1
|
Hakimi F, Karimi Torshizi MA, Hezavehei M, Sharafi M. Protective Effect of N-Acetylcysteine on Rooster Semen Cryopreservation. Biopreserv Biobank 2024; 22:609-615. [PMID: 38634668 PMCID: PMC11656127 DOI: 10.1089/bio.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cryopreservation of avian semen is a useful reproductive technique in the poultry industry. However, during cooling, elevated reactive oxygen species (ROS) levels have destructive effects on both quality and function of thawed sperm. The aim of the current study is to investigate the antioxidant effects of N-acetylcysteine (NAC) during rooster semen cryopreservation. Semen samples were collected from ten Ross 308 broiler breeder roosters (32 weeks) and mixed. The mixed samples were divided into five equal parts and cryopreserved in Lake Buffer extender that contained different concentrations (0, 0.01, 0.1, 1, and 10 mM) of NAC. The optimum concentration of NAC was determined based on quality parameters of mobility, viability, membrane integrity, acrosome integrity, lipid peroxidation, and mitochondrial membrane potential after the freeze-thaw process. There was a higher percentage (p < 0.05) of total motility (TM) (60.9 ± 2.4%) and progressive motility (PM) (35.6 ± 1.9%) observed with the NAC-0.1 group compared to the other groups. Significantly higher percentages of viability (74.4 ± 2.3% and 71 ± 2.3%), membrane integrity (76.4 ± 1.5% and 74.7 ± 1.5%) and mitochondrial membrane potential (67.1 ± 1.6% and 66.3 ± 1.6%) were observed in the NAC-0.1 and NAC-1 groups compared to the other frozen groups (p < 0.05). The lowest percentage of lipid peroxidation and nonviable sperm was found in the NAC-0.1 and NAC-1 groups compared to the other groups (p < 0.05). The average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), and acrosome integrity, were not affected by different concentrations of NAC in the thawed sperm (p > 0.05). Both NAC-0.1 and NAC-1 appear to be beneficial for maintaining the quality of rooster sperm after thawing.
Collapse
Affiliation(s)
- Farhad Hakimi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Mohsen Sharafi
- Department of Animal Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Canada
| |
Collapse
|
2
|
Li C, Liang J, Allai L, Badaoui B, Shao Q, Ouyang Y, Wu G, Quan G, Lv C. Integrating proteomics and metabolomics to evaluate impact of semen collection techniques on the quality and cryotolerance of goat semen. Sci Rep 2024; 14:29489. [PMID: 39604559 PMCID: PMC11603158 DOI: 10.1038/s41598-024-80556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Results of artificial insemination (AI) are affected by changes in sperm quality and the function throughout collection and preservation procedures. Proteome and metabolome alterations of sperm treated with the different procedures in goat, however, aren't fully understood. To this end, we sought to investigate the impacts of rectal probe electrostimulation (EE) and artificial vagina (AV) semen collection methods on the quality and the cryotolerance of goat sperm, with additional focus on proteomic and metabolomic analyses. Semen samples were collected from Yunshang black goats and categorized into four groups: fresh sperm collected via AV (XAZ), fresh sperm collected via EE (XEZ), frozen sperm post-AV collection (DAZ) and frozen sperm post-EE collection (DEZ). Four comparisons (XAZ vs. XEZ, DAZ vs. XAZ, DEZ vs. XEZ, DAZ vs. DEZ) were performed, respectively. This study first evaluated sperm motility, acrosome integrity, plasma membrane integrity, mitochondrial activity, and reactive oxygen species (ROS) levels. The results indicated that there were no significant differences in fresh sperm quality parameters between the EE and AV methods. However, notable differences emerged post-cryopreservation. Specifically, the AV method proved more advantageous in preserving the motility, integrities of acrosome and plasma membrane, mitochondrial activity of frozen sperm compared to the EE method. Through the multi-omics approaches, a total of 210 differentially abundant proteins (DAPs) related to sperm characteristics and function were identified across the four comparations. Moreover, 32 differentially abundant metabolites (DAMs) were detected. Comprehensive bioinformatics analysis underscored significant molecular pathways in the co-enrichment of DAPs and DAMs, particularly focusing on the citrate cycle, ROS, oxidative phosphorylation, and glycine, serine, and threonine metabolism etc. We elucidated the differential impacts of AV and EE collection methods on the quality and cryotolerance of goat semen from omics perspectives, which offer a critical foundation for further exploration into optimizing semen collection and cryopreservation techniques in goat breeding program.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Larbi Allai
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | | | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| |
Collapse
|
3
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
4
|
Khaledi S, Towhidi A, Movahedin M, Nikkhah M, Halvaei I. Evaluation of the effect of lecithin and nanolecithin in repairing membrane damage, maintaining membrane integrity, and improving human sperm function in the freezing-thawing process. J Assist Reprod Genet 2024; 41:3133-3146. [PMID: 39316329 PMCID: PMC11621290 DOI: 10.1007/s10815-024-03258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
PURPOSE Our study aimed to evaluate the effects of lecithin nanoparticles on sperm quality during cryopreservation. METHODS In phase one, sperm-freezing media were prepared with lecithin concentrations (0.5%, 1%, and 2%) and lecithin nanoparticles of various sizes (50-100, 100-200, and ≥ 200 nm). Post-thaw, sperm motility, viability, mitochondrial membrane potential (MMP), lipid peroxidation (measured by malondialdehyde, MDA), and DNA fragmentation were evaluated. In phase two, the acrosomal reaction was assessed in the best and worst-performing groups from phase one. DiI labeling detected interactions between lecithin nanoparticles and the sperm membrane. Field emission scanning electron microscopy (FESEM) examined the sperm membrane's surface structure and lecithin binding sites. Atomic force microscopy (AFM) assessed height differences in the sperm surface layer in the best-performing group from phase one. RESULTS The group treated with 1% lecithin nanoparticles (50-100 nm) showed significantly increased viability post-thaw compared to other groups, with reduced DNA fragmentation and MDA levels. While motility significantly decreased in all groups compared to before freezing levels, lower concentrations, and smaller particle sizes yielded better results. MMP also significantly decreased across all groups with no significant differences. The acrosomal reaction significantly decreased with 1% lecithin nanoparticles (50-100 nm) compared to the 2% (≥ 200 nm) group. DiI-labeled nanoparticles and FESEM revealed that lecithin nanoparticles primarily bound to and infiltrated the sperm membrane, particularly in the head and postacrosomal regions. CONCLUSIONS Lecithin nanoparticles effectively bind to the sperm membrane, protecting it during the freeze-thaw process and improving sperm viability.
Collapse
Affiliation(s)
- Sajed Khaledi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Nasr Bridge, Tehran, 14155-331, Iran
| | - Armin Towhidi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Nasr Bridge, Tehran, 14155-331, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Avenue, Nasr Bridge, Tehran, 14155-331, Iran.
| |
Collapse
|
5
|
Kargari M, Sharafi M, Torshizi MAK, Hezavehei M, Zanganeh Z. Effects of hydroxytyrosol on post-thaw quality of rooster sperm. Reprod Domest Anim 2024; 59:e14588. [PMID: 38822558 DOI: 10.1111/rda.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Semen cryopreservation is one of the most important reproduction techniques in the livestock and poultry industry. Cryopreservation induces cold stress, generating reactive oxygen species (ROS) and oxidative stress causing structural and biochemical damages in sperm. In this study, we evaluated the effects of the hydroxytyrosol (HT), as an antioxidant, at the concentrations of 0, 25, 50, and 100 μg/mL on post-thaw semen quality metrics in rooster. Semen samples were collected twice a week from 10 roosters (29 weeks), processed and frozen according to experimental groups. Different quality parameters, including total motility, progressive motility, viability, morphology, membrane integrity, and malondialdehyde were measured after thawing. Results showed that 25 and 50 μg/mL of HT produced the highest percentage of total motility (51.01 ± 2.19 and 50.15 ± 2.19, respectively) and progressive motility (35.74 ± 1.34 and 35.15 ± 1.34, respectively), membrane integrity (48.00 ± 2.18 and 46.75 ± 2.18, respectively) as well as viability (53.00 ± 2.17 and 52.50 ± 2.17, respectively) compared with the other groups (p < .05). The group with 25 μg/mL of HT showed the lowest significant (p < .05) MDA concentration (1.81 ± 0.25). Our results showed that the effect of HT was not dose-dependent and optimum concentration of HT could improve functional parameters of rooster sperm after freezing-thawing. These findings suggest that HT may have protective effects on the rooster sperm during the freezing-thawing process.
Collapse
Affiliation(s)
- Mohammad Kargari
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zeynab Zanganeh
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Zandiyeh S, Kalantari H, Fakhri A, Nikkhah M, Janani BJ, Sabbaghian M. A review of recent developments in the application of nanostructures for sperm cryopreservation. Cryobiology 2024; 115:104890. [PMID: 38555012 DOI: 10.1016/j.cryobiol.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
In the 1970s, sperm cryopreservation was presented as a unique route to fertility preservation. The ability to cryopreserve sperm from all species is challenging. The sperm cryopreservation process encompasses various cellular stresses such as increased osmotic pressure, ice crystal formation, and thermal shock, therefore decreasing the quality of sperm. The nanostructures due to their inherent features such as reactivity, high uptake, active surface area, and antioxidant activity, have contributed to modifying freezing protocols. In this review, the current state of the art with regards to emerging applications of nanotechnology in sperm cryopreservation are reviewed, some of the most promising advances are summarized, and the limitations and advantages are comprehensively discussed.
Collapse
Affiliation(s)
- Saeed Zandiyeh
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Hamid Kalantari
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Fakhri
- Nanotechnology Laboratory, Nano Smart Science Institute, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
7
|
Davis EHS, Jones C, Coward K. Rethinking the application of nanoparticles in women's reproductive health and assisted reproduction. Nanomedicine (Lond) 2024; 19:1231-1251. [PMID: 38686941 PMCID: PMC11285225 DOI: 10.2217/nnm-2023-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Nanoparticles and nanotechnology may present opportunities to revolutionize the prevention, treatment and diagnosis of a range of reproductive health conditions in women. These technologies are also used to improve outcomes of assisted reproductive technology. We highlight a range of these potential clinical uses of nanoparticles for polycystic ovary syndrome, endometriosis, uterine fibroids and sexually transmitted infections, considering in vitro and in vivo studies along with clinical trials. In addition, we discuss applications of nanoparticles in assisted reproductive technology, including sperm loading, gamete and embryo preservation and preventing preterm birth. Finally, we present some of the concerns associated with the medical use of nanoparticles, identifying routes for further exploration before nanoparticles can be applied to women's reproductive health in the clinic.
Collapse
Affiliation(s)
- Emily HS Davis
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Celine Jones
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Women’s Centre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
8
|
You H, Han W. Identification of necroptosis-related diagnostic biomarkers in coronary heart disease. Heliyon 2024; 10:e30269. [PMID: 38726127 PMCID: PMC11079106 DOI: 10.1016/j.heliyon.2024.e30269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Background The implication of necroptosis in cardiovascular disease was already recognized. However, the molecular mechanism of necroptosis has not been extensively studied in coronary heart disease (CHD). Methods The differentially expressed genes (DEGs) between CHD and control samples were acquired in the GSE20681 dataset downloaded from the GEO database. Key necroptosis-related DEGs were captured and ascertained by bioinformatics analysis techniques, including weighted gene co-expression network analysis (WGCNA) and two machine learning algorithms, while single-gene gene set enrichment analysis (GSEA) revealed their molecular mechanisms. The diagnostic biomarkers were selected via receiver operating characteristic (ROC) analysis. Moreover, an analysis of immune elements infiltration degree was carried out. Authentication of pivotal gene expression at the mRNA level was investigated in vitro utilizing quantitative real-time PCR (qRT-PCR). Results A total of 94 DE-NRGs were recognized here, among which, FAM166B, NEFL, POLDIP3, PRSS37, and ZNF594 were authenticated as necroptosis-related biomarkers, and the linear regression model based on them presented an acceptable ability to different sample types. Following regulatory analysis, the ascertained biomarkers were markedly abundant in functions pertinent to blood circulation, calcium ion homeostasis, and the MAPK/cAMP/Ras signaling pathway. Single-sample GSEA exhibited that APC co-stimulation and CCR were more abundant, and aDCs and B cells were relatively scarce in CHD patients. Consistent findings from bioinformatics and qRT-PCR analyses confirmed the upregulation of NEFL and the downregulation of FAM166B, POLDIP3, and PRSS37 in CHD. Conclusion Our current investigation identified 5 necroptosis-related genes that could be diagnostic markers for CHD and brought a novel comprehension of the latent molecular mechanisms of necroptosis in CHD.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Wenqi Han
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| |
Collapse
|
9
|
Fouladvandi R, Masoudi AA, Totonchi M, Hezavehei M, Sharafi M. Effects of different extenders on epigenetic patterns and functional parameters of bull sperm during cryopreservation process. Reprod Domest Anim 2024; 59:e14570. [PMID: 38700367 DOI: 10.1111/rda.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
The cryopreservation process induces alterations in cellular parameters and epigenetic patterns in bull sperm, which can be prevented by adding cryoprotectants in the freezing extenders. The purpose of this study was to compare the protective effects of two extenders based on soybean lecithin (SLE) and egg yolk (EYE) on epigenetic patterns and quality parameters of sperm such as motility parameters, mitochondrial membrane integrity, DNA fragmentation, viability, and apoptotic-like changes of bull sperm after cryopreservation. Results demonstrated that cryopreservation significantly (p < .05) reduced the level of DNA global methylation, H3K9 histone acetylation, and H3K4 histone methylation in both frozen groups compared to the fresh sperm. Also, the level of H3K9 acetylation was lower in the frozen SLE group (21.2 ± 1.86) compared to EYE group (15.2 ± 1.86). In addition, the SLE frozen group had a higher percentage of viability, progressive motility, and linearity (LIN) in SLE frozen group compared to EYE frozen group. However, no difference was observed in mitochondrial membrane integrity and DNA fragmentation between SLE and EYE frozen groups. While soybean-lecithin-based extender showed some initial positive impacts of epigenetics and semen parameters, further investigations can provide useful information for better freezing.
Collapse
Affiliation(s)
- Razieh Fouladvandi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Research Center for Reproduction and Fertility, Faculty of Veterinary Medicine, Montreal University, Quebec, Canada
| | - Mohsen Sharafi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Semex Alliance, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Baharsaadi M, Hezavehei M, Shahverdi A, Halvaei I. Evaluation of the effects of hydroxytyrosol on human sperm parameters during cryopreservation. Cryobiology 2024; 114:104840. [PMID: 38104853 DOI: 10.1016/j.cryobiol.2023.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Human sperm cryopreservation is a routine procedure in assisted reproductive technology, but it has detrimental effects on different sperm parameters due to oxidative stress. Our objective was to assess the impacts of hydroxytyrosol (HT), as an antioxidant, on human sperm parameters following cryopreservation. In the first phase, 20 normal human semen samples were cryopreserved using the rapid freezing method with different concentrations of HT including 0, 50, 100, 150, and 200 μg/mL. In the second phase, 20 normal semen samples were collected and cryopreserved with 50 and 100 μg/mL HT. The beneficial effects of HT were determined by evaluation of motility (computer-assisted sperm analysis; CASA), viability (Eosin-nigrosine stain), DNA integrity (sperm chromatic dispersion test, SCD), reactive oxygen species (DCF and DHE staining by flowcytometry) lipid peroxidation (malondialdehyde, MDA test) and mitochondrial membrane potential (JC1 staining by flowcytometry) of sperm after cryopreservation. After thawing, sperm motility had an increasing trend in 50 and 100 μg/mL HT groups in comparison with other groups, althought the difference was not significant. However, sperm viability was significantly increased at 50 and 100 μg/mL HT. Our data also showed that sperm DNA fragmentation was significantly decreased after thawing at 100 μg/mL in comparison with 0 and 50 μg/mL HT. However, the level of intracellular reactive oxygen species, lipid peroxidation and mitochondrial membrane potential were not significantly different between groups. Our results showed that HT may have protective effects on the viability and DNA integrity of human sperm during the freezing-thawing process.
Collapse
Affiliation(s)
- Mojtaba Baharsaadi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Moradi Gardeshi T, Shahandeh E, Tavakolpoor Saleh N, Karami S, Mirzaei Azandaryani Z, Mazaheri F, Mohammadi H. Evaluation of the effect of mitoquinone on functional parameters, DNA structure, and genes expression related to the apoptotic and antioxidants of human sperm after freezing-thawing. Mol Biol Rep 2024; 51:183. [PMID: 38261086 DOI: 10.1007/s11033-023-09020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVE Sperm freezing is considered as an effective way in assisted reproductive technology (ART) programs, it has detrimental effects on sperm function, due to the production of reactive oxygen species (ROS). This study aimed to investigate the potential of Mitoquinone (MitoQ) in inhibiting the production of mitochondrial ROS during sperm freezing. METHODS A total of 20 human normozoosperm samples were collected for this study. The samples were divided into four groups, each containing different concentrations of MitoQ (0, 0.2, 2, and 20 nM), and then subjected to the freezing process. After thawing, the sperm suspensions were evaluated for parameters including motility, morphology, acrosome integrity, adenosine triphosphate (ATP) level, intracellular ROS, viability, chromatin packaging, DNA denaturation, DNA fragmentation, as well as the expression of antioxidants (GPX, SOD) and apoptotic (Bax, Bcl2) genes. RESULTS The results showed that total and progressive mobility of sperms significantly increased in the 2 nM group, while significantly decreased in the 20 nM group (p ≤ 0.05). Sperm morphology did not significantly improve across all the tested concentrations (p ≥ 0.05). Intracellular ROS levels showed a significant decrease and increase in the concentrations of 2 and 20 nM, respectively (p ≤ 0.05). Furthermore, a significant increase was observed in viability, ATP, acrosome integrity, chromatin packaging, and non-denatured and non-fragmented DNA after treatment with 2 nM of MitoQ, compared with the control group (p ≤ 0.05). Regarding gene expressions, the relative expressions of oxidative stress genes were increased in the 2 nM group and decreased in the 20 nM group (p ≤ 0.05), while no significant difference was observed in the expressions of apoptotic genes compared with the control group (p ≥ 0.05). All the comparisons were made with respect to the control group. CONCLUSION Adding the optimal concentration of MitoQ (2 nM) to the sperm freezing medium not only improves sperm functional parameters and reduces DNA damages, but also stimulates the expression of antioxidant genes, leading to even greater benefits for sperm cryopreservation.
Collapse
Affiliation(s)
- Tohid Moradi Gardeshi
- Department of Veterinary Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Erfan Shahandeh
- Department of Biology, Islamic Azad University of Hamedan, Hamadan, Iran
| | - Nafiseh Tavakolpoor Saleh
- Department of Biophysics and Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Somayeh Karami
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Mirzaei Azandaryani
- Department of Midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahime Mazaheri
- Research and Clinical Center of Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hiwa Mohammadi
- Social Determinants of Health Research CenterBoroujerd School of Nursing, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
12
|
Farrokhi Z, Sharafi M, Hezavehei M, Torabi A, Shahverdi M, Rahimi S. The Effects of Glycerophospholipid Nanomicelles on the Cryotolerance of Frozen-Thawed Rooster Sperm. Biopreserv Biobank 2023; 21:593-598. [PMID: 36637861 DOI: 10.1089/bio.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Semen banking is an efficient method of artificial insemination for commercial breeders. However, the cryopreservation process induces severe damages to plasma membranes, which leads to reduced fertility potential of thawed sperm. The replacement of membrane lipids with oxidized membrane lipids repairs the cell membrane and improves its stability. The aim of this study was to investigate the effects of glycerophospholipid (GPL) nanomicelles on the cryosurvival of thawed rooster semen. Semen samples were collected from six 29-week Ross broiler breeder roosters, then mixed and divided into five equal parts. The samples were diluted with the Beltsville extender containing different concentrations of GPL according to the following groups: 0 (GPL-0), 0.1% (GPL-0.1), 0.5% (GPL-0.5), 1% (GPL-1), and 1.5% (GPL-1.5), then diluted semen was gradually cooled to 4°C during 3 hours and stored in liquid nitrogen. The optimum concentration of GPL was determined based on the quality parameters of thawed sperm. Our results showed sperm exposed to GPL-1 had significantly increased motion parameters and mitochondrial activity. The percentages of viability and membrane integrity were significantly higher in the GPL-1, and GPL-1.5 groups compared with the other groups (p < 0.05). Moreover, the lowest rate of apoptosis and lipid peroxidation were observed in the GPL-1 and GPL-1.5 groups in comparison with the frozen control group. Our findings indicated that membrane lipid replacement with GPL nanomicelles (1% and 1.5%) could substitute for damaged lipids in membranes and protect sperm cells against cryoinjury.
Collapse
Affiliation(s)
- Zahra Farrokhi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Torabi
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Maryam Shahverdi
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Nguyen HT, Do SQ, Athurupana R, Wakai T, Funahashi H. Rapid thawing of frozen bull spermatozoa by transient exposure to 70 °C improves the viability, motility and mitochondrial health. Anim Reprod 2023; 20:e20220127. [PMID: 38026001 PMCID: PMC10681132 DOI: 10.1590/1984-3143-ar2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/13/2023] [Indexed: 12/01/2023] Open
Abstract
Up to now, the definitive conclusion of the positive effects of rapid transient thawing at higher temperatures for shorter durations has not been obtained yet and is still under discussion due to some contradictory findings and limited assessment of post-thawed parameters. The purpose of the current study was to evaluate the effectiveness of rapid thawing in water at 70 °C by using various post-thawed parameters of frozen bull spermatozoa. Experiment 1, monitoring the change of temperature inside frozen bull straw thawed in water at different temperatures. Experiment 2, evaluation of various post-thawed characteristics of frozen bull spermatozoa thawed in water at different temperatures by using a computer-assisted sperm analysis, flow cytometry and immunocytochemistry. The time it took for the temperature inside the straw to warm up to 15 °C was nearly twice as faster when the straw was thawed in 70 °C water compared with 39 °C. Although there were differences among bulls, viability, motility, and mitochondrial membrane potential of spermatozoa thawed at 70 °C for 8 seconds and stabilized at 39 °C for 52 seconds were significantly higher than those of controls (thawed at 39 °C for 60 seconds) at 0 and 3 h after thawing. Just after thawing, however, there were no differences in acrosome integrity and distribution of phospholipase C zeta1, whereas mitochondrial reactive oxygen species production was significantly lower in spermatozoa thawed at 70 °C. From these results, we conclude that rapid thawing at 70 °C and then stabilization at 39 °C significantly improves viability, motility and mitochondrial health of bull spermatozoa rather than conventional thawing at 39 °C. The beneficial effect of rapid transient thawing could be due to shorter exposure to temperatures outside the physiological range, consequently maintaining mitochondrial health.
Collapse
Affiliation(s)
- Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Department of Animal Production, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Rukmali Athurupana
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Effects of Heat Stress on Motion Characteristics and Metabolomic Profiles of Boar Spermatozoa. Genes (Basel) 2022; 13:genes13091647. [PMID: 36140814 PMCID: PMC9498559 DOI: 10.3390/genes13091647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Heat stress (HS) commonly causes boar infertility and economic loss in the swine industry. The heat tolerance of boar semen presents obvious differences among individuals. However, whether heat stress affects motion characteristics and the metabolome profile in boar sperm remains unclear. In this study, the kinetic features of sperm from HS and non-HS (NHS) groups were detected by computer-assisted sperm analysis, and metabolomic profiling was performed by liquid chromatography−mass spectrometry. The results showed that heat stress significantly reduced sperm motility, average path distance (APD), straight-line velocity (VSL), straightness (STR), and linearity (LIN) (p < 0.05). A total of 528 and 194 metabolites in sperm were identified in the positive and negative ion modes, respectively. Lipids and lipid-like molecules, and organic acids and derivatives were major metabolic classes in the two modes. Furthermore, we separately identified 163 and 171 differential metabolites in the two modes between HS and NHS groups. Clustering analysis further revealed significant metabolic changes in sperm after heat stress. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that differential metabolites in the two modes were enriched in glycerophospholipid, choline, and alanine, aspartate, and glutamate and lysine metabolism. Taken together, these results demonstrate that heat stress can alter the motion characteristics and metabolomic profiles of boar sperm.
Collapse
|
15
|
Choi HW, Jang H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr Issues Mol Biol 2022; 44:4028-4044. [PMID: 36135188 PMCID: PMC9497981 DOI: 10.3390/cimb44090276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cryopreservation of gametes and embryos, a technique widely applied in human infertility clinics and to preserve desirable genetic traits of livestock, has been developed over 30 years as a component of the artificial insemination process. A number of researchers have conducted studies to reduce cell toxicity during cryopreservation using adjuvants leading to higher gamete and embryo survival rates. Melatonin and Nanoparticles are novel cryoprotectants and recent studies have investigated their properties such as regulating oxidative stresses, lipid peroxidation, and DNA fragmentation in order to protect gametes and embryos during vitrification. This review presented the current status of cryoprotectants and highlights the novel biomaterials such as melatonin and nanoparticles that may improve the survivability of gametes and embryos during this process.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Hoon Jang
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-3359
| |
Collapse
|
16
|
Mehdipour M, Daghigh-Kia H, Najafi A, Mehdipour Z, Mohammadi H. Protective effect of rosiglitazone on microscopic and oxidative stress parameters of ram sperm after freeze-thawing. Sci Rep 2022; 12:13981. [PMID: 35978030 PMCID: PMC9385643 DOI: 10.1038/s41598-022-18298-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to investigate the effects of rosiglitazone on ram semen after cryopreservation on the quality of thawed sperm. Sperm motility, membrane functionality, viability, total abnormality, acrosome membrane integrity, mitochondrial activity, reactive oxygen species production, ATP content and apoptotic features were assessed after thawing. Rosiglitazone at concentration of 60 µM resulted in the highest (P < 0.05) total motility, progressive motility and straight-line velocity. The percentages of average path velocity and curvilinear velocity were greater in the 60 µM group. Different concentrations of rosiglitazone did not have significant effects on amplitude of the lateral head displacement, linearity and straightness. The highest amounts of membrane functionality and mitochondrial activity after freeze-thawing were observed in groups containing 60 µM. By increasing the rosiglitazone level to 80 µM, no positive effect was observed in most of the evaluated parameters. The lowest ROS concentration was recorded in 60 µM rosiglitazone group (P < 0.05). The group containing 60 µM rosiglitazone also produced the lowest significant percentage of apoptosis-like changes and dead sperm. A greater (P < 0.05) percentage of acrosome integrity in frozen-thawed spermatozoa was observed in the 60 µM rosiglitazone group. There was no significant difference between 40 and 60 µM rosiglitazone in intact acrosome of ram thawed semen. The result showed that supplementation in ram semen extender with rosiglitazone had a positive role in the regulation of ram sperm motility and had strong protective effect on the sperm membrane and acrosome integrity.
Collapse
Affiliation(s)
- Mahdieh Mehdipour
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Daghigh-Kia
- Department of Animal Science, College of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Abouzar Najafi
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Zohreh Mehdipour
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Hossein Mohammadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| |
Collapse
|
17
|
Proteomic analysis of rabbit fresh and cryopreserved semen provides an important insight into molecular mechanisms of cryoinjuries to spermatozoa. Theriogenology 2022; 191:77-95. [DOI: 10.1016/j.theriogenology.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
|
18
|
Ghantabpour T, Nashtaei MS, Nekoonam S, Rezaei H, Amidi F. The Effect of Astaxanthin on Motility, Viability, Reactive Oxygen Species, Apoptosis, and Lipid Peroxidation of Human Spermatozoa During the Freezing-Thawing Process. Biopreserv Biobank 2022; 20:367-373. [PMID: 35984938 DOI: 10.1089/bio.2021.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatozoa is a general procedure to preserve viable sperm for an indefinite period. Despite the efficiency of sperm cryopreservation, excessive reactive oxygen species (ROS) production during cryopreservation can induce structural and functional changes in spermatozoa. Also, cryopreservation has been shown to decrease the spermatozoa's antioxidant activity inducing them to be more sensitive to damage caused by ROS. Experimental evidence suggests that astaxanthin (AXT) has essential activities such as antioxidant, antibacterial, and antithrombotic properties. Therefore, this study aimed to evaluate the effect of AXT on the sperm quality of healthy men during freezing-thawing. In the first phase, 10 semen samples with different concentrations of AXT (0.0, 0.5, 1, and 2 μM) were cryopreserved to achieve an optimal dose of AXT. Then, motility, viability, and phosphatidylserine (PS) externalization were evaluated. In the second phase, 25 samples were collected and divided into 3 groups: fresh group, control group (untreated frozen-thawed samples), and AXT group (treated frozen-thawed with AXT). Then, samples were cryopreserved in freezing media supplemented with or without the optimal concentration of AXT (1 μM). After thawing, the levels of sperm parameters, including motility (using a computer-assisted sperm analyzer), viability (eosin-nigrosin), early apoptotic change (annexin V/propidium iodide), ROS (flow cytometry), and lipid peroxidation (LPO) (using enzyme-linked immunosorbent assay), were evaluated. Our results showed that the addition of 1 μM AXT to sperm freezing media improved all parameters of sperm motility and viability (p ≤ 0.05). Furthermore, it could reduce the levels of ROS parameters (intracellular hydrogen peroxide and superoxide) compared with the control group (p ≤ 0.05). Also, AXT significantly decreased the level of PS externalization (p ≤ 0.05) and LPO (p ≤ 0.05) after the freezing-thawing process. In conclusion, our findings demonstrated that human semen treatment with 1 μM AXT before the freezing-thawing process has protective effects against oxidative stress and could diminish the destructive effects of this process on sperm quality.
Collapse
Affiliation(s)
- Taha Ghantabpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Khosrozadeh F, Karimi A, Hezavehei M, Sharafi M, Shahverdi A. Preconditioning of bull semen with sub-lethal oxidative stress before cryopreservation: Possible mechanism of mitochondrial uncoupling protein 2. Cryobiology 2021; 104:63-69. [PMID: 34748771 DOI: 10.1016/j.cryobiol.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022]
Abstract
Preconditioning of sperm using sub-lethal oxidative stress before cryopreservation is an innovative approach that can improve sperm cryo-survival. Mitochondrial uncoupling proteins (UCPs) are critical in reducing ROS level during stress conditions. The aim of the current study was to investigate whether mild sub-lethal stress induced by low concentrations of nitric oxide and hydrogen peroxide has a protective effect on quality parameters of post-thaw bull semen through modulations of mitochondrial uncoupling protein 2 (UCP2) expression. Semen samples were collected from 6 mature Holstein bulls, then mixed and divided into 8 aliquots: fresh, frozen control and frozen groups treated with NO: 0.1 (NO-0.1), 1(NO-1), 10 μM (NO-10), and H2O2: 0.1(H2O2-0.1), 1(H2O2-1) and 10μM (H2O2-10). A significantly higher percentage of total motility, progressive motility and viability was observed in NO-1 and H2O2-10 compared to the other frozen groups (P < 0.05). Sperm exposed to 1 μM NO and 10μM H2O2 showed significantly increased percentages of mitochondria activity and membrane integrity (P < 0.05). Moreover, the lowest percentage of apoptotic percentage was observed in the NO-1 and H2O2-10 in comparison to the other frozen groups. In addition, the expression level of UCP2 was higher in the NO-1 and H2O2-10 compared to the other groups (P < 0.05). It can be concluded that stress preconditioning of bull sperm before cryopreservation can increase UCP2 expression of sperm, that can play a protective role against cryoinjury after thawing.
Collapse
Affiliation(s)
- Fatemeh Khosrozadeh
- Department of Animal Science, University of Tabriz, Tabriz, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Karimi
- Department of Animal Science, University of Tabriz, Tabriz, Iran.
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|