehead WE, Okcu MF, Chintagumpala M, Wilde EA. Cognitive Sparing in Proton versus Photon Radiotherapy for Pediatric Brain Tumor Is Associated with White Matter Integrity: An Exploratory Study. Cancers (Basel) 2023; 15:1844. [PMID: 36980730 PMCID: PMC10047305 DOI: 10.3390/cancers15061844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Radiotherapy for pediatric brain tumors is associated with reduced white matter structural integrity and neurocognitive decline. Superior cognitive outcomes have been reported following proton radiotherapy (PRT) compared to photon radiotherapy (XRT), presumably due to improved sparing of normal brain tissue. This exploratory study examined the relationship between white matter change and late cognitive effects in pediatric brain tumor survivors treated with XRT versus PRT. Pediatric brain tumor survivors treated with XRT (n = 10) or PRT (n = 12) underwent neuropsychological testing and diffusion weighted imaging >7 years post-radiotherapy. A healthy comparison group (n = 23) was also recruited. Participants completed age-appropriate measures of intellectual functioning, visual-motor integration, and motor coordination. Tractography was conducted using automated fiber quantification (AFQ). Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) were extracted from 12 tracts of interest. Overall, both white matter integrity (FA) and neuropsychological performance were lower in XRT patients while PRT patients were similar to healthy control participants with respect to both FA and cognitive functioning. These findings support improved long-term outcomes in PRT versus XRT. This exploratory study is the first to directly support for white matter integrity as a mechanism of cognitive sparing in PRT.
Collapse
Affiliation(s)
- Lisa E. Mash
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lisa S. Kahalley
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Cancer and Hematology Centers, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kimberly P. Raghubar
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Tracy J. Abildskov
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Luz A. De Leon
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Marianne MacLeod
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Stancel
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kelley Parsons
- Department of Pediatrics, Division of Psychology, Baylor College of Medicine, Houston, TX 77030, USA
- Psychology Service, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Brian Biekman
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Nilesh K. Desai
- Department of Radiology, Division of Neuroradiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R. Grosshans
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arnold C. Paulino
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zili D. Chu
- Department of Radiology, Division of Neuroradiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Mehmet Fatih Okcu
- Department of Pediatrics, Division of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Murali Chintagumpala
- Department of Pediatrics, Division of Hematology Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Pediatrics, Division of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Duffau H. Oncological and functional neurosurgery: Perspectives for the decade regarding diffuse gliomas. Rev Neurol (Paris) 2023; 179:437-448. [PMID: 36907710 DOI: 10.1016/j.neurol.2023.01.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 03/12/2023]
Abstract
For decades, diffuse glioma (DG) studies mostly focused on oncological considerations, whereas functional outcomes received less attention. Currently, because overall survival has increased in DG, especially in low-grade glioma (overall survival > 15 years), quality of life including neurocognitive and behavioral aspects should be assessed and preserved more systematically, particularly regarding surgery. Indeed, early maximal tumor removal results in greater survival in both high-grade and low-grade gliomas, leading to propose "supra-marginal" resection, with excision of the peritumoral zone in diffuse neoplasms. To minimize functional risks while maximizing the extent of resection, traditional "tumor-mass resection" is replaced by "connectome-guided resection" conducted under awake mapping, taking into account inter-individual brain anatomo-functional variability. A better understanding of the dynamic interplay between DG progression and reactional neuroplastic mechanisms is critical to adapt a personalized multistage therapeutic strategy, with integration of functional neurooncological (re)operation(s) in a multimodal management scheme including repeated medical therapies. Because the therapeutic armamentarium remains limited, the aims of this paradigmatic shift are to predict one/several step(s) ahead glioma behavior, its modifications, and compensatory neural networks reconfiguration over time in order to optimize the onco-functional benefit of each treatment - either in isolation or in combination with others - in human beings bearing a chronic tumoral disease while enjoying an active familial and socio-professional life as close as possible to their expectations. Thus, new ecological endpoints such as return to work should be incorporated into future DG trials. "Preventive neurooncology" might also be envisioned, by proposing a screening policy to discover and treat incidental glioma earlier.
Collapse
Affiliation(s)
- H Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui-de-Chauliac Hospital, 80, avenue Augustin-Fliche, 34295 Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", National Institute for Health and Medical Research (Inserm), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France.
| |
Collapse
|
22
|
Gram D, Brodin NP, Björk-Eriksson T, Nysom K, Munck Af Rosenschöld P. The risk of radiation-induced neurocognitive impairment and the impact of sparing the hippocampus during pediatric proton cranial irradiation. Acta Oncol 2023; 62:134-140. [PMID: 36847433 DOI: 10.1080/0284186x.2023.2176253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND PURPOSE Hippocampus is a central component for neurocognitive function and memory. We investigated the predicted risk of neurocognitive impairment of craniospinal irradiation (CSI) and the deliverability and effects of hippocampal sparing. The risk estimates were derived from published NTCP models. Specifically, we leveraged the estimated benefit of reduced neurocognitive impairment with the risk of reduced tumor control. MATERIAL AND METHODS For this dose planning study, a total of 504 hippocampal sparing intensity modulated proton therapy (HS-IMPT) plans were generated for 24 pediatric patients whom had previously received CSI. Plans were evaluated with respect to target coverage and homogeneity index to target volumes, maximum and mean dose to OARs. Paired t-tests were used to compare hippocampal mean doses and normal tissue complication probability estimates. RESULTS The median mean dose to the hippocampus could be reduced from 31.3 GyRBE to 7.3 GyRBE (p < .001), though 20% of these plans were not considered clinically acceptable as they failed one or more acceptance criterion. Reducing the median mean hippocampus dose to 10.6 GyRBE was possible with all plans considered as clinically acceptable treatment plans. By sparing the hippocampus to the lowest dose level, the risk estimation of neurocognitive impairment could be reduced from 89.6%, 62.1% and 51.1% to 41.0% (p < .001), 20.1% (p < .001) and 29.9% (p < .001) for task efficiency, organization and memory, respectively. Estimated tumor control probability was not adversely affected by HS-IMPT, ranging from 78.5 to 80.5% for all plans. CONCLUSIONS We present estimates of potential clinical benefit in terms of neurocognitive impairment and demonstrate the possibility of considerably reducing neurocognitive adverse effects, minimally compromising target coverage locally using HS-IMPT.
Collapse
Affiliation(s)
- Daniel Gram
- Department of Oncology - Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Oncology and Palliative Care, Radiotherapy, Zealand University Hospital, Næstved, Denmark
| | - N Patrik Brodin
- Institute for Onco-Physics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden.,Regional Cancer Centre West, Gothenburg, Sweden
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, The Juliane Marie Center, Rigshospitalet, Copenhagen, Denmark
| | - Per Munck Af Rosenschöld
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Radiation Physics - Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Salans M, Houri J, Karunamuni R, Hopper A, Delfanti R, Seibert TM, Bahrami N, Sharifzadeh Y, McDonald C, Dale A, Moiseenko V, Farid N, Hattangadi-Gluth JA. The relationship between radiation dose and bevacizumab-related imaging abnormality in patients with brain tumors: A voxel-wise normal tissue complication probability (NTCP) analysis. PLoS One 2023; 18:e0279812. [PMID: 36800342 PMCID: PMC9937457 DOI: 10.1371/journal.pone.0279812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Bevacizumab-related imaging abnormality (BRIA), appearing as areas of restricted diffusion on magnetic resonance imaging (MRI) and representing atypical coagulative necrosis pathologically, has been observed in patients with brain tumors receiving radiotherapy and bevacizumab. We investigated the role of cumulative radiation dose in BRIA development in a voxel-wise analysis. METHODS Patients (n = 18) with BRIA were identified. All had high-grade gliomas or brain metastases treated with radiotherapy and bevacizumab. Areas of BRIA were segmented semi-automatically on diffusion-weighted MRI with apparent diffusion coefficient (ADC) images. To avoid confounding by possible tumor, hypoperfusion was confirmed with perfusion imaging. ADC images and radiation dose maps were co-registered to a high-resolution T1-weighted MRI and registration accuracy was verified. Voxel-wise normal tissue complication probability analyses were performed using a logistic model analyzing the relationship between cumulative voxel equivalent total dose in 2 Gy fractions (EQD2) and BRIA development at each voxel. Confidence intervals for regression model predictions were estimated with bootstrapping. RESULTS Among 18 patients, 39 brain tumors were treated. Patients received a median of 4.5 cycles of bevacizumab and 1-4 radiation courses prior to BRIA appearance. Most (64%) treated tumors overlapped with areas of BRIA. The median proportion of each BRIA region of interest volume overlapping with tumor was 98%. We found a dose-dependent association between cumulative voxel EQD2 and the relative probability of BRIA (β0 = -5.1, β1 = 0.03 Gy-1, γ = 1.3). CONCLUSIONS BRIA is likely a radiation dose-dependent phenomenon in patients with brain tumors receiving bevacizumab and radiotherapy. The combination of radiation effects and tumor microenvironmental factors in potentiating BRIA in this population should be further investigated.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jordan Houri
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Carl E. Ravin Advanced Imaging Laboratories, Duke University, Durham, North Carolina, United States of America
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Austin Hopper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Rachel Delfanti
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Naeim Bahrami
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yasamin Sharifzadeh
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Anders Dale
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nikdokht Farid
- Department of Radiology, University of California San Diego, La Jolla, California, United States of America
| | - Jona A. Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
24
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
25
|
Hopper A, Salans M, Karunamuni R, Hattangadi-Gluth JA. Neurocognitive considerations in the treatment of meningioma with radiation therapy: applications for quantitative neuroimaging and precision radiation medicine. J Neurooncol 2023; 161:277-286. [PMID: 36572802 DOI: 10.1007/s11060-022-04175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
This article focuses on the role of radiotherapy in the management of meningioma, in the definitive and adjuvant setting and across the spectrum of meningioma grade. Treatment paradigms, informed by clinical evidence, are discussed. Notably, we focus on the impact of radiotherapy on normal brain tissues and neurocognitive function, particularly the dose-dependent changes in white matter and cerebral cortex thickness. Novel imaging techniques have allowed the identification of microstructural changes to eloquent white matter, cortex, and subcortical regions as biomarkers for understanding RT-induced changes in cognitive functioning. Deficits in multiple domains including attention, memory, language and executive function can become more pronounced following radiation. Longitudinal assessment with imaging and neurocognitive testing pre- and post-radiation have allowed correlation between dose to specific regions of the brain and decline in associated domains of neurocognitive function. These findings suggest incorporation of areas at higher risk for neurocognitive sequelae into precision radiation planning. Volumetric arc therapy, advanced planning with cortical sparing, proton therapy and stereotactic radiosurgery are reviewed as options for delivering therapeutic dose to target volumes while minimizing risk to adjacent sensitive regions. The treatment of meningioma is an evolving area, with improving outcomes for higher grade disease in modern trials, where care must be taken to maximize both disease control as well as quality of life for patients.
Collapse
Affiliation(s)
- Austin Hopper
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA
| | - Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, Mail Code 0861, San Diego, CA, 92093-0861, USA.
| |
Collapse
|
26
|
Dose-dependent early white matter alterations in patients with brain metastases after radiotherapy. Neuroradiology 2023; 65:167-176. [PMID: 35864179 DOI: 10.1007/s00234-022-03020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Previous diffusion tensor imaging (DTI) studies have mainly focused on dose-dependent white matter (WM) alterations 1 month to 1 year after radiation therapy (RT) with a tract-average method. However, WM alterations immediately after RT are subtle, resulting in early WM alterations that cannot be detected by tract-average methods. Therefore, we performed a study with an along-tract method in patients with brain metastases to explore the early dose-response pattern of WM alterations after RT. METHODS Sixteen patients with brain metastases underwent DTI before and 1-3 days after brain RT. DTI metrics, such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were calculated. Along-tract statistics were then used to resample WM fibre streamlines and generate a WM skeleton fibre tract. DTI metric alterations (post_RT-pre_RT DTI metrics) and the planned doses (max or mean doses) were mapped to 18 WM tracts. A linear fixed model was performed to analyse the main effect of dose on DTI metric alterations. RESULTS AD alterations in the left hemispheric uncinated fasciculus (UNC_L) were associated with max doses, in which decreased AD alterations were associated with higher doses. CONCLUSION Our findings may provide pathological insight into early dose-dependent WM alterations and may contribute to the development of max dose-constrained RT techniques to protect brain microstructure in the UNC_L.
Collapse
|
27
|
Ramakrishnan D, von Reppert M, Krycia M, Sala M, Mueller S, Aneja S, Nabavizadeh A, Galldiks N, Lohmann P, Raji C, Ikuta I, Memon F, Weinberg BD, Aboian MS. Evolution and implementation of radiographic response criteria in neuro-oncology. Neurooncol Adv 2023; 5:vdad118. [PMID: 37860269 PMCID: PMC10584081 DOI: 10.1093/noajnl/vdad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Radiographic response assessment in neuro-oncology is critical in clinical practice and trials. Conventional criteria, such as the MacDonald and response assessment in neuro-oncology (RANO) criteria, rely on bidimensional (2D) measurements of a single tumor cross-section. Although RANO criteria are established for response assessment in clinical trials, there is a critical need to address the complexity of brain tumor treatment response with multiple new approaches being proposed. These include volumetric analysis of tumor compartments, structured MRI reporting systems like the Brain Tumor Reporting and Data System, and standardized approaches to advanced imaging techniques to distinguish tumor response from treatment effects. In this review, we discuss the strengths and limitations of different neuro-oncology response criteria and summarize current research findings on the role of novel response methods in neuro-oncology clinical trials and practice.
Collapse
Affiliation(s)
- Divya Ramakrishnan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marc von Reppert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark Krycia
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Sala
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery, and Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sanjay Aneja
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, Juelich, Germany
| | - Cyrus Raji
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Ichiro Ikuta
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
| | - Fatima Memon
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brent D Weinberg
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mariam S Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
28
|
Eulitz J, G C Troost E, Klünder L, Raschke F, Hahn C, Schulz E, Seidlitz A, Thiem J, Karpowitz C, Hahlbohm P, Grey A, Engellandt K, Löck S, Krause M, Lühr A. Increased relative biological effectiveness and periventricular radiosensitivity in proton therapy of glioma patients. Radiother Oncol 2023; 178:109422. [PMID: 36435337 DOI: 10.1016/j.radonc.2022.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Currently, there is an intense debate on variations in intra-cerebral radiosensitivity and relative biological effectiveness (RBE) in proton therapy of primary brain tumours. Here, both effects were retrospectively investigated using late radiation-induced brain injuries (RIBI) observed in follow-up after proton therapy of patients with diagnosed glioma. METHODS In total, 42 WHO grade 2-3 glioma patients out of a consecutive patient cohort having received (adjuvant) proton radio(chemo)therapy between 2014 and 2017 were eligible for analysis. RIBI lesions (symptomatic or clinically asymptomatic) were diagnosed and delineated on contrast-enhanced T1-weighted magnetic resonance imaging scans obtained in the first two years of follow-up. Correlation of RIBI location and occurrence with dose (D), proton dose-averaged linear energy transfer (LET) and variable RBE dose parameters were tested in voxel- and in patient-wise logistic regression analyses. Additionally, anatomical and clinical parameters were considered. Model performance was estimated through cross-validated area-under-the-curve (AUC) values. RESULTS In total, 64 RIBI lesions were diagnosed in 21 patients. The median time between start of proton radio(chemo)therapy and RIBI appearance was 10.2 months. Median distances of the RIBI volume centres to the cerebral ventricles and to the clinical target volume border were 2.1 mm and 1.3 mm, respectively. In voxel-wise regression, the multivariable model with D, D × LET and periventricular region (PVR) revealed the highest AUC of 0.90 (95 % confidence interval: 0.89-0.91) while the corresponding model without D × LET revealed a value of 0.84 (0.83-0.86). In patient-level analysis, the equivalent uniform dose (EUD11, a = 11) in the PVR using a variable RBE was the most prominent predictor for RIBI with an AUC of 0.63 (0.32-0.90). CONCLUSIONS In this glioma cohort, an increased radiosensitivity within the PVR was observed as well as a spatial correlation of RIBI with an increased RBE. Both need to be considered when delivering radio(chemo)therapy using proton beams.
Collapse
Affiliation(s)
- Jan Eulitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lauritz Klünder
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Erik Schulz
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annekatrin Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Justus Thiem
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Caroline Karpowitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia Hahlbohm
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Arne Grey
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kay Engellandt
- National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
29
|
Duffau H. A Personalized Longitudinal Strategy in Low-Grade Glioma Patients: Predicting Oncological and Neural Interindividual Variability and Its Changes over Years to Think One Step Ahead. J Pers Med 2022; 12:jpm12101621. [PMID: 36294760 PMCID: PMC9604939 DOI: 10.3390/jpm12101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Diffuse low-grade glioma (LGG) is a rare cerebral cancer, mostly involving young adults with an active life at diagnosis. If left untreated, LGG widely invades the brain and becomes malignant, generating neurological worsening and ultimately death. Early and repeat treatments for this incurable tumor, including maximal connectome-based surgical resection(s) in awake patients, enable postponement of malignant transformation while preserving quality of life owing to constant neural network reconfiguration. Due to considerable interindividual variability in terms of LGG course and consecutive cerebral reorganization, a multistage longitudinal strategy should be tailored accordingly in each patient. It is crucial to predict how the glioma will progress (changes in growth rate and pattern of migration, genetic mutation, etc.) and how the brain will adapt (changes in patterns of spatiotemporal redistribution, possible functional consequences such as epilepsy or cognitive decline, etc.). The goal is to anticipate therapeutic management, remaining one step ahead in order to select the optimal (re-)treatment(s) (some of them possibly kept in reserve), at the appropriate time(s) in the evolution of this chronic disease, before malignization and clinical worsening. Here, predictive tumoral and non-tumoral factors, and their ever-changing interactions, are reviewed to guide individual decisions in advance based on patient-specific markers, for the treatment of LGG.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av. Augustin Fliche, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors”, National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, 34091 Montpellier, France
| |
Collapse
|
30
|
Tian L, Hahn C, Lühr A. An ion-independent phenomenological relative biological effectiveness (RBE) model for proton therapy. Radiother Oncol 2022; 174:69-76. [PMID: 35803365 DOI: 10.1016/j.radonc.2022.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND A relative biological effectiveness (RBE) of 1.1 is used for proton therapy though clinical evidence of varying RBE was raised. Clinical studies on RBE variability have been conducted for decades for carbon radiation, which could advance the understanding of the clinical proton RBE given an ion-independent RBE model. In this work, such a model, linear and simple, using the beam quantity Q = Z2/E (Z = ion charge, E = kinetic energy per nucleon) was tested and compared to the commonly used, proton-specific and linear energy transfer (LET) based Wedenberg RBE model. MATERIAL AND METHODS The Wedenberg and Q models, both predicting RBEmax and RBEmin (i.e., RBE at vanishing and very high dose, respectively), are compared in terms of ion-dependence and prediction power. An experimental in-vitro data ensemble covering 115 publications for various ions was used as dataset. RESULTS The model parameter of the Q model was observed to be similar for different ions (in contrast to LET). The Q model was trained without any prior knowledge of proton data. For proton RBE, the differences between experimental data and corresponding predictions of the Wedenberg or the Q model were highly comparable. CONCLUSIONS A simple linear RBE model using Q instead of LET was proposed and tested to be able to predict proton RBE using model parameter trained based on only RBE data of other particles in a clinical proton energy range for a large in-vitro dataset. Adding (pre)clinical knowledge from carbon ion therapy may, therefore, reduce the dominating biological uncertainty in proton RBE modelling. This would translate in reduced RBE related uncertainty in proton therapy treatment planning.
Collapse
Affiliation(s)
- Liheng Tian
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| | - Christian Hahn
- TU Dortmund University, Department of Physics, Dortmund, Germany; OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine, and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- TU Dortmund University, Department of Physics, Dortmund, Germany.
| |
Collapse
|
31
|
Dinkel JG, Lahmer G, Mennecke A, Hock SW, Richter-Schmidinger T, Fietkau R, Distel L, Putz F, Dörfler A, Schmidt MA. Effects of Hippocampal Sparing Radiotherapy on Brain Microstructure-A Diffusion Tensor Imaging Analysis. Brain Sci 2022; 12:brainsci12070879. [PMID: 35884686 PMCID: PMC9312994 DOI: 10.3390/brainsci12070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Hippocampal-sparing radiotherapy (HSR) is a promising approach to alleviate cognitive side effects following cranial radiotherapy. Microstructural brain changes after irradiation have been demonstrated using Diffusion Tensor Imaging (DTI). However, evidence is conflicting for certain parameters and anatomic structures. This study examines the effects of radiation on white matter and hippocampal microstructure using DTI and evaluates whether these may be mitigated using HSR. A total of 35 tumor patients undergoing a prospective randomized controlled trial receiving either conventional or HSR underwent DTI before as well as 6, 12, 18, 24, and 30 (±3) months after radiotherapy. Fractional Anisotropy (FA), Mean Diffusivity (MD), Axial Diffusivity (AD), and Radial Diffusivity (RD) were measured in the hippocampus (CA), temporal, and frontal lobe white matter (TL, FL), and corpus callosum (CC). Longitudinal analysis was performed using linear mixed models. Analysis of the entire patient collective demonstrated an overall FACC decrease and RDCC increase compared to baseline in all follow-ups; ADCC decreased after 6 months, and MDCC increased after 12 months (p ≤ 0.001, 0.001, 0.007, 0.018). ADTL decreased after 24 and 30 months (p ≤ 0.004, 0.009). Hippocampal FA increased after 6 and 12 months, driven by a distinct increase in ADCA and MDCA, with RDCA not increasing until 30 months after radiotherapy (p ≤ 0.011, 0.039, 0.005, 0.040, 0.019). Mean radiation dose correlated positively with hippocampal FA (p < 0.001). These findings may indicate complex pathophysiological changes in cerebral microstructures after radiation, insufficiently explained by conventional DTI models. Hippocampal microstructure differed between patients undergoing HSR and conventional cranial radiotherapy after 6 months with a higher ADCA in the HSR subgroup (p ≤ 0.034).
Collapse
Affiliation(s)
- Johannes G. Dinkel
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Godehard Lahmer
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Angelika Mennecke
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Stefan W. Hock
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Tanja Richter-Schmidinger
- Psychiatrische und Psychotherapeutische Klinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Rainer Fietkau
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Luitpold Distel
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Florian Putz
- Strahlenklinik des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (G.L.); (R.F.); (L.D.); (F.P.)
| | - Arnd Dörfler
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
| | - Manuel A. Schmidt
- Neuroradiologisches Institut des Universitätsklinikums Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.G.D.); (A.M.); (S.W.H.); (A.D.)
- Correspondence:
| |
Collapse
|
32
|
Lehrer EJ, Jones BM, Dickstein DR, Green S, Germano IM, Palmer JD, Laack N, Brown PD, Gondi V, Wefel JS, Sheehan JP, Trifiletti DM. The Cognitive Effects of Radiotherapy for Brain Metastases. Front Oncol 2022; 12:893264. [PMID: 35847842 PMCID: PMC9279690 DOI: 10.3389/fonc.2022.893264] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Brain metastases are the most common intracranial neoplasm and are seen in upwards of 10-30% of patients with cancer. For decades, whole brain radiation therapy (WBRT) was the mainstay of treatment in these patients. While WBRT is associated with excellent rates of intracranial tumor control, studies have demonstrated a lack of survival benefit, and WBRT is associated with higher rates of cognitive deterioration and detrimental effects on quality of life. In recent years, strategies to mitigate this risk, such as the incorporation of memantine and hippocampal avoidance have been employed with improved results. Furthermore, stereotactic radiosurgery (SRS) has emerged as an appealing treatment option over the last decade in the management of brain metastases and is associated with superior cognitive preservation and quality of life when compared to WBRT. This review article evaluates the pathogenesis and impact of cranial irradiation on cognition in patients with brain metastases, as well as current and future risk mitigation techniques.
Collapse
Affiliation(s)
- Eric J. Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brianna M. Jones
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel R. Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sheryl Green
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Isabelle M. Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center Warrenville and Proton Center, Warrenville, IL, United States
| | - Jeffrey S. Wefel
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Jason P. Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Daniel M. Trifiletti,
| |
Collapse
|
33
|
The Influence of Socioeconomic Status (SES) and Processing Speed on the Psychological Adjustment and Wellbeing of Pediatric Brain Tumor Survivors. Cancers (Basel) 2022; 14:cancers14133075. [PMID: 35804846 PMCID: PMC9264789 DOI: 10.3390/cancers14133075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Processing speed (PS) is one of the most impaired functions in pediatric brain tumor survivors (PBTSs) and it has been linked to difficulties in their psychological functioning, together with other non-insult-related risk factors, such as socio-economic status (SES). Given the psychological adjustment difficulties observed in PBTS, the aim of the current study was to explore the relationship between SES and psychological functioning, measured with the Child Behavioral Checklist (CBCL) and the Strengths and Difficulties Questionnaire, and considering the contribution of PS as a mediator. The results demonstrated that the influence of SES on the CBCL total index was mediated by PS. Furthermore, PS was found to have a mediating effect on the SES–internalizing problems relationship but not on the SES–externalizing problems relationship. These findings suggest that PS may be a rehabilitation target to prevent psychological distress and should be addressed, especially for PBTSs who live in a disadvantaged situation. Abstract (1) Background: The relationship between processing speed (PS) and psychological adjustment in the healthy population is well established, as is that between low socio-economic status (SES) and psychological distress. While PS is one of the most impaired functions in pediatric brain tumor survivors (PBTSs), previous research has demonstrated that low SES may be a predictor of increased psychosocial risk in PBTSs. Given the psychological adjustment difficulties observed in PBTS, in the current study we aimed to explore the relationship between SES and psychological functioning, considering the contribution of PS as a mediator. (2) Methods: demographic and clinical data of 80 children (age range: 4–17 y.o.) were retrospectively collected. Psychological measures were the parent-compiled versions of the Child Behavioral Checklist (CBCL) and the Strengths and Difficulties Questionnaire (SDQ). Mediation analysis models were performed on psychological measures with and without the inclusion of covariates. (3) Results: The influence of SES on the CBCL total index was mediated by PS. Furthermore, PS was found to have a mediating effect on the relationship between SES and internalizing problems but not on the relationship between SES and externalizing problems. (4) Conclusions: The results suggest that PS may be a rehabilitation target for the prevention of psychological distress and should be addressed especially for PBTSs who live in a disadvantaged situation.
Collapse
|
34
|
Rydelius A, Lampinen B, Rundcrantz A, Bengzon J, Engelholm S, van Westen D, Kinhult S, Knutsson L, Lätt J, Nilsson M, Sundgren PC. Diffusion tensor imaging in glioblastoma patients treated with volumetric modulated arc radiotherapy: a longitudinal study. Acta Oncol 2022; 61:680-687. [PMID: 35275512 DOI: 10.1080/0284186x.2022.2045036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Chemo- and radiotherapy (RT) is standard treatment for patients with high-grade glioma, but may cause side-effects on the patient's cognitive function. AIM Use of diffusion tensor imaging (DTI) to investigate the longitudinal changes in normal-appearing brain tissue in glioblastoma patients undergoing modern arc-based RT with volumetric modulated arc therapy (VMAT) or helical tomotherapy. MATERIALS AND METHODS The study included 27 patients newly diagnosed with glioblastoma and planned for VMAT or tomotherapy. All subjects underwent magnetic resonance imaging at the start of RT and at week 3, 6, 15, and 26. Fourteen subjects were additionally imaged at week 52. The DTI data were co-registered to the dose distribution maps. Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were assessed in the corpus callosum, the centrum semiovale, the hippocampus, and the amygdala. RESULTS Significant longitudinal changes in FA, MD, and RD were mainly found in the corpus callosum. In the other examined brain structures, only sparse and transient changes were seen. No consistent correlations were found between biodose, age, or gender and changes in DTI parameters. CONCLUSION Longitudinal changes in MD, FA, and RD were observed but only in a limited number of brain structures and the changes were smaller than expected from literature. The results suggest that modern, arc-based RT may have less negative effect on normal-appearing parts of the brain tissue up to 12 months after radiotherapy.
Collapse
Affiliation(s)
- Anna Rydelius
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skane University Hospital, Lund, Sweden
| | - Björn Lampinen
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Andreas Rundcrantz
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Neurosurgery, Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Silke Engelholm
- Deptarments of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden
| | - Danielle van Westen
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jimmy Lätt
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Chen M, Wang L, Gong G, Yin Y, Wang P. Quantitative study of the changes in brain white matter before and after radiotherapy by applying multi-sequence MR radiomics. BMC Med Imaging 2022; 22:86. [PMID: 35562722 PMCID: PMC9101859 DOI: 10.1186/s12880-022-00816-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose To analyse the changes in brain white matter before and after radiotherapy (RT) by applying multisequence MR radiomics features and to establish a relationship between the changes in radiomics features and radiation dose. Methods Eighty-eight patients with brain tumours who had undergone RT were selected in this study, and MR images (T1, T1+C, T2FLAIR, T2, DWI, and ASL) before and after RT were obtained. The brain white matter was delineated as an ROI under dose gradients of 0–5 Gy, 5–10 Gy, 10–15 Gy, 15–20 Gy, 20–30 Gy, 30–40 Gy, and 40–50 Gy. The radiomics features of each ROI were extracted, and the changes in radiomics features before and after RT for different sequences under different dose gradients were compared. Results At each dose gradient, statistically significant features of different MR sequences were mainly concentrated in three dose gradients, 5–10 Gy, 20–30 Gy, and 30–40 Gy. The T1+C sequence held the most features (66) under the 20–30 Gy dose gradient. There were 20 general features at dose gradients of 20–30 Gy, 30–40 Gy, and 40–50 Gy, and the changes in features first decreased and then increased following dose escalation. With dose gradients of 5–10 Gy and 10–15 Gy, only T1 and T2FLAIR had general features, and the rates of change were − 24.57% and − 29.32% for T1 and − 3.08% and − 10.87% for T2FLAIR, respectively. The changes showed an upward trend with increasing doses. For different MR sequences that were analysed under the same dose gradient, all sequences with 5–10 Gy, 20–30 Gy and 30–40 Gy had general features, except the T2FLAIR sequence, which was concentrated in the FirstOrder category feature, and the changes in features of T1 and T1+C were more significant than those of the other sequences. Conclusions MR radiomics features revealed microscopic changes in brain white matter before and after RT, although there was no constant dose-effect relationship for each feature. The changes in radiomics features in different sequences could reveal the radiation response of brain white matter to different doses.
Collapse
Affiliation(s)
- Mingming Chen
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China
| | - Lizhen Wang
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117, Jinan, China
| | - Guanzhong Gong
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117, Jinan, China
| | - Yong Yin
- Department of Radiation Physics, Shandong First Medical University Affiliated Cancer Hospital, Shandong Cancer Hospital and Institute (Shandong Cancer Hospital), 250117, Jinan, China.
| | - Pengcheng Wang
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China.
| |
Collapse
|
36
|
Sekely A, Tsang DS, Mabbott D, Kongkham P, Zadeh G, Zakzanis KK, Edelstein K. Radiation dose to circumscribed brain regions and neurocognitive function in patients with meningioma. Neurooncol Pract 2022; 9:208-218. [PMID: 35601975 PMCID: PMC9113401 DOI: 10.1093/nop/npac011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Although radiation (RT) is standard treatment for many brain tumors, it may contribute to neurocognitive decline. The objective of this study was to investigate associations between RT dose to circumscribed brain regions and specific neurocognitive domains in patients with meningioma. Methods We undertook a retrospective study of 40 patients with meningioma who received RT and underwent an in-depth clinical neurocognitive assessment. Radiation dosimetry characteristics were delineated based on treatment planning computerized tomography co-registered with contrast-enhanced 3D T1-weighted magnetic resonance imaging. Principal components analysis was applied to organize neurocognitive test scores into factors, and multivariate multiple linear regression models were undertaken to examine if RT dose to circumscribed brain regions is associated with specific neurocognitive outcomes. Results Radiation dose to brain regions was associated with neurocognitive functions across a number of domains. High dose to the parietal-occipital region was associated with slower visuomotor processing speed (mean dose, β = -1.100, P = .017; dose to 50% of the region [D50], β = -0.697, P = .049). In contrast, high dose to the dorsal frontal region was associated with faster visuomotor processing speed (mean dose, β = 0.001, P = .036). Conclusions These findings suggest that RT delivered to brain regions (ie, parietal-occipital areas) may contribute to poor neurocognitive outcomes. Given that modern radiotherapy techniques allow for precise targeting of dose delivered to brain regions, prospective trials examining relations between dose and neurocognitive functions are warranted to confirm these preliminary results.
Collapse
Affiliation(s)
- Angela Sekely
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald Mabbott
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, Neurosciences, and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul Kongkham
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Konstantine K Zakzanis
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Kim Edelstein
- Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Supportive Care, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Jacob J, Feuvret L, Simon JM, Ribeiro M, Nichelli L, Jenny C, Ricard D, Psimaras D, Hoang-Xuan K, Maingon P. Neurological side effects of radiation therapy. Neurol Sci 2022; 43:2363-2374. [DOI: 10.1007/s10072-022-05944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
|
38
|
Duffau H. White Matter Tracts and Diffuse Lower-Grade Gliomas: The Pivotal Role of Myelin Plasticity in the Tumor Pathogenesis, Infiltration Patterns, Functional Consequences and Therapeutic Management. Front Oncol 2022; 12:855587. [PMID: 35311104 PMCID: PMC8924360 DOI: 10.3389/fonc.2022.855587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
For many decades, interactions between diffuse lower-grade glioma (LGG) and brain connectome were neglected. However, the neoplasm progression is intimately linked to its environment, especially the white matter (WM) tracts and their myelin status. First, while the etiopathogenesis of LGG is unclear, this tumor seems to appear during the adolescence, and it is mostly located within anterior and associative cerebral areas. Because these structures correspond to those which were myelinated later in the brain maturation process, WM myelination could play a role in the development of LGG. Second, WM fibers and the myelin characteristics also participate in LGG diffusion, since glioma cells migrate along the subcortical pathways, especially when exhibiting a demyelinated phenotype, which may result in a large invasion of the parenchyma. Third, such a migratory pattern can induce functional (neurological, cognitive and behavioral) disturbances, because myelinated WM tracts represent the main limitation of neuroplastic potential. These parameters are critical for tailoring an individualized therapeutic strategy, both (i) regarding the timing of active treatment(s) which must be proposed earlier, before a too wide glioma infiltration along the WM bundles, (ii) and regarding the anatomic extent of surgical resection and irradiation, which should take account of the subcortical connectivity. Therefore, the new science of connectomics must be integrated in LGG management, based upon an improved understanding of the interplay across glioma dissemination within WM and reactional neural networks reconfiguration, in order to optimize long-term oncological and functional outcomes. To this end, mechanisms of activity-dependent myelin plasticity should be better investigated.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors", Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM) U1191, University of Montpellier, Montpellier, France
| |
Collapse
|
39
|
Voon NS, Manan HA, Yahya N. Diffusion tensor imaging indices as biomarkers for cognitive changes following paediatric radiotherapy: a systematic review and meta-analysis. Strahlenther Onkol 2022; 198:409-426. [PMID: 35238981 DOI: 10.1007/s00066-022-01905-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Diffusion tensor imaging (DTI) can detect subtle manifestations of white matter (WM) injury following paediatric radiotherapy, which may be a potential biomarker for cognitive changes. This study aimed to synthesise the relationships between DTI indices and cognitive changes following paediatric radiotherapy through systematic review and meta-analysis. PubMed and Scopus electronic databases were used to identify eligible studies. Quality assessment was performed using the National Institute of Health (NIH) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Information on demographics, DTI changes, and associations to cognitive outcomes were extracted. Meta-analyses were performed on DTI changes in specific anatomical locations. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed in the preparation of this report. Eighteen studies were included (median study size: 21; range 18-146). 17/18 studies showed significant cognitive decline following irradiation. Meta-analyses found significant cognitive changes within patient's group of acute lymphoblastic leukaemia (ALL; standard mean differences [SMD] = -0.075, P = 0.01) and brain tumours (BT; SMD = -1.037, P ≤ 0.001) compared to control/baseline. Both groups also had significantly lower fractional anisotropy (FA) scores in the corpus callosum (ALL: SMD = -0.979, P = 0.002; BT: SMD = -1.025, P < 0.001). Decreased FA was consistently associated with cognitive decline. Correlation on WMFA integrity to cognitive domains was statistically significant (Z = 9.86, P < 0.001) with a large effect size (r = 0.52). White matter tract integrity of the corpus callosum measured with FA has the potential to be a biomarker for radiotherapy-related cognitive decline. Inclusion of DTI in follow-up imaging should be encouraged.
Collapse
Affiliation(s)
- Noor Shatirah Voon
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, University Kebangsaan Malaysia Medical Centre, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- Diagnostic Imaging and Radiotherapy, Faculty of Health Sciences, National University of Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
40
|
O'Donnell LJ. Editorial for "Early-Onset Micromorphological Changes of Neuronal Fiber Bundles During Radiotherapy". J Magn Reson Imaging 2022; 56:219-220. [PMID: 35188685 DOI: 10.1002/jmri.28109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/07/2022] Open
|
41
|
Şahin S, Ertekin E, Şahin T, Özsunar Y. Evaluation of normal-appearing white matter with perfusion and diffusion MRI in patients with treated glioblastoma. MAGMA (NEW YORK, N.Y.) 2022; 35:153-162. [PMID: 34951690 DOI: 10.1007/s10334-021-00990-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We tried to reveal how the normal appearing white matter (NAWM) was affected in patients with glioblastoma treated with chemo-radiotherapy (CRT) in the period following the treatment, by multiparametric MRI. MATERIALS AND METHODS 43 multiparametric MRI examinations of 17 patients with glioblastoma treated with CRT were examined. A total of six different series or maps were analyzed in the examinations: Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps, Gradient Echo (GRE) sequence, Dynamic susceptibility contrast (DSC) and Arterial spin labeling (ASL) perfusion sequences. Each sequence in each examination was examined in detail with 14 Region of Interest (ROI) measurements. The obtained values were proportioned to the contralateral NAWM values and the results were recorded as normalized values. Time dependent changes of normalized values were statistically analyzed. RESULTS The most prominent changes in follow-up imaging occurred in the perilesional region. In perilesional NAWM, we found a decrease in normalized FA (nFA), rCBV (nrCBV), rCBF (nrCBF), ASL (nASL)values (p < 0.005) in the first 3 months after treatment, followed by a plateau and an increase approaching pretreatment values, although it did not reach. Similar but milder findings were present in other NAWM areas. In perilesional NAWM, nrCBV values were found to be positively high correlated with nrCBF and nASL, and negatively high correlated with nADC values (r: 0.963, 0.736, - 0.973, respectively). We also found high correlations between the mean values of nrCBV, nrCBF, nASL in other NAWM areas (r: 0.891, 0.864, respectively). DISCUSSION We showed that both DSC and ASL perfusion values decreased correlatively in the first 3 months and showed a plateau after 1 year in patients with glioblastoma treated with CRT, unlike the literature. Although it was not as evident as perfusion MRI, it was observed that the ADC values also showed a plateau pattern following the increase in the first 3 months. Further studies are needed to explain late pathophysiological changes. Because of the high correlation, our results support ASL perfusion instead of contrast enhanced perfusion methods.
Collapse
Affiliation(s)
- Sinan Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Ersen Ertekin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey.
| | - Tuna Şahin
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| | - Yelda Özsunar
- Department of Radiology, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
42
|
Novello L, Agarwal N, Vennarini S, Lorentini S, Zacà D, Mussano A, Pasternak O, Jovicich J. Longitudinal Changes in Brain Diffusion MRI Indices during and after Proton Beam Therapy in a Child with Pilocytic Astrocytoma: A Case Report. Diagnostics (Basel) 2021; 12:diagnostics12010026. [PMID: 35054192 PMCID: PMC8775026 DOI: 10.3390/diagnostics12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Proton beam therapy (PBT) is an effective pediatric brain tumor treatment. However, the resulting microstructural changes within and around irradiated tumors are unknown. We retrospectively applied diffusion tensor imaging (DTI) and free-water imaging (FWI) on diffusion-weighted magnetic resonance imaging (dMRI) data to monitor microstructural changes during the PBT and after 8 months in a pilocytic astrocytoma (PA) and normal-appearing white matter (NAWM). We evaluated the conventional MRI- and dMRI-derived indices from six MRI sessions (t0–t5) in a Caucasian child with a hypothalamic PA: at baseline (t0), during the PBT (t1–t4) and after 8 months (t5). The tumor voxels were classified as “solid” or “fluid” based on the FWI. While the tumor volume remained stable during the PBT, the dMRI analyses identified two different response patterns: (i) an increase in fluid content and diffusivity with anisotropy reductions in the solid voxels at t1, followed by (ii) smaller variations in fluid content but higher anisotropy in the solid voxels at t2–t4. At follow-up (t5), the tumor volume, fluid content, and diffusivity in the solid voxels increased. The NAWM showed dose-dependent microstructural changes. The use of the dMRI and FWI showed complex dynamic microstructural changes in the irradiated mass during the PBT and at follow-up, opening new avenues in our understanding of radiation-induced pathophysiologic mechanisms in tumors and the surrounding tissues.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (N.A.); (D.Z.); (J.J.)
- Correspondence:
| | - Nivedita Agarwal
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (N.A.); (D.Z.); (J.J.)
- Proton Therapy Center, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (S.V.); (S.L.)
- Radiology Unit, Santa Maria del Carmine Hospital, 38068 Rovereto, Italy
- Neuroradiology & Radiology Services, Scientific Institute, IRCCS “Eugenio Medea”, 23842 Bosisio Parini, Italy
| | - Sabina Vennarini
- Proton Therapy Center, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (S.V.); (S.L.)
| | - Stefano Lorentini
- Proton Therapy Center, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), 38123 Trento, Italy; (S.V.); (S.L.)
| | - Domenico Zacà
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (N.A.); (D.Z.); (J.J.)
| | - Anna Mussano
- Pediatric Radiotherapy Service, S. Anna Hospital, A.O. Città della Salute e della Scienza, 10121 Torino, Italy;
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38068 Rovereto, Italy; (N.A.); (D.Z.); (J.J.)
| |
Collapse
|
43
|
Liu J, Wang W, Zhou Y, Gan C, Wang T, Hu Z, Lou J, Wang H, Yang LZ, Wong STC, Li H. Early-Onset Micromorphological Changes of Neuronal Fiber Bundles During Radiotherapy. J Magn Reson Imaging 2021; 56:210-218. [PMID: 34854521 DOI: 10.1002/jmri.28018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients receiving cranial radiation face the risk of delayed brain dysfunction. However, an early medical imaging marker is not available until irreversible morphological changes emerge. PURPOSE To explore the micromorphological white matter changes during the radiotherapy session by utilizing an along-tract analysis framework. STUDY TYPE Prospective. POPULATION Eighteen nasopharyngeal carcinoma (two female) patients receiving cranial radiation. FIELD STRENGTH/SEQUENCE 3.0 T; Diffusion tensor imaging (DTI) and T1- and T2-weighted images (T1W, T2W); computed tomography (CT). ASSESSMENT Patients received three DTI imaging scans during the radiotherapy (RT), namely the baseline scan (1-2 days before RT began), the middle scan (the middle of the RT session), and the end scan (1-2 days after RT ended). Twelve fibers were segmented after whole-brain tractography. Then, the fractional anisotropy (FA) values and the cumulative radiation dose received for each fiber streamline were resampled and projected into their center fiber. STATISTICAL TESTS The contrast among the three scans (P1: middle scan-baseline scan; P2: end scan-middle scan; P3: end scan-baseline scan) were compared using the linear mixed model for each of the 12 center fibers. Then, a dose-responsiveness relationship was performed using Pearson correlation. P < 0.05 was considered statistically significant. RESULTS Six of the 12 center fibers showed significant changes of FA values during the RT but with heterogeneous patterns. The significant changes along a specific center fiber were associated with their cumulative dose received (Genu: P1 r = -0.6182, P2 r = -0.5907; Splenium: P1 r = 0.4055, P = 0.1063, P2 r = 0.6742; right uncinate fasciculus: P1 r = -0.3865, P2 r = -0.4912, P = 0.0533; right corticospinal tract: P1 r = 0.4273, P = 0.1122, P2 r = -0.6885). DATA CONCLUSION The along-tract analysis might provide sensitive measures on the early-onset micromorphological changes. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Jin Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wenjuan Wang
- University of Science and Technology of China, Hefei, China.,Center for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China.,School of Science, Anhui Agricultural University, Hefei, China
| | - Yanfei Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Chen Gan
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Tengfei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Zongtao Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Jianjun Lou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston, Texas, USA.,Department of Radiology and Neurosciences, Weill Cornell Medical College, Cornell University, Houston, Texas, USA
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
44
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
45
|
Oprandi MC, Oldrati V, delle Fave M, Panzeri D, Gandola L, Massimino M, Bardoni A, Poggi G. Processing Speed and Time since Diagnosis Predict Adaptive Functioning Measured with WeeFIM in Pediatric Brain Tumor Survivors. Cancers (Basel) 2021; 13:cancers13194776. [PMID: 34638261 PMCID: PMC8508451 DOI: 10.3390/cancers13194776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Brain tumor (BT) survivors show difficulties in adaptive functioning (AF) and in acquiring independence (e.g., graduating, finding employment, building strong relationships, and being independent). The aim of our observational retrospective study is to explore the contribution of different clinical and cognitive variables in explaining and predicting the AF outcomes of BT survivors, measured with the Functional Independence Measure for Children (WeeFIM). The analysis demonstrated that processing speed and time since diagnosis are the main explanatory variables. Other clinical factors, such as age at diagnosis and hydrocephalus, differentially influence functional skills according to distinct domains (i.e., self-care, mobility, and cognition). The identification of the clinical factors influencing AF could suggest targets on which to focus attention. By successfully assessing, understanding, and managing AF, it will be possible to improve its management in pediatric BT survivors. Abstract (1) Background: Brain tumor (BT) survivors show difficulties in the acquisition of developmental milestones, related to academic achievement, vocational employment, social relationships, and autonomy. The skills underlying adaptive functioning (AF) are usually damaged in BT survivors due to the presence of the brain tumor, treatment-related factors, and other neurological sequelae. In this study, we aimed to explore the contribution of different cognitive factors in children with BT to AF, considering diagnosis-related variables. (2) Methods: Standardized cognitive assessment was undertaken and clinical information was collected from a retrospective cohort of 78 children with a BT, aged between 6 and 18 year old at the time of the assessment. Regression models were computed to investigate the influence of the selected variables on daily functional skills as measured by the Functional Independence Measure for Children (WeeFIM). (3) Results: The analyses showed that the main explanatory variables are processing speed and time since diagnosis. Other clinical variables, such as age at diagnosis and hydrocephalus, differentially influence functional skills according to distinct domains (i.e., self-care, mobility, and cognition). (4) Conclusions: The main explanatory variables of AF that emerged in our models point to a potential target of improving AF management in pediatric BT survivors.
Collapse
Affiliation(s)
- Maria Chiara Oprandi
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, 23842 Lecco, Italy; (V.O.); (M.d.F.); (D.P.); (A.B.); (G.P.)
- Correspondence:
| | - Viola Oldrati
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, 23842 Lecco, Italy; (V.O.); (M.d.F.); (D.P.); (A.B.); (G.P.)
| | - Morena delle Fave
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, 23842 Lecco, Italy; (V.O.); (M.d.F.); (D.P.); (A.B.); (G.P.)
| | - Daniele Panzeri
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, 23842 Lecco, Italy; (V.O.); (M.d.F.); (D.P.); (A.B.); (G.P.)
| | - Lorenza Gandola
- Department of Medical Oncology and Hematology, Pediatrics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.G.); (M.M.)
| | - Maura Massimino
- Department of Medical Oncology and Hematology, Pediatrics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (L.G.); (M.M.)
| | - Alessandra Bardoni
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, 23842 Lecco, Italy; (V.O.); (M.d.F.); (D.P.); (A.B.); (G.P.)
| | - Geraldina Poggi
- Neuro-Oncological and Neuropsychological Rehabilitation Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, 23842 Lecco, Italy; (V.O.); (M.d.F.); (D.P.); (A.B.); (G.P.)
| |
Collapse
|
46
|
Dünger L, Seidlitz A, Jentsch C, Platzek I, Kotzerke J, Beuthien-Baumann B, Baumann M, Krause M, Troost EGC, Raschke F. Reduced diffusion in white matter after radiotherapy with photons and protons. Radiother Oncol 2021; 164:66-72. [PMID: 34537290 DOI: 10.1016/j.radonc.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Radio(chemo)therapy is standard in the adjuvant treatment of glioblastoma. Inevitably, brain tissue surrounding the target volume is also irradiated, potentially causing acute and late side-effects. Diffusion imaging has been shown to be a sensitive method to detect early changes in the cerebral white matter (WM) after radiation. The aim of this work was to assess possible changes in the mean diffusivity (MD) of WM after radio(chemo)therapy using Diffusion-weighted imaging (DWI) and to compare these effects between patients treated with proton and photon irradiation. MATERIALS AND METHODS 70 patients with glioblastoma underwent adjuvant radio(chemo)therapy with protons (n = 20) or photons (n = 50) at the University Hospital Dresden. MRI follow-ups were performed at three-monthly intervals and in this study were evaluated until 33 months after the end of therapy. Relative white matter MD changes between baseline and all follow-up visits were calculated in different dose regions. RESULTS We observed a significant decrease of MD (p < 0.05) in WM regions receiving more than 20 Gy. MD reduction was progressive with dose and time after radio(chemo)therapy (maximum: -7.9 ± 1.2% after 24 months, ≥50 Gy). In patients treated with photons, significant reductions of MD in the entire WM (p < 0.05) were seen at all time points. Conversely, in proton patients, whole brain MD did not change significantly. CONCLUSIONS Irradiation leads to measurable MD reduction in white matter, progressing with both increasing dose and time. Treatment with protons reduces this effect most likely due to a lower total dose in the surrounding white matter. Further investigations are needed to assess whether those MD changes correlate with known radiation induced side-effects.
Collapse
Affiliation(s)
- L Dünger
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - A Seidlitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - C Jentsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - I Platzek
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - M Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Heidelberg, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - E G C Troost
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - F Raschke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
47
|
van Grinsven EE, Nagtegaal SH, Verhoeff JJ, van Zandvoort MJ. The Impact of Stereotactic or Whole Brain Radiotherapy on Neurocognitive Functioning in Adult Patients with Brain Metastases: A Systematic Review and Meta-Analysis. Oncol Res Treat 2021; 44:622-636. [PMID: 34482312 PMCID: PMC8686730 DOI: 10.1159/000518848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Background & Objectives: Radiotherapy is standard treatment for patients with brain metastases (BMs), although it may lead to radiation-induced cognitive impairment. This review explores the impact of whole-brain radiotherapy (WBRT) or stereotactic radiosurgery (SRS) on cognition. METHODS The PRISMA guidelines were used to identify articles on PubMed and EmBase reporting on objective assessment of cognition before, and at least once after radiotherapy, in adult patients with nonresected BMs. RESULTS Of the 867 records screened, twenty articles (14 unique studies) were included. WBRT lead to decline in cognitive performance, which stabilized or returned to baseline in patients with survival of at least 9-15 months. For SRS, a decline in cognitive performance was sometimes observed shortly after treatment, but the majority of patients returned to or remained at baseline until a year after treatment. CONCLUSIONS These findings suggest that after WBRT, patients can experience deterioration over a longer period of time. The cognitive side effects of SRS are transient. Therefore, this review advices to choose SRS as this will result in lowest risks for cognitive adverse side effects, irrespective of predicted survival. In an already cognitively vulnerable patient population with limited survival, this information can be used in communicating risks and aid in making educated decisions.
Collapse
Affiliation(s)
- Eva Elisabeth van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Steven H.J. Nagtegaal
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost J.C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martine J.E. van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Connor M, Kim MM, Cao Y, Hattangadi-Gluth J. Precision Radiotherapy for Gliomas: Implementing Novel Imaging Biomarkers to Improve Outcomes With Patient-Specific Therapy. Cancer J 2021; 27:353-363. [PMID: 34570449 PMCID: PMC8480523 DOI: 10.1097/ppo.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Gliomas are the most common primary brain cancer, yet are extraordinarily challenging to treat because they can be aggressive and infiltrative, locally recurrent, and resistant to standard treatments. Furthermore, the treatments themselves, including radiation therapy, can affect patients' neurocognitive function and quality of life. Noninvasive imaging is the standard of care for primary brain tumors, including diagnosis, treatment planning, and monitoring for treatment response. This article explores the ways in which advanced imaging has and will continue to transform radiation treatment for patients with gliomas, with a focus on cognitive preservation and novel biomarkers, as well as precision radiotherapy and treatment adaptation. Advances in novel imaging techniques continue to push the field forward, to more precisely guided treatment planning, radiation dose escalation, measurement of therapeutic response, and understanding of radiation-associated injury.
Collapse
Affiliation(s)
- Michael Connor
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Jona Hattangadi-Gluth
- From the Department of Radiation Medicine and Applied Sciences, UC San Diego, Moores Cancer Center, La Jolla, CA
| |
Collapse
|
49
|
Salans M, Tibbs MD, Karunamuni R, Yip A, Huynh-Le MP, Macari AC, Reyes A, Tringale K, McDonald CR, Hattangadi-Gluth JA. Longitudinal change in fine motor skills after brain radiotherapy and in vivo imaging biomarkers associated with decline. Neuro Oncol 2021; 23:1393-1403. [PMID: 33543265 PMCID: PMC8328007 DOI: 10.1093/neuonc/noab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We explored fine motor skills (FMS) before and after brain radiotherapy (RT), analyzing associations between longitudinal FMS and imaging biomarkers of cortical and white matter (WM) integrity in motor regions of interest (ROIs). METHODS On a prospective trial, 52 primary brain tumor patients receiving fractionated brain RT underwent volumetric brain MRI, diffusion tensor imaging, and FMS assessments (Delis-Kaplan Executive Function System Trail Making Test Motor Speed [DKEFS-MS], Grooved Pegboard Dominant Hands [PDH], and Grooved Pegboard Nondominant Hands [PNDH]) at baseline and 3-, 6-, and 12-month post-RT. Motor ROIs autosegmented included: sensorimotor cortices and superficial WM, corticospinal tracts, cerebellar cortices and WM, and basal ganglia. Volume (cc) was measured in all ROIs at each timepoint. Diffusion biomarkers (FA [fractional anisotropy] and MD [mean diffusivity]) were additionally measured in WM ROIs. Linear mixed-effects models assessed biomarkers as predictors of FMS scores. P values were corrected for multiple comparisons. RESULTS Higher RT dose was associated with right paracentral cortical thinning (β = -2.42 Gy/(month × mm), P = .03) and higher right precentral WM MD (β = 0.69 Gy/(month × µm2/ms), P = .04). Higher left (β = 38.7 points/(month × µm2/ms), P = .004) and right (β = 42.4 points/(month × µm2/ms), P = .01) cerebellar WM MD, left precentral cortical atrophy (β = -8.67 points/(month × mm), P = .02), and reduced right cerebral peduncle FA (β = -0.50 points/month, P = .01) were associated with worse DKEFS-MS performance. Left precentral cortex thinning was associated with worse PDH scores (β = -17.3 points/(month × mm), P = .02). Left (β = -0.87 points/(month × cm3), P = .001) and right (β = -0.64 points/(month × cm3), P = .02) cerebellar cortex, left pons (β = -19.8 points/(month × cm3), P = .02), and right pallidum (β = -10.8 points/(month × cm3), P = .02) atrophy and reduced right internal capsule FA (β = -1.02 points/month, P = .03) were associated with worse PNDH performance. CONCLUSIONS Biomarkers of microstructural injury in motor-associated brain regions were associated with worse FMS. Dose avoidance in these areas may preserve FMS.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Michelle D Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Anthony Yip
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | - Minh-Phuong Huynh-Le
- Department of Radiation Oncology, George Washington University, Washington DC, USA
| | - Anna Christina Macari
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Kathryn Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
50
|
Bontempi P, Scartoni D, Amelio D, Cianchetti M, Turkaj A, Amichetti M, Farace P. Multicomponent T 2 relaxometry reveals early myelin white matter changes induced by proton radiation treatment. Magn Reson Med 2021; 86:3236-3245. [PMID: 34268786 DOI: 10.1002/mrm.28913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate MRI myelin water imaging (MWI) by multicomponent T2 relaxometry as a quantitative imaging biomarker for brain radiation-induced changes and to compare it with DTI. METHODS Sixteen patients underwent fractionated proton therapy (PT) receiving dose to the healthy tissue because of direct or indirect (base skull tumors) irradiation. MWI was performed by a multi-echo sequence with 32 equally spaced echoes (10-320 ms). Decay data were processed to identify 3 T2 compartments: myelin water (Mw) below 40 ms, intra-extracellular water (IEw) between 40 and 250 ms, and free water (CSFw) above 250 ms. Both MWI and DTI scans were acquired pre (pre)-treatment and immediately at the end (end) of PT. After image registration, voxel-wise difference maps, obtained by subtracting MWI and DTI pre from those acquired at the end of PT, were compared with the corresponding biological equivalent dose (BED). RESULTS Mw difference showed a positive correlation and IEw difference showed a negative correlation with BED considering end-pre changes (P < .01). The changes in CSFw were not significantly correlated with the delivered BED. The changes in DTI data, considering end-pre acquisitions, showed a positive correlation between fractional anisotropy and the delivered BED. CONCLUSION MWI might detect early white matter radiation-induced alterations, providing additional information to DTI, which might improve the understanding of the pathogenesis of the radiation damage.
Collapse
Affiliation(s)
- Pietro Bontempi
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Daniele Scartoni
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Dante Amelio
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Marco Cianchetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Ana Turkaj
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Maurizio Amichetti
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Paolo Farace
- Proton Therapy Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|