1
|
Ribeiro RB, Rodrigues AQ, de Aguiar BA, Silva JKO, de a Carvalho da Costa MVR, dos Santos Bezerra JL, Ferreira YB, da Silva IGM, Piau TB, Lucci CM, Báo SN, Goulart JT, Bellozi PMQ, Paulini F. Evaluation of Different Cryoprotectant Combinations in Vitrification and Slow Freezing for Ovarian Tissue Preservation in Domestic Cats. Reprod Domest Anim 2025; 60:e70064. [PMID: 40265625 PMCID: PMC12016461 DOI: 10.1111/rda.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Over the past decade, increased hunting and habitat disturbance have significantly impacted the endangered population within the Felidae family. Recognising this, it becomes imperative to implement strategies aimed at mitigating this concerning conservation scenario. For this, female fertility preservation is crucial in this context, and studies concerning this field are still scarce. In the realm of cryopreservation, prevalent methods involve slow freezing (SF) and vitrification (V). This study aimed to evaluate various cryoprotective combinations for V or SF processes applied to domestic cat ovarian tissue. Twenty ovaries from 10 healthy cats were dissected, and cortical regions were sectioned into eight fragments measuring 3 mm3 each. These fragments were randomly allocated to three different treatment groups for V (V1, V2 and V3) or SF (SF1, SF2 and SF3). Each group employed solutions with varying concentrations of DMSO, EG and either trehalose or sucrose. The assessment included histological evaluation, follicle counting, immunohistochemical analysis of proliferative activity, and ultrastructural examination. The results demonstrated that the V1 protocol-composed of an equilibration solution with 10% DMSO, 10% EG and 0.1 M trehalose, followed by a V solution with 20% DMSO, 20% EG and 0.1 M trehalose-proved most effective. This combination best preserved follicular morphology, reduced degeneration, supported follicle proliferation and maintained favourable ultrastructural integrity compared to other treatments. These findings provide a valuable foundation for improving fertility preservation in domestic cats, with potential applications for endangered felid conservation programs.
Collapse
Affiliation(s)
- Rayane Brandão Ribeiro
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | - Aline Queiroz Rodrigues
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | - Beatriz Alves de Aguiar
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | | | | | | | - Yasmin Barboza Ferreira
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | | | - Tathyana Benetis Piau
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | - Carolina Madeira Lucci
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | - Sônia Nair Báo
- Department of Cellular BiologyUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | - Jair Trapé Goulart
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| | | | - Fernanda Paulini
- Department of Physiological SciencesUniversity of Brasilia, Institute of Biological SciencesBrasilia‐DFBrazil
| |
Collapse
|
2
|
Chavoshinezhad N, Niknafs B. Innovations in 3D ovarian and follicle engineering for fertility preservation and restoration. Mol Biol Rep 2024; 51:1004. [PMID: 39305382 DOI: 10.1007/s11033-024-09783-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/05/2024] [Indexed: 02/06/2025]
Abstract
In-vitro maturation (IVM) is the process of cultivating early-stage follicles from the primordial to the antral stage and facilitating the maturation of oocytes outside the body within a supportive environment. This intricate procedure requires the careful coordination of various factors to replicate the natural ovarian conditions. Advanced techniques for IVM are designed to mimic the natural ovarian environment and enhance the development of follicles. Three-dimensional (3D) culture systems provide a more biologically relevant setting for follicle growth compared to traditional two-dimensional (2D) cultures. Traditional culture systems, often fail to support the complex process of follicle development effectively. However, modern engineered reproductive tissues and culture systems are making it possible to create increasingly physiological in-vitro models of folliculogenesis. These innovative methods are enabling researchers and clinicians to better replicate the dynamic and supportive environment of the ovary, thereby improving the outcomes of IVM offering new hope for fertility preservation and treatment. This paper focuses on the routine 3D culture, and innovative 3D culture of ovary and follicles, including a tissue engineering scaffolds, microfluidic (dynamic) culture system, organ-on-chip models, EVATAR system, from a clinical perspective to determine the most effective approach for achieving in-vitro maturation of follicles. These techniques provide critical support for ovarian function in various ovarian-associated disorders, including primary ovarian insufficiency (POI), premature ovarian failure (POF), ovarian cancer, and age-related infertility.
Collapse
Affiliation(s)
- Negin Chavoshinezhad
- Immunology research center , Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology research center , Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sirayapiwat P, Amorim CA, Sereepapong W, Tuntiviriyapun P, Suebthawinkul C, Thuwanut P. Application of fibrin-based biomaterial for human ovarian tissue encapsulation and cryopreservation as alternative approach for fertility preservation. Cryobiology 2024; 117:104955. [PMID: 39236797 DOI: 10.1016/j.cryobiol.2024.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
This study aimed to investigate the effects of fibrin-based hydrogel encapsulation, with or without vascular endothelial growth factor (VEGF), on follicle quality and cell survival signaling pathways after ovarian tissue cryopreservation. Ovarian cortex donated by seven patients (ages 44-47 years old) was divided into four groups: I) fresh control, II) ovarian tissue without encapsulation (non-FT), III) fibrin (10 mg/mL fibrinogen plus 50 IU/mL thrombin; 10FT) encapsulated tissue without VEGF, and IV) encapsulated tissue with 0.1 μg/mL VEGF (10FT-VEGF), followed by a slow freezing process. Evaluation criteria included normal follicle morphology, density, cell proliferation, apoptosis, and metabolism signaling pathways (BAX/BCL-2 ratio, CASPASE-3 and 9, ATP-6 genes, VEGF-A, and ERK-1/2 protein expression levels). Major outcomes revealed that the percentages of morphologically normal follicles and density were significantly decreased by cryopreservation. Ovarian tissue encapsulation using the 10FT formulation (with or without VEGF) could maintain the ERK-signaling cascade, which was comparable to the fresh control. Among the frozen-thawed cohorts, the BAX/BCL-2 ratio, CASPASE-3, CASPASE-9, and ATP-6 expression levels were unfavorable in the non-FT group. However, statistically different results, including VEGF-A expression levels, were not detected. Collectively, our present data demonstrated the first applicable biomaterial matrix for human ovarian tissue encapsulation which might create an optimal intra-ovarian cortex environment during cryopreservation. Further studies to optimize hydrogel polymerization should be expanded, given the potential benefits for cancer patients who wish to preserve fertility through ovarian tissue cryopreservation.
Collapse
Affiliation(s)
- Porntip Sirayapiwat
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction (REPR), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Wisan Sereepapong
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Punkavee Tuntiviriyapun
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Suebthawinkul
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paweena Thuwanut
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Di Berardino C, Peserico A, Camerano Spelta Rapini C, Liverani L, Capacchietti G, Russo V, Berardinelli P, Unalan I, Damian-Buda AI, Boccaccini AR, Barboni B. Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications. Reprod Biol Endocrinol 2024; 22:95. [PMID: 39095895 PMCID: PMC11295475 DOI: 10.1186/s12958-024-01266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Assisted Reproductive Technologies (ARTs) have been validated in human and animal to solve reproductive problems such as infertility, aging, genetic selection/amplification and diseases. The persistent gap in ART biomedical applications lies in recapitulating the early stage of ovarian folliculogenesis, thus providing protocols to drive the large reserve of immature follicles towards the gonadotropin-dependent phase. Tissue engineering is becoming a concrete solution to potentially recapitulate ovarian structure, mostly relying on the use of autologous early follicles on natural or synthetic scaffolds. Based on these premises, the present study has been designed to validate the use of the ovarian bioinspired patterned electrospun fibrous scaffolds fabricated with poly(ε-caprolactone) (PCL) for multiple preantral (PA) follicle development. METHODS PA follicles isolated from lamb ovaries were cultured on PCL scaffold adopting a validated single-follicle protocol (Ctrl) or simulating a multiple-follicle condition by reproducing an artificial ovary engrafted with 5 or 10 PA (AO5PA and AO10PA). The incubations were protracted for 14 and 18 days before assessing scaffold-based microenvironment suitability to assist in vitro folliculogenesis (ivF) and oogenesis at morphological and functional level. RESULTS The ivF outcomes demonstrated that PCL-scaffolds generate an appropriate biomimetic ovarian microenvironment supporting the transition of multiple PA follicles towards early antral (EA) stage by supporting follicle growth and steroidogenic activation. PCL-multiple bioengineering ivF (AO10PA) performed in long term generated, in addition, the greatest percentage of highly specialized gametes by enhancing meiotic competence, large chromatin remodeling and parthenogenetic developmental competence. CONCLUSIONS The study showcased the proof of concept for a next-generation ART use of PCL-patterned scaffold aimed to generate transplantable artificial ovary engrafted with autologous early-stage follicles or to advance ivF technologies holding a 3D bioinspired matrix promoting a physiological long-term multiple PA follicle protocol.
Collapse
Affiliation(s)
- Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy.
| | - Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- DGS SpA, Via Paolo di Dono 73, 00142, Rome, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Andrada-Ioana Damian-Buda
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100, Teramo, Italy
| |
Collapse
|
5
|
Silva IMG, Rodrigues AQ, Ribeiro RB, Aguiar BA, Marinho AESP, Souza EAM, Ferreira YB, Azevedo VCO, Oliveira DM, Báo SN, Goulart JT, Lucci CM, Paulini F. Erythropoietin effects on cryopreserved/transplanted cat ovarian tissue: A comparison of two incubation methods. Cryobiology 2024; 115:104861. [PMID: 38423494 DOI: 10.1016/j.cryobiol.2024.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Many feline species are currently threatened with extinction. Therefore, germplasm bank establishment has become imperative. However, cryoinjury and ischemia-reperfusion injury pose significant obstacles to both cryopreservation and xenotransplantation. In this regard, erythropoietin (Epo) represents a potential alternative strategy due to its properties. This study aimed to assess the incubation of domestic cat ovarian tissue in Epo, both before and after cryopreservation, and investigate its effectiveness in promoting revascularization following xenotransplantation. Sixteen ovaries from 8 healthy cats were sliced following elective bilateral ovariohysterectomy (OHE). Subsequently, 8 fragments measuring 3 mm³ each were obtained from the cortical region of each ovary. The fragments were allocated into 3 treatment groups: Cryo group, fragments were cryopreserved, thawed and immediately transplanted; Cryo + Epo group, fragments were first cryopreserved in nitrogen, thawed, incubated in Epo (100 IU) for 2h and transplanted; and the Epo + Cryo group, in which fragments were first incubated in Epo (100 IU) for 2h, cryopreserved, thawed and immediately transplanted. The fragments were then xenotransplanted into the dorsal subcutaneous region of ovariectomized female nude mice and retrieved at 7, 14, 21, and 28 days post-transplantation. The results indicated that Epo effectively enhanced follicular survival, preservation of viability, and tissue revascularization. The Epo + Cryo group displayed better revascularization rates on D14 and D21 post-transplantation and an increase in primordial and growing follicles on D28, the Cryo + Epo group exhibited significantly more follicles on D14 and D21, with fewer degenerated follicles.
Collapse
Affiliation(s)
- Isabella M G Silva
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Aline Q Rodrigues
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Rayane B Ribeiro
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Beatriz A Aguiar
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Anne E S P Marinho
- University of Brasilia, Health Sciences Faculty, Department of Pharmacy, Brasilia-DF, 70910-900, Brazil
| | - Elisa A M Souza
- University of Brasilia, Health Sciences Faculty, Department of Pharmacy, Brasilia-DF, 70910-900, Brazil
| | - Yasmin B Ferreira
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Victoria C O Azevedo
- University of Brasilia, Health Sciences Faculty, Department of Pharmacy, Brasilia-DF, 70910-900, Brazil
| | - Daniela M Oliveira
- University of Brasilia, Institute of Biological Sciences, Department of Genetics and Morphology, Brasiilia 70910-900, Brazil
| | - Sônia N Báo
- University of Brasilia, Institute of Biological Sciences, Department of Cellular Biology, Brasilia-DF, 70910-900, Brazil
| | - Jair T Goulart
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Carolina M Lucci
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil.
| |
Collapse
|
6
|
León-Félix CM, Maranhão AQ, Amorim CA, Lucci CM. Optimizing Decellularization of Bovine Ovarian Tissue: Toward a Transplantable Artificial Ovary Scaffold with Minimized Residual Toxicity and Preserved Extracellular Matrix Morphology. Cells Tissues Organs 2024; 213:413-423. [PMID: 38359805 DOI: 10.1159/000537838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION The decellularized extracellular matrix (dECM) from ovarian tissue could be the best scaffold for the development of a transplantable artificial ovary. Typically, dECM from ovarian tissue has been obtained using sodium dodecyl sulfate (SDS), at a concentration of 1% for 24 h. However, SDS can leave residues in the tissue, which may be toxic to the seeded cells. This study aimed to obtain dECM from bovine ovarian tissue using SDS and NaOH at a minimum concentration in the shortest incubation time. METHODS The respective SDS and NaOH concentrations investigated were 1% and 0.2 m; 0.5% and 0.1 m; 0.1% and 0.02 m; and 0.05% and 0.01 m, with 24-, 12-, and 6-h incubation periods. After the incubation time, the tissue was washed in 50 mL of distilled water for 6 h. RESULTS Histological analysis confirmed decellularization and showed the conservation of collagen fibers in all samples following treatment. Furthermore, the lowest SDS and NaOH concentrations that showed no DNA remaining during electrophoresis analysis were 0.1% and 0.02 m when incubated for 24 and 12 h. DNA quantification resulted in <0.2 ng DNA/mg ovarian tissue using these protocols. Additionally, the coculture of dECM (obtained by 0.1% SDS and 0.02 m NaOH for 12 h) with ovarian cells showed that there was no toxic effect for the cells for up to 72 h. CONCLUSION The protocol involving 0.1% SDS and 0.02 m NaOH for 12-h incubation decellularizes bovine ovarian tissue, generating a dECM that preserves the native ECM morphology and is nontoxic to ovarian cells.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil,
| | - Andrea Q Maranhão
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Christiani A Amorim
- Department of Gynecology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carolina M Lucci
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
7
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Canosa S, Revelli A, Gennarelli G, Cormio G, Loizzi V, Arezzo F, Petracca EA, Carosso AR, Cimadomo D, Rienzi L, Vaiarelli A, Ubaldi FM, Silvestris E. Innovative Strategies for Fertility Preservation in Female Cancer Survivors: New Hope from Artificial Ovary Construction and Stem Cell-Derived Neo-Folliculogenesis. Healthcare (Basel) 2023; 11:2748. [PMID: 37893822 PMCID: PMC10606281 DOI: 10.3390/healthcare11202748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances in anticancer treatment have significantly improved the survival rate of young females; unfortunately, in about one third of cancer survivors the risk of ovarian insufficiency and infertility is still quite relevant. As the possibility of becoming a mother after recovery from a juvenile cancer is an important part of the quality of life, several procedures to preserve fertility have been developed: ovarian surgical transposition, induction of ovarian quiescence by gonadotropin-releasing hormone agonists (GnRH-a) treatment, and oocyte and/or ovarian cortical tissue cryopreservation. Ovarian tissue cryostorage and allografting is a valuable technique that applies even to prepubertal girls; however, some patients cannot benefit from it due to the high risk of reintroducing cancer cells during allograft in cases of ovary-metastasizing neoplasias, such as leukemias or NH lymphomas. Innovative techniques are now under investigation, as in the construction of an artificial ovary made of isolated follicles inserted into an artificial matrix scaffold, and the use of stem cells, including ovarian stem cells (OSCs), to obtain neo-folliculogenesis and the development of fertilizable oocytes from the exhausted ovarian tissue. This review synthesizes and discusses these innovative techniques, which potentially represent interesting strategies in oncofertility programs and a new hope for young female cancer survivors.
Collapse
Affiliation(s)
- Stefano Canosa
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
| | - Alberto Revelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy
| | - Gianluca Gennarelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Francesca Arezzo
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of “Aldo Moro”, 70124 Bari, Italy
| | - Easter Anna Petracca
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| | - Andrea Roberto Carosso
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Danilo Cimadomo
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Laura Rienzi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alberto Vaiarelli
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Filippo Maria Ubaldi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| |
Collapse
|
9
|
Leonel ECR, Dadashzadeh A, Moghassemi S, Vlieghe H, Wyns C, Orellana R, Amorim CA. New Solutions for Old Problems: How Reproductive Tissue Engineering Has Been Revolutionizing Reproductive Medicine. Ann Biomed Eng 2023; 51:2143-2171. [PMID: 37468688 DOI: 10.1007/s10439-023-03321-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Acquired disorders and congenital defects of the male and female reproductive systems can have profound impacts on patients, causing sexual and endocrine dysfunction and infertility, as well as psychosocial consequences that affect their self-esteem, identity, sexuality, and relationships. Reproductive tissue engineering (REPROTEN) is a promising approach to restore fertility and improve the quality of life of patients with reproductive disorders by developing, replacing, or regenerating cells, tissues, and organs from the reproductive and urinary systems. In this review, we explore the latest advancements in REPROTEN techniques and their applications for addressing degenerative conditions in male and female reproductive organs. We discuss current research and clinical outcomes and highlight the potential of 3D constructs utilizing biomaterials such as scaffolds, cells, and biologically active molecules. Our review offers a comprehensive guide for researchers and clinicians, providing insights into how to reestablish reproductive tissue structure and function using innovative surgical approaches and biomaterials. We highlight the benefits of REPROTEN for patients, including preservation of fertility and hormonal production, reconstruction of uterine and cervical structures, and restoration of sexual and urinary functions. Despite significant progress, REPROTEN still faces ethical and technical challenges that need to be addressed. Our review underscores the importance of continued research in this field to advance the development of effective and safe REPROTEN approaches for patients with reproductive disorders.
Collapse
Affiliation(s)
- Ellen C R Leonel
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Renan Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200, Brussels, Belgium.
| |
Collapse
|
10
|
Rodrigues AQ, Silva IM, Goulart JT, Araújo LO, Ribeiro RB, Aguiar BA, Ferreira YB, Silva JKO, Bezerra JLS, Lucci CM, Paulini F. Effects of erythropoietin on ischaemia-reperfusion when administered before and after ovarian tissue transplantation in mice. Reprod Biomed Online 2023; 47:103234. [PMID: 37524029 DOI: 10.1016/j.rbmo.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 08/02/2023]
Abstract
RESEARCH QUESTION Is the optimal timing for administering erythropoietin to minimize ischaemic injury in ovarian tissue transplantation before ovary removal for cryopreservation and subsequent transplantation or after transplantation? DESIGN Thirty Swiss mice (nu/nu) were divided into three groups: treatment control group (n = 10); erythropoietin before harvesting group (EPO-BH) (n = 10) and erythropoietin after transplantation group (EPO-AT) (n = 10). Animals underwent bilateral ovariohysterectomy and their hemiovaries were cryopreserved by slow freezing. At the same time, previously cryopreserved hemiovaries were transplanted subcutaneously in the dorsal region. Erythropoietin (250 IU/kg) and sterile 0.9% saline solution were administered every 12/12 h over 5 consecutive days in the EPO-AT and EPO-BH groups, respectively. RESULTS Administration of erythropoietin in the EPO-AT group improved the viability of ovarian follicles, reducing degeneration and increasing the number of morphologically normal growing follicles at 14 days after transplantation compared with the EPO-BH group (P = 0.002). This group also showed higher percentages of proliferative follicles at 7 days after transplantation (P ≤ 0.03), increased blood vessel count (P ≤ 0.03) and greater tissue area occupied by blood vessels at days 7 and 14 after transplantation (P ≤ 0.03), compared with hormone administration before cryopreservation (EPO-BH group) and the treatment control group. Additionally, treatment with erythropoietin before or after transplantation reduced fibrotic areas at 7 days after transplantation (P = 0.004). CONCLUSION Erythropoietin treatment after transplantation reduced ischaemic damage in transplanted ovarian tissue, increased angiogenesis, maintenance of ovarian follicle proliferation and reduced fibrosis areas in the grafted tissue.
Collapse
Affiliation(s)
- Aline Q Rodrigues
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Isabella Mg Silva
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Jair T Goulart
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Luane O Araújo
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Rayane B Ribeiro
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Beatriz A Aguiar
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Yasmin B Ferreira
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Jessyca Karoline O Silva
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Julliene Larissa S Bezerra
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Carolina M Lucci
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasilia, Institute of Biological Sciences, Department of Physiological Sciences, Brasilia-DF, 70910-900, Brazil.
| |
Collapse
|
11
|
Almeida GHDR, da Silva-Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath-Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and Ultrasonication Produce a Decellularized Porcine Whole-Ovary Scaffold with a Preserved Microarchitecture. Cells 2023; 12:1864. [PMID: 37508528 PMCID: PMC10378497 DOI: 10.3390/cells12141864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 07/30/2023] Open
Abstract
The application of decellularized scaffolds for artificial tissue reconstruction has been an approach with great therapeutic potential in regenerative medicine. Recently, biomimetic ovarian tissue reconstruction was proposed to reestablish ovarian endocrine functions. Despite many decellularization methods proposed, there is no established protocol for whole ovaries by detergent perfusion that is able to preserve tissue macro and microstructure with higher efficiency. This generated biomaterial may have the potential to be applied for other purposes beyond reproduction and be translated to other areas in the tissue engineering field. Therefore, this study aimed to establish and standardize a protocol for porcine ovaries' decellularization based on detergent perfusion and ultrasonication to obtain functional whole-ovary scaffolds. For that, porcine ovaries (n = 5) were perfused with detergents (0.5% SDS and 1% Triton X-100) and submitted to an ultrasonication bath to produce acellular scaffolds. The decellularization efficiency was evaluated by DAPI staining and total genomic DNA quantification. ECM morphological evaluation was performed by histological, immunohistochemistry, and ultrastructural analyses. ECM physico-chemical composition was evaluated using FTIR and Raman spectroscopy. A cytocompatibility and cell adhesion assay using murine fibroblasts was performed. Results showed that the proposed method was able to remove cellular components efficiently. There was no significant ECM component loss in relation to native tissue, and the scaffolds were cytocompatible and allowed cell attachment. In conclusion, the proposed decellularization protocol produced whole-ovaries scaffolds with preserved ECM composition and great potential for application in tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Henrique Dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | | | - Leticia Beatriz Mazo Pinho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringa, Maringá 87020-900, Brazil
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Luciana Relly
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
12
|
Francés-Herrero E, Lopez R, Campo H, de Miguel-Gómez L, Rodríguez-Eguren A, Faus A, Pellicer A, Cervelló I. Advances of xenogeneic ovarian extracellular matrix hydrogels for in vitro follicle development and oocyte maturation. BIOMATERIALS ADVANCES 2023; 151:213480. [PMID: 37267748 DOI: 10.1016/j.bioadv.2023.213480] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Research aimed at preserving female fertility is increasingly using bioengineering techniques to develop new platforms capable of supporting ovarian cell function in vitro and in vivo. Natural hydrogels (alginate, collagen, and fibrin) have been the most exploited approaches; however they are biologically inert and/or biochemically simple. Thus, establishing a suitable biomimetic hydrogel from decellularized ovarian cortex (OC) extracellular matrix (OvaECM) could provide a complex native biomaterial for follicle development and oocyte maturation. The objectives of this work were (i) to establish an optimal protocol to decellularize and solubilize bovine OC, (ii) to characterize the histological, molecular, ultrastructural, and proteomic properties of the resulting tissue and hydrogel, and (iii) to assess its biocompatibility and adequacy for murine in vitro follicle growth (IVFG). Sodium dodecyl sulfate was identified as the best detergent to develop bovine OvaECM hydrogels. Hydrogels added into standard media or used as plate coatings were employed for IVFG and oocyte maturation. Follicle growth, survival, hormone production, and oocyte maturation and developmental competence were evaluated. OvaECM hydrogel-supplemented media best supported follicle survival, expansion, and hormone production, while the coatings provided more mature and competent oocytes. Overall, the findings support the xenogeneic use of OvaECM hydrogels for future human female reproductive bioengineering.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Rosalba Lopez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVI Roma Parioli, IVI-RMA Global, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
13
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Antonouli S, Di Nisio V, Messini C, Daponte A, Rajender S, Anifandis G. A comprehensive review and update on human fertility cryopreservation methods and tools. Front Vet Sci 2023; 10:1151254. [PMID: 37143497 PMCID: PMC10151698 DOI: 10.3389/fvets.2023.1151254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The broad conceptualization of fertility preservation and restoration has become already a major concern in the modern western world since a large number of individuals often face it in the everyday life. Driven by different health conditions and/or social reasons, a variety of patients currently rely on routinely and non-routinely applied assisted reproductive technologies, and mostly on the possibility to cryopreserve gametes and/or gonadal tissues for expanding their reproductive lifespan. This review embraces the data present in human-focused literature regarding the up-to-date methodologies and tools contemporarily applied in IVF laboratories' clinical setting of the oocyte, sperm, and embryo cryopreservation and explores the latest news and issues related to the optimization of methods used in ovarian and testicular tissue cryopreservation.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Valentina Di Nisio
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|
15
|
Buckenmeyer MJ, Sukhwani M, Iftikhar A, Nolfi AL, Xian Z, Dadi S, Case ZW, Steimer SR, D’Amore A, Orwig KE, Brown BN. A bioengineered in situ ovary (ISO) supports follicle engraftment and live-births post-chemotherapy. J Tissue Eng 2023; 14:20417314231197282. [PMID: 38029018 PMCID: PMC10656812 DOI: 10.1177/20417314231197282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023] Open
Abstract
Female cancer patients who have undergone chemotherapy have an elevated risk of developing ovarian dysfunction and failure. Experimental approaches to treat iatrogenic infertility are evolving rapidly; however, challenges and risks remain that hinder clinical translation. Biomaterials have improved in vitro follicle maturation and in vivo transplantation in mice, but there has only been marginal success for early-stage human follicles. Here, we developed methods to obtain an ovarian-specific extracellular matrix hydrogel to facilitate follicle delivery and establish an in situ ovary (ISO), which offers a permissive environment to enhance follicle survival. We demonstrate sustainable follicle engraftment, natural pregnancy, and the birth of healthy pups after intraovarian microinjection of isolated exogenous follicles into chemotherapy-treated (CTx) mice. Our results confirm that hydrogel-based follicle microinjection could offer a minimally invasive delivery platform to enhance follicle integration for patients post-chemotherapy.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aimon Iftikhar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis L Nolfi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziyu Xian
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srujan Dadi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary W Case
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah R Steimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Fondazione RiMED, Palermo, Italy
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Khunmanee S, Park H. Three-Dimensional Culture for In Vitro Folliculogenesis in the Aspect of Methods and Materials. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1242-1257. [PMID: 35822548 DOI: 10.1089/ten.teb.2021.0229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro ovarian follicle culture is a reproduction technique used to obtain fertilizable oocytes, for overcoming fertility issues due to premature ovarian failure. This requires the establishment of an in vitro culture model that is capable of better simulating the in vivo ovarian growth environment. Two-dimensional (2D) culture systems have been successfully set up in rodent models. However, they are not suitable for larger animal models as the follicles of larger animals cultured in 2D culture systems often lose their shape due to dysfunction in the gap junctions. Three-dimensional (3D) culture systems are more suitable for maintaining follicle architecture, and therefore are proposed for the successful in vitro culturing of follicles in various animal models. The role of different methods, scaffolds, and suspension cultures in supporting follicle development has been studied to provide direction for improving in vitro follicle culture technologies. The three major strategies for in vitro 3D follicle cultures are discussed in this article. First, the in vitro culture systems, such as microfluidics, hanging drop, hydrogels, and 3D-printing, are reviewed. We have focused on the 3D hydrogel system as it uses different materials for supporting follicular growth and oocyte maturation in several animal models and in humans. We have also discussed the criteria used for biomaterial evaluations such as solid concentration, elasticity, and rigidity. In addition, future research directions for advancing in vitro 3D follicle culture system are discussed. Impact statement A new frontier in assisted reproductive technology is in vitro tissue or follicle culture, particularly for fertility preservation. The in vitro three-dimensional (3D) culture technique enhances follicular development and provides mature oocytes, overcoming the limitations of traditional in vitro two-dimensional cultures. Polymer biomaterials have good compatibility and retain the physiological structure of follicles in the 3D culture system. Utilizing hybrid in vitro culture materials by merging matrix, hydrogel, and unique patterned materials may facilitate follicular growth in the future.
Collapse
Affiliation(s)
- Sureerat Khunmanee
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Hansoo Park
- Department of Integrative Engineering, Chung-Ang University, Seoul, Korea
| |
Collapse
|
17
|
Brownell D, Chabaud S, Bolduc S. Tissue Engineering in Gynecology. Int J Mol Sci 2022; 23:12319. [PMID: 36293171 PMCID: PMC9603941 DOI: 10.3390/ijms232012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/01/2022] Open
Abstract
Female gynecological organ dysfunction can cause infertility and psychological distress, decreasing the quality of life of affected women. Incidence is constantly increasing due to growing rates of cancer and increase of childbearing age in the developed world. Current treatments are often unable to restore organ function, and occasionally are the cause of female infertility. Alternative treatment options are currently being developed in order to face the inadequacy of current practices. In this review, pathologies and current treatments of gynecological organs (ovaries, uterus, and vagina) are described. State-of-the-art of tissue engineering alternatives to common practices are evaluated with a focus on in vivo models. Tissue engineering is an ever-expanding field, integrating various domains of modern science to create sophisticated tissue substitutes in the hope of repairing or replacing dysfunctional organs using autologous cells. Its application to gynecology has the potential of restoring female fertility and sexual wellbeing.
Collapse
Affiliation(s)
- David Brownell
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
18
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|
19
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
20
|
Zhang D, Ding C, Duan T, Zhou Q. Applications of Hydrogels in Premature Ovarian Failure and Intrauterine Adhesion. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.942957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Premature ovarian failure (POF) and intrauterine adhesion (IUA) that easily lead to reduced fertility in premenopausal women are two difficult diseases to treat in obstetrics and gynecology. Hormone therapy, in vitro fertilization and surgical treatments do not completely restore fertility. The advent of hydrogels offers new hope for the treatment of POF and IUA. Hydrogels are noncytotoxic and biodegradable, and do not cause immune rejection or inflammatory reactions. Drug delivery and stem cell delivery are the main application forms. Hydrogels are a local drug delivery reservoir, and the control of drug release is achieved by changing the physicochemical properties. The porous properties and stable three-dimensional structure of hydrogels support stem cell growth and functions. In addition, hydrogels are promising biomaterials for increasing the success rate of ovarian tissue transplantation. Hydrogel-based in vitro three-dimensional culture of follicles drives the development of artificial ovaries. Hydrogels form a barrier at the site of injury and have antibacterial, antiadhesive and antistenosis properties for IUA treatment. In this review, we evaluate the physicochemical properties of hydrogels, and focus on the latest applications of hydrogels in POF and IUA. We also found the limitations on clinical application of hydrogel and provide future prospects. Artificial ovary as the future of hydrogel in POF is worth studying, and 3D bioprinting may help the mass production of hydrogels.
Collapse
|
21
|
Anbari F, Khalili MA, Mahaldashtian M, Ahmadi A, Palmerini MG. Fertility preservation strategies for cancerous women: An updated review. Turk J Obstet Gynecol 2022; 19:152-161. [PMID: 35770454 PMCID: PMC9249358 DOI: 10.4274/tjod.galenos.2022.42272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
22
|
Eijkenboom L, Saedt E, Zietse C, Braat D, Beerendonk C, Peek R. Strategies to safely use cryopreserved ovarian tissue to restore fertility after cancer: A systematic review. Reprod Biomed Online 2022; 45:763-778. [DOI: 10.1016/j.rbmo.2022.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
23
|
Chen J, Torres-de la Roche LA, Kahlert UD, Isachenko V, Huang H, Hennefründ J, Yan X, Chen Q, Shi W, Li Y. Artificial Ovary for Young Female Breast Cancer Patients. Front Med (Lausanne) 2022; 9:837022. [PMID: 35372399 PMCID: PMC8969104 DOI: 10.3389/fmed.2022.837022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there has been increasing attention toward the quality of life of breast cancer (BC) survivors. Meeting the growing expectations of fertility preservation and the generation of biological offspring remains a great challenge for these patients. Conventional strategies for fertility preservation such as oocyte and embryo cryopreservation are not suitable for prepubertal cancer patients or in patients who need immediate cancer therapy. Ovarian tissue cryopreservation (OTC) before anticancer therapy and autotransplantation is an alternative option for these specific indications but has a risk of retransplantation malignant cells. An emerging strategy to resolve these issues is by constructing an artificial ovary combined with stem cells, which can support follicle proliferation and ensure sex hormone secretion. This promising technique can meet both demands of improving the quality of life and meanwhile fulfilling their expectation of biological offspring without the risk of cancer recurrence.
Collapse
Affiliation(s)
- Jing Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | | | - Ulf D. Kahlert
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medicine Magdeburg and Otto-von Guericke University, Magdeburg, Germany
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine and IVF Laboratory, Department of Obstetrics and Gynecology, Cologne University, Cologne, Germany
| | - Hui Huang
- Reproductive Medicine Center, Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Jörg Hennefründ
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Xiaohong Yan
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qionghua Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenjie Shi
- University Hospital for Gynecology, Pius-Hospital, University Medicine Oldenburg, Oldenburg, Germany
| | - Youzhu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
25
|
Chiti MC, Vanacker J, Ouni E, Tatic N, Viswanath A, des Rieux A, Dolmans MM, White LJ, Amorim CA. Ovarian extracellular matrix-based hydrogel for human ovarian follicle survival in vivo: A pilot work. J Biomed Mater Res B Appl Biomater 2021; 110:1012-1022. [PMID: 34825466 DOI: 10.1002/jbm.b.34974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
To successfully assemble a bio-engineered ovary, we need to create a three-dimensional matrix able to accommodate isolated follicles and cells. The goal of this study was to develop an extracellular matrix hydrogel (oECM) derived from decellularized bovine ovaries able to support, in combination with alginate, human ovarian follicle survival and growth in vitro. Two different hydrogels (oECM1, oECM2) were produced and compared in terms of decellularization efficiency (dsDNA), ECM preservation (collagen and glycosaminoglycan levels), ultrastructure, rigidity, and cytotoxicity. oECM2 showed significantly less dsDNA, greater retention of glycosaminoglycans and better rigidity than oECM1. Isolated human ovarian follicles were then encapsulated in four selected hydrogel combinations: (1) 100% oECM2, (2) 90% oECM2 + 10% alginate, (3) 75% oECM2 + 25% alginate, and (4) 100% alginate. After 1 week of in vitro culture, follicle recovery rate, viability, and growth were analyzed. On day 7 of in vitro culture, follicle recovery rates were 0%, 23%, 65%, 82% in groups 1-4, respectively, rising proportionally with increased alginate content. However, there was no difference in follicle viability or growth between groups 2 and 3 and controls (group 4). In conclusion, since pure alginate cannot be used to graft preantral follicles due to its poor revascularization and degradation after grafting, oECM2 hydrogel combined with alginate may provide a new and promising alternative to graft isolated human follicles in a bio-engineered ovary.
Collapse
Affiliation(s)
- Maria-Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Vanacker
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Natalija Tatic
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Aiswarya Viswanath
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lisa Jane White
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
26
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
27
|
Xiang D, Liu Y, Zhou E, Wang Y. Advances in the applications of polymer biomaterials for in vitro follicle culture. Biomed Pharmacother 2021; 140:111422. [PMID: 34098195 DOI: 10.1016/j.biopha.2021.111422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
The ovarian reserve (OR) indicates ovarian function by representing the quantity and quality of ovarian follicles, and it gradually decreases with increasing age. With the prolongation of women's lives, the protection provided by estrogen is lost for decades in postmenopausal women, and the related cardiovascular and cerebrovascular diseases, osteoporosis, and decreased immunity are the main risk factors affecting women's quality of life and longevity. Pharmacologic hormone replacement therapy (PHRT) has been controversial, and the construction of artificial ovary (AO) has attracted increasing attention. The most critical step of AO generation is the establishment of an in vitro culture (IVC) system to support the development of isolated follicles. This article mainly compares the advantages and disadvantages of different polymer biomaterials for use in follicle IVC, provides theoretical support for the development and construction of the follicle IVC system using natural biological materials, and provides a theoretical basis for establishing mature AO technology.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, 169 Donghu Road, Wuhan, Hubei 430071, China.
| |
Collapse
|
28
|
Kim S, Kim SW, Han SJ, Lee S, Park HT, Song JY, Kim T. Molecular Mechanism and Prevention Strategy of Chemotherapy- and Radiotherapy-Induced Ovarian Damage. Int J Mol Sci 2021; 22:ijms22147484. [PMID: 34299104 PMCID: PMC8305189 DOI: 10.3390/ijms22147484] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Fertility preservation is an emerging discipline, which is of substantial clinical value in the care of young patients with cancer. Chemotherapy and radiation may induce ovarian damage in prepubertal girls and young women. Although many studies have explored the mechanisms implicated in ovarian toxicity during cancer treatment, its molecular pathophysiology is not fully understood. Chemotherapy may accelerate follicular apoptosis and follicle reservoir utilization and damage the ovarian stroma via multiple molecular reactions. Oxidative stress and the radiosensitivity of oocytes are the main causes of gonadal damage after radiation treatment. Fertility preservation options can be differentiated by patient age, desire for conception, treatment regimen, socioeconomic status, and treatment duration. This review will help highlight the importance of multidisciplinary oncofertility strategies for providing high-quality care to young female cancer patients.
Collapse
Affiliation(s)
- Seongmin Kim
- Gynecologic Cancer Center, CHA Ilsan Medical Center, CHA University College of Medicine, 1205 Jungang-ro, Ilsandong-gu, Goyang-si 10414, Korea;
| | - Sung-Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (S.-W.K.); (S.-J.H.)
| | - Soo-Jin Han
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (S.-W.K.); (S.-J.H.)
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
- Correspondence: ; Tel.: +82-2-920-6773
| | - Hyun-Tae Park
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| | - Jae-Yun Song
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| | - Tak Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul 02841, Korea; (H.-T.P.); (J.-Y.S.); (T.K.)
| |
Collapse
|
29
|
Doungkamchan C, Orwig KE. Recent advances: fertility preservation and fertility restoration options for males and females. Fac Rev 2021; 10:55. [PMID: 34195694 PMCID: PMC8204761 DOI: 10.12703/r/10-55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fertility preservation is the process of saving gametes, embryos, gonadal tissues and/or gonadal cells for individuals who are at risk of infertility due to disease, medical treatments, age, genetics, or other circumstances. Adult patients have the options to preserve eggs, sperm, or embryos that can be used in the future to produce biologically related offspring with assisted reproductive technologies. These options are not available to all adults or to children who are not yet producing mature eggs or sperm. Gonadal cells/tissues have been frozen for several thousands of those patients worldwide with anticipation that new reproductive technologies will be available in the future. Therefore, the fertility preservation medical and research communities are obligated to responsibly develop next-generation reproductive technologies and translate them into clinical practice. We briefly describe standard options to preserve and restore fertility, but the emphasis of this review is on experimental options, including an assessment of readiness for translation to the human fertility clinic.
Collapse
Affiliation(s)
- Chatchanan Doungkamchan
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Jiao Z, Bukulmez O. Potential roles of experimental reproductive technologies in infertile women with diminished ovarian reserve. J Assist Reprod Genet 2021; 38:2507-2517. [PMID: 34100154 DOI: 10.1007/s10815-021-02246-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
In assisted reproductive technology treatment, diminished ovarian reserve (DOR) is a condition of utmost clinical and scientific relevance because of its negative influence on patient outcomes. The current methods of infertility treatment may be unsuitable for many women with DOR, which support the need for development of additional approaches to achieve fertility restoration. Various techniques have been tried to improve the quality and increase the quantity of oocytes in DOR patients, including mitochondrial transfer, activation of primordial follicles, in vitro culture of follicles, and regeneration of oocytes from various stem cells. Herein, we review the science behind these experimental reproductive technologies and their potential use to date in clinical studies for infertility treatment in women with DOR.
Collapse
Affiliation(s)
- Zexu Jiao
- Division of Reproductive Endocrinology and Infertility, Fertility and Advanced Reproductive Medicine Assisted Reproductive Technologies Program, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Fertility and Advanced Reproductive Medicine Assisted Reproductive Technologies Program, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Creating an Artificial 3-Dimensional Ovarian Follicle Culture System Using a Microfluidic System. MICROMACHINES 2021; 12:mi12030261. [PMID: 33806282 PMCID: PMC7999445 DOI: 10.3390/mi12030261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
We hypothesized that the creation of a 3-dimensional ovarian follicle, with embedded granulosa and theca cells, would better mimic the environment necessary to support early oocytes, both structurally and hormonally. Using a microfluidic system with controlled flow rates, 3-dimensional two-layer (core and shell) capsules were created. The core consists of murine granulosa cells in 0.8 mg/mL collagen + 0.05% alginate, while the shell is composed of murine theca cells suspended in 2% alginate. Somatic cell viability tests and hormonal assessments (estradiol, progesterone, and androstenedione) were performed on days 1, 6, 13, 20, and 27. Confocal microscopy confirmed appropriate compartmentalization of fluorescently-labeled murine granulosa cells to the inner capsule and theca cells to the outer shell. Greater than 78% of cells present in capsules were alive up to 27 days after collection. Artificially constructed ovarian follicles exhibited intact endocrine function as evidenced by the production of estradiol, progesterone, and androstenedione. Oocytes from primary and early secondary follicles were successfully encapsulated, which maintained size and cellular compartmentalization. This novel microfluidic system successfully encapsulated oocytes from primary and secondary follicles, recapitulating the two-compartment system necessary for the development of the mammalian oocyte. Importantly, this microfluidic system can be easily adapted for sterile, high throughput applications.
Collapse
|
32
|
Chen J, Todorov P, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Construction and cryopreservation of an artificial ovary in cancer patients as an element of cancer therapy and a promising approach to fertility restoration. HUM FERTIL 2021; 25:651-661. [PMID: 33648431 DOI: 10.1080/14647273.2021.1885756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proportion of cancer patients that survive is increasing because of improvements in cancer therapy. However, some cancer treatments, such as chemo- and radio-therapies, can cause considerable damage to reproductive function. The issue of fertility is paramount for women of childbearing age once they are cured from cancer. For those patients with prepubertal or haematogenous cancer, the possibilities of conventional fertility treatments, such as oocyte or embryo cryopreservation and transplantation, are limited. Moreover, ovarian tissue cryopreservation as an alternative to fertility preservation has limitations, with a risk of re-implanting malignant cells in patients who have recovered from potentially fatal malignant disease. One possible way to restore fertility in these patients is to mimic artificially the function of the natural organ, the ovary, by grafting isolated follicles embedded in a biological scaffold to their native environment. Construction and cryopreservation of an artificial ovary might offer a safer alternative option to restore fertility for those who cannot benefit from traditional fertility preservation techniques. This review considers the protocols for constructing an artificial ovary, summarises advances in the field with potential clinical application, and discusses future trends for cryopreservation of these artificial constructions.
Collapse
Affiliation(s)
- Jing Chen
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Sofia, Bulgaria
| | - Evgenia Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Peter Mallmann
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Vladimir Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| |
Collapse
|
33
|
Nikniaz H, Zandieh Z, Nouri M, Daei-Farshbaf N, Aflatoonian R, Gholipourmalekabadi M, Jameie SB. Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro. BMC Biotechnol 2021; 21:8. [PMID: 33472624 PMCID: PMC7816475 DOI: 10.1186/s12896-020-00658-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background Nowadays, the number of cancer survivors is significantly increasing as a result of efficient chemo/radio therapeutic treatments. Female cancer survivors may suffer from decreased fertility. In this regard, different fertility preservation techniques were developed. Artificial ovary is one of these methods suggested by several scientific groups. Decellularized ovarian cortex has been introduced as a scaffold in the field of human fertility preservation. This study was carried out to compare decellularization of the ovarian scaffold by various protocols and evaluate the follicle survival in extracellular matrix (ECM)-alginate scaffold. Results The micrographs of H&E and DAPI staining confirmed successful decellularization of the ovarian cortex in all experimental groups, but residual DNA content in SDS-Triton group was significantly higher than other groups (P < 0.05). SEM images demonstrated that complex fiber network and porosity structure were maintained in all groups. Furthermore, elastin and collagen fibers were observed in all groups after decellularization process. MTT test revealed higher cytobiocompatibility of the SDS-Triton-Ammonium and SDS-Triton decellularized scaffolds compared with SDS groups. Compared to the transferred follicles into the sodium alginate (81%), 85.9% of the transferred follicles into the decellularized scaffold were viable after 7 days of cultivation (P = 0.04). Conclusion Although all the decellularization procedures was effective in removal of cells from ovarian cortex, SDS-Triton-Ammonium group showed less residual DNA content with higher cytobiocompatibility for follicles when compared with other groups. In addition, the scaffold made from ovarian tissues decellularized using SDS-Triton-Ammonium and sodium alginate is suggested as a potential 3D substrate for in vitro culture of follicles for fertility preservation.
Collapse
Affiliation(s)
- Hossein Nikniaz
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Daei-Farshbaf
- Department of Anatomical sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
34
|
Wang X, Wu D, Li W, Yang L. Emerging biomaterials for reproductive medicine. ENGINEERED REGENERATION 2021; 2:230-245. [DOI: 10.1016/j.engreg.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Dolmans MM, Donnez J, Cacciottola L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol Med 2020; 27:777-791. [PMID: 33309205 DOI: 10.1016/j.molmed.2020.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer treatments are increasingly effective, but can result in iatrogenic premature ovarian insufficiency. Ovarian tissue cryopreservation is the only option available to preserve fertility in prepubertal girls and young women who require immediate chemotherapy. Ovarian tissue transplantation has been shown to restore hormonal cycles and fertility, but a large proportion of the follicle reserve is lost as a consequence of exposure to hypoxia. Another crucial concern is the risk of reimplanting malignant cells together with the grafted tissue. In this review, the authors advance some challenging propositions, from prevention of chemotherapy-related gonadotoxicity to ovarian tissue cryopreservation and transplantation, including the artificial ovary approach.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques universitaires St-Luc, Brussels, Belgium; Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Jacques Donnez
- Prof. Em. Catholic University of Louvain, Brussels, Belgium; Société de Recherche pour l'Infertilité (SRI), Brussels, Belgium
| | - Luciana Cacciottola
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
36
|
Wall MA, Padmanabhan V, Shikanov A. Hormonal Stimulation of Human Ovarian Xenografts in Mice: Studying Folliculogenesis, Activation, and Oocyte Maturation. Endocrinology 2020; 161:5939202. [PMID: 33099627 PMCID: PMC7671278 DOI: 10.1210/endocr/bqaa194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Ovarian tissue cryopreservation and banking provides a fertility preservation option for patients who cannot undergo oocyte retrieval; it is quickly becoming a critical component of assisted reproductive technology programs across the world. While the transplantation of cryopreserved ovarian tissue has resulted in over 130 live births, the field has ample room for technological improvements. Specifically, the functional timeline of grafted tissue and each patient's probability of achieving pregnancy is largely unpredictable due to patient-to-patient variability in ovarian reserve, lack of a reliable method for quantifying follicle numbers within tissue fragments, potential risk of reintroduction of cancer cells harbored in ovarian tissues, and an inability to control follicle activation rates. This review focuses on one of the most common physiological techniques used to study human ovarian tissue transplantation, xenotransplantation of human ovarian tissue to mice and endeavors to inform future studies by discussing the elements of the xenotransplantation model, challenges unique to the use of human ovarian tissue, and novel tissue engineering techniques currently under investigation.
Collapse
Affiliation(s)
- Monica Anne Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence: Ariella Shikanov, PhD, 2126 LBME, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, MI 48109, USA. E-mail:
| |
Collapse
|
37
|
Aljaser F. Preservation of fertility in female: Indications, available options, and current status in Saudi Arabia. Semin Oncol 2020; 47:390-397. [PMID: 33131895 DOI: 10.1053/j.seminoncol.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/13/2020] [Accepted: 09/27/2020] [Indexed: 11/11/2022]
Abstract
Refinement of therapies continues to improve the prognosis and survival of cancer patients. However, women of reproductive age face a risk of premature ovarian failure due to the gonadotoxicity of aggressive oncological treatment, which may also be used to treat other nonmalignant disorders. Development of cryobiology and assisted reproduction has allowed fertility preservation, which is increasingly requested, and can also aid fertility in iatrogenic and noniatrogenic conditions. Established protocols including embryo and oocyte freezing are only performed for adult women; however, ovarian tissue cryopreservation is an approach that can also assist prepubertal girls. Medical fertility cryopreservation for females has been recently legalized in Saudi Arabia. However, prior to implementing the service in clinical practice in Saudi Arabia, guidelines on patient selection criteria and adequate staff training are essential. Moreover, worldwide registry data and the findings of long-term studies involving many patients on the safety of ovarian tissue freezing are required to conclusively establish medical fertility cryopreservation as a safe procedure. Progress can be achieved in oncofertility by improving and optimizing techniques that include immature oocyte growth and maturation and artificial ovary development.
Collapse
Affiliation(s)
- Feda Aljaser
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Kingdom of Saudi Arabia.
| |
Collapse
|
38
|
Pors SE, Ramløse M, Nikiforov D, Lundsgaard K, Cheng J, Andersen CY, Kristensen SG. Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold. Hum Reprod 2020; 34:1523-1535. [PMID: 31286144 DOI: 10.1093/humrep/dez077] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can a reconstructed ovary using decellularized human ovarian tissue (DCT) support survival of pre-antral stage follicles? SUMMARY ANSWER We have demonstrated an effective protocol for decellularization of human ovarian tissues and successful recellularization with isolated human ovarian cells and pre-antral follicles. WHAT IS KNOWN ALREADY Survivors of leukemia or ovarian cancer run a risk of reintroducing malignancy when cryopreserved ovarian tissue is transplanted to restore fertility. A reconstructed ovary free of malignant cells could provide a safe alternative. Decellularization of ovarian tissue removes all cells from the extracellular matrix (ECM) including possible malignancies and leaves behind a physiological scaffold. The ECM offers the complex milieu that facilitates the necessary interaction between ovarian follicles and their surroundings to ensure their growth and development. Previous studies have shown that decellularized bovine ovarian scaffolds supported murine follicle growth and restoration of ovarian function in ovariectomized mice. STUDY DESIGN, SIZE, DURATION Optimizing a decellularization protocol for human ovarian tissues and testing biofunctionality of the decellularized scaffolds in vitro and in vivo by reseeding with both murine and human pre-antral follicles and ovarian cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated human ovarian tissue and isolated pre-antral follicles were obtained from women undergoing ovarian tissue cryopreservation for fertility preservation. Ovarian cortical and medullary tissues were decellularized using 0.1% sodium dodecyl sulfate (SDS) for 3, 6, 18 and 24 hours followed by 24 hours of 1 mg/mL DNase treatment and washing. Decellularization of ovarian tissues and preservation of ECM were characterized by morphological evaluation using Periodic Acid-Schiff (PAS) staining, DNA quantification, histochemical quantification of collagen content and immunofluorescence analysis for collagen IA, laminin, fibronectin and DNA. Human ovarian stromal cells and isolated human pre-antral follicles were reseeded on the DCT and cultured in vitro. Isolated murine (N = 241) and human (N = 20) pre-antral follicles were reseeded on decellularized scaffolds and grafted subcutaneously to immunodeficient mice for 3 weeks. MAIN RESULTS AND THE ROLE OF CHANCE Incubation in 0.1% SDS for 18-24 hours adequately decellularized both human ovarian medullary and cortical tissue by eliminating all cells and leaving the ECM intact. DNA content in DCT was decreased by >90% compared to native tissue samples. Histological examination using PAS staining confirmed that the cortical and medullary tissues were completely decellularized, and no visible nuclear material was found within the decellularized sections. DCT also stained positive for collagen I and collagen quantities in DCT constituted 88-98% of the individual baselines for native samples. Human ovarian stroma cells were able to recellularize the DCT and isolated human pre-antral follicles remained viable in co-culture. Xenotransplantation of DCT reseeded with human or murine pre-antral follicles showed, that the DCT was able to support survival of human follicles and growth of murine follicles, of which 39% grew to antral stages. The follicular recovery rates after three weeks grafting were low but similar for both human (25%) and murine follicles (21%). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further studies are needed to increase recovery and survival of the reseeded follicles. Longer grafting periods should be evaluated to determine the developmental potential of human follicles. Survival of the follicles might be impaired by the lack of stroma cells. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that isolated human follicles have survived in a decellularized human scaffold. Therefore, this proof-of-concept could be a potential new strategy to eliminate the risk of malignant cell re-occurrence in former cancer patients having cryopreserved ovarian tissue transplanted for fertility restoration. STUDY FUNDING/COMPETING INTEREST(S) This study is part of the ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS. Furthermore, Project ITN REP-BIOTECH 675526 funded by the European Union, European Joint Doctorate in Biology and Technology of the Reproductive Health, the Research Pools of Rigshospitalet, the Danish Cancer Foundation and Dagmar Marshalls Foundation are thanked for having funded this study. The funders had no role in the study design, data collection and interpretation, or in the decision to submit the work for publication.
Collapse
Affiliation(s)
- S E Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - M Ramløse
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - D Nikiforov
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark.,University of Teramo, Teramo, Via Renato Balzarini, Italy
| | - K Lundsgaard
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - J Cheng
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark.,People's Hospital of Guangxi Autonomous Region, 6 Taoyuan Rd, Qingxiu Qu, Nanning City, Guangxi province, China Via Renato Balzarini, Teramo
| | - C Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - S G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
39
|
Dolmans MM, Donnez J. Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue. Best Pract Res Clin Obstet Gynaecol 2020; 70:63-80. [PMID: 32800711 DOI: 10.1016/j.bpobgyn.2020.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/13/2020] [Indexed: 01/18/2023]
Abstract
Approximately 10% of cancers occur in women under 45 years of age. Chemotherapy, radiotherapy, and bone marrow transplantation cure more than 90% of cancer in women, but can result in premature ovarian insufficiency depending on follicular reserve, age, and drugs used. Some benign diseases are also indications for fertility preservation, particularly those requiring chemotherapy (like thalassemia and lupus), recurrent endometriosis, and family history of premature menopause. Social reasons also account for a large proportion of women who wish to postpone pregnancy. This article discusses the two main strategies for fertility preservation, namely oocyte vitrification and ovarian tissue cryopreservation, examining the indications and results of these options. Oocyte cryopreservation is an effective approach, but further studies are needed in cancer patients to ensure the excellent outcomes obtained in women without cancer or in egg donation programs. For prepubertal girls or cases where immediate therapy is required, cryopreservation of ovarian tissue is the only available option.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Jacques Donnez
- Université Catholique de Louvain, Belgium; Société de Recherche pour l'Infertilité (SRI), 143 Avenue Grandchamp, 1150, Brussels, Belgium.
| |
Collapse
|
40
|
Culture of human ovarian tissue in xeno-free conditions using laminin components of the human ovarian extracellular matrix. J Assist Reprod Genet 2020; 37:2137-2150. [PMID: 32671735 DOI: 10.1007/s10815-020-01886-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Our purpose was to identify human ovarian extracellular matrix (ECM) components that would support in vitro culture of human ovarian tissue and be compatible with possible future clinical applications. We characterized ovarian expression of laminins and selected three laminin tripeptides for culture experiments to be compared with Matrigel, an undefined and animal-based mixture of ECM components. METHODS Expression of the 12 laminin genes was determined on transcript and protein levels using cortical tissue samples (n = 6), commercial ovary RNA (n = 1), follicular fluid granulosa cells (n = 20), and single-cell RNA-sequencing data. Laminin 221 (LN221), LN521, LN511, and their mixture were chosen for a 7-day culture experiment along with Matrigel using tissue from 17 patients. At the end of the culture, follicles were evaluated by scoring and counting from serial tissue sections, apoptosis measured using in situ TUNEL assay, proliferation by Ki67 staining, and endocrine function by quantifying steroids in culture media using UPLC-MS/MS. RESULTS Approximately half of the cells in ovarian cortex expressed at least one laminin gene. The overall most expressed laminin α-chains were LAMA2 and LAMA5, β-chains LAMB1 and LAMB2, and γ-chain LAMC1. In culture experiments, LN221 enhanced follicular survival compared with Matrigel (p < 0.001), whereas tissue cultured on LN521 had higher proportion of secondary follicles (p < 0.001). LN511 and mixture of laminins did not support the cultures leading to lower follicle densities and higher apoptosis. All cultures produced steroids and contained proliferating cells. CONCLUSIONS LN221 and LN521 show promise in providing xeno-free growth substrates for human ovarian tissue cultures, which may help in further development of folliculogenesis in vitro for clinical practices. The system could also be used for identification of adverse effects of chemicals in ovaries.
Collapse
|
41
|
Shahri PAK, Chiti MC, Amorim CA. Isolation and characterization of the human ovarian cell population for transplantation into an artificial ovary. Anim Reprod 2020; 16:39-44. [PMID: 33299477 PMCID: PMC7720928 DOI: 10.21451/1984-3143-ar2018-00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To support survival and growth of follicles, the transplantable artificial ovary should mimic the original organ, offering a physical (3D matrix) and biological support (cells). In order to replicate the ovarian cell populations, the aim of this study is to assess the proportions of stromal and endothelial cells in the ovarian cortex. To this end, ovarian biopsies were obtained from six women (mean age: 49 years). The epithelial layer and medulla were carefully removed. The cortex was finely minced and enzymatically digested and the isolated cells were fixed. For cell characterization, immunostaining for CD31 (for endothelial cells) and inhibin-α (for granulosa cells) was performed. Positive cells in each staining were counted and the proportion of the different cell populations was estimated from the total number of isolated cells. Since there is no specific marker for ovarian stromal cells, we estimated the proportion of these cells by performing a vimentin immunostaining and subtracting the proportions of CD31- and inhibin-α-positive cells. Immunostaining showed that 84% of isolated cells were vimentin-positive. From this pool, 3% were endothelial cells and 1% granulosa cells. Consequently, the population of ovarian stromal cells was 80%. In conclusion, our findings show that stromal cells represent the larger population of cells in the human ovarian cortex. While this ensures follicle survival and development in a normal ovary, we believe that the low proportion of endothelial cells could have a negative impact on the angiogenesis in the artificial ovary after the first days of transplantation.
Collapse
Affiliation(s)
- Parinaz Asiabi Kohneh Shahri
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
42
|
Pretreatment of ovaries with collagenase before vitrification keeps the ovarian reserve by maintaining cell-cell adhesion integrity in ovarian follicles. Sci Rep 2020; 10:6841. [PMID: 32321979 PMCID: PMC7176664 DOI: 10.1038/s41598-020-63948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
The mammalian ovarian follicle is comprised of the germ cell or oocyte surrounded by the somatic cells, the granulosa and theca cells. The ovarian stroma, including the collagen-rich matrix that supports the three-dimensional disk-like follicular structure, impacts the integrity of the ovarian follicle and is essential for follicular development. Maintaining follicular integrity during cryopreservation has remained a limiting factor in preserving ovarian tissues for transplantation because a significant proportion of developed follicles in the frozen-thawed ovaries undergo atresia after transplantation. In this study, we show for the first time that during vitrification of the mouse ovary, the attachment of the oocyte to the granulosa cells was impaired by the loss of the cadherin adhesion molecules. Importantly, exposure to a high osmotic solution greatly decreased the ratio of oocyte diameter to the diameter of its follicle but did not alter the collagen-rich matrix surrounding the follicles. By treating ovaries briefly with collagenase before exposure to the hyper-osmotic solution the ratio of oocyte diameter to follicle diameter was maintained, and cadherin adhesion junctions were preserved. When frozen-thawed ovaries were transplanted to the bursa of recipient hosts, pretreatment with collagenase significantly increased serum levels of AMH, the number of intact follicles and the total number of viable offspring compared to frozen-thawed ovaries without collagenase pretreatment, even 6 months after transplantation. Thus, the collagenase pretreatment could provide a beneficial approach for maintaining the functions and viability of cryopreserved ovaries in other species and clinically relevant situations.
Collapse
|
43
|
Pretalli JB, Frontczak Franck S, Pazart L, Roux C, Amiot C. Development of Ovarian Tissue Autograft to Restore Ovarian Function: Protocol for a French Multicenter Cohort Study. JMIR Res Protoc 2019; 8:e12944. [PMID: 31573931 PMCID: PMC6802486 DOI: 10.2196/12944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/24/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Sterility is a major late effect of radiotherapy and chemotherapy treatments. Iatrogenic sterility is often permanent and greatly impacts long-term quality of life. Ovarian tissue cryopreservation (OTC) performed before gonadotoxic treatments with subsequent autograft is a method of fertility preservation available for girls and women. Its application in prepubertal girls is of particular value as it is the only possible approach in this patient group. In addition, it does not require a delay in cancer therapy and no ovarian stimulation is needed. Objective The primary aim of this protocol is to help increase the implementation of ovarian tissue autografting in France. Knowledge is still lacking regarding the efficacy of ovarian transplantation in restoring ovarian function and regarding the safety of this procedure, especially the risk of cancer cell reseeding in certain types of cancer. A secondary aim of this study is to generate data to improve our understanding of these two essential aspects. Methods The DATOR (Development of Ovarian Tissue Autograft in Order to Restore Ovarian Function) study is ongoing in 17 university hospitals. The DATOR protocol includes the autograft of ovarian cortex fragments. Candidates are identified from an observational prospective cohort (called the Prospective Cohort of Patients Candidates for Ovarian Tissue Autograft [PERIDATOR]) of patients who have undergone OTC. Enrollment in the study is initiated at the patient’s request and must be validated by the center’s multidisciplinary team and by the study steering committee. The DATOR study begins with a total medical checkup. Ovarian tissue qualification and residual disease detection, if required, are performed. Results The study is ongoing. Currently, 38 patients have provided informed consent and have been entered into the DATOR study. Graft has been performed for 34 of these patients. An interim analysis was conducted on the first 25 patients for whom the period of at least 1 year posttransplantation was achieved. Out of these 25 patients, 11 women succeeded in becoming pregnant (pregnancy rate=44% [11/25]; delivery rate=40% [10/25]). Among these, 6 women conceived twice, and 1 pregnancy led to a miscarriage. Conclusions Our preliminary analysis appears to be coherent with the accumulating body of evidence indicating the potential utility of ovarian tissue autograft for patients with premature ovarian failure. All these elements justify the pursuit of our study. Trial Registration ClinicalTrials.gov NCT02846064; https://clinicaltrials.gov/ct2/show/NCT02846064 International Registered Report Identifier (IRRID) DERR1-10.2196/12944
Collapse
Affiliation(s)
- Jean-Baptiste Pretalli
- INSERM CIC 1431, Centre d'Investigation Clinique, Centre Hospitalier Universitaire de Besançon, Besançon, France.,Department of Reproductive Medicine and Biology, Cryobiology, University Hospital of Besançon, Besançon, France
| | - Sophie Frontczak Franck
- Department of Reproductive Medicine and Biology, Cryobiology, University Hospital of Besançon, Besançon, France
| | - Lionel Pazart
- INSERM CIC 1431, Centre d'Investigation Clinique, Centre Hospitalier Universitaire de Besançon, Besançon, France.,EA481 - Integrative and Clinical Neuroscience Laboratory, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Roux
- INSERM CIC 1431, Centre d'Investigation Clinique, Centre Hospitalier Universitaire de Besançon, Besançon, France.,Department of Reproductive Medicine and Biology, Cryobiology, University Hospital of Besançon, Besançon, France.,INSERM, Établissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France
| | - Clotilde Amiot
- INSERM CIC 1431, Centre d'Investigation Clinique, Centre Hospitalier Universitaire de Besançon, Besançon, France.,Department of Reproductive Medicine and Biology, Cryobiology, University Hospital of Besançon, Besançon, France.,INSERM, Établissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University Bourgogne Franche-Comté, Besançon, France
| | | |
Collapse
|
44
|
Cho E, Kim YY, Noh K, Ku SY. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Conventional fertility preservation methods such as oocyte or embryo cryopreservation are currently insufficient to treat including those patients with prepubertal cancer and premature ovarian failure. Ovarian tissue cryopreservation presents as an alternative but has limitations with a potential risk of reintroducing malignant cells in patients who recover from cancer, those of chemotherapy prior to tissue cryopreservation. The so called "artificial ovary" aims to resolve this issue by transplanting isolated follicles with or without a biological scaffold. The artificial ovary may also offer an effective alternative option for those who cannot benefit from traditional assisted reproductive techniques such as in vitro fertilisation. To date, in animal studies and human trial, the artificial ovary restored endocrine function, achieved in vivo follicular development, and resulted in successful pregnancies. However, development of a technique for higher follicular recovery rate and a more optimised design of delivery scaffold, better transplantation techniques to prevent postsurgical ischemia, and consideration for genetic safety are required for safer and consistent human clinical applications. Ideas from different transplantation surgeries (e.g., entire ovary, ovarian cortex, and transplantation with tissue-engineered products) can be applied to enhance the efficacy of artificial ovarian transplantation. For the better application of artificial ovary, a deeper understanding of mechanical and biochemical properties of the ovary and folliculogenesis after cryopreservation, transplantation with or without scaffold, and development of sophisticated in vivo imaging techniques of transplanted artificial ovary need to precede its efficient clinical application.
Collapse
Affiliation(s)
- Eun Cho
- College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon Young Kim
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Kevin Noh
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Seung-Yup Ku
- College of Medicine, Seoul National University, Seoul, South Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
45
|
Simopoulou M, Sfakianoudis K, Tsioulou P, Rapani A, Giannelou P, Kiriakopoulos N, Pantou A, Vlahos N, Anifandis G, Bolaris S, Pantos K, Koutsilieris M. What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations. Front Med 2019; 13:627-638. [PMID: 31300970 DOI: 10.1007/s11684-019-0697-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/13/2019] [Indexed: 12/30/2022]
Abstract
Assisted reproduction provides a wide spectrum of treatments and strategies addressing infertility. However, distinct groups of infertile patients with unexplained infertility, congenital disorders, and other complex cases pose a challenge in in vitro fertilization (IVF) practices. This special cohort of patients is associated with futile attempts, IVF overuse, and dead ends in management. Cutting edge research on animal models introduced this concept, along with the development of artificial organs with the aim to mimic the respective physiological functions in reproduction. Extrapolation on clinical application leads to the future use of infertility management in humans. To date, the successful clinical application of artificial reproductive organs in humans is not feasible because further animal model studies are required prior to clinical trials. The application of these artificial organs could provide a solution to infertility cases with no other options. This manuscript presents an overview on the current status, future prospects, and considerations on the potential clinical application of artificial ovary, uterus, and gametes in humans. This paper presents how the IVF practice landscape may be shaped and challenged in the future, along with the subsequent concerns in assisted reproductive treatments.
Collapse
Affiliation(s)
- Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece. .,Assisted Conception Unit, 2nd Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Vasilissis Sofias str., 11528, Athens, Greece.
| | | | - Petroula Tsioulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece
| | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece
| | - Polina Giannelou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece.,Centre for Human Reproduction, Genesis Athens Clinic, Papanikoli, 15232, Athens, Greece
| | - Nikolaos Kiriakopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Papanikoli, 15232, Athens, Greece
| | - Nikolaos Vlahos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece
| | - George Anifandis
- Department of Histology and Embryology, Faculty of Medicine, University of Thessaly, 41500, Larisa, Greece
| | - Stamatis Bolaris
- Assisted Conception Unit, General-Maternity District Hospital "Elena Venizelou", Plateia Elenas Venizelou, 11521, Athens, Greece
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, Papanikoli, 15232, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Mikras Asias, 11527, Athens, Greece
| |
Collapse
|
46
|
Liu D, Yan J, Qiao J. Effects of malignancies on fertility preservation outcomes and relevant cryobiological advances. SCIENCE CHINA-LIFE SCIENCES 2019; 63:217-227. [DOI: 10.1007/s11427-019-9526-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/03/2019] [Indexed: 01/04/2023]
|
47
|
Barbato V, Gualtieri R, Capriglione T, Pallotta MM, Braun S, Di Nardo M, Costanzo V, Ferraro R, Catapano G, Talevi R. Slush nitrogen vitrification of human ovarian tissue does not alter gene expression and improves follicle health and progression in long-term in vitro culture. Fertil Steril 2019; 110:1356-1366. [PMID: 30503135 DOI: 10.1016/j.fertnstert.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To study whether slush nitrogen (SN) vs. liquid nitrogen (LN) vitrification affects human ovarian tissue gene expression and preserves follicle health during extended in vitro culture. DESIGN Randomized experimental study. SETTING University research laboratory. PATIENT(S) Ovarian biopsies collected by laparoscopic surgery from patients with benign gynaecologic conditions. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Ovarian strips were vitrified with LN or SN, warmed, and analyzed before or after culture for 9 days (d9) in gas-permeable dishes. Expression of genes involved in stress and toxicity pathways was analyzed in fresh and warmed strips by polymerase chain reaction (PCR) array and quantitative real-time-PCR. Fresh and vitrified/warmed strips were analyzed for follicle quality, progression, and viability before or after culture. RESULT(S) The SN vitrification preserved follicle quality better than LN (% grade 1 follicles: fresh control, 54.2; LN, 29.3; SN, 48.8). Quantitative reverse transcription-PCR demonstrated a noticeable up-regulation of 13 genes in LN samples (range, 10-35) and a markedly lower up-regulation of only 5 genes (range, 3.6-7.8) in SN samples. Long-term in vitro culture evidenced worse follicle quality and viability in LN samples than in both fresh and SN samples (% grade 1 follicle: fresh d0, 51.5; fresh d9, 41; LN d9, 16.4; SN d9, 55) and a highly significant reduction of primordial follicles and a concomitant increase of primary and secondary follicles in all samples. Follicle growth to the secondary stage was significantly higher in vitrified tissue than in fresh tissue, being better in SN than in LN vitrified tissue. CONCLUSION(S) Follicle quality, gene expression, viability, and progression are better preserved after SN vitrification.
Collapse
Affiliation(s)
- Vincenza Barbato
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Roberto Gualtieri
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Maria Michela Pallotta
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Sabrina Braun
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Maddalena Di Nardo
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | - Valentina Costanzo
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy
| | | | - Gerardo Catapano
- Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, Rende (CS), Italia
| | - Riccardo Talevi
- Dipartimento di Biologia, Università di Napoli "Federico II", Complesso Universitario di Monte S Angelo, Napoli, Italy.
| |
Collapse
|
48
|
Technologies for the Production of Fertilizable Mammalian Oocytes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Women affected by ovarian pathologies or with cancer can usually preserve fertility by egg/embryo freezing. When oocyte retrieval is not feasible, the only option available is ovarian tissue cryopreservation and transplantation. The culture of follicles isolated from fresh or cryopreserved ovaries is considered still experimental, although this procedure is considered safer, because the risk of unintentional spreading of cancer cells eventually present in cryopreserved tissue is avoided. Animal and human small follicles can be cultured in vitro, but standardized protocols able to produce in vitro grown oocytes with the same developmental capacity of in vivo grown oocytes are not available yet. In fact, the different sizes of follicles and oocytes, the hormonal differences existing between mono- (e.g., human, goat, cow, and sheep) and poly-ovulatory (rodents and pig) species, and the incomplete identification of the mechanisms regulating the oocyte–follicle and follicle–ovary interrelationships affect the outcome of in vitro culture. From all these attempts, however, new ideas arise, and the goal of assuring the preservation of female reproductive potential appears a more realistic possibility. This review surveys and discusses advances and challenges of these technologies that, starting from a simple attempt, are now approaching the biosynthesis of a functional engineered ovary.
Collapse
|
49
|
Zhao H, Jin L, Li Y, Zhang C, Wang R, Li Y, Huang W, Cui C, Zhang H, Wang H, Ma D, Liao S. Oncofertility: What can we do from bench to bedside? Cancer Lett 2019; 442:148-160. [DOI: 10.1016/j.canlet.2018.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
|
50
|
Smith KL, Gracia C, Sokalska A, Moore H. Advances in Fertility Preservation for Young Women With Cancer. Am Soc Clin Oncol Educ Book 2018; 38:27-37. [PMID: 30231357 DOI: 10.1200/edbk_208301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Female patients of reproductive age with cancer often require treatment that can compromise their future fertility. Treatment-related infertility is an important cancer survivorship issue and is associated with depression and diminished quality of life. Recent advances in reproductive health care provide the opportunity to preserve fertility prior to the initiation of cancer therapy. Clinical guidelines recommend that oncology providers counsel patients about the risk of treatment-related infertility and fertility preservation options, and that they refer those who are interested in fertility preservation to fertility specialists. Guidelines endorse the use of assisted reproductive techniques (ART) provided by reproductive endocrinologists to preserve fertility in young female patients with cancer. In addition, ovarian suppression with gonadotropin-releasing hormone (GnRH) agonists may be considered for ovarian protection during chemotherapy. This article reviews currently available and emerging ART for fertility preservation in female patients of reproductive age with cancer and current data supporting the use of ovarian suppression for ovarian protection during chemotherapy in this population. We also review the uptake of fertility services and discuss barriers to fertility preservation in female patients of reproductive age with cancer.
Collapse
Affiliation(s)
- Karen Lisa Smith
- From The Johns Hopkins University School of Medicine, Baltimore, MD; Hospital of the University of Pennsylvania, Philadelphia, PA; Cleveland Clinic, Cleveland, OH
| | - Clarisa Gracia
- From The Johns Hopkins University School of Medicine, Baltimore, MD; Hospital of the University of Pennsylvania, Philadelphia, PA; Cleveland Clinic, Cleveland, OH
| | - Anna Sokalska
- From The Johns Hopkins University School of Medicine, Baltimore, MD; Hospital of the University of Pennsylvania, Philadelphia, PA; Cleveland Clinic, Cleveland, OH
| | - Halle Moore
- From The Johns Hopkins University School of Medicine, Baltimore, MD; Hospital of the University of Pennsylvania, Philadelphia, PA; Cleveland Clinic, Cleveland, OH
| |
Collapse
|