1
|
Kumar M, Sethi P, Shiekmydeen J, Rastogi S, Mahmood S, Chopra S, Thomas S, Kumar D, Bhatia A. A recent review on smart sensor-integrated wound dressings: Real-time monitoring and on-demand therapeutic delivery. Int J Biol Macromol 2025; 313:144251. [PMID: 40381780 DOI: 10.1016/j.ijbiomac.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Wound management is a critical aspect of healthcare, necessitating continuous monitoring and timely interventions to ensure optimal healing outcomes. In recent years, the integration of sensor technology into wound dressings has emerged as a transformative approach, enabling real-time monitoring of healing parameters and facilitating on-demand treatment delivery. Sensor-based wound dressings leverage various sensing modalities, including temperature, pH, moisture, oxygen, and other biochemical markers, to provide comprehensive insights into the wound microenvironment. These dressings are equipped with miniaturized sensors capable of transmitting the data wirelessly, facilitating remote monitoring and timely interventions. Moreover, some advanced dressings incorporate responsive drug delivery systems, enabling the on-demand release of therapeutics based on real-time sensor feedback. Additionally, the incorporation of on-demand treatment mechanisms allows targeted delivery of therapeutics based on the specific needs of the wound, further enhancing the efficacy of the healing process. This comprehensive approach improves patient outcomes by promoting faster and more effective wound healing and reducing the burden through streamlined monitoring and treatment protocols. This paper presents an overview of recent advancements in sensor technology applied to wound healing, focusing on their role in monitoring wound parameters and delivering targeted therapy. These sensors leverage temperature, pH, and glucose sensing modalities to provide comprehensive insights into the healing process.
Collapse
Affiliation(s)
- Mohit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Pranshul Sethi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Jailani Shiekmydeen
- Formulation R&D, Alpha Pharma Industries, King Abdullah Economic City (KAEC), Rabigh, Saudi Arabia
| | - Sonali Rastogi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, PathumWan, Bangkok, Thailand
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281 406, U. P., India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
2
|
Huang J, Huang H, Wang Y, Xu B, Lin M, Han S, Yuan Y, Wang Y, Shuai X. Retinol-binding protein-hijacking nanopolyplex delivering siRNA to cytoplasm of hepatic stellate cell for liver fibrosis alleviation. Biomaterials 2023; 299:122134. [PMID: 37167895 DOI: 10.1016/j.biomaterials.2023.122134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Activated hepatic stellate cell (aHSC) is mainly responsible for deposition of extracellular collagen matrix that causes liver fibrosis. Although several siRNAs adequately inhibited HSC activation in vitro, they were demonstrated poor RNAi efficiency in vivo. Developing HSC-targeting and cytoplasmic delivery nanocarrier is highly essential to acquire a desirable siRNA therapeutic index for anti-liver fibrosis. Here, we developed a unique crosslinking nanopolyplex (called T-C-siRNA) modified by vitamin A (VA) with the well-designed natures, including the negative charge, retinol-binding protein (RBP) hijacking, and cytoplasmic siRNA release in response to ROS and cis diol molecules. The nanopolyplex was given a yolk-shell-like shape, camouflage ability in blood, and HSC-targeting capability by hijacking the endogenous ligand RBP via surface VA. PDGFR-β siRNA (siPDGFR-β) supplied via T-C-siPDGFR-β nanopolyplex dramatically reduced HSC activation and its production of pro-fibrogenic proteins in vitro and in vivo. Furthermore, T-C-siPDGFR-β nanopolyplex effectively alleviated CCl4-induced liver injury, decreased hepatic collagen sediment, and recovered liver function in mice. This study provides a sophisticated method for HSC-targeting cytoplasmic RNA delivery using endogenous ligand hijacking and dual sensitivity of ROS and cis diol compounds.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Bin Xu
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Minzhao Lin
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Huang W, Wu J, Huang Z, Zhang D, Chen F, Liu C. A self-gelling starch-based sponge for hemostasis. J Mater Chem B 2023; 11:1331-1343. [PMID: 36655482 DOI: 10.1039/d2tb02224a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Uncontrolled bleeding remains one of the direct causes of high mortality. There is an urgent need for developing emergency hemostats capable of coping with uncontrolled bleeding. The commercial starch-based hemostatic powder (PerClot®) requires compression during application, which limits its application in hemostasis of irregular and non-compressed wounds. Herein, a boronic acid-modified thiol starch sponge (St-SP sponge) with self-gelling properties was developed for hemorrhage control. The results show that the St-SP sponge could quickly absorb blood, self-gel and self-heal to seal the bleeding sites. In addition, the St-SP sponge can rapidly initiate the coagulation cascade and promote the adhesion and aggregation of erythrocytes and platelets. The St-SP sponge exhibited significantly improved in vitro and in vivo hemostatic abilities as compared with PerClot. Notably, the St-SP sponge attained complete hemostasis without any compression in 61.5 s and made a great difference compared to PerClot (169 s) for the irregular wound constructed on the rabbit liver. In addition, the St-SP sponge had good hemocompatibility and cytocompatibility. It turns out that the newly developed St-SP sponge is a promising material for first-aid hemostasis of irregular and non-compressed wounds.
Collapse
Affiliation(s)
- Wenjie Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Juan Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenhua Huang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dong Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China. .,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Liu W, Wang X, Zhou D, Fan X, Zhu J, Liu X. A Dioscorea opposita Thunb Polysaccharide-Based Dual-Responsive Hydrogel for Insulin Controlled Release. Int J Mol Sci 2022; 23:ijms23169081. [PMID: 36012342 PMCID: PMC9409491 DOI: 10.3390/ijms23169081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
A novel hydrogel (DOP/PEI-PBA) based on the “three-component” reaction of 2-formylphenylboric acid (2-FPBA), the primary amine group of polyethyleneimine (PEI) and the cis-o-dihydroxy groups of Dioscorea opposita Thunb polysaccharide (DOP) was designed in this work. The hydrogel can be easily prepared by simply mixing the three reactants at room temperature. The hydrogel had dual responsiveness to glucose and pH, and can realize the controllable release of insulin. Moreover, the hydrogel combining insulin and DOP can inhibit the reactive oxygen species (ROS) level and malondialdehyde (MDA) content, and promote glucose consumption as well as the level of superoxide dismutase (SOD), in high-glucose-induced injury in HL-7702 cells, which reflects the synergistic effect of insulin and DOP to protect hepatocytes from oxidative stress at the same time. Further in vitro cytotoxicity studies showed that the hydrogel had good biocompatibility and no obvious toxicity to cells. These indicate that the prepared hydrogel (DOP/PEI-PBA) can be expected to be applied in the clinical treatment of insulin deficiency in diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jinhua Zhu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| | - Xiuhua Liu
- Correspondence: (J.Z.); (X.L.); Tel.: +86-371-23881589 (J.Z.)
| |
Collapse
|
5
|
A Multiple-Stimuli-Responsive Amphiphilic Copolymer for Antifouling and Antibacterial Functionality via a “Resistance–Kill–Release” Mechanism. Molecules 2022; 27:molecules27165059. [PMID: 36014312 PMCID: PMC9416764 DOI: 10.3390/molecules27165059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, polymers with stimuli-responsive properties have been increasingly reported on due to their diverse applications. However, most of the studies have only focused on the performance of polymers under specific scenarios. The laws of changes in the properties in response to various external stimuli have been less systematically and quantitatively studied. In this paper, we prepared an amphiphilic polymer (PadaMX and PAdaM3QA−X) with temperature-, pH-, ion-, and β-cyclodextrin (β-CD)-responsive properties. According to the cloud point tested by the UV-Vis method, the lower critical soluble temperature (LCST) of PAdaM3QA−10% was more sensitive to a change in pH and less sensitive to a change in ions compared with PadaM3 due to quaternized side chains with a stronger intramolecular mutual repulsion. We then fabricated the coatings with responsive properties by immobilizing the adamantyl groups on β-CD-modified surfaces. The hydrophilicity of the coatings was improved after quaternization, as proven by the water contact angle (WCA) measurement. The antifouling and antibacterial performance was further evaluated via the fluorescence intensity of bovine serum albumin (BSA) adsorbed on the surfaces and the spread plate method. A 78.4% BSA desorption rate and a 96.8% sterilization rate were achieved by the PAdaM3QA−10% coating. In summary, this work prepared a multiple-stimuli-responsive amphiphilic copolymer for antifouling and antibacterial functionality via a “resistance–kill–release” mechanism.
Collapse
|
6
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
7
|
Shi K, Yang X, Xu J, Sha D, Wang B, Liu X, Liu Z, Ji X. Preparation of polyvinyl alcohol formaldehyde-g-poly(2-(dimethylamino)ethyl methacrylate) macroporous hydrogels and their dual thermo/pH-responsive behavior and antibacterial performance. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Hu Z, Wang H, Li L, Wang Q, Jiang S, Chen M, Li X, Shaotong J. pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Res Int 2021; 147:110532. [PMID: 34399510 DOI: 10.1016/j.foodres.2021.110532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
This study demonstrates a pH-responsive antibacterial film based on polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin (PVA/PAA-AEP) for intelligent food packaging. The thermal, mechanical, barrier and light transmittance properties of PVA/PAA are enhanced by PAA presence of ≤6%. The interactions between PVA and PAA were hydrogen and ester bonds. The pH-responsive characteristic is dependent on the protonation/deprotonation tendency of the carboxylic groups on PAA in acidic/alkaline environment. The PVA/PAA3 is selected for the incorporation of AEP and its pH-responsive swelling follows Ritger-Peppas and Schott second-order models. The AEP is hydrogen bonded with the matrix of PVA/PAA3 and the release of AEP is pH-responsive and a rate-limiting step following the First-order model. With pH decrease, the predominant release control was gradually changing from polymer relaxation to Fick diffusion. The PVA/PAA3-AEP films demonstrate AEP content dependent antioxidant and antimicrobial activities. Furthermore, the antibacterial efficiency against Listeria monocytogenes and Staphylococcus aureus is significantly better than Escherichia coli. The target film PVA/PAA3-AEP3 can effectively prolong the shelf-life of pork (TVB-N < 25 mg/100 g) by 4 days at 25 °C, suggesting its great potential in intelligent food packaging.
Collapse
Affiliation(s)
- Zheng Hu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| | - Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Suwei Jiang
- Department of Biological and Environmental Engineering, Hefei University, 230601 Hefei, Anhui, PR China
| | - Minmin Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000 Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| | - Jiang Shaotong
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| |
Collapse
|
9
|
Gao Y, Deng A, Wu X, Sun C, Qi C. Injectable multi-responsive hydrogels cross-linked by responsive macromolecular micelles. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Ofridam F, Tarhini M, Lebaz N, Gagnière É, Mangin D, Elaissari A. pH
‐sensitive polymers: Classification and some fine potential applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5230] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabrice Ofridam
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Émilie Gagnière
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Denis Mangin
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, ISA UMR 5280 Villeurbanne France
| |
Collapse
|
11
|
Yu Y, Yang Z, Ren S, Gao Y, Zheng L. Multifunctional hydrogel based on ionic liquid with antibacterial performance. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Xian C, Yuan Q, Bao Z, Liu G, Wu J. Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Estrada-Villegas GM, González-Pérez G, Bucio E. Adsorption and release of caffeine from smart PVDF polyampholyte membrane. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00730-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Recent Advances in Phenylboronic Acid-Based Gels with Potential for Self-Regulated Drug Delivery. Molecules 2019; 24:molecules24061089. [PMID: 30893913 PMCID: PMC6470492 DOI: 10.3390/molecules24061089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/02/2022] Open
Abstract
Glucose-sensitive drug platforms are highly attractive in the field of self-regulated drug delivery. Drug carriers based on boronic acid (BA), especially phenylboronic acid (PBA), have been designed for glucose-sensitive self-regulated insulin delivery. The PBA-functionalized gels have attracted more interest in recent years. The cross-linked three-dimensional (3D) structure endows the glucose-sensitive gels with great physicochemical properties. The PBA-based platforms with cross-linked structures have found promising applications in self-regulated drug delivery systems. This article summarizes some recent attempts at the developments of PBA-mediated glucose-sensitive gels for self-regulated drug delivery. The PBA-based glucose-sensitive gels, including hydrogels, microgels, and nanogels, are expected to significantly promote the development of smart self-regulated drug delivery systems for diabetes therapy.
Collapse
|
16
|
Abstract
Stimuli-responsive materials undergo triggered changes when presented with specific environmental cues. These dynamic systems can leverage biological signals found locally within the body as well as exogenous cues administered with spatiotemporal control, providing powerful opportunities in next-generation diagnostics and personalized medicine. Here, we review the synthetic and strategic advances used to impart diverse responsiveness to a wide variety of biomaterials. Categorizing systems on the basis of material type, number of inputs, and response mechanism, we examine past and ongoing efforts toward endowing biomaterials with customizable sensitivity. We draw an analogy to computer science, whereby a stimuli-responsive biomaterial transduces a set of inputs into a functional output as governed by a user-specified logical operator. We discuss Boolean and non-Boolean operations, as well as the various chemical and physical modes of signal transduction. Finally, we examine current limitations and promising directions in the ongoing development of programmable stimuli-responsive biomaterials.
Collapse
Affiliation(s)
- Barry A Badeau
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA; .,Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
17
|
Oda H, Ishihara K. Determination of association constants between water-soluble phospholipid polymer bearing phenylboronic acid group and polyol compounds for reversible formation of three-dimensional networks. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym Chem 2019. [DOI: 10.1039/c9py00890j] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Light-controlling of phase separation in temperature-responsive polymer solutions by using light-responsive materials for reversible controlling physical and chemical properties of the media with an out-of-system stimulus with tunable intensity.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| | - Bahareh Razavi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| |
Collapse
|
19
|
Grinberg VY, Burova TV, Grinberg NV, Papkov VS, Khokhlov AR. Conformation-Dependent Affinity of Thermoresponsive Biodegradable Hydrogels for Multifunctional Ligands: A Differential Scanning Calorimetry Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14378-14387. [PMID: 30392359 DOI: 10.1021/acs.langmuir.8b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated energetics of binding of multifunctional pyranine ligands to hydrogels of the cross-linked poly(methoxyethylaminophosphazene) (PMOEAP) from data on the thermotropic volume phase transition of the gels by means of high-sensitivity differential scanning calorimetry. Dependences of the transition temperature, enthalpy, and width on the concentration of pyranines were obtained, and the excess transition free energy as a function of the pyranine concentration was calculated. We found that the affinity of the gels for the pyranine ligands increased very significantly upon the gel collapse. The intrinsic binding constants and free energies of binding of the ligands to the gels in the collapsed state were estimated from the DSC data. They revealed a significant increase in the hydrogel affinity for pyranines proportional to the number of anionic groups in the ligand structure. The affinity of the PMOEAP hydrogels for the multifunctional ligands was not affected by an increase in the cross-linking density of the gels and only slightly reduced by physiological salt concentrations.
Collapse
Affiliation(s)
- Valerij Y Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences , Kosygin St. 4 , Moscow 119991 , Russian Federation
| | - Tatiana V Burova
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Natalia V Grinberg
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Vladimir S Papkov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , Vavilov St. 28 , Moscow 119991 , Russian Federation
| | - Alexei R Khokhlov
- Physics Department , M.V. Lomonosov Moscow State University , Vorobyevy Gory , Moscow 119334 , Russian Federation
| |
Collapse
|
20
|
Yilmaz E, Guzel Kaya G, Deveci H. Preparation and characterization of pH-sensitive semi-interpenetrating network hybrid hydrogels with sodium humate and kaolin. APPLIED CLAY SCIENCE 2018; 162:311-316. [DOI: 10.1016/j.clay.2018.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Amaral AJR, Emamzadeh M, Pasparakis G. Transiently malleable multi-healable hydrogel nanocomposites based on responsive boronic acid copolymers. Polym Chem 2018. [DOI: 10.1039/c7py01202k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic multi-responsive gel nanocomposites with rapid self-healing and cell encapsulation properties are presented.
Collapse
Affiliation(s)
| | - Mina Emamzadeh
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | | |
Collapse
|
22
|
Kesavan MP, Ayyanaar S, Vijayakumar V, Dhaveethu Raja J, Annaraj J, Sakthipandi K, Rajesh J. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application. J Biomed Mater Res A 2017; 106:1039-1050. [PMID: 29218783 DOI: 10.1002/jbm.a.36306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/03/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023]
Abstract
The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018.
Collapse
Affiliation(s)
- Mookkandi Palsamy Kesavan
- Mohamed Sathak Engineering College, Kilakarai, Chemistry Research Centre, Ramanathapuram, Tamilnadu, 623 806, India
| | - Srinivasan Ayyanaar
- Mohamed Sathak Engineering College, Kilakarai, Chemistry Research Centre, Ramanathapuram, Tamilnadu, 623 806, India
| | | | - Jeyaraj Dhaveethu Raja
- Mohamed Sathak Engineering College, Kilakarai, Chemistry Research Centre, Ramanathapuram, Tamilnadu, 623 806, India
| | - Jamespandi Annaraj
- Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, 625 021, India
| | - Kathiresan Sakthipandi
- Department of Physics, Sethu Institute of Technology, Kariapatti, Virudhunagar (D.T.), Tamilnadu, 626 115, India
| | - Jegathalaprathaban Rajesh
- Mohamed Sathak Engineering College, Kilakarai, Chemistry Research Centre, Ramanathapuram, Tamilnadu, 623 806, India
| |
Collapse
|
23
|
Kawatani R, Nishiyama Y, Kamikubo H, Kakiuchi K, Ajiro H. Aggregation Control by Multi-stimuli-Responsive Poly(N-vinylamide) Derivatives in Aqueous System. NANOSCALE RESEARCH LETTERS 2017; 12:461. [PMID: 28738665 PMCID: PMC5520822 DOI: 10.1186/s11671-017-2221-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Thermal and photo responsive copolymer based on N-vinylamide backbone was designed. Methoxyethyl group and azobenzene were selected to improve hydrophilicity and photoresponsive moieties, respectively. The N-(methoxyethyl)-N-vinylformamide was synthesized and copolymerized with N-vinylformamide by free radical polymerization. In order to control the nanosized structures, poly(N-vinylformamide) derivatives bearing azobenzene at the N-position near to the vinyl polymer main chain were synthesized by polymer reaction with the poly(N-vinylformamide-co-N-(methoxyethyl)-N-vinylformamide) and azobenzene. Aggregation size of the multi-stimuli-responsive polymer was controlled by preparation of the hydrophobic interaction at around N-position.
Collapse
Affiliation(s)
- Ryo Kawatani
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192 Japan
| | - Yasuhiro Nishiyama
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192 Japan
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192 Japan
| | - Kiyomi Kakiuchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192 Japan
| | - Hiroharu Ajiro
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192 Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192 Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
24
|
Orakdogen N, Sanay B. Dynamical modeling and experimental aspects of multi-responsive hydroxy-functional methacrylate-based gels with tunable swelling induced by multivalent ions. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Marcisz K, Romanski J, Stojek Z, Karbarz M. Environmentally sensitive hydrogel functionalized with electroactive and complexing-iron(III) catechol groups. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamil Marcisz
- Faculty of Chemistry; University of Warsaw; Warsaw 02-093 Poland
| | - Jan Romanski
- Faculty of Chemistry; University of Warsaw; Warsaw 02-093 Poland
| | - Zbigniew Stojek
- Faculty of Chemistry; University of Warsaw; Warsaw 02-093 Poland
| | - Marcin Karbarz
- Faculty of Chemistry; University of Warsaw; Warsaw 02-093 Poland
| |
Collapse
|
26
|
Brooks WLA, Vancoillie G, Kabb CP, Hoogenboom R, Sumerlin BS. Triple responsive block copolymers combining pH‐responsive, thermoresponsive, and glucose‐responsive behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- William L. A. Brooks
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
| | - Gertjan Vancoillie
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
- Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaanGhent281 S4 Belgium
| | - Christopher P. Kabb
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
| | - Richard Hoogenboom
- Department of Organic and Macromolecular ChemistryGhent UniversityKrijgslaanGhent281 S4 Belgium
| | - Brent S. Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of ChemistryUniversity of FloridaGainesville Florida32611‐7200
| |
Collapse
|
27
|
Cheng C, Zhang X, Meng Y, Zhang Z, Chen J, Zhang Q. Multiresponsive and biocompatible self-healing hydrogel: its facile synthesis in water, characterization and properties. SOFT MATTER 2017; 13:3003-3012. [PMID: 28367574 DOI: 10.1039/c7sm00350a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiresponsive and biocompatible self-healing ε-PL/A-Pul/BPEI hydrogels were prepared in aqueous solution by Schiff base reaction with aldehyded pullulan (A-Pul), ε-poly-l-lysine (ε-PL) and branched polyethyleneimine (BPEI) as materials. The imine bonds were rapidly cross-linked into a hydrogel network within 80 s. Scanning electron microscopy images showed that the hydrogels exhibited a cross-linked structure with the average pore size from 58 to 82 μm. Rheology tests indicated that the hydrogels maintained good mechanical properties. Water contact angles and swelling studies suggested that the hydrogels could swell in water, with a max swell ratio of 1559%, and pH and temperature had an influence on the equilibrium swelling ratio. The hydrogels could be injected either before or after gelation, and they displayed a self-healing process in ddH2O at room temperature based on the dynamic uncoupling and recoupling of the imine bonds. The MTT assays implied that the hydrogels were non-cytotoxic on mice bone marrow mesenchymal stem cells. Therefore, the hydrogels showed potential application in biomedical fields, and consequently further work was performed using the self-healing hydrogels as drug carriers in in vitro/vivo antitumor studies.
Collapse
Affiliation(s)
- Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350002, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Guo R, Su Q, Zhang J, Dong A, Lin C, Zhang J. Facile Access to Multisensitive and Self-Healing Hydrogels with Reversible and Dynamic Boronic Ester and Disulfide Linkages. Biomacromolecules 2017; 18:1356-1364. [DOI: 10.1021/acs.biomac.7b00089] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ruiwei Guo
- State
Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, China
| | | | - Jinwei Zhang
- State
Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, China
| | - Anjie Dong
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Cunguo Lin
- State
Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao 266101, China
| | | |
Collapse
|
29
|
Abstract
This review summarizes pH-responsive monomers, polymers and their derivative nano- and micro-structures including micelles, cross-linked micelles, microgels and hydrogels.
Collapse
Affiliation(s)
- G. Kocak
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - C. Tuncer
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| | - V. Bütün
- Department of Chemistry
- Faculty of Arts and Science
- Eskisehir Osmangazi University
- Eskisehir
- Turkey
| |
Collapse
|
30
|
Abureesh MA, Oladipo AA, Gazi M. Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties. Int J Biol Macromol 2016; 90:75-80. [DOI: 10.1016/j.ijbiomac.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/27/2015] [Accepted: 10/01/2015] [Indexed: 01/10/2023]
|
31
|
Zhang L, Jiao T, Ma K, Xing R, Liu Y, Xiao Y, Zhou J, Zhang Q, Peng Q. Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E541. [PMID: 28773663 PMCID: PMC5456928 DOI: 10.3390/ma9070541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
In this work, some amide compounds with different aromatic substituent headgroups were synthesized and their gelation self-assembly behaviors in 22 solvents were characterized as new gelators. The obtained results indicated that the size of aromatic substituent headgroups in molecular skeletons in gelators showed crucial effect in the gel formation and self-assembly behavior of all compounds in the solvents used. Larger aromatic headgroups in molecular structures in the synthesized gelator molecules are helpful to form various gel nanostructures. Morphological investigations showed that the gelator molecules can self-assembly and stack into various organized aggregates with solvent change, such as wrinkle, belt, rod, and lamella-like structures. Spectral characterizations suggested that there existed various weak interactions including π-π stacking, hydrogen bonding, and hydrophobic forces due to aromatic substituent headgroups and alkyl substituent chains in molecular structures. In addition, the drug release capacities experiments demonstrated that the drug release rate in present obtained gels can be tuned by adjusting the concentrations of dye. The present work would open up enormous insight to design and investigate new kind of soft materials with designed molecular structures and tunable drug release performance.
Collapse
Affiliation(s)
- Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Kai Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Ruirui Xing
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Yamei Liu
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Yong Xiao
- Environmental Protection Sciences Research Institute of Qinhuangdao City, Qinhuangdao 066001, China.
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
32
|
Lazar MM, Varganici CD, Cazacu M, Dragan ES. Cationic hybrids from poly(N,N-dimethylaminoethyl methacrylate) covalently crosslinked with chloroalkyl silicone derivatives effective in binding anionic dyes. J Appl Polym Sci 2016. [DOI: 10.1002/app.43942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maria Marinela Lazar
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| | - Cristian-Dragos Varganici
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| | - Maria Cazacu
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| | - Ecaterina Stela Dragan
- “Petru Poni” Institute of Macromolecular Chemistry; Grigore Ghica Voda Alley 41A Iasi 700487 Romania
| |
Collapse
|
33
|
Cao ZQ, Wang GJ. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. CHEM REC 2016; 16:1398-435. [DOI: 10.1002/tcr.201500281] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Zi-Quan Cao
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Guo-Jie Wang
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| |
Collapse
|
34
|
Quartz crystal microbalance electrode modified with thermoresponsive crosslinked and non-crosslinked N-isopropylacrylamide polymers. Response to changes in temperature. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3231-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Liu N, Li B, Gong C, Liu Y, Wang Y, Wu G. A pH- and thermo-responsive poly(amino acid)-based drug delivery system. Colloids Surf B Biointerfaces 2015; 136:562-9. [DOI: 10.1016/j.colsurfb.2015.09.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/18/2015] [Accepted: 09/27/2015] [Indexed: 01/06/2023]
|
36
|
Katz E, Minko S. Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. Chem Commun (Camb) 2015; 51:3493-500. [PMID: 25578785 DOI: 10.1039/c4cc09851j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzyme-based biocomputing systems were interfaced with signal-responsive membranes and electrodes resulting in bioelectronic devices switchable by logically processed biomolecular signals. "Smart" membranes, electrodes, biofuel cells, memristors and substance-releasing systems were activated by various combinations of biomolecular signals in the pre-programmed way implemented in biocatalytic cascades mimicking logic networks.
Collapse
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA.
| | | |
Collapse
|
37
|
Celik T, Orakdogen N. Correlation Between Physicomechanical and Swelling Properties of Weakly Basic Copolymer Hydrogels Based on (Meth)acrylate Polycations as New Smart Materials. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tayyibe Celik
- Soft Materials Research Laboratory; Department of Chemistry; Istanbul Technical University; 34469 Maslak Istanbul Turkey
| | - Nermin Orakdogen
- Soft Materials Research Laboratory; Department of Chemistry; Istanbul Technical University; 34469 Maslak Istanbul Turkey
| |
Collapse
|
38
|
Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Multi-Stimuli-Responsive Polymeric Materials. Chemistry 2015. [PMID: 26219746 DOI: 10.1002/chem.201501101] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive materials are of immense importance because of their ability to undergo alteration of their properties in response to their environment. The properties of such materials can be tuned by subtle adjustments in temperature, pH, light, and so forth. Among such smart materials, multi-stimuli-responsive polymeric materials are of pronounced significance as they offer a wide range of applications and their properties can be tuned through several mechanisms. Here, we aim to highlight some recent studies showcasing the multi-stimuli-responsive character of these polymers, which are still relatively little known compared to their single-stimuli-responsive counterpart.
Collapse
Affiliation(s)
- Sudhina Guragain
- World Premier International Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1-Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
| | - Bishnu Prasad Bastakoti
- World Premier International Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1-Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
| | - Victor Malgras
- World Premier International Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1-Namiki, Tsukuba, Ibaraki 305-0044 (Japan)
| | - Kenichi Nakashima
- Department of Chemistry, Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan).
| | - Yusuke Yamauchi
- World Premier International Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1-Namiki, Tsukuba, Ibaraki 305-0044 (Japan).
| |
Collapse
|
39
|
Katz E, Pingarrón JM, Mailloux S, Guz N, Gamella M, Melman G, Melman A. Substance Release Triggered by Biomolecular Signals in Bioelectronic Systems. J Phys Chem Lett 2015; 6:1340-1347. [PMID: 26263133 DOI: 10.1021/acs.jpclett.5b00118] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new approach to bioelectronic Sense-and-Act systems was developed with the use of modified electrodes performing sensing and substance-releasing functions. The sensing electrode was activated by biomolecular/biological signals ranging from small biomolecules to proteins and bacterial cells. The activated sensing electrode generated reductive potential and current, which stimulated dissolution of an Fe(3+)-cross-linked alginate matrix on the second connected electrode resulting in the release of loaded biochemical species with different functionalities. Drug-mimicking species, antibacterial drugs, and enzymes activating a biofuel cell were released and tested for various biomedical and biotechnological applications. The studied systems offer great versatility for future applications in controlled drug release and personalized medicine. Their future applications in implantable devices with autonomous operation are proposed.
Collapse
Affiliation(s)
- Evgeny Katz
- †Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - José M Pingarrón
- ‡Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Shay Mailloux
- †Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Nataliia Guz
- †Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Maria Gamella
- †Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
- ‡Department of Analytical Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Galina Melman
- †Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Artem Melman
- †Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
40
|
Gamella M, Guz N, Pingarrón JM, Aslebagh R, Darie CC, Katz E. A bioelectronic system for insulin release triggered by ketone body mimicking diabetic ketoacidosis in vitro. Chem Commun (Camb) 2015; 51:7618-21. [DOI: 10.1039/c5cc01498k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A bioelectronic system was activated with a biomarker of diabetic ketoacidosis to release insulin operating as a Sense-and-Act device.
Collapse
Affiliation(s)
- Maria Gamella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
- Department of Analytical Chemistry
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - José M. Pingarrón
- Department of Analytical Chemistry
- Complutense University of Madrid
- Madrid
- Spain
| | - Roshanak Aslebagh
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
41
|
Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release 2014; 194:1-19. [PMID: 25151983 PMCID: PMC4330094 DOI: 10.1016/j.jconrel.2014.08.015] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed.
Collapse
Affiliation(s)
- Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Taktak F, Yildiz M, Sert H, Soykan C. A Novel Triple-Responsive Hydrogels Based on 2-(Dimethylamino) Ethyl Methacrylate by Copolymerization With 2-(N-morpholino) Ethyl Methacrylate. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.976747] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Polyplex Formation Influences Release Mechanism of Mono- and Di-Valent Ions from Phosphorylcholine Group Bearing Hydrogels. Polymers (Basel) 2014. [DOI: 10.3390/polym6092451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Mailloux S, Guz N, Gamella Carballo M, Pingarrón JM, Katz E. Model system for targeted drug release triggered by immune-specific signals. Anal Bioanal Chem 2014; 406:4825-9. [DOI: 10.1007/s00216-014-7936-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
|
45
|
Mailloux S, Halámek J, Katz E. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks. Analyst 2014; 139:982-6. [DOI: 10.1039/c3an02162a] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Li C, Wang G, Gao H, Zhai M, Li J. Temperature-, pH-, and ion-stimulus-responsive swelling behaviors of poly(dimethylaminoethyl methacrylate) gel containing cholic acid. J Appl Polym Sci 2013. [DOI: 10.1002/app.39998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cancan Li
- School of Materials and Engineering; University of Science and Technology Beijing; Beijing 100083 China
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry; College of Chemistry and Molecular Engineering, Peking University; Beijing 100871 China
| | - Guojie Wang
- School of Materials and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Hongyi Gao
- School of Materials and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry; College of Chemistry and Molecular Engineering, Peking University; Beijing 100871 China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry; College of Chemistry and Molecular Engineering, Peking University; Beijing 100871 China
| |
Collapse
|
47
|
Bassyouni F, ElHalwany N, Abdel Rehim M, Neyfeh M. Advances and new technologies applied in controlled drug delivery system. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1338-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Zhang X, Lü S, Gao C, Chen C, Zhang X, Liu M. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions. NANOSCALE 2013; 5:6498-6506. [PMID: 23752741 DOI: 10.1039/c3nr00835e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (∼250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.
Collapse
Affiliation(s)
- Xinjie Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Plesu N, Kellenberger A, Taranu I, Taranu BO, Popa I. Impedimetric detection of dopamine on poly(3-aminophenylboronic acid) modified skeleton nickel electrodes. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Tsibouklis J, Middleton AM, Patel N, Pratten J. Toward mucoadhesive hydrogel formulations for the management of xerostomia: the physicochemical, biological, and pharmacological considerations. J Biomed Mater Res A 2013; 101:3327-38. [PMID: 23529996 DOI: 10.1002/jbm.a.34626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 01/17/2023]
Abstract
Although hydrogel formulations that may be applied to many mucosal surfaces are now readily accessible, little research effort has been concentrated on the development of systems that may be usefully employed for the prolonged hydration of the oral cavity. To this end, and set within the context of oral care in general, this review considers the requirements for the design of hydrogel formulations with an affinity for buccal cells and details methods for evaluating the performance of these formulations as treatments for the management of xerostomia.
Collapse
Affiliation(s)
- John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT, United Kingdom
| | | | | | | |
Collapse
|