1
|
Liu K, Titt U, Esplen N, Connell L, Konradsson E, Yang M, Wang X, Takaoka T, Li Z, Koong AC, Mitra D, Mohan R, Loo BW, Lin SH, Schüler E. Discordance in Acute Gastrointestinal Toxicity between Synchrotron-Based Proton and Linac-based Electron Ultra-High Dose Rate Irradiation. Int J Radiat Oncol Biol Phys 2025; 122:491-501. [PMID: 39862897 DOI: 10.1016/j.ijrobp.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate [ultra-high vs conventional (CONV)] and beam configuration [shoot-through (S-T) vs spread-out Bragg peak (SOBP)] on acute radiation-induced gastrointestinal toxicity (RIGIT) in mice. We also compared RIGIT between synchrotron-based protons and linac-based electrons with matched mean dose rates. METHODS AND MATERIALS We administered abdominal irradiation (12-14 Gy single fraction) to female C57BL/6J mice with an 87-MeV synchrotron-based proton beamline (2-cm-diameter field size as a lateral beam). Dose rates were 0.2 Gy/s (S-T pCONV), 0.3 Gy/s (SOBP pCONV), 150 Gy/s (S-T pFLASH), and 230 Gy/s (SOBP pFLASH). RIGIT was assessed by the jejunal regenerating crypt assay and survival. We also compared responses to proton (pFLASH and pCONV) with responses to electron CONV (eCONV, 0.4 Gy/s) and electron-beam FLASH (188-205 Gy/s). RESULTS The number of regenerating jejunal crypts at each matched dose was lowest for pFLASH (similar between S-T and SOBP), greater and similar between pCONV (S-T and SOBP) and eCONV, and greatest for electron-beam FLASH. Correspondingly, mice that received pFLASH SOBP had the lowest survival rates (50% at 50 days), followed by pFLASH S-T (80%), and pCONV SOBP (90%), but 100% of mice receiving pCONV S-T survived (log-rank P = .047 for the 4 groups). CONCLUSIONS Our findings are consistent with an increase in RIGIT after synchrotron-based pFLASH versus pCONV. This negative proton-specific FLASH effect versus linac-based electron irradiation underscores the importance of understanding the physical and biological factors that will allow safe and effective clinical translation.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Nolan Esplen
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Elise Konradsson
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ming Yang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Xiaochun Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takeshi Takaoka
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; Particle Therapy Division, Hitachi America Ltd, Houston, Texas
| | - Ziyi Li
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Devarati Mitra
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Billy W Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Steven H Lin
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emil Schüler
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
2
|
Bogaerts E, Saade G, Macaeva E, Chiavassa S, Evin M, Haddad F, Isebaert S, Koumeir C, Mouchard Q, Potiron V, Servagent N, Supiot S, Sterpin E, Haustermans K. A comprehensive mechanistic study on the proton FLASH sparing effect in zebrafish embryos: From DNA damage to developmental abnormalities. Radiother Oncol 2025; 207:110848. [PMID: 40086473 DOI: 10.1016/j.radonc.2025.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND PURPOSE Ultra-high dose rate (UHDR) irradiation induces less normal tissues toxicities compared to conventional dose rate (CONV) irradiation. We aimed to assess whether UHDR and CONV proton irradiation result in different levels of DNA damage in zebrafish embryos. Moreover, we studied the downstream transcriptional activation and functional changes following both modalities. MATERIALS AND METHODS Zebrafish embryos received 30 Gy UHDR (>5100 Gy/s) or CONV (0.18 Gy/s) proton irradiation at 28 h post-fertilization on a 68 MeV cyclotron. DNA damage was assessed at 4 h post-irradiation. Gene expression changes were assessed at 6 and 24 h post-irradiation. Apoptosis, proliferation and neutrophil migration were investigated at 6 h and 20 h post-irradiation. Survival and morphological abnormalities were assessed at 4 days post-irradiation. RESULTS No significant differences in morphological abnormalities were found between treatment groups. Conversely, significantly higher levels of DNA damage were observed in CONV- versus UHDR-irradiated embryos. CONV irradiation resulted in higher expression levels of genes involved in cell cycle arrest (cdkn1a) and p53 regulation (mdm2). Lastly, CONV irradiation resulted in higher levels of apoptosis in the embryonic tail compared to UHDR irradiation. Comparable cell proliferation and neutrophil migration to the sites of injury was found between treatments. CONCLUSION UHDR proton irradiation induces less DNA damage and less downstream transcriptional activation of DNA damage response pathways in zebrafish embryos compared to CONV irradiation, resulting in reduced embryonic cell death. However, the magnitude of observed differences might not always be high enough to translate into significant differences in developmental abnormalities.
Collapse
Affiliation(s)
- Eva Bogaerts
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium; Department of Oncology, KU Leuven 3000 Leuven, Belgium.
| | - Gaëlle Saade
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Ellina Macaeva
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium; Department of Oncology, KU Leuven 3000 Leuven, Belgium
| | - Sophie Chiavassa
- Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
| | - Manon Evin
- Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France; GIP ARRONAX, 44817 Saint-Herblain, France
| | - Ferid Haddad
- Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France; GIP ARRONAX, 44817 Saint-Herblain, France
| | - Sofie Isebaert
- Department of Oncology, KU Leuven 3000 Leuven, Belgium; Department of Radiation Oncology, University Hospitals Leuven 3000 Leuven, Belgium
| | - Charbel Koumeir
- Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France; GIP ARRONAX, 44817 Saint-Herblain, France
| | - Quentin Mouchard
- Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
| | - Vincent Potiron
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
| | - Noël Servagent
- Nantes Université, IMT Atlantique, CNRS-IN2P3, SUBATECH, 44000 Nantes, France
| | - Stéphane Supiot
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
| | - Edmond Sterpin
- Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwé-Saint-Lambert, Belgium; Department of Oncology, KU Leuven 3000 Leuven, Belgium
| | - Karin Haustermans
- Department of Oncology, KU Leuven 3000 Leuven, Belgium; Department of Radiation Oncology, University Hospitals Leuven 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Lin B, Du H, Hao X, Liang Y, Xu H, Tang W, Li J, Zhang Y, Du XB. The influence of beam parameters on FLASH effect. Front Oncol 2025; 15:1431700. [PMID: 40330828 PMCID: PMC12052903 DOI: 10.3389/fonc.2025.1431700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH-RT) is typically defined as an external beam radiotherapy that utilizes a dose rate of 40 Gy/s or higher, compared with conventional dose rate radiotherapy (≤0.1 Gy/s). The primary advantage of FLASH-RT lies in its ability to minimize damage to organs at risk surrounding the cancer while preserving the anti-tumor effect. This phenomenon, known as the FLASH effect, has been widely studied in various bodily systems. However, recent publication of negative research findings related to FLASH-RT warrant a reassessment of whether this definition is accurate. Therefore, this review aims to critically examine how various beam parameters impact the manifestation of the FLASH effect. Following extensive literature review, we propose that an average dose rate of 40 Gy/s to be the lowest dose that triggers the FLASH effect. Beyond this threshold, different organs, including the brain, lungs, intestine, and skin, required varying minimum single total doses to trigger FLASH effects, with a trend of enhanced FLASH-RT protective effects as the single total doses increased. Moreover, single or multiple pulses and the characteristic parameters of the pulse structure, including single pulse dosage, pulse width, pulse interval, pulse frequency, and total irradiation time, were found to also impact the FLASH effect.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Huan Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Xiaofei Hao
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Li
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Yu Zhang
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Xiao Bo Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
4
|
Kunz LV, Schaefer R, Kacem H, Ollivier J, Togno M, Chappuis F, Weber D, Lomax A, Limoli CL, Psoroulas S, Vozenin MC. Plasmid DNA Strand Breaks Are Dose Rate Independent at Clinically Relevant Proton Doses and Under Biological Conditions. Radiat Res 2025; 203:214-222. [PMID: 40010373 DOI: 10.1667/rade-24-00118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/13/2024] [Indexed: 02/28/2025]
Abstract
We investigated the effect of proton FLASH radiation on plasmid DNA. Purified supercoiled pBR322 plasmids were irradiated with clinical doses (≤10 Gy) of protons at ultra-high and conventional dose rates using the Paul Scherrer Institute (PSI) isochronous cyclotron. The proton beam in this clinical facility has been validated to produce the FLASH effect in preclinical models. Plasmid samples were irradiated under various oxygen tensions, scavenger levels, pH conditions and Fe (II) concentrations as these biochemical parameters vary across tissues and tumors. Over the range of doses used, plasmid DNA strand breaks were found to be dose rate independent at all conditions investigated. Irradiation within the Bragg peak and spread-out Bragg peak increased clustered strand breaks, except in the presence of scavengers. With this model system, we demonstrate conclusively that plasmid DNA strand breakage is dose rate independent at doses below 10 Gy and does not constitute a high throughput assay endpoint predictive of the biological effect of FLASH.
Collapse
Affiliation(s)
- Louis V Kunz
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Robert Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Houda Kacem
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonathan Ollivier
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Flore Chappuis
- Institute of Radiation Physics (IRA), Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital, Lausanne, Switzerland
| | - Damien Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Anthony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, California
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - Marie-Catherine Vozenin
- Sector of Radiobiology Applied to Radiotherapy, Radiation Oncology Department, Geneva University Hospital, Geneva, Switzerland
- LiRR - Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of Radiation Oncology, Radiation Oncology Service, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Bell BI, Velten C, Pennock M, Kang M, Tanaka KE, Selvaraj B, Bookbinder A, Koba W, Vercellino J, English J, Małachowska B, Pandey S, Duddempudi PK, Yang Y, Shajahan S, Hasan S, Choi JI, Simone CB, Yang WL, Tomé WA, Lin H, Guha C. Whole Abdominal Pencil Beam Scanned Proton FLASH Increases Acute Lethality. Int J Radiat Oncol Biol Phys 2025; 121:493-505. [PMID: 39299552 DOI: 10.1016/j.ijrobp.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Ultrahigh dose-rate FLASH radiation therapy has emerged as a modality that promises to reduce normal tissue toxicity while maintaining tumor control. Previous studies of gastrointestinal toxicity using passively scattered FLASH proton therapy (PRT) have, however, yielded mixed results, suggesting that the requirements for gastrointestinal sparing by FLASH are an open question. Furthermore, the more clinically relevant pencil beam scanned (PBS) FLASH PRT has not yet been assessed in this context, despite differences in the spatiotemporal dose-rate distributions compared with passively scattered PRT. Here, to our knowledge, we provide the first report on the effects of PBS FLASH PRT on acute gastrointestinal injury in mice after whole abdominal irradiation. METHODS AND MATERIALS Whole abdominal irradiation was performed on C57BL/6J mice using the entrance channel of the Bragg curve of a 250 MeV PBS proton beam at field-averaged dose rates of 0.6 Gy/s for conventional (CONV) and 80 to 100 Gy/s for FLASH PRT. A 2D strip ionization chamber array was used to measure the dose and dose rate for each mouse. Survival was assessed at 14 Gy. Intestines were harvested and processed as Swiss rolls for analysis using a novel artificial intelligence-based crypt assay to quantify crypt regeneration 4 days after irradiation. RESULTS Survival was significantly reduced after 14 Gy FLASH PRT compared with CONV (P < .001). Our artificial intelligence-based crypt assays demonstrated no significant difference in intestinal crypts/cm or crypt depth between groups 4 days after irradiation. Furthermore, we found no significant difference in 5-ethynyl-2'-deoxyuridine+ cells/crypt or Olfactomedin4+ intestinal stem cells with FLASH relative to CONV PRT. CONCLUSIONS Overall, our data demonstrate significantly impaired survival after abdominal PBS FLASH PRT without apparent differences in intestinal histology 4 days after irradiation.
Collapse
Affiliation(s)
- Brett I Bell
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Christian Velten
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Michael Pennock
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Kathryn E Tanaka
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | | | | | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York
| | - Justin Vercellino
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeb English
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Beata Małachowska
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjay Pandey
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Yunjie Yang
- New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shahin Shajahan
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - J Isabelle Choi
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Weng-Lang Yang
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Wolfgang A Tomé
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Haibo Lin
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; New York Proton Center, New York, New York; Departments of Medical Physics and Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chandan Guha
- Departments of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York; Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
6
|
Hu A, Zhou W, Qiu R, Li J. Mathematical analysis of FLASH effect models based on theoretical hypotheses. Phys Med Biol 2024; 69:245005. [PMID: 38981588 DOI: 10.1088/1361-6560/ad612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Objective.Clinical applications of FLASH radiotherapy require formulas to describe how the FLASH radiation features and other related factors determine the FLASH effect. Mathematical analysis of the models can connect the theoretical hypotheses with the radiobiological effect, which provides the foundation for establishing clinical application models. Moreover, experimental and clinical data can be used to explore the key factors through mathematical analysis.Approach.We abstract the complex models of the oxygen depletion hypothesis and radical recombination-antioxidants hypothesis into concise mathematical equations. The equations are solved to analyze how the radiation features and other factors influence the FLASH effect. Then we propose methodologies for determining the parameters in the models and utilizing the models to predict the FLASH effect.Main results.The formulas linking the physical, chemical and biological factors to the FLASH effect are obtained through mathematical derivation of the equation. The analysis indicates that the initial oxygen concentration, radiolytic oxygen consumption and oxygen recovery are key factors for the oxygen depletion hypothesis and that the level of antioxidants is the key factor for the radical recombination-antioxidants hypothesis. According to the model derivations and analysis, the methodologies for determining parameters and predicting the FLASH effect are proposed: (1) the criteria for data filtration, (2) the strategy of hybrid FLASH and conventional dose rate (CONV) irradiation to ensure the acquisition of effective experimental data across a wide dose range, (3) the pipelines of fitting parameters and predicting the FLASH effect.Significance.This study establishes the quantitative relationship between the FLASH effect and key factors. The derived formulas can be used to calculate the FLASH effect in future clinical FLASH radiotherapy. The proposed methodologies guide to obtain sufficient high-quality datasets and utilize them to predict the FLASH effect. Furthermore, this study indicates the key factors of the FLASH effect and offers clues to further explore the FLASH mechanism.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, People's Republic of China
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, People's Republic of China
| |
Collapse
|
7
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
8
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
9
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
10
|
Liu K, Titt U, Esplen N, Connell L, Konradsson E, Yang M, Wang X, Takaoka T, Li Z, Koong AC, Mitra D, Mohan R, Loo BW, Lin SH, Schüler E. Discordance in acute gastrointestinal toxicity between synchrotron-based proton and linac-based electron ultra-high dose rate irradiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611307. [PMID: 39282305 PMCID: PMC11398481 DOI: 10.1101/2024.09.04.611307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Purpose Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs. spread-out-Bragg-peak [SOBP]) on acute radiation-induced gastrointestinal toxicity (RIGIT) in mice. We also compared RIGIT between synchrotron-based protons and linac-based electrons with matched mean dose rates. Methods and Materials We administered abdominal irradiation (12-14 Gy single fraction) to female C57BL/6J mice with an 87 MeV synchrotron-based proton beamline (2 cm diameter field size as a lateral beam). Dose rates were 0.2 Gy/s (S-T pCONV), 0.3 Gy/s (SOBP pCONV), 150 Gy/s (S-T pFLASH), and 230 Gy/s (SOBP pFLASH). RIGIT was assessed by the jejunal regenerating crypt assay and survival. We also compared responses to proton [pFLASH and pCONV] with responses to electron CONV (eCONV, 0.4 Gy/s) and electron FLASH (eFLASH, 188-205 Gy/s). Results The number of regenerating jejunal crypts at each matched dose was lowest for pFLASH (similar between S-T and SOBP), greater and similar between pCONV (S-T and SOBP) and eCONV, and greatest for eFLASH. Correspondingly, mice that received pFLASH SOBP had the lowest survival rates (50% at 50 days), followed by pFLASH S-T (80%), and pCONV SOBP (90%), but 100% of mice receiving pCONV S-T survived (log-rank P = 0.047 for the four groups). Conclusions Our findings are consistent with an increase in RIGIT after synchrotron-based pFLASH versus pCONV. This negative proton-specific FLASH effect versus linac-based electron irradiation underscores the importance of understanding the physical and biological factors that will allow safe and effective clinical translation.
Collapse
|
11
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
12
|
Horst F, Bodenstein E, Brand M, Hans S, Karsch L, Lessmann E, Löck S, Schürer M, Pawelke J, Beyreuther E. Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiother Oncol 2024; 194:110197. [PMID: 38447870 DOI: 10.1016/j.radonc.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above ∼ 50 Gy with an FMF of ∼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.
Collapse
Affiliation(s)
- Felix Horst
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Lessmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany.
| |
Collapse
|
13
|
Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy - An evaluation of dosimetric performances. Radiother Oncol 2024; 194:110177. [PMID: 38378075 DOI: 10.1016/j.radonc.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Izabella Veres
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | | | | | - Fernanda G Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
14
|
McGarrigle JM, Long KR, Prezado Y. The FLASH effect-an evaluation of preclinical studies of ultra-high dose rate radiotherapy. Front Oncol 2024; 14:1340190. [PMID: 38711846 PMCID: PMC11071325 DOI: 10.3389/fonc.2024.1340190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/20/2024] [Indexed: 05/08/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy approach based on the use of ultra-high dose radiation to treat malignant cells. Although tumours can be reduced or eradicated using radiotherapy, toxicities induced by radiation can compromise healthy tissues. The FLASH effect is the observation that treatment delivered at an ultra-high dose rate is able to reduce adverse toxicities present at conventional dose rates. While this novel technique may provide a turning point for clinical practice, the exact mechanisms underlying the causes or influences of the FLASH effect are not fully understood. The study presented here uses data collected from 41 experimental investigations (published before March 2024) of the FLASH effect. Searchable databases were constructed to contain the outcomes of the various experiments in addition to values of beam parameters that may have a bearing on the FLASH effect. An in-depth review of the impact of the key beam parameters on the results of the experiments was carried out. Correlations between parameter values and experimental outcomes were studied. Pulse Dose Rate had positive correlations with almost all end points, suggesting viability of FLASH-RT as a new modality of radiotherapy. The collective results of this systematic review study suggest that beam parameter qualities from both FLASH and conventional radiotherapy can be valuable for tissue sparing and effective tumour treatment.
Collapse
Affiliation(s)
| | - Kenneth Richard Long
- Department of Physics, Imperial College London, London, United Kingdom
- Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Oxford, United Kingdom
| | - Yolanda Prezado
- Institut Curie, Universite Paris-Saclay, Centre national de la recherche scientifique (CNRS) UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
- Universite Paris-Saclay, Centre national de la recherche scientifique (CNRS) UMR3347, Inserm U1021, Signalisation radiobiologie et cancer, Orsay, France
| |
Collapse
|
15
|
Borghini A, Labate L, Piccinini S, Panaino CMV, Andreassi MG, Gizzi LA. FLASH Radiotherapy: Expectations, Challenges, and Current Knowledge. Int J Mol Sci 2024; 25:2546. [PMID: 38473799 PMCID: PMC10932202 DOI: 10.3390/ijms25052546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Major strides have been made in the development of FLASH radiotherapy (FLASH RT) in the last ten years, but there are still many obstacles to overcome for transfer to the clinic to become a reality. Although preclinical and first-in-human clinical evidence suggests that ultra-high dose rates (UHDRs) induce a sparing effect in normal tissue without modifying the therapeutic effect on the tumor, successful clinical translation of FLASH-RT depends on a better understanding of the biological mechanisms underpinning the sparing effect. Suitable in vitro studies are required to fully understand the radiobiological mechanisms associated with UHDRs. From a technical point of view, it is also crucial to develop optimal technologies in terms of beam irradiation parameters for producing FLASH conditions. This review provides an overview of the research progress of FLASH RT and discusses the potential challenges to be faced before its clinical application. We critically summarize the preclinical evidence and in vitro studies on DNA damage following UHDR irradiation. We also highlight the ongoing developments of technologies for delivering FLASH-compliant beams, with a focus on laser-driven plasma accelerators suitable for performing basic radiobiological research on the UHDR effects.
Collapse
Affiliation(s)
| | - Luca Labate
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| |
Collapse
|
16
|
Almeida A, Togno M, Ballesteros-Zebadua P, Franco-Perez J, Geyer R, Schaefer R, Petit B, Grilj V, Meer D, Safai S, Lomax T, Weber DC, Bailat C, Psoroulas S, Vozenin MC. Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiother Oncol 2024; 190:109953. [PMID: 37839557 DOI: 10.1016/j.radonc.2023.109953] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND PURPOSE The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at an average dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by eFLASHvs. pFLASH has yet been performed and constitutes the aim of the present study. MATERIALS AND METHODS The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥110 Gy/s eFLASH and pFLASH) dose rates. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed using previously validated dosimetric approaches and experimental murine models. RESULTS The difference between the average absorbed dose measured at Gantry 1 with PSI reference dosimeters and with CHUV/IRA dosimeters was -1.9 % (0.1 Gy/s) and + 2.5 % (110 Gy/s). The neurocognitive capacity of eFLASH and pFLASH irradiated mice was indistinguishable from the control, while both eCONV and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained after an ablative dose of 20 Gy delivered with the two beams at CONV and FLASH dose rates. Tumor rejection upon rechallenge indicates that anti-tumor immunity was activated independently of the beam-type and the dose-rate. CONCLUSION Despite major differences in the temporal microstructure of proton and electron beams, this study shows that dosimetric standards can be established. Normal brain protection and tumor control were produced by the two beams. More specifically, normal brain protection was achieved when a single dose of 10 Gy was delivered in 90 ms or less, suggesting that the most important physical parameter driving the FLASH sparing effect might be the mean dose rate. In addition, a systemic anti-tumor immunological memory response was observed in mice exposed to high ablative dose of electron and proton delivered at CONV and FLASH dose rate.
Collapse
Affiliation(s)
- A Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - P Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - J Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - R Geyer
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
| | - R Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - B Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - T Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland; Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zurich, Switzerland
| | - C Bailat
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323, Villigen, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology sector, Radiation Therapy service, University hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Wu X, Luo H, Wang Q, Du T, Chen Y, Tan M, Liu R, Liu Z, Sun S, Yang K, Tian J, Zhang Q. Examining the Occurrence of the FLASH Effect in Animal Models: A Systematic Review and Meta-Analysis of Ultra-High Dose Rate Proton or Carbon Ion Irradiation. Technol Cancer Res Treat 2024; 23:15330338241289990. [PMID: 39512217 PMCID: PMC11544673 DOI: 10.1177/15330338241289990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose: This systematic review and meta-analysis sought to assess whether ultra-high dose rate (UHDR) ion irradiations can induce the FLASH effect in animal models. Methods: A comprehensive search of the Web of Science, PubMed, and EMBASE databases was conducted from inception until March 20, 2023, to identify studies involving irradiated animals subjected to proton or carbon ion beams at varying dose rates. The research content should include various indicators that can reflect the effect and safety of radiation, such as survival, normal tissue toxicity, inflammatory response, tumor volume, etc Results: Compared to conventional dose rate (CONV) ion irradiations, UHDR ion irradiations can significantly improve mouse survival (HR 0.48, 95% CI 0.29 to 0.78, I2 = 0%) and maintain comparable tumor control. There was no significant impact of different dose rates on the survival of zebrafish embryos (SMD 0.11, 95% CI -0.31 to 0.53, I2 = 85%). Subgroup analysis showed that radiation dose was an important factor affecting the survival of zebrafish embryos. Achieving normal tissue sparing may require higher radiation dose under UHD.In mouse and zebrafish embryo models, normal tissue sparing did not always occur after UHDR ion irradiations. In addition, only a limited number of cytokines (CXCL1, IL-6, GM-CSF, G-CSF, HMGB1, and TGF-β) and immune cells (microglia and myeloid cells) showed differences at different dose rates. Conclusions: UHDR ion irradiation can achieve FLASH effect, but the reproducibility of normal tissue sparing remains a challenge. Compared to CONV irradiation, UHDR ion irradiations demonstrated equivalent or even superior tumor control.
Collapse
Affiliation(s)
- Xun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qian Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Tianqi Du
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Yanliang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Mingyu Tan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, People's Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Chengguan District, Lanzhou 730000, People's Republic of China
- Graduate School, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100000, People's Republic of China
| |
Collapse
|
18
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
19
|
Lin B, Fan M, Niu T, Liang Y, Xu H, Tang W, Du X. Key changes in the future clinical application of ultra-high dose rate radiotherapy. Front Oncol 2023; 13:1244488. [PMID: 37941555 PMCID: PMC10628486 DOI: 10.3389/fonc.2023.1244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH-RT) is an external beam radiotherapy strategy that uses an extremely high dose rate (≥40 Gy/s). Compared with conventional dose rate radiotherapy (≤0.1 Gy/s), the main advantage of FLASH-RT is that it can reduce damage of organs at risk surrounding the cancer and retain the anti-tumor effect. An important feature of FLASH-RT is that an extremely high dose rate leads to an extremely short treatment time; therefore, in clinical applications, the steps of radiotherapy may need to be adjusted. In this review, we discuss the selection of indications, simulations, target delineation, selection of radiotherapy technologies, and treatment plan evaluation for FLASH-RT to provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tingting Niu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaobo Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| |
Collapse
|
20
|
Polevoy GG, Kumar DS, Daripelli S, Prasanna M. Flash Therapy for Cancer: A Potentially New Radiotherapy Methodology. Cureus 2023; 15:e46928. [PMID: 38021805 PMCID: PMC10640654 DOI: 10.7759/cureus.46928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In traditional treatment modalities and standard clinical practices, FLASH radiotherapy (FL-RT) administers radiation therapy at an exceptionally high dosage rate. When compared to standard dose rate radiation therapy, numerous preclinical investigations have demonstrated that FL-RT provides similar benefits in conserving normal tissue while maintaining equal antitumor efficacy, a phenomenon possible due to the 'FLASH effect' (FE) of FL-RT. The methodologies involve proton radiotherapy, intensity-modulated radiation treatment, and managing high-throughput damage by radiation to solid tissues. Recent results from animal studies indicate that FL-RT can reduce radiation-induced tissue damage, significantly enhancing anticancer potency. Focusing on the potential benefits of FL proton beam treatment in the years to come, this review details the FL-RT research that has been done so far and the existing theories illuminating the FL effects. This subject remains of interest, with many issues still needing to be answered. We offer a brief review to emphasize a few of the key efforts and difficulties in moving FL radiation research forward. The existing research state of FL-RT, its affecting variables, and its different specific impacts are presented in this current review. Key topics discussed include the biochemical mechanism during FL therapy, beam sources for FL therapy, the FL effect on immunity, clinical and preclinical studies on the protective effect of FL therapy, and parameters for effective FL therapy.
Collapse
Affiliation(s)
| | - Devika S Kumar
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Sushma Daripelli
- Department of Anatomy, Government Medical College (GMC) Jangaon, Jangaon, IND
| | - Muthu Prasanna
- Department of Pharmaceutical Biotechnology, Surya Group of Institutions, Tamil Nadu, IND
| |
Collapse
|
21
|
Ghannam Y, Chiavassa S, Saade G, Koumeir C, Blain G, Delpon G, Evin M, Haddad F, Maigne L, Mouchard Q, Servagent N, Potiron V, Supiot S. First evidence of in vivo effect of FLASH radiotherapy with helium ions in zebrafish embryos. Radiother Oncol 2023; 187:109820. [PMID: 37516363 DOI: 10.1016/j.radonc.2023.109820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
The ability to reduce toxicity of ultra-high dose rate (UHDR) helium ion irradiation has not been reported in vivo. Here, we tested UHDR helium ion irradiation in an embryonic zebrafish model. Our results show that UHDR helium ions spare body development and reduce spine curvature, compared to conventional dose rate.
Collapse
Affiliation(s)
| | - Sophie Chiavassa
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France; Institut de Cancérologie de l'Ouest, site Saint-Herblain, France
| | | | - Charbel Koumeir
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France; GIP ARRONAX, Saint-Herblain, France
| | - Guillaume Blain
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France
| | - Grégory Delpon
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France; Institut de Cancérologie de l'Ouest, site Saint-Herblain, France
| | - Manon Evin
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France
| | - Ferid Haddad
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France; GIP ARRONAX, Saint-Herblain, France
| | - Lydia Maigne
- Université Clermont Auvergne, CNRS/IN2P3, LPC, 63000, Clermont-Ferrand, France
| | - Quentin Mouchard
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France
| | - Noël Servagent
- Laboratoire SUBATECH, UMR 6457 CNRS-IN2P3, IMT Atlantique, Nantes Université, France
| | - Vincent Potiron
- CNRS, UMR 6286, Nantes Université, France; Institut de Cancérologie de l'Ouest, site Saint-Herblain, France.
| | - Stéphane Supiot
- CNRS, UMR 6286, Nantes Université, France; Institut de Cancérologie de l'Ouest, site Saint-Herblain, France
| |
Collapse
|
22
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Atkinson J, Bezak E, Le H, Kempson I. The current status of FLASH particle therapy: a systematic review. Phys Eng Sci Med 2023; 46:529-560. [PMID: 37160539 DOI: 10.1007/s13246-023-01266-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater acknowledgement.
Collapse
Affiliation(s)
- Jake Atkinson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, South Australia, 5000, Australia
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
24
|
Almeida A, Togno M, Ballesteros-Zebadua P, Franco-Perez J, Geyer R, Schaefer R, Petit B, Grilj V, Meer D, Safai S, Lomax T, Weber DC, Bailat C, Psoroulas S, Vozenin MC. Dosimetric and biologic intercomparison between electron and proton FLASH beams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537497. [PMID: 37131769 PMCID: PMC10153243 DOI: 10.1101/2023.04.20.537497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and purpose The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at a mean dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by e vs. pFLASH has yet been performed and constitutes the aim of the present study. Materials and methods The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥100 Gy/s eFLASH and pFLASH) irradiation. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed with previously validated models. Results Doses measured at Gantry1 were in agreement (± 2.5%) with reference dosimeters calibrated at CHUV/IRA. The neurocognitive capacity of e and pFLASH irradiated mice was indistinguishable from the control while both e and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained with the two beams and was similar between e and pFLASH vs. e and pCONV. Tumor rejection was similar indicating that T-cell memory response is beam-type and dose-rate independent. Conclusion Despite major differences in the temporal microstructure, this study shows that dosimetric standards can be established. The sparing of brain function and tumor control produced by the two beams were similar, suggesting that the most important physical parameter driving the FLASH effect is the overall time of exposure which should be in the range of hundreds of milliseconds for WBI in mice. In addition, we observed that immunological memory response is similar between electron and proton beams and is independent off the dose rate.
Collapse
Affiliation(s)
- A Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - P Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - J Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - R Geyer
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
| | - R Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - B Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - T Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zurich, Switzerland
| | - C Bailat
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - M C Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Cooper CR, Jones DJL, Jones GDD, Petersson K. Comet Assay Profiling of FLASH-Induced Damage: Mechanistic Insights into the Effects of FLASH Irradiation. Int J Mol Sci 2023; 24:7195. [PMID: 37108360 PMCID: PMC10138874 DOI: 10.3390/ijms24087195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have demonstrated the normal tissue-sparing effects of ultra-high dose rate 'FLASH' irradiation in vivo, with an associated reduction in damage burden being reported in vitro. Towards this, two key radiochemical mechanisms have been proposed: radical-radical recombination (RRR) and transient oxygen depletion (TOD), with both being proposed to lead to reduced levels of induced damage. Previously, we reported that FLASH induces lower levels of DNA strand break damage in whole-blood peripheral blood lymphocytes (WB-PBL) ex vivo, but our study failed to distinguish the mechanism(s) involved. A potential outcome of RRR is the formation of crosslink damage (particularly, if any organic radicals recombine), whilst a possible outcome of TOD is a more anoxic profile of induced damage resulting from FLASH. Therefore, the aim of the current study was to profile FLASH-induced damage via the Comet assay, assessing any DNA crosslink formation as a putative marker of RRR and/or anoxic DNA damage formation as an indicative marker of TOD, to determine the extent to which either mechanism contributes to the "FLASH effect". Following FLASH irradiation, we see no evidence of any crosslink formation; however, FLASH irradiation induces a more anoxic profile of induced damage, supporting the TOD mechanism. Furthermore, treatment of WB-PBLs pre-irradiation with BSO abrogates the reduced strand break damage burden mediated by FLASH exposures. In summary, we do not see any experimental evidence to support the RRR mechanism contributing to the reduced damage burden induced by FLASH. However, the observation of a greater anoxic profile of damage following FLASH irradiation, together with the BSO abrogation of the reduced strand break damage burden mediated by FLASH, lends further support to TOD being a driver of the reduced damage burden plus a change in the damage profile mediated by FLASH.
Collapse
Affiliation(s)
- Christian R. Cooper
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.J.L.J.); (G.D.D.J.)
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Donald J. L. Jones
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.J.L.J.); (G.D.D.J.)
| | - George D. D. Jones
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.J.L.J.); (G.D.D.J.)
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital Lund University, 221 85 Lund, Sweden
| |
Collapse
|
26
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
27
|
Limoli CL, Vozenin MC. Reinventing Radiobiology in the Light of FLASH Radiotherapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:1-21. [PMID: 39421564 PMCID: PMC11486513 DOI: 10.1146/annurev-cancerbio-061421-022217] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Ultrahigh-dose rate FLASH radiotherapy (FLASH-RT) is a potentially paradigm-shifting treatment modality that holds the promise of expanding the therapeutic index for nearly any cancer. At the heart of this exciting technology comes the capability to ameliorate major normal tissue complications without compromising the efficacy of tumor killing. This combination of benefits has now been termed the FLASH effect and relies on an in vivo validation to rigorously demonstrate the absence of normal tissue toxicity. The FLASH effect occurs when the overall irradiation time is extremely short (<500 ms), and in this review we attempt to understand how FLASH-RT can kill tumors but spare normal tissues-likely the single most pressing question confronting the field today.
Collapse
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Mali SB, Dahivelkar S. Flash radiotherapy-gateway to promised land or another mirage. Oral Oncol 2023; 139:106342. [PMID: 36821983 DOI: 10.1016/j.oraloncology.2023.106342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation‑induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy n tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH‑RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra‑high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control.
Collapse
Affiliation(s)
- Shrikant B Mali
- MDS Oral and Maxillofacial Surgery Mahatma Gandhi Vidya Mandir's Dental College and Hospital Nashik, India.
| | - Sachinkumar Dahivelkar
- MDS Oral and Maxillofacial Surgery Mahatma Gandhi Vidya Mandir's Dental College and Hospital Nashik, India.
| |
Collapse
|
29
|
Beyreuther E, Horst F, Brand M, Hans S, Karsch L, Lessmann E, Löck S, Schürer M, Pawelke J. In Regard to Böhlen et al. Int J Radiat Oncol Biol Phys 2023; 115:1006-1007. [PMID: 36822772 DOI: 10.1016/j.ijrobp.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 02/23/2023]
Affiliation(s)
- Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies and Cluster of Excellence "Physics of Life", Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies and Cluster of Excellence "Physics of Life", Technische Universität Dresden, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Lessmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schürer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
30
|
Böhlen TT, Germond JF, Bochud F, Bailat C, Moeckli R, Bourhis J, Vozenin MC, Ozsahin EM. In Reply to Horst et al. Int J Radiat Oncol Biol Phys 2023; 115:1007-1009. [PMID: 36822773 DOI: 10.1016/j.ijrobp.2022.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 02/24/2023]
Affiliation(s)
- Till Tobias Böhlen
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Claude Bailat
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- ****Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Jean Bourhis
- **Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- **Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- **Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
31
|
Ultrahigh-Dose-Rate Proton Irradiation Elicits Reduced Toxicity in Zebrafish Embryos. Adv Radiat Oncol 2022; 8:101124. [PMID: 36578276 PMCID: PMC9791798 DOI: 10.1016/j.adro.2022.101124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Recently, ultrahigh-dose-rate radiation therapy (UHDR-RT) has emerged as a promising strategy to increase the benefit/risk ratio of external RT. Extensive work is on the way to characterize the physical and biological parameters that control the so-called "Flash" effect. However, this healthy/tumor differential effect is observable in in vivo models, which thereby drastically limits the amount of work that is achievable in a timely manner. Methods and Materials In this study, zebrafish embryos were used to compare the effect of UHDR irradiation (8-9 kGy/s) to conventional RT dose rate (0.2 Gy/s) with a 68 MeV proton beam. Viability, body length, spine curvature, and pericardial edema were measured 4 days postirradiation. Results We show that body length is significantly greater after UHDR-RT compared with conventional RT by 180 µm at 30 Gy and 90 µm at 40 Gy, while pericardial edema is only reduced at 30 Gy. No differences were obtained in terms of survival or spine curvature. Conclusions Zebrafish embryo length appears as a robust endpoint, and we anticipate that this model will substantially fasten the study of UHDR proton-beam parameters necessary for "Flash."
Collapse
|
32
|
Espinosa-Rodriguez A, Sanchez-Parcerisa D, Ibáñez P, Vera-Sánchez JA, Mazal A, Fraile LM, Manuel Udías J. Radical Production with Pulsed Beams: Understanding the Transition to FLASH. Int J Mol Sci 2022; 23:13484. [PMID: 36362271 PMCID: PMC9656621 DOI: 10.3390/ijms232113484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Ultra-high dose rate (UHDR) irradiation regimes have the potential to spare normal tissue while keeping equivalent tumoricidal capacity than conventional dose rate radiotherapy (CONV-RT). This has been called the FLASH effect. In this work, we present a new simulation framework aiming to study the production of radical species in water and biological media under different irradiation patterns. The chemical stage (heterogeneous phase) is based on a nonlinear reaction-diffusion model, implemented in GPU. After the first 1 μs, no further radical diffusion is assumed, and radical evolution may be simulated over long periods of hundreds of seconds. Our approach was first validated against previous results in the literature and then employed to assess the influence of different temporal microstructures of dose deposition in the expected biological damage. The variation of the Normal Tissue Complication Probability (NTCP), assuming the model of Labarbe et al., where the integral of the peroxyl radical concentration over time (AUC-ROO) is taken as surrogate for biological damage, is presented for different intra-pulse dose rate and pulse frequency configurations, relevant in the clinical scenario. These simulations yield that overall, mean dose rate and the dose per pulse are the best predictors of biological effects at UHDR.
Collapse
Affiliation(s)
- Andrea Espinosa-Rodriguez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
33
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
34
|
Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH" Effect. Int J Mol Sci 2022; 23:ijms232012109. [PMID: 36292961 PMCID: PMC9602825 DOI: 10.3390/ijms232012109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
FLASH radiotherapy, or the delivery of a dose at an ultra-high dose rate (>40 Gy/s), has recently emerged as a promising tool to enhance the therapeutic index in cancer treatment. The remarkable sparing of normal tissues and equivalent tumor control by FLASH irradiation compared to conventional dose rate irradiation—the FLASH effect—has already been demonstrated in several preclinical models and even in a first patient with T-cell cutaneous lymphoma. However, the biological mechanisms responsible for the differential effect produced by FLASH irradiation in normal and cancer cells remain to be elucidated. This is of great importance because a good understanding of the underlying radiobiological mechanisms and characterization of the specific beam parameters is required for a successful clinical translation of FLASH radiotherapy. In this review, we summarize the FLASH investigations performed so far and critically evaluate the current hypotheses explaining the FLASH effect, including oxygen depletion, the production of reactive oxygen species, and an altered immune response. We also propose a new theory that assumes an important role of mitochondria in mediating the normal tissue and tumor response to FLASH dose rates.
Collapse
|
35
|
Vozenin MC, Schüller A, Dutreix M, Kirkby K, Baumann M, Coppes RP, Thwaites D. FLASH Radiotherapy & Particle Therapy conference, FRPT2021. Radiother Oncol 2022; 175:167-168. [DOI: 10.1016/j.radonc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
36
|
Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules 2022; 12:biom12101376. [PMID: 36291585 PMCID: PMC9599153 DOI: 10.3390/biom12101376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities for cancer patients. The clinical use of RT requires a balance to be struck between tumor effect and the risk of toxicity. Sparing normal tissue is the cornerstone of reducing toxicity. Advances in physical targeting and dose-shaping technology have helped to achieve this. FLASH RT is a promising, novel treatment technique that seeks to exploit a potential normal tissue-sparing effect of ultra-high dose rate irradiation. A significant body of in vitro and in vivo data has highlighted a decrease in acute and late radiation toxicities, while preserving the radiation effect in tumor cells. The underlying biological mechanisms of FLASH RT, however, remain unclear. Three main mechanisms have been hypothesized to account for this differential FLASH RT effect between the tumor and healthy tissue: the oxygen depletion, the DNA damage, and the immune-mediated hypothesis. These hypotheses and molecular mechanisms have been evaluated both in vitro and in vivo. Furthermore, the effect of ultra-high dose rate radiation with extremely short delivery times on the dynamic tumor microenvironment involving circulating blood cells and immune cells in humans is essentially unknown. Therefore, while there is great interest in FLASH RT as a means of targeting tumors with the promise of an increased therapeutic ratio, evidence of a generalized FLASH effect in humans and data to show that FLASH in humans is safe and at least effective against tumors as standard photon RT is currently lacking. FLASH RT needs further preclinical investigation and well-designed in-human studies before it can be introduced into clinical practice.
Collapse
Affiliation(s)
- Eline Hageman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Pei-Pei Che
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J. Slotman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Peter Sminia
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
37
|
Jansen J, Beyreuther E, García-Calderón D, Karsch L, Knoll J, Pawelke J, Schürer M, Seco J. oChanges in Radical Levels as a Cause for the FLASH effect: Impact of beam structure parameters at ultra-high dose rates on oxygen depletion in water. Radiother Oncol 2022; 175:193-196. [PMID: 36030933 DOI: 10.1016/j.radonc.2022.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/15/2023]
Abstract
The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.
Collapse
Affiliation(s)
- Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
| | - Daniel García-Calderón
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Leonhard Karsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jan Knoll
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany.
| |
Collapse
|