1
|
Huang J, Cheng J, Shi B, Du X, Tang S, Lin B, Mo J, Yan F, Luo S, Yang H. Ultra‑high dose rate (FLASH) treatment: A novel radiotherapy modality (Review). Mol Clin Oncol 2025; 22:23. [PMID: 39885864 PMCID: PMC11775888 DOI: 10.3892/mco.2025.2818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/05/2024] [Indexed: 02/01/2025] Open
Abstract
Ultra-high dose rate radiotherapy defined as FLASH radiotherapy is a potential technology to improve local tumor therapeutic gain ratio. It relies on linear accelerator capable of delivering large doses in a single microsecond pulse (>40 Gy/sec). This therapy would lead to sparing of normal tissue which has been termed the FLASH effect. As significant reduction of radiation-induced toxicity, a greater dose of FLASH radiotherapy could be administered in tumor region. Some evidences prove the relation between FLASH effect and oxygen. Yet, the underlying physicochemical and biological mechanism remain to be fully demonstrated. The current hypotheses that may explain the normal and tumor tissue different response were We summarized and the future direction of study and clinic implementation was proposed.
Collapse
Affiliation(s)
- Junqi Huang
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Jiajia Cheng
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Bo Shi
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiaobo Du
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Shitian Tang
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Binwei Lin
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Jun Mo
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Fenglin Yan
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Shunyu Luo
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Heng Yang
- Department of Orthopaedics, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
2
|
Panaino CMV, Piccinini S, Andreassi MG, Bandini G, Borghini A, Borgia M, Di Naro A, Labate LU, Maggiulli E, Portaluri MGA, Gizzi LA. Very High-Energy Electron Therapy Toward Clinical Implementation. Cancers (Basel) 2025; 17:181. [PMID: 39857964 PMCID: PMC11763822 DOI: 10.3390/cancers17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols. In addition, the perspective of VHEE to access ultra-high dose-rate regime presents a promising avenue for the practical integration of FLASH radiotherapy of deep tumors and metastases with VHEET (FLASH-VHEET), enhancing normal tissue sparing while maintaining the inherent dosimetric advantages of VHEET. However, FLASH-VHEET systems require validation of time-dependent dose parameters, thus introducing additional technological challenges. Here, we discuss recent progress in VHEET research, focusing on both conventional and FLASH modalities, and covering key aspects including dosimetric properties, radioprotection, accelerator technology, beam focusing, radiobiological effects, and clinical outcomes. Furthermore, we comprehensively analyze initial VHEET in silico studies on coverage across various tumor sites.
Collapse
Affiliation(s)
- Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | - Gabriele Bandini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | | | - Angelo Di Naro
- ASST Papa Giovanni XXIII Hospital, Radiotherapy, 24127 Bergamo, Italy; (A.D.N.); (M.G.A.P.)
| | - Luca Umberto Labate
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| | | | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| |
Collapse
|
3
|
Li M, Zhou S, Dong G, Wang C. Emergence of FLASH‑radiotherapy across the last 50 years (Review). Oncol Lett 2024; 28:602. [PMID: 39493433 PMCID: PMC11529378 DOI: 10.3892/ol.2024.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 11/05/2024] Open
Abstract
A novel radiotherapy (RT) approach termed FLASH-RT, which irradiates areas at ultra-high dose rates, is of current interest to medical researchers. FLASH-RT can maintain equivalent antitumor effects while sparing healthy tissue compared with conventional RT (CONV-RT), which uses low dose rates. The sparing effect on healthy tissue after FLASH-RT is known as the FLASH effect. Owing to the FLASH effect, FLASH-RT can raise the maximum tolerable dose to control tumor growth or eradicate the tumor and provide a new strategy for clinical RT. However, definitive irradiation conditions for reproducing the FLASH effect and the biological mechanism of the FLASH effect have not yet been fully elucidated. The efficacy of FLASH-RT is controversial despite its successful application in clinical RT. The present review recapitulates the progression of FLASH-RT and critically comments on the hypothesis of the FLASH effect. In addition, the review expounds on the current issues with regard to the differential phenomena between in vitro and in vivo studies, and elaborates on the challenges for the application of FLASH-RT that need to be addressed in the future.
Collapse
Affiliation(s)
- Menghua Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Guofu Dong
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Changzhen Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
4
|
Böhlen TT, Zeverino M, Germond JF, Kinj R, Schiappacasse L, Bochud F, Herrera F, Bourhis J, Moeckli R. Hybrid ultra-high and conventional dose rate treatments with electrons and photons for the clinical transfer of FLASH-RT to deep-seated targets: A treatment planning study. Radiother Oncol 2024; 201:110576. [PMID: 39395673 DOI: 10.1016/j.radonc.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
PURPOSE This study explores the dosimetric feasibility and plan quality of hybrid ultra-high dose rate (UHDR) electron and conventional dose rate (CDR) photon (HUC) radiotherapy for treating deep-seated tumours with FLASH-RT. METHODS HUC treatment planning was conducted optimizing a broad UHDR electron beam (between 20-250 MeV) combined with a CDR VMAT for a glioblastoma, a pancreatic cancer, and a prostate cancer case. HUC plans were based on clinical prescription and fractionation schemes and compared against clinically delivered plans. Considering a HUC boost treatment for the glioblastoma consisting of a 15-Gy-single-fraction UHDR electron boost supplemented with VMAT, two scenarios for FLASH sparing were assessed using FLASH-modifying-factor-weighted doses. RESULTS For all three patient cases, HUC treatment plans demonstrated comparable dosimetric quality to clinical plans, with similar PTV coverage (V95% within 0.5 %), homogeneity, and critical OAR-sparing. At the same time, HUC plans delivered a substantial portion of the dose to the PTV (Dmedian of 50-69 %) and surrounding tissues at UHDR. For the HUC boost treatment of the glioblastoma, the first FLASH sparing scenario showed a moderate FLASH sparing magnitude (10 % for D2%,PTV) for the 15-Gy UHDR electron boost, while the second scenario indicated a more substantial sparing of brain tissues inside and outside the PTV (32 % for D2%,PTV, 31 % for D2%,Brain). CONCLUSIONS From a planning perspective, HUC treatments represent a feasible approach for delivering dosimetrically conformal UHDR treatments, potentially mitigating technical challenges associated with delivering conformal FLASH-RT for deep-seated tumours. While further research is needed to optimize HUC fractionation and delivery schemes for specific patient cohorts, HUC treatments offer a promising avenue for the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Rémy Kinj
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Luis Schiappacasse
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Fernanda Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
5
|
An C, Zhang W, Dai Z, Li J, Yang X, Wang J, Nie Y. Optimizing focused very-high-energy electron beams for radiation therapy based on Monte Carlo simulation. Sci Rep 2024; 14:27495. [PMID: 39528582 PMCID: PMC11554818 DOI: 10.1038/s41598-024-79187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
A TOPAS-based optimization program has been developed to precisely concentrate the dose of focused very-high-energy electron (VHEE) beams on deep-seated targets. This is accomplished by optimizing the magnetic gradients, positions, and number of quadrupole magnets within TOPAS. Using only three quadrupole magnets, the program focuses 250 MeV VHEE beams to achieve a maximum dose position deeper than 17 cm, while maintaining entrance and exit doses within 25% and limiting the lateral dimensions to ≤ 1 cm at the maximum dose location. The linear relationship between the magnetic gradient of the last quadrupole magnet and the maximum dose position enables dose location adjustments through gradient variation. Multiple positions were validated in TOPAS with errors within 1%. The spread-out electron peak (SOEP) is achieved by combining two VHEE beams with different maximum dose positions using the differential evolution method, covering a target depth of 12-17 cm and attaining a dose flatness better than 99%. This pioneering program imposes constraints on entrance dose, exit dose, maximum dose position, and the lateral dimensions of dose deposition at the maximum dose position within phantom. This program may be a promising tool in the applications of focused VHEE in highly conformal treatment plans based on TOPAS.
Collapse
Affiliation(s)
- Chaofan An
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Wei Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Zeyi Dai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Jia Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Xiong Yang
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jike Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China
| | - Yuancun Nie
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, Hubei Province, China.
| |
Collapse
|
6
|
Bedford JL, Oelfke U. Treatment planning for very high energy electrons: Studies that indicate the potential of the modality. Phys Imaging Radiat Oncol 2024; 32:100670. [PMID: 39583956 PMCID: PMC11585669 DOI: 10.1016/j.phro.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background and purpose Radiotherapy using Very High Energy Electrons (VHEE) has the potential to reduce dose to organs at risk compared to photons. This article therefore reviews treatment planning for VHEE, to clarify the potential benefit of the modality. Materials and methods Articles on VHEE were identified and those which focused on treatment planning were manually selected, particularly those which contained results on patient datasets. Benefits in absorbed dose to organs at risk were converted to percentages of prescription dose so as to provide uniform, clinically relevant reporting. Results Increased beam energy was found to reduce electron scatter and give rise to a narrower penumbra but lead to a rather constant depth dose curve, which was not as useful for sparing normal tissues as that of protons. The sharp penumbra of VHEE was of benefit in treatment planning for producing treatment plans with conformal dose shaping, with improved dose to critical structures being demonstrated for several treatment sites. Mean dose to critical structures, relative to the prescribed dose, was in the order of 0-10% lower than photons and 0-10% higher than protons. The delivery technology and dose distributions were also promising for radiotherapy with ultra-high dose rate (FLASH). Conclusion At present, the potential clinical benefit of VHEE relative to photons or protons is small. Further studies are needed to more precisely quantify the relative performance of broad beams versus pencil beam scanning and to investigate treatment sites that might benefit maximally from the use of VHEE beams.
Collapse
Affiliation(s)
- James L. Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| |
Collapse
|
7
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
8
|
Demyashkin G, Parshenkov M, Koryakin S, Skovorodko P, Shchekin V, Yakimenko V, Uruskhanova Z, Ugurchieva D, Pugacheva E, Ivanov S, Shegay P, Kaprin A. Targeting Oxidative Stress: The Potential of Vitamin C in Protecting against Liver Damage after Electron Beam Therapy. Biomedicines 2024; 12:2195. [PMID: 39457507 PMCID: PMC11504655 DOI: 10.3390/biomedicines12102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Radiation-induced liver disease (RILD) is a severe complication arising from radiotherapy, particularly when treating abdominal malignancies such as hepatocellular carcinoma. The liver's critical role in systemic metabolism and its proximity to other abdominal organs make it highly susceptible to radiation-induced damage. This vulnerability significantly limits the maximum safe therapeutic dose of radiation, thereby constraining the overall efficacy of radiotherapy. Among the various modalities, electron beam therapy has gained attention due to its ability to precisely target tumors while minimizing exposure to surrounding healthy tissues. However, despite its advantages, the long-term impacts of electron beam exposure on liver tissue remain inadequately understood, particularly concerning chronic injury and fibrosis driven by sustained oxidative stress. Objectives: to investigate the molecular and cellular mechanisms underlying the radioprotective effects of vitamin C in a model of radiation-induced liver disease. Methods: Male Wistar rats (n = 120) were randomly assigned to four groups: control, fractionated local electron irradiation (30 Gy), pre-treatment with vitamin C before irradiation, and vitamin C alone. The study evaluated the effects of electron beam radiation and vitamin C on liver tissue through a comprehensive approach, including biochemical analysis of serum enzymes (ALT, AST, ALP, and bilirubin), cytokine levels (IL-1β, IL-6, IL-10, and TNF-α), and oxidative stress markers (MDA and SOD). Histological and morphometric analyses were conducted on liver tissue samples collected at 7, 30, 60, and 90 days, which involved standard staining techniques and advanced imaging, including light and electron microscopy. Gene expression of Bax, Bcl-2, and caspase-3 was analyzed using real-time PCR. Results: The present study demonstrated that fractional local electron irradiation led to significant reductions in body weight and liver mass, as well as marked increases in biochemical markers of liver damage (ALT, AST, ALP, and bilirubin), inflammatory cytokines (IL-1β, IL-6, and TNF-α), and oxidative stress markers (MDA) in the irradiated group. These changes were accompanied by substantial histopathological alterations, including hepatocyte degeneration, fibrosis, and disrupted microvascular circulation. Pre-treatment with vitamin C partially mitigated these effects, reducing the severity of the liver damage, oxidative stress, and inflammation, and preserving a more favorable balance between hepatocyte proliferation and apoptosis. Overall, the results highlight the potential protective role of vitamin C in reducing radiation-induced liver injury, although the long-term benefits require further investigation. Conclusions: The present study highlights vitamin C's potential as a radioprotective agent against electron beam-induced liver damage. It effectively reduced oxidative stress, apoptosis, and inflammation, particularly in preventing the progression of radiation-induced liver fibrosis. These findings suggest that vitamin C could enhance radiotherapy outcomes by minimizing liver damage, warranting further exploration into its broader clinical applications.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Mikhail Parshenkov
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Koryakin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Polina Skovorodko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Vladimir Shchekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya st., 6, 117198 Moscow, Russia
| | - Vladislav Yakimenko
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Zhanna Uruskhanova
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Dali Ugurchieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st., 8/2, 119048 Moscow, Russia; (M.P.); (P.S.); (V.Y.); (Z.U.); (D.U.); (E.P.)
| | - Sergey Ivanov
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia; (S.K.); (V.S.); (S.I.); (P.S.); (A.K.)
- Department of Urology and Operative Nephrology, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, 117198 Moscow, Russia
| |
Collapse
|
9
|
Zeng Y, Zhang Q, Pang B, Liu M, Chang Y, Wang Y, Quan H, Yang Z. Fractionation dose optimization facilities the implementation of transmission proton FLASH-RT. Phys Med Biol 2024; 69:195002. [PMID: 39214129 DOI: 10.1088/1361-6560/ad75e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Objective.The beam switching time and fractional dose influence the FLASH effect. A single-beam-per-fraction (SBPF) scheme using uniform fractional dose (UFD) has been proposed for FLASH- radiotherapy (FLASH-RT) to eliminate the beam switching time. Based on SBPF schemes, a fractionation dose optimization algorithm is proposed to optimize non-UFD plans to maximize the fractionation effect and dose-dependent FLASH effect.Approach.The UFD plan, containing five 236 MeV transmission proton beams, was optimized for 11 patients with peripheral lung cancer, with each beam delivering a uniform dose of 11 Gy to the target. Meanwhile, the non-UFD plan was optimized using fractionation dose optimization. To compare the two plans, the equivalent dose to 2 Gy (EQD2) for the target and normal tissues was calculated with anα/βratio of 10 and 3, respectively. Both UFD and non-UFD plans ensured that the target received an EQD2 of 96.3 Gy. To investigate the overall improvement in normal tissue sparing with the non-UFD plan, the FLASH-enhanced EQD2 was calculated.Main results.The fractional doses in non-UFD plans ranged between 5.0 Gy and 24.2 Gy. No significant differences were found in EQD22%and EQD298%of targets between UFD and non-UFD plans. However, theD95%of the target in non-UFD plans was significantly reduced by 15.1%. The sparing effect in non-UFD plans was significantly improved. The FLASH-enhanced EQD2meanin normal tissue and ipsilateral lung was significantly reduced by 3.5% and 10.4%, respectively, in non-UFD plans. The overall improvement is attributed to both the FLASH and fractionation effects.Significance.The fractionation dose optimization can address the limitation of multiple-beam FLASH-RT and utilize the relationship between fractional dose and FLASH effect. Consequently, the non-UFD scheme results in further improvements in normal tissue sparing compared to the UFD scheme, attributed to enhanced fractionation and FLASH effects.
Collapse
Affiliation(s)
- Yiling Zeng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Qi Zhang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Bo Pang
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Muyu Liu
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yu Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Quan
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
10
|
Dai T, Sloop AM, Ashraf MR, Sunnerberg JP, Clark MA, Bruza P, Pogue BW, Jarvis L, Gladstone DJ, Zhang R. Commissioning an ultra-high-dose-rate electron linac with end-to-end tests. Phys Med Biol 2024; 69:165028. [PMID: 39084661 DOI: 10.1088/1361-6560/ad69fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective. The FLASH effect can potentially be used to improve the therapeutic ratio of radiotherapy (RT) through delivery of Ultra-high-dose-rate (UHDR) irradiation. Research is actively being conducted to translate UHDR-RT and for this purpose the Mobetron is capable of producing electron beams at both UHDR and conventional dose rates for FLASH research and translation. This work presents commissioning of an UHDR Mobetron with end-to-end tests developed for preclinical research.Approach. UHDR electron beams were commissioned with an efficient approach utilizing a 3D-printed water tank and film to fully characterize beam characteristics and dependences on field size, pulse width (PW) and pulse repetition frequency (PRF). This commissioning data was used to implement a beam model using the GAMOS Monte Carlo toolkit for the preclinical research. Then, the workflow for preclinical FLASH irradiation was validated with end-to-end tests delivered to a 3D-printed mouse phantom with internal inhomogeneities.Main results.PDDs, profiles and output factors acquired with radiochromic films were precisely measured, with a PRF that showed little effect on the UHDR beam energy and spatial characteristics. Increasing PW reduced theDmaxand R50by 2.08 mmµs-1and 1.28 mmµs-1respectively. An end-to-end test of the preclinical research workflow showed that both profiles in head-foot and lateral directions were in good agreement with the MC calculations for the heterogeneous 3D printed mouse phantom with Gamma index above 93% for 2 mm/2% criteria, and 99% for 3 mm/3%.Significance. The UHDR Mobetron is a versatile tool for FLASH preclinical research and this comprehensive beam model and workflow was validated to meet the requirements for conducting translational FLASH research.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, People's Republic of China
| | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Muhammad R Ashraf
- Stanford Radiation Oncology, Palo Alto, CA 94304, United States of America
| | - Jacob P Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Megan A Clark
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, United States of America
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| |
Collapse
|
11
|
Dai T, Sloop AM, Schönfeld A, Flatten V, Kozelka J, Hildreth J, Bill S, Sunnerberg JP, Clark MA, Jarvis L, Pogue BW, Bruza P, Gladstone DJ, Zhang R. Electron beam response corrections for an ultra-high-dose-rate capable diode dosimeter. Med Phys 2024; 51:5738-5745. [PMID: 38762909 PMCID: PMC11752437 DOI: 10.1002/mp.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Ultra-high-dose-rate (UHDR) electron beams have been commonly utilized in FLASH studies and the translation of FLASH Radiotherapy (RT) to the clinic. The EDGE diode detector has potential use for UHDR dosimetry albeit with a beam energy dependency observed. PURPOSE The purpose is to present the electron beam response for an EDGE detector in dependence on beam energy, to characterize the EDGE detector's response under UHDR conditions, and to validate correction factors derived from the first detailed Monte Carlo model of the EDGE diode against measurements, particularly under UHDR conditions. METHODS Percentage depth doses (PDDs) for the UHDR Mobetron were measured with both EDGE detectors and films. A detailed Monte Carlo (MC) model of the EDGE detector has been configured according to the blueprint provided by the manufacturer under an NDA agreement. Water/silicon dose ratios of EDGE detector for a series of mono-energetic electron beams have been calculated. The dependence of the water/silicon dose ratio on depth for a FLASH relevant electron beam was also studied. An analytical approach for the correction of PDD measured with EDGE detectors was established. RESULTS Water/silicon dose ratio decreased with decreasing electron beam energy. For the Mobetron 9 MeV UHDR electron beam, the ratio decreased from 1.09 to 1.03 in the build-up region, maintained in range of 0.98-1.02 at the fall-off region and raised to a plateau in value of 1.08 at the tail. By applying the corrections, good agreement between the PDDs measured by the EDGE detector and those measured with film was achieved. CONCLUSIONS Electron beam response of an UHDR capable EDGE detector was derived from first principles utilizing a sophisticated MC model. An analytical approach was validated for the PDDs of UHDR electron beams. The results demonstrated the capability of EDGE detector in measuring PDDs of UHDR electron beams.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Simon Bill
- Sun Nuclear Corp, Melbourne, Florida, USA
| | - Jacob P. Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
12
|
Chow JCL, Ruda HE. Impact of Scattering Foil Composition on Electron Energy Distribution in a Clinical Linear Accelerator Modified for FLASH Radiotherapy: A Monte Carlo Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3355. [PMID: 38998435 PMCID: PMC11243336 DOI: 10.3390/ma17133355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
This study investigates how scattering foil materials and sampling holder placement affect electron energy distribution in electron beams from a modified medical linear accelerator for FLASH radiotherapy. We analyze electron energy spectra at various positions-ionization chamber, mirror, and jaw-to evaluate the impact of Cu, Pb-Cu, Pb, and Ta foils. Our findings show that close proximity to the source intensifies the dependence of electron energy distribution on foil material, enabling precise beam control through material selection. Monte Carlo simulations are effective for designing foils to achieve desired energy distributions. Moving the sampling holder farther from the source reduces foil material influence, promoting more uniform energy spreads, particularly in the 0.5-10 MeV range for 12 MeV electron beams. These insights emphasize the critical role of tailored material selection and sampling holder positioning in optimizing electron energy distribution and fluence intensity for FLASH radiotherapy research, benefiting both experimental design and clinical applications.
Collapse
Affiliation(s)
- James C L Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
13
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
14
|
Dai T, Sloop AM, Rahman MR, Sunnerberg JP, Clark MA, Young R, Adamczyk S, Voigts-Rhetz PV, Patane C, Turk M, Jarvis L, Pogue BW, Gladstone DJ, Bruza P, Zhang R. First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC. Med Phys 2024; 51:5109-5118. [PMID: 38493501 PMCID: PMC11316970 DOI: 10.1002/mp.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong 250000, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | | | | | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Ralph Young
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | | | | | - Chris Patane
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Michael Turk
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison WI 53705 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
15
|
Schiavone C, Vagge S, Ruggieri FG. Radiation therapy in mycosis fungoides. Dermatol Reports 2024; 16:9885. [PMID: 39295881 PMCID: PMC11406205 DOI: 10.4081/dr.2024.9885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 09/21/2024] Open
Abstract
Radiation therapy (RT) is administered with varying intentions, sometimes even several times in the same or in different body areas, to over 50% of patients with neoplastic conditions. Numerous techniques are available to patients in the clinical evolution of mycosis fungoides (MF), and there are several indications for radiation therapy (RT). RT as a skin-directed therapy is very widely used in these patients, either alone or in conjunction with other therapies. The application of RT, a tried-and-true therapy that improves MF patients' quality of life and treatment, can be encouraged by a multidisciplinary approach and an understanding of current methods and action mechanisms.
Collapse
|
16
|
Franciosini G, Carlotti D, Cattani F, De Gregorio A, De Liso V, De Rosa F, Di Francesco M, Di Martino F, Felici G, Pensavalle JH, Leonardi MC, Marafini M, Muscato A, Paiar F, Patera V, Poortmans P, Sciubba A, Schiavi A, Toppi M, Traini G, Trigilio A, Sarti A. IOeRT conventional and FLASH treatment planning system implementation exploiting fast GPU Monte Carlo: The case of breast cancer. Phys Med 2024; 121:103346. [PMID: 38608421 DOI: 10.1016/j.ejmp.2024.103346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Partial breast irradiation for the treatment of early-stage breast cancer patients can be performed by means of Intra Operative electron Radiation Therapy (IOeRT). One of the main limitations of this technique is the absence of a treatment planning system (TPS) that could greatly help in ensuring a proper coverage of the target volume during irradiation. An IOeRT TPS has been developed using a fast Monte Carlo (MC) and an ultrasound imaging system to provide the best irradiation strategy (electron beam energy, applicator position and bevel angle) and to facilitate the optimisation of dose prescription and delivery to the target volume while maximising the organs at risk sparing. The study has been performed in silico, exploiting MC simulations of a breast cancer treatment. Ultrasound-based input has been used to compute the absorbed dose maps in different irradiation strategies and a quantitative comparison between the different options was carried out using Dose Volume Histograms. The system was capable of exploring different beam energies and applicator positions in few minutes, identifying the best strategy with an overall computation time that was found to be completely compatible with clinical implementation. The systematic uncertainty related to tissue deformation during treatment delivery with respect to imaging acquisition was taken into account. The potential and feasibility of a GPU based full MC TPS implementation of IOeRT breast cancer treatments has been demonstrated in-silico. This long awaited tool will greatly improve the treatment safety and efficacy, overcoming the limits identified within the clinical trials carried out so far.
Collapse
Affiliation(s)
- G Franciosini
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - D Carlotti
- Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitatio Campus-Bio Medico, Rome, Italy
| | - F Cattani
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - A De Gregorio
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy; Sapienza, University of Rome, Department of Physics, Rome, Italy
| | - V De Liso
- S.I.T. Sordina IORT Technologies S.p.A, Aprilia, Italy
| | - F De Rosa
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy
| | | | - F Di Martino
- Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherapy (CPFR), Pisa, Italy; University of Pisa, Department of Physics, Pisa, Italy; Azienda Ospedaliero Universitaria Pisa (AOUP), Fisica Sanitaria, Pisa, Italy; National Institute of Nuclear Physics, INFN, Section of Pisa, Pisa, Italy
| | - G Felici
- S.I.T. Sordina IORT Technologies S.p.A, Aprilia, Italy
| | - J Harold Pensavalle
- S.I.T. Sordina IORT Technologies S.p.A, Aprilia, Italy; Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherapy (CPFR), Pisa, Italy; National Institute of Nuclear Physics, INFN, Section of Pisa, Pisa, Italy
| | - M C Leonardi
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - M Marafini
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy; Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Rome, Italy
| | - A Muscato
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy; Specialty School of Medical Physics, La Sapienza University of Rome, Rome, Italy
| | - F Paiar
- Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherapy (CPFR), Pisa, Italy; Azienda Ospedaliero Universitaria Pisa (AOUP), Fisica Sanitaria, Pisa, Italy
| | - V Patera
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - P Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - A Sciubba
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Frascati National Laboratories (LNF), Rome, Italy
| | - A Schiavi
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - M Toppi
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - G Traini
- National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy
| | - A Trigilio
- Sapienza, University of Rome, Department of Physics, Rome, Italy; National Institute of Nuclear Physics, INFN, Frascati National Laboratories (LNF), Rome, Italy
| | - A Sarti
- Sapienza, University of Rome, Department of Scienze di Base e Applicate all'Ingegneria, Rome, Italy; National Institute of Nuclear Physics, INFN, Section of Rome I, Rome, Italy.
| |
Collapse
|
17
|
Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy - An evaluation of dosimetric performances. Radiother Oncol 2024; 194:110177. [PMID: 38378075 DOI: 10.1016/j.radonc.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Izabella Veres
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | | | | | - Fernanda G Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
18
|
Oh K, Gallagher KJ, Yan Y, Zhou S. Commissioning and initial validation of Eclipse eMC algorithm for the electron FLASH research extension (FLEX) system for pre-clinical studies. J Appl Clin Med Phys 2024; 25:e14289. [PMID: 38319666 PMCID: PMC11087161 DOI: 10.1002/acm2.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE To investigate the feasibility of commissioning the 16 MeV electron FLASH Extension (FLEX) in the commercial treatment planning system (TPS) for biomedical research with cell and mouse models, and in silico treatment planning studies. METHODS To commission the FLEX system with the electron Monte Carlo (eMC) algorithm in the commercial TPS, radiochromic film was used to measure the vendor-recommended beam data. Once the beam model was generated for the eMC algorithm, supplemental measurements were collected for validation purposes and compared against the TPS-calculated results. Additionally, the newly commissioned 16 MeV FLASH beam was compared to the corresponding 16 MeV conventional electron beam. RESULTS The eMC algorithm effectively modeled the FLEX system. The eMC-calculated PDDs and profiles for the 16 MeV electron FLASH beam agreed with measured values within 1%, on average, for 6 × 6 cm2 and 10 × 10 cm2 applicators. Flatness and symmetry deviated by less than 1%, while FWHM and penumbra agreed within 1 mm for both eMC-calculated and measured profiles. Additionally, the small field (i.e., 2-cm diameter cutout) that was measured for validation purposes agreed with TPS-calculated results within 1%, on average, for both the PDD and profiles. The FLASH and conventional dose rate 16 MeV electron beam were in agreement in regard to energy, but the profiles for larger field sizes began to deviate (>10 × 10 cm2) due to the forward-peaked nature of the FLASH beam. For cell irradiation experiments, the measured and eMC-calculated in-plane and cross-plane absolute dose profiles agreed within 1%, on average. CONCLUSIONS The FLEX system was successfully commissioned in the commercial TPS using the eMC algorithm, which accurately modeled the forward-peaked nature of the FLASH beam. A commissioned TPS for FLASH will be useful for pre-clinical cell and animal studies, as well as in silico FLASH treatment planning studies for future clinical implementation.
Collapse
Affiliation(s)
- Kyuhak Oh
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kyle J. Gallagher
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Ying Yan
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sumin Zhou
- Department of Radiation OncologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
19
|
Clements N, Esplen N, Bateman J, Robertson C, Dosanjh M, Korysko P, Farabolini W, Corsini R, Bazalova-Carter M. Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film dosimetry, and Monte Carlo simulations. Phys Med Biol 2024; 69:055003. [PMID: 38295408 DOI: 10.1088/1361-6560/ad247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective.Spatially-fractionated radiotherapy (SFRT) delivered with a very-high-energy electron (VHEE) beam and a mini-GRID collimator was investigated to achieve synergistic normal tissue-sparing through spatial fractionation and the FLASH effect.Approach.A tungsten mini-GRID collimator for delivering VHEE SFRT was optimized using Monte Carlo (MC) simulations. Peak-to-valley dose ratios (PVDRs), depths of convergence (DoCs, PVDR ≤ 1.1), and peak and valley doses in a water phantom from a simulated 150 MeV VHEE source were evaluated. Collimator thickness, hole width, and septal width were varied to determine an optimal value for each parameter that maximized PVDR and DoC. The optimized collimator (20 mm thick rectangular prism with a 15 mm × 15 mm face with a 7 × 7 array of 0.5 mm holes separated by 1.1 mm septa) was 3D-printed and used for VHEE irradiations with the CERN linear electron accelerator for research beam. Open beam and mini-GRID irradiations were performed at 140, 175, and 200 MeV and dose was recorded with radiochromic films in a water tank. PVDR, central-axis (CAX) and valley dose rates and DoCs were evaluated.Main results.Films demonstrated peak and valley dose rates on the order of 100 s of MGy/s, which could promote FLASH-sparing effects. Across the three energies, PVDRs of 2-4 at 13 mm depth and DoCs between 39 and 47 mm were achieved. Open beam and mini-GRID MC simulations were run to replicate the film results at 200 MeV. For the mini-GRID irradiations, the film CAX dose was on average 15% higher, the film valley dose was 28% higher, and the film PVDR was 15% lower than calculated by MC.Significance.Ultimately, the PVDRs and DoCs were determined to be too low for a significant potential for SFRT tissue-sparing effects to be present, particularly at depth. Further beam delivery optimization and investigations of new means of spatial fractionation are warranted.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Joseph Bateman
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | | | - Manjit Dosanjh
- Department of Physics, University of Oxford, Oxford, United Kingdom
- CERN, Geneva, Switzerland
| | - Pierre Korysko
- Department of Physics, University of Oxford, Oxford, United Kingdom
- CERN, Geneva, Switzerland
| | | | | | | |
Collapse
|
20
|
Ronga MG, Deut U, Bonfrate A, De Marzi L. Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model. Med Phys 2023; 50:8009-8022. [PMID: 37730956 DOI: 10.1002/mp.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/02/2023] [Accepted: 08/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Very high-energy electrons (VHEE) radiotherapy, in the energy range of 100-200 MeV is currently considered a promising technique for the future of radiation therapy and could benefit from the promises of ultra-high dose rate FLASH therapy. However, to our knowledge, no analytical calculation models have been tested for this type of application and the approximations proposed for multiple scattering with electron beams have not been extensively evaluated at these high energies. PURPOSE In this work, we discuss the derivation of a simple and fast algorithm based on the Fermi-Eyges theory of multiple Coulomb scattering for fast dose calculation for VHEE beams (up to 200 MeV). Similar to the Gaussian pencil beam models used for electron or proton beams, this pencil beam kernel is separated into a central and an off-axis term. Monte Carlo simulations are performed to compare the analytical calculations with simulations and to determine the parametrizations used in the model at the highest electron energies. METHODS The normalized electron planar fluence distribution is described in water according to the Fermi-Eyges theory of multiple Coulomb scattering and a double Gaussian distribution model. The main quantities used in the model and their calculation (mass angular scattering power, mean energy, range straggling) are discussed and tested for electron energies up to 200 MeV. The TOPAS/Geant4 Monte Carlo (MC) toolkit is used to compare analytical calculations with MC simulations for a theoretical pencil beam irradiation and to find the best parameters describing the range straggling. The model is then tested on a realistic simulation of a pencil beam scanning beamline with treatment field dimensions up to 15 × 15 cm2 and for deep-seated targets. RESULTS Radial dose distributions of a pencil beam in water were calculated with the model and compared with the results of a complete Monte Carlo simulation. A good agreement (within 2%/2 mm gamma passing rate superior to 90%, and a mean deviation between calculated and simulated pencil beam radial spread smaller than 0.6 mm) was observed between analytical dose distributions and simulations for energies up to 200 MeV and field sizes up to 15 × 15 cm2 . CONCLUSIONS A parameterization of an electron source and an analytical pencil beam model were proposed in this work, thereby allowing a suitable reproduction of the lateral fluence of a VHEE beam and good agreement between calculations and simulated data. Further improvement of the method would require the consideration of a model describing the large-angle scattering of the electrons. The results of this work could support future research into VHEE radiotherapy and might be of interest for use together with VHEE broad beams produced by scanned narrow pencil beams.
Collapse
Affiliation(s)
- Maria Grazia Ronga
- Radiation Oncology Department, Institut Curie, PSL Research University, Orsay, France
- Thales Avionics, Vélizy-Villacoublay, France
| | - Umberto Deut
- Radiation Oncology Department, Institut Curie, PSL Research University, Orsay, France
| | - Anthony Bonfrate
- Radiation Oncology Department, Institut Curie, PSL Research University, Orsay, France
| | - Ludovic De Marzi
- Radiation Oncology Department, Institut Curie, PSL Research University, Orsay, France
- Institut Curie, PSL Research University, University Paris Saclay, INSERM LITO, Orsay, France
| |
Collapse
|
21
|
Böhlen TT, Germond JF, Traneus E, Vallet V, Desorgher L, Ozsahin EM, Bochud F, Bourhis J, Moeckli R. 3D-conformal very-high energy electron therapy as candidate modality for FLASH-RT: A treatment planning study for glioblastoma and lung cancer. Med Phys 2023; 50:5745-5756. [PMID: 37427669 DOI: 10.1002/mp.16586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/27/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Pre-clinical ultra-high dose rate (UHDR) electron irradiations on time scales of 100 ms have demonstrated a remarkable sparing of brain and lung tissues while retaining tumor efficacy when compared to conventional dose rate irradiations. While clinically-used gantries and intensity modulation techniques are too slow to match such time scales, novel very-high energy electron (VHEE, 50-250 MeV) radiotherapy (RT) devices using 3D-conformed broad VHEE beams are designed to deliver UHDR treatments that fulfill these timing requirements. PURPOSE To assess the dosimetric plan quality obtained using VHEE-based 3D-conformal RT (3D-CRT) for treatments of glioblastoma and lung cancer patients and compare the resulting treatment plans to those delivered by standard-of-care intensity modulated photon RT (IMRT) techniques. METHODS Seven glioblastoma patients and seven lung cancer patients were planned with VHEE-based 3D-CRT using 3 to 16 coplanar beams with equidistant angular spacing and energies of 100 and 200 MeV using a forward planning approach. Dose distributions, dose-volume histograms, coverage (V95% ) and homogeneity (HI98% ) for the planning target volume (PTV), as well as near-maximum doses (D2% ) and mean doses (Dmean ) for organs-at-risk (OAR) were evaluated and compared to clinical IMRT plans. RESULTS Mean differences of V95% and HI98% of all VHEE plans were within 2% or better of the IMRT reference plans. Glioblastoma plan dose metrics obtained with VHEE configurations of 200 MeV and 3-16 beams were either not significantly different or were significantly improved compared to the clinical IMRT reference plans. All OAR plan dose metrics evaluated for VHEE plans created using 5 beams of 100 MeV were either not significantly different or within 3% on average, except for Dmean for the body, Dmean for the brain, D2% for the brain stem, and D2% for the chiasm, which were significantly increased by 1, 2, 6, and 8 Gy, respectively (however below clinical constraints). Similarly, the dose metrics for lung cancer patients were also either not significantly different or were significantly improved compared to the reference plans for VHEE configurations with 200 MeV and 5 to 16 beams with the exception of D2% and Dmean to the spinal canal (however below clinical constraints). For the lung cancer cases, the VHEE configurations using 100 MeV or only 3 beams resulted in significantly worse dose metrics for some OAR. Differences in dose metrics were, however, strongly patient-specific and similar for some patient cases. CONCLUSIONS VHEE-based 3D-CRT may deliver conformal treatments to simple, mostly convex target shapes in the brain and the thorax with a limited number of critical adjacent OAR using a limited number of beams (as low as 3 to 7). Using such treatment techniques, a dosimetric plan quality comparable to that of standard-of-care IMRT can be achieved. Hence, from a treatment planning perspective, 3D-conformal UHDR VHEE treatments delivered on time scales of 100 ms represent a promising candidate technique for the clinical transfer of the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | - Veronique Vallet
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
22
|
Clements N, Esplen N, Bazalova-Carter M. A feasibility study of ultra-high dose rate mini-GRID therapy using very-high-energy electron beams for a simulated pediatric brain case. Phys Med 2023; 112:102637. [PMID: 37454482 DOI: 10.1016/j.ejmp.2023.102637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Ultra-high dose rate (UHDR, >40 Gy/s), spatially-fractionated minibeam GRID (mini-GRID) therapy using very-high-energy electrons (VHEE) was investigated using Monte Carlo simulations. Multi-directional VHEE treatments with and without mini-GRID-fractionation were compared to a clinical 6 MV volumetric modulated arc therapy (VMAT) plan for a pediatric glioblastoma patient using dose-volume histograms, volume-averaged dose rates in critical patient structures, and planning target volume D98s. Peak-to-valley dose ratios (PVDRs) and dose rates in organs at risk (OARs) were evaluated due to their relevance for normal-tissue sparing in FLASH and spatially-fractionated techniques. Depths of convergence, defined where the PVDR is first ≤1.1, and depths at which dose rates fall below the UHDR threshold were also evaluated. In a water phantom, the VHEE mini-GRID treatments presented a surface (5 mm depth) PVDR of (51±2) and a depth of convergence of 42 mm at 150 MeV and a surface PVDR of (33±1) with a depth of convergence of 57 mm at 250 MeV. For a pediatric GBM case, VHEE treatments without mini-GRID-fractionation produced 25% and 22% lower volume-averaged doses to OARs compared to the 6 MV VMAT plan and 8/9 and 9/9 of the patient structures were exposed to volume-averaged dose rates >40 Gy/s for the 150 MeV and 250 MeV plans, respectively. The 150 MeV and 250 MeV mini-GRID treatments produced 17% and 38% higher volume-averaged doses to OARs and 3/9 patient structures had volume-averaged dose rates above 40 Gy/s. VHEE mini-GRID plans produced many comparable dose metrics to the clinical VMAT plan, encouraging further optimization.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
23
|
Siddique S, Ruda HE, Chow JCL. FLASH Radiotherapy and the Use of Radiation Dosimeters. Cancers (Basel) 2023; 15:3883. [PMID: 37568699 PMCID: PMC10417829 DOI: 10.3390/cancers15153883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada;
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
24
|
The Normal, the Radiosensitive, and the Ataxic in the Era of Precision Radiotherapy: A Narrative Review. Cancers (Basel) 2022; 14:cancers14246252. [PMID: 36551737 PMCID: PMC9776433 DOI: 10.3390/cancers14246252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: radiotherapy is a cornerstone of cancer treatment. When delivering a tumoricidal dose, the risk of severe late toxicities is usually kept below 5% using dose-volume constraints. However, individual radiation sensitivity (iRS) is responsible (with other technical factors) for unexpected toxicities after exposure to a dose that induces no toxicity in the general population. Diagnosing iRS before radiotherapy could avoid unnecessary toxicities in patients with a grossly normal phenotype. Thus, we reviewed iRS diagnostic data and their impact on decision-making processes and the RT workflow; (2) Methods: following a description of radiation toxicities, we conducted a critical review of the current state of the knowledge on individual determinants of cellular/tissue radiation; (3) Results: tremendous advances in technology now allow minimally-invasive genomic, epigenetic and functional testing and a better understanding of iRS. Ongoing large translational studies implement various tests and enriched NTCP models designed to improve the prediction of toxicities. iRS testing could better support informed radiotherapy decisions for individuals with a normal phenotype who experience unusual toxicities. Ethics of medical decisions with an accurate prediction of personalized radiotherapy's risk/benefits and its health economics impact are at stake; (4) Conclusions: iRS testing represents a critical unmet need to design personalized radiotherapy protocols relying on extended NTCP models integrating iRS.
Collapse
|
25
|
Vozenin MC, Schüller A, Dutreix M, Kirkby K, Baumann M, Coppes RP, Thwaites D. FLASH Radiotherapy & Particle Therapy conference, FRPT2021. Radiother Oncol 2022; 175:167-168. [DOI: 10.1016/j.radonc.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|