1
|
Tsolele R, Arotiba OA, Malinga SP. Improving selectivity and antifouling properties of a PES hollow fibre membrane with a photo-enzyme for the removal of ciprofloxacin and sulfamethoxazole. ENVIRONMENTAL TECHNOLOGY 2025; 46:453-476. [PMID: 38830144 DOI: 10.1080/09593330.2024.2360231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
A multifunctional hollow fibre was prepared by the modification of polyethersulfone (PES) with laccase (Lac) and phosphorus-doped graphitic carbon nitride (P-gC3N4) for the removal of ciprofloxacin and sulfamethoxazole. The properties and structure elucidation of the prepared membranes were evaluated using contact angle analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), correlative light electron microscopy (CLEM), atomic force microscopy (AFM), tensile strength, water-intake capacity, and pure water flux. The modified multifunctional hollow fibre membranes showed increased root mean square surface roughness from 50 nm for neat PES to 104 nm, which contributed to the significantly higher water flux of 90 L.m-2h-1 compared to 54 L.m-2h-1 for pristine PES. The hydrophilicity also improved after modification as the contact angle reduced from 72° ± 1.01° to 42° ± 2.26°. The modified hollow fibre membranes showed an enhanced removal of ciprofloxacin (77%) and sulfamethoxazole (80%). Moreover, antifouling properties towards bovine serum albumin were 89% for FRR, 7% for Rr, 9% for Rir and 17% for Rt. Regeneration studies showed that the multifunctional hollow fibre membrane obtained a high removal percentage of 79% towards sulfamethoxazole after five cycles. Hence, this work proposes a new system that can be successfully utilized in the treatment of emerging pharmaceutical pollutants in water.
Collapse
Affiliation(s)
- R Tsolele
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| | - O A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| | - S P Malinga
- Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
- Center for Nanomaterial Science Research, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Almulaiky YQ, Altalhi T, El-Shishtawy RM. Enhanced catalytic performance of Candida rugosa lipase through immobilization on zirconium-2-methylimidazole: A novel biocatalyst approach. Int J Biol Macromol 2024; 279:135211. [PMID: 39216567 DOI: 10.1016/j.ijbiomac.2024.135211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Immobilization of enzymes on suitable supports is a critical approach for enhancing enzyme stability, reusability, and overall catalytic efficiency. This study explores the immobilization of Candida rugosa lipase on zirconium-based 2-methylimidazole (ZrMI) nanoparticles, aiming to develop a stable and reusable biocatalyst. The ZrMI was produced via a solvothermal technique and analyzed using various characterization methods. Candida rugose lipase was immobilized using cross-linking agents, achieving an 87 % immobilization efficiency. The immobilized enzyme exhibited significantly enhanced thermal stability, broader pH tolerance, and increased catalytic efficiency compared to free C. rugose lipase. The ZrMI@lipase retained 69 % of its enzymatic activity following a 60-day storage period at 4 °C. Notably, it displayed significant reusability, maintaining 65 % of its original activity after undergoing 15 catalytic cycles. Examination of the kinetics revealed that the immobilized enzyme possessed a heightened substrate affinity (Km of 4.1 mM) and maximal reaction rate (Vmax of 85.7 μmol/ml/min) in comparison to the free enzyme (Km of 5.4 mM and Vmax of 69 μmol/ml/min), indicating enhanced catalytic efficiency. Validation through zeta potential and hydrodynamic size assessments verified the successful binding of the enzyme and the consistent colloidal characteristics. These results suggest that ZrMI is a promising support for C. rugose lipase immobilization, offering improved stability and reusability for various industrial applications. The study highlights the potential of ZrMI@lipase as an efficient and durable biocatalyst, contributing to advancements in enzyme immobilization technology and sustainable industrial processes.
Collapse
Affiliation(s)
- Yaaser Q Almulaiky
- Department of Chemistry, Collage of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Reda M El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Dyeing, Printing and Textile Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
3
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
4
|
IŞIK C. An Alternative Approach to Plastic Recycling: Fabrication and Characterization of rPET/CA Nanofiber Carriers to Enhance Porcine Pancreatic Lipase Stability Properties. ACS OMEGA 2024; 9:31313-31327. [PMID: 39072091 PMCID: PMC11270705 DOI: 10.1021/acsomega.3c07227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 07/30/2024]
Abstract
In response to the increasing demand for sustainable technologies, this study presents a novel approach to plastic recycling. In this study, a method was presented to produce nanofiber carriers by electrospinning using recycled poly(ethylene terephthalate) (rPET) obtained from wastewater bottles and cellulose acetate (CA). These carriers serve as a platform for immobilized porcine pancreatic lipase (PPL), aiming to enhance its stability. The production parameters for the rPET/CA nanofibers were found to be an rPET concentration of 15% (v/v), a CA concentration of 6% (v/v), an electrical voltage of 13 kV, a needle-collector distance of 18 cm, and an injection speed of 0.1 mL/h. The nanofiber structure and morphology were assessed by using attenuated total reflectance-infrared Fourier transform infrared (ATR-FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) analyses. Then, PPL was immobilized onto the nanofibers through adsorption and cross-linking methods. The optimum temperature for free PPL was determined to be 30 °C, and the optimum temperature for PPL immobilized on rPET/CA was determined to be 40 °C. It was observed that, especially under acidic conditions, after the immobilization process, PPL immobilized rPET/CA nanofibers became more resistant to pH changes than free PLL. Furthermore, the immobilized PPL exhibited improved pH stability, reusability, and thermal stability compared to its free counterpart. This innovative approach not only contributes to plastic waste reduction but also opens new avenues for enzyme immobilization with potential applications in biocatalysis and wastewater treatment.
Collapse
Affiliation(s)
- Ceyhun IŞIK
- Faculty of Science, Chemistry
Department, Muğla Sıtkı
Koçman University, Muğla 48000, Türkiye
| |
Collapse
|
5
|
Ge F, Chen G, Qian M, Xu C, Liu J, Cao J, Li X, Hu D, Xu Y, Xin Y, Wang D, Zhou J, Shi H, Tan Z. Artificial Intelligence Aided Lipase Production and Engineering for Enzymatic Performance Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14911-14930. [PMID: 37800676 DOI: 10.1021/acs.jafc.3c05029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
With the development of artificial intelligence (AI), tailoring methods for enzyme engineering have been widely expanded. Additional protocols based on optimized network models have been used to predict and optimize lipase production as well as properties, namely, catalytic activity, stability, and substrate specificity. Here, different network models and algorithms for the prediction and reforming of lipase, focusing on its modification methods and cases based on AI, are reviewed in terms of both their advantages and disadvantages. Different neural networks coupled with various algorithms are usually applied to predict the maximum yield of lipase by optimizing the external cultivations for lipase production, while one part is used to predict the molecule variations affecting the properties of lipase. However, few studies have directly utilized AI to engineer lipase by affecting the structure of the enzyme, and a set of research gaps needs to be explored. Additionally, future perspectives of AI application in enzymes, including lipase engineering, are deduced to help the redesign of enzymes and the reform of new functional biocatalysts. This review provides a new horizon for developing effective and innovative AI tools for lipase production and engineering and facilitating lipase applications in the food industry and biomass conversion.
Collapse
Affiliation(s)
- Feiyin Ge
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Gang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Minjing Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Cheng Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiaqi Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Xinchao Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yangsen Xu
- Dongtai Hanfangyuan Biotechnology Co. Ltd., Yancheng 224241, People's Republic of China
| | - Ya Xin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| |
Collapse
|
6
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
7
|
Yu X, Pan B, Zhao C, Shorty D, Solano LN, Sun G, Liu R, Lam KS. Discovery of Peptidic Ligands against the SARS-CoV-2 Spike Protein and Their Use in the Development of a Highly Sensitive Personal Use Colorimetric COVID-19 Biosensor. ACS Sens 2023; 8:2159-2168. [PMID: 37253267 PMCID: PMC10255569 DOI: 10.1021/acssensors.2c02386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In addition to efficacious vaccines and antiviral therapeutics, reliable and flexible in-home personal use diagnostics for the detection of viral antigens are needed for effective control of the COVID-19 pandemic. Despite the approval of several PCR-based and affinity-based in-home COVID-19 testing kits, many of them suffer from problems such as a high false-negative rate, long waiting time, and short storage period. Using the enabling one-bead-one-compound (OBOC) combinatorial technology, several peptidic ligands with a nanomolar binding affinity toward the SARS-CoV-2 spike protein (S-protein) were successfully discovered. Taking advantage of the high surface area of porous nanofibers, immobilization of these ligands on nanofibrous membranes allows the development of personal use sensors that can achieve low nanomolar sensitivity in the detection of the S-protein in saliva. This simple biosensor employing naked-eye reading exhibits detection sensitivity comparable to some of the current FDA-approved home detection kits. Furthermore, the ligand used in the biosensor was found to detect the S-protein derived from both the original strain and the Delta variant. The workflow reported here may enable us to rapidly respond to the development of home-based biosensors against future viral outbreaks.
Collapse
Affiliation(s)
- Xingjian Yu
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
- Department
of Chemistry, University of California,
Sacramento, Sacramento, California 95616, United States
| | - Bofeng Pan
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Cunyi Zhao
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Diedra Shorty
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
- Department
of Chemistry, University of California,
Sacramento, Sacramento, California 95616, United States
| | - Lucas N. Solano
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| | - Gang Sun
- Department
of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| | - Ruiwu Liu
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| | - Kit S. Lam
- Department
of Biochemistry & Molecular Medicine, University of California, Sacramento, Sacramento, California 95817, United States
| |
Collapse
|
8
|
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. MEMBRANES 2023; 13:membranes13050532. [PMID: 37233593 DOI: 10.3390/membranes13050532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Fibrous membranes offer broad opportunities to deploy immobilized enzymes in new reactor and application designs, including multiphase continuous flow-through reactions. Enzyme immobilization is a technology strategy that simplifies the separation of otherwise soluble catalytic proteins from liquid reaction media and imparts stabilization and performance enhancement. Flexible immobilization matrices made from fibers have versatile physical attributes, such as high surface area, light weight, and controllable porosity, which give them membrane-like characteristics, while simultaneously providing good mechanical properties for creating functional filters, sensors, scaffolds, and other interface-active biocatalytic materials. This review examines immobilization strategies for enzymes on fibrous membrane-like polymeric supports involving all three fundamental mechanisms of post-immobilization, incorporation, and coating. Post-immobilization offers an infinite selection of matrix materials, but may encounter loading and durability issues, while incorporation offers longevity but has more limited material options and may present mass transfer obstacles. Coating techniques on fibrous materials at different geometric scales are a growing trend in making membranes that integrate biocatalytic functionality with versatile physical supports. Biocatalytic performance parameters and characterization techniques for immobilized enzymes are described, including several emerging techniques of special relevance for fibrous immobilized enzymes. Diverse application examples from the literature, focusing on fibrous matrices, are summarized, and biocatalyst longevity is emphasized as a critical performance parameter that needs increased attention to advance concepts from lab scale to broader utilization. This consolidation of fabrication, performance measurement, and characterization techniques, with guiding examples highlighted, is intended to inspire future innovations in enzyme immobilization with fibrous membranes and expand their uses in novel reactors and processes.
Collapse
Affiliation(s)
- Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jialong Shen
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sonja Salmon
- Fiber and Polymer Science Program, Department of Textile Engineering Chemistry & Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Al Angari YM, Almulaiky YQ, Alotaibi MM, Hussein MA, El-Shishtawy RM. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability. Int J Mol Sci 2023; 24:ijms24031970. [PMID: 36768290 PMCID: PMC9915712 DOI: 10.3390/ijms24031970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, the morphological structure of modified PAN before and after the immobilization process was evaluated using FTIR and SEM analyses. The immobilized lipase exhibited the highest activity at pH 8.0, with an immobilization yield of 81% and an activity of 91%. The optimal pH and temperature for free lipase were 7.5 and 40 °C, while the immobilized lipase exhibited its optimal activity at a pH of 8.0 and a temperature of 50 °C. After recycling 10 times, the immobilized lipase maintained 76% of its activity and, after 15 reuses, it preserved 61% of its activity. The lipase stability was significantly improved after immobilization, as it maintained 76% of its initial activity after 60 days of storage. The calculated Km values were 4.07 and 6.16 mM for free and immobilized lipase, and the Vmax values were 74 and 77 μmol/mL/min, respectively. These results demonstrated that synthetically modified PAN is appropriate for immobilizing enzymes and has the potential for commercial applications.
Collapse
Affiliation(s)
- Yasser M. Al Angari
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| |
Collapse
|
10
|
Amino functionalization of magnetic multiwalled carbon nanotubes with flexible hydrophobic spacer for immobilization of Candida rugosa lipase and application in biocatalytic production of fruit flavour esters ethyl butyrate and butyl butyrate. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Loredo‐Alejos JM, Lucio‐Porto R, Pavón LL, Moreno‐Cortez IE. Pepsin immobilization by electrospinning of poly(vinyl alcohol) nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.51700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia M. Loredo‐Alejos
- Fac. de Ingeniería Mecánica y Eléctrica (FIME) Universidad Autónoma de Nuevo Leon (UANL), Av. Universidad S/N San Nicolás de los Garza Nuevo León Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT) Universidad Autónoma de Nuevo León (UANL) Apodaca Nuevo León Mexico
| | - Raul Lucio‐Porto
- Fac. de Ingeniería Mecánica y Eléctrica (FIME) Universidad Autónoma de Nuevo Leon (UANL), Av. Universidad S/N San Nicolás de los Garza Nuevo León Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT) Universidad Autónoma de Nuevo León (UANL) Apodaca Nuevo León Mexico
| | - Luis Lopez Pavón
- Fac. de Ingeniería Mecánica y Eléctrica (FIME) Universidad Autónoma de Nuevo Leon (UANL), Av. Universidad S/N San Nicolás de los Garza Nuevo León Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT) Universidad Autónoma de Nuevo León (UANL) Apodaca Nuevo León Mexico
| | - Ivan E. Moreno‐Cortez
- Fac. de Ingeniería Mecánica y Eléctrica (FIME) Universidad Autónoma de Nuevo Leon (UANL), Av. Universidad S/N San Nicolás de los Garza Nuevo León Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT) Universidad Autónoma de Nuevo León (UANL) Apodaca Nuevo León Mexico
| |
Collapse
|
12
|
Zhao S, Feng P, Yu Z, Zhou T, Gao T, Redina MM, Liu P, Li X. NahAa can convert naphthalene and reduce chromate simultaneously and immobilized on functional multiwall carbon nanotubes for wastewater treatment. CHEMOSPHERE 2022; 291:132934. [PMID: 34808199 DOI: 10.1016/j.chemosphere.2021.132934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas brassicacearum LZ-4 is a facultative anaerobic bacterium, can efficiently degrade naphthalene and reduce chromate simultaneously. In this study, we showed that the naphthalene degradation enzyme NahAa from P. brassicacearum LZ-4 can reduce Cr(VI). Heterologous expression in E. coli S17-1 along with RNA interference of NahAa in strain LZ-4 showed the enzyme can reduce chromate in vivo. In vitro, purified NahAa was identified and can catalyze Cr(VI) reduction by 64.2%. Flavin adenine dinucleotide (FAD) was identified as a cofactor of NahAa, which Cr(VI) could obtain electrons from NADH through NahAa-associated FAD for reduction. Immobilized NahAa on functional multi walled carbon nanotubes via physical adsorption method to produce a stable, high efficient composite MWCNT-NahAa. The maximum efficiency of MWCNT-NahAa composite was obtained in enzyme concentrations of 6 mg/mL and 20 min immobilization time. The optical reaction conditions for MWCNT-NahAa were pH 7.0 and 30 °C, still retaining 50% of its initial activities after five consecutive cycles. Application of composites in wastewater can reduce 90.4% Cr(VI), higher than free NahAa that was 63.5%. To our best knowledge, this is the first report immobilized enzyme in polycyclic aromatic hydrocarbons-degradation pathway for Cr(VI) wastewater treatment, providing a new insights on combined pollution remediation.
Collapse
Affiliation(s)
- Shuai Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu, PR China
| | - Pengya Feng
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu, PR China
| | - Zhengsheng Yu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu, PR China
| | - Tuoyu Zhou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu, PR China
| | - Tianpeng Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, PR China
| | | | - Pu Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu, PR China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, 222 South Tianshui Rd, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
13
|
Morshed MN, Behary N, Bouazizi N, Guan J, Nierstrasz VA. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. CHEMOSPHERE 2021; 279:130481. [PMID: 33894516 DOI: 10.1016/j.chemosphere.2021.130481] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The immobilization of biocatalysts or other bioactive components often means their transformation from a soluble to an insoluble state by attaching them to a solid support material. Various types of fibrous textiles from both natural and synthetic sources have been studied as suitable support material for biocatalysts immobilization. Strength, inexpensiveness, high surface area, high porosity, pore size, availability in various forms, and simple preparation/functionalization techniques have made textiles a primary choice for various applications. This led to the concept of a new domain called-biocatalysts immobilization on textiles. By addressing the growing advancement in biocatalysts immobilization on textile, this study provides the first detailed overview on this topic based on the terms of preparation, progress, and application in wastewater treatment. The fundamental reason behind the necessity of biocatalysts immobilized textile as well as the potential preparation methods has been identified and discussed. The overall progress and performances of biocatalysts immobilized textile have been scrutinized and summarized based on the form of textile, catalytic activity, and various influencing factors. This review also highlighted the potential challenges and future considerations that can enhance the pervasive use of such immobilized biocatalysts in various sustainable and green chemistry applications.
Collapse
Affiliation(s)
- Mohammad Neaz Morshed
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden; Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France; College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Nemeshwaree Behary
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Nabil Bouazizi
- Ecole Nationale Supérieure des Arts et Industries Textiles (ENSAIT), GEMTEX Laboratory, 2 allée Louise et Victor Champier BP 30329, 59056, Roubaix, France; Université de Lille, Nord de France, F-59000, Lille, France.
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, 215006, Suzhou, China.
| | - Vincent A Nierstrasz
- Department of Textile Technology, The Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås, SE-50190, Borås, Sweden.
| |
Collapse
|
14
|
Zhao C, Si Y, Zhu S, Bradley K, Taha AY, Pan T, Sun G. Diffusion of Protein Molecules through Microporous Nanofibrous Polyacrylonitrile Membranes. ACS APPLIED POLYMER MATERIALS 2021; 3:1618-1627. [PMID: 34541542 PMCID: PMC8445001 DOI: 10.1021/acsapm.0c01394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous nanofibrous membranes have ultrahigh specific surface areas and could be broadly employed in protein purification, enzyme immobilization, and biosensors with enhanced selectivity, sensitivity, and efficiency. However, large biomolecules, such as proteins, have hindered diffusion behavior in the micro-porous media, significantly reducing the benefits provided by the nanofibrous membranes. The study of protein diffusion in polyacrylonitrile (PAN) nanofibrous membranes produced under varied humidity and polymer concentration of electrospinning revealed that heterogeneous structures of the nanofibrous membranes possess much smaller effective pore sizes than the measured pore sizes, which significantly affects the diffusion of large molecules through the system though sizes of proteins and pH conditions also have great impacts. Only when the measured membrane pore size is at least 1000 times higher than the protein size, the diffusion behavior of the protein is predictable in the system. The results provide insights into the design and applications of proper nanofibrous materials for improved applications in protein purification and immobilizations.
Collapse
Affiliation(s)
- Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Yang Si
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Shenghan Zhu
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Kevin Bradley
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Chen Z, Xie HY, Chen GE, Xu SJ, Xu ZL, Li YJ, Mao HF. Self-adhesive PMIA membranes with virus-like silica immobilized lipase for efficient biological aging of Chinese liquor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation. Sci Rep 2020; 10:19478. [PMID: 33173138 PMCID: PMC7656461 DOI: 10.1038/s41598-020-76463-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
A novel method is described for the immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae onto carboxymethyl dextran (CMD) coated magnetic nanoparticles (CMD-MNPs) activated with epoxy groups, using epichlorohydrin (EClH). EClH was used as an activating agent to bind ADH molecules on the surface of CMD-MNPs. Optimal immobilization conditions (activating agent concentration, temperature, rotation speed, medium pH, immobilization time and enzyme concentration) were set to obtain the highest expressed activity of the immobilized enzyme. ADH that was immobilized onto epoxy-activated CMD-MNPs (ADH-CMD-MNPs) maintained 90% of the expressed activity. Thermal stability of ADH-CMD-MNPS after 24 h at 20 °C and 40 °C yielded 79% and 80% of initial activity, respectively, while soluble enzyme activity was only 19% at 20 °C and the enzyme was non-active at 40 °C. Expressed activity of ADH-CMD-MNPs after 21 days of storage at 4 °C was 75%. Kinetic parameters (KM, vmax) of soluble and immobilized ADH were determined, resulting in 125 mM and 1.2 µmol/min for soluble ADH, and in 73 mM and 4.7 µmol/min for immobilized ADH.
Collapse
|
17
|
Amaly N, Ma Y, El-Moghazy AY, Sun G. Copper complex formed with pyridine rings grafted on cellulose nanofibrous membranes for highly efficient lysozyme adsorption. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Paitaid P, H-Kittikun A. Enhancing immobilization of Aspergillus oryzae ST11 lipase on polyacrylonitrile nanofibrous membrane by bovine serum albumin and its application for biodiesel production. Prep Biochem Biotechnol 2020; 51:536-549. [DOI: 10.1080/10826068.2020.1836654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pattarapon Paitaid
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Aran H-Kittikun
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
19
|
Immobilization of Candida antarctica Lipase on Nanomaterials and Investigation of the Enzyme Activity and Enantioselectivity. Appl Biochem Biotechnol 2020; 193:430-445. [PMID: 33025565 DOI: 10.1007/s12010-020-03443-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022]
Abstract
This study defines the lipase immobilization protocol and enzymatic kinetic resolution of 1-phenyl ethanol with the use of immobilized lipases (LI) as a biocatalyst. Commercially available lipase Candida antarctica B (Cal-B) was immobilized onto graphene oxide (GO), iron oxide (Fe3O4) nanoparticles, and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites. Characterization of pure and enzyme-loaded supports was carried out by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The influences of pH, temperature, immobilization time, crosslinker concentration, glutaraldehyde (GLA), epichlorohydrin (EPH), and surfactant concentrations (Tween 80 and Triton X-100) on the catalytic activity were evaluated for these three immobilized biocatalysts. The highest immobilized enzyme activities were 15.03 U/mg, 14.72 U/mg, and 13.56 U/mg for GO-GLA-CalB, Fe3O4-GLA-CalB, and GO/Fe3O4-GLA-CalB, respectively. Moreover, enantioselectivity and reusability of these immobilized lipases were compared for the kinetic resolution of 1-phenyl ethanol, using toluene as organic solvent and vinyl acetate as acyl donor. The highest values of enantiomeric excess (ees = 99%), enantioselectivity (E = 507.74), and conversion (c = 50.73%) were obtained by using lipase immobilized onto graphene oxide (GO-GLA-CalB). It was obtained that this enzymatic process may be repeated five times without important loss of enantioselectivity.
Collapse
|
20
|
Amaly N, El-Moghazy AY, Si Y, Sun G. Functionalized nanofibrous nylon 6 membranes for efficient reusable and selective separation of laccase enzyme. Colloids Surf B Biointerfaces 2020; 194:111190. [DOI: 10.1016/j.colsurfb.2020.111190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
|
21
|
Liu Y, Cai Z, Ma M, Sheng L, Huang X. Effect of eggshell membrane as porogen on the physicochemical structure and protease immobilization of chitosan-based macroparticles. Carbohydr Polym 2020; 242:116387. [PMID: 32564851 DOI: 10.1016/j.carbpol.2020.116387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
Chitosan-based macroparticle is a common carrier for enzyme immobilization applied in food industry. Driven by the requirement of large carrier pores for the biomacromolecular substrates such as protein, the eggshell membrane powder (ESMP) was employed as multifunctional porogen to improve the physicochemical structure of chitosan-based macroparticles. The prepared macroparticles were characterized by SEM, XRD, FTIR, Raman spectroscopy, nitrogen adsorption-desorption isotherms, and thermogravimetric analysis. The results showed that an increase of ESMP percentage could improve the porosity of macro holes in macroparticles, and it also enlarged the size of mesopores. Moreover, the ESMP significantly increased (P < 0.05) the amount of papain immobilization, whereas the specific activity of immobilized papain achieved a maximum value of 871.95 U/mg at CSESM2 and then declined with the increase of ESMP. Therefore, the inclusion of 20 % ESMP in chitosan-based macroparticles gave the highest activity of its immobilized protease.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
22
|
Yang W, Zhang N, Wang Q, Wang P, Yu Y. Development of an eco-friendly antibacterial textile: lysozyme immobilization on wool fabric. Bioprocess Biosyst Eng 2020; 43:1639-1648. [DOI: 10.1007/s00449-020-02356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
|
23
|
Amin R, Khorshidi A, Bensch W, Senkale S, Faramarzi MA. Degradation of Sesame Oil Phenolics Using Magnetic Immobilized Laccase. Catal Letters 2020. [DOI: 10.1007/s10562-020-03226-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Aslan Y, Sharif YM, Şahin Ö. Covalent immobilization of Aspergillus niger amyloglucosidase (ANAG) with ethylenediamine-functionalized and glutaraldehyde-activated active carbon (EFGAAC) obtained from sesame seed shell. Int J Biol Macromol 2020; 142:222-231. [DOI: 10.1016/j.ijbiomac.2019.09.226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023]
|
25
|
Kaul S, Singh V, Sandhir R, Singhal NK. Organophosphonate functionalized Au/Si@Fe3O4: Versatile carrier for enzyme immobilization. Methods Enzymol 2020; 630:199-214. [DOI: 10.1016/bs.mie.2019.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Jin W, Xu Y, Yu XW. Formation lipase cross-linked enzyme aggregates on octyl-modified mesocellular foams with oxidized sodium alginate. Colloids Surf B Biointerfaces 2019; 184:110501. [DOI: 10.1016/j.colsurfb.2019.110501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022]
|
27
|
Temkov M, Petrovski A, Gjorgieva E, Popovski E, Lazarova M, Boev I, Paunovic P, Grozdanov A, Dimitrov A, Baidak A, Krastanov A. Inulinase immobilization on polyethylene glycol/polypyrrole multiwall carbon nanotubes producing a catalyst with enhanced thermal and operational stability. Eng Life Sci 2019; 19:617-630. [PMID: 32625037 DOI: 10.1002/elsc.201900021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 11/12/2022] Open
Abstract
This paper describes the development of a simple method for mixed non-covalent and covalent bonding of partially purified inulinase on functionalized multiwall carbon nanotubes (f-MWCNTs) with polypyrrole (PPy). The pyrrole (Py) was electrochemically polymerized on MWCNTs in order to fabricate MWCNTs/PPy nanocomposite. Two multiple forms of enzyme were bound to N-H functional groups from PPy and -COO- from activated MWCNTs to yield a stable MWCNTs/PPy/PEG immobilized preparation with increased thermal stability. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to confirm functionalization of nanoparticles and immobilization of the enzyme. The immobilization yield of 85% and optimal enzyme load of 345 μg protein onto MWCNTs was obtained. The optimum reaction conditions and kinetic parameters were established using the UV-Vis analytical assay. The best functional performance for prepared heterogeneous catalyst has been observed at pH 3.6 and 10, and at the temperatures of 60 and 80ºC. The half-life (t 1/2) of the immobilized inulinase at 60 and 80ºC was found to be 231 and 99 min, respectively. The reusability of the immobilized formulation was evaluated based on a method in which the enzyme retained 50% of its initial activity, which occurred after the eighteenth operation cycle.
Collapse
Affiliation(s)
- Mishela Temkov
- Faculty of Technology and Metallurgy Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia.,Faculty of Technology University of Food Technologies Plovdiv Bulgaria
| | - Aleksandar Petrovski
- Faculty of Technology and Metallurgy Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia
| | - Emilija Gjorgieva
- Institute of Chemistry Faculty of Natural Science and Mathematics Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia
| | - Emil Popovski
- Institute of Chemistry Faculty of Natural Science and Mathematics Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia
| | - Maja Lazarova
- Technological Technical Faculty University Goce Delcev Shtip Republic of Macedonia
| | - Ivan Boev
- Technological Technical Faculty University Goce Delcev Shtip Republic of Macedonia
| | - Perica Paunovic
- Faculty of Technology and Metallurgy Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia
| | - Anita Grozdanov
- Faculty of Technology and Metallurgy Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia
| | - Aleksandar Dimitrov
- Faculty of Technology and Metallurgy Ss. Cyril and Methodius University in Skopje Skopje Republic of Macedonia
| | - Aliaksandr Baidak
- Dalton Cumbrian Facility University of Manchester West Lakes United Kingdom.,School of Chemistry University of Manchester Manchester United Kingdom
| | - Albert Krastanov
- Faculty of Technology University of Food Technologies Plovdiv Bulgaria
| |
Collapse
|
28
|
Işik C, Arabaci G, Ispirli Doğaç Y, Deveci İ, Teke M. Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1226-1235. [DOI: 10.1016/j.msec.2019.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 01/14/2023]
|
29
|
Meso-molding three-dimensionally ordered macroporous alumina: A new platform to immobilize enzymes with high performance. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Jin W, Xu Y, Yu XW. Preparation of lipase cross-linked enzyme aggregates in octyl-modified mesocellular foams. Int J Biol Macromol 2019; 130:342-347. [DOI: 10.1016/j.ijbiomac.2019.02.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 01/10/2023]
|
31
|
Zhao JF, Tao-Wang, Lin JP, Yang LR, Wu MB. Preparation of High-purity 1,3-Diacylglycerol Using Performance-enhanced Lipase Immobilized on Nanosized Magnetite Particles. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0458-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Cysteine-modified poly(glycidyl methacrylate) grafted onto silica nanoparticles: New supports for significantly enhanced performance of immobilized lipase. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Appl Biochem Biotechnol 2019; 188:677-689. [DOI: 10.1007/s12010-018-02947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
34
|
Highly Efficient Synthesis of 2,5-Dihydroxypyridine using Pseudomonas sp. ZZ-5 Nicotine Hydroxylase Immobilized on Immobead 150. Catalysts 2018. [DOI: 10.3390/catal8110548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this report, the use of immobilized nicotine hydroxylase from Pseudomonas sp. ZZ-5 (HSPHZZ) for the production of 2,5-dihydroxypyridine (2,5-DHP) from 6-hydroxy-3-succinoylpyridine (HSP) in the presence of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) is described. HSPHZZ was covalently immobilized on Immobead 150 (ImmHSPHZZ). ImmHSPHZZ (obtained with 5–30 mg of protein per gram of support) catalyzed the hydrolysis of HSP to 2,5-DHP. At a protein loading of 15 mg g−1, ImmHSPHZZ converted 93.6% of HSP to 2,5-DHP in 6 h. The activity of ImmHSPHZZ was compared with that of free HSPHZZ under various conditions, including pH, temperature, enzyme concentration, substrate concentration and stability over time, and kinetic parameters were measured. The results showed that ImmHSPHZZ performed better over wider ranges of pH and temperature when compared with that of HSPHZZ. The optimal concentrations of ImmHSPHZZ and substrate were 30 mg L−1 and 0.75 mM, respectively. Under optimal conditions, 94.5 mg L−1 of 2,5-DHP was produced after 30 min with 85.4% conversion. After 8 reaction cycles and 6 days of storage, 51.3% and 75.0% of the initial enzyme activity remained, respectively. The results provide a framework for development of commercially suitable immobilized enzymes that produce 2,5-DHP.
Collapse
|
35
|
Encapsulation and immobilization of ficin extract in electrospun polymeric nanofibers. Int J Biol Macromol 2018; 118:2287-2295. [DOI: 10.1016/j.ijbiomac.2018.07.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
|
36
|
Amaly N, Si Y, Chen Y, El-Moghazy AY, Zhao C, Zhang R, Sun G. Reusable anionic sulfonate functionalized nanofibrous membranes for cellulase enzyme adsorption and separation. Colloids Surf B Biointerfaces 2018; 170:588-595. [DOI: 10.1016/j.colsurfb.2018.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 01/20/2023]
|
37
|
Mangkorn N, Kanokratana P, Roongsawang N, Laobuthee A, Laosiripojana N, Champreda V. Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles. J Biosci Bioeng 2018; 127:265-272. [PMID: 30243531 DOI: 10.1016/j.jbiosc.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023]
Abstract
Alcohol oxidase catalyzes the oxidation of primary alcohols into the corresponding aldehydes, making it a potential biocatalyst in the chemical industry. However, the high production cost and poor operational stability of this enzyme are limitations for industrial application. Immobilization of enzyme onto solid supports is a useful strategy for improving enzyme stability. In this work, alcohol oxidase from the thermotolerant methylotrophic yeast Ogataea thermomethanolica (OthAOX) was covalently immobilized onto barium ferrite (BaFe12O19) magnetic microparticles. Among different conditions tested, the highest immobilization efficiency of 71.0 % and catalytic activity of 34.6 U/g was obtained. Immobilization of OthAOX onto magnetic support was shown by Fourier-Transformed infrared microscopy, scanning electron microscopy and X-ray diffraction. The immobilized OthAOX worked optimally at 55 °C and pH 8.0. Immobilization also improved thermostability, in which >65% of the initial immobilized enzyme activity was retained after 24 h pre-incubation at 45 °C. The immobilized enzyme showed a greater catalytic efficiency for oxidation of methanol and ethanol than free enzyme. The immobilized enzyme could be recovered by magnetization and recycled for at least three consecutive batches, after which 70% activity remained. The properties of the immobilized enzyme suggest its potential industrial application for synthesis of aldehyde.
Collapse
Affiliation(s)
- Natthaya Mangkorn
- Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Apirat Laobuthee
- Department of Material Engineering, Faculty of Engineering, Kaetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Navadol Laosiripojana
- Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand; JGSEE-BIOTEC Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Innovative Cluster 2 Building, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; JGSEE-BIOTEC Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Innovative Cluster 2 Building, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
38
|
Influence of Dlutaraldehyde Cross-Linking Modes on the Recyclability of Immobilized Lipase B from Candida antarctica for Transesterification of Soy Bean Oil. Molecules 2018; 23:molecules23092230. [PMID: 30200521 PMCID: PMC6225267 DOI: 10.3390/molecules23092230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Lipase B from Candida antarctica (CAL-B) is largely employed as a biocatalyst for hydrolysis, esterification, and transesterification reactions. CAL-B is a good model enzyme to study factors affecting the enzymatic structure, activity and/or stability after an immobilization process. In this study, we analyzed the immobilization of CAL-B enzyme on different magnetic nanoparticles, synthesized by the coprecipitation method inside inverse micelles made of zwitterionic surfactants, with distinct carbon chain length: 4 (ImS4), 10 (ImS10) and 18 (ImS18) carbons. Magnetic nanoparticles ImS4 and ImS10 were shown to cross-link to CAL-B enzyme via a Michael-type addition, whereas particles with ImS18 were bond via pyridine formation after glutaraldehyde cross-coupling. Interestingly, the Michael-type cross-linking generated less stable immobilized CAL-B, revealing the influence of a cross-linking mode on the resulting biocatalyst behavior. Curiously, a direct correlation between nanoparticle agglomerate sizes and CAL-B enzyme reuse stability was observed. Moreover, free CAL-B enzyme was not able to catalyze transesterification due to the high methanol concentration; however, the immobilized CAL-B enzyme reached yields from 79.7 to 90% at the same conditions. In addition, the transesterification of lipids isolated from oleaginous yeasts achieved 89% yield, which confirmed the potential of immobilized CAL-B enzyme in microbial production of biodiesel.
Collapse
|
39
|
Immobilization of laccase on modified Fe3O4@SiO2@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int J Biol Macromol 2018; 114:106-113. [DOI: 10.1016/j.ijbiomac.2018.03.086] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 03/18/2018] [Indexed: 11/19/2022]
|
40
|
|
41
|
Koloti LE, Gule NP, Arotiba OA, Malinga SP. Laccase-immobilized dendritic nanofibrous membranes as a novel approach towards the removal of bisphenol A. ENVIRONMENTAL TECHNOLOGY 2018; 39:392-404. [PMID: 28278087 DOI: 10.1080/09593330.2017.1301570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Laccase enzymes from Rhus vernificera were covalently bound on hyperbranched polyethyleneimine/polyethersulfone (HPEI/PES) electrospun nanofibrous membranes and used for the removal of bisphenol A (BPA) from water. The laccase enzyme was anchored on the dendritic membranes through the abundant peripheral amine groups on the HPEI using glutaraldehyde as a crosslinker. The membranes were characterized with attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and ultraviolet-visible spectroscopy and correlative light and electron microscopy (CLEM). Furthermore, contact-angle analyses, pure water flux measurements and rejection analyses were carried out. CLEM showed that the enzymes were uniformly dispersed on the nanofibres while SEM analysis revealed that the nanofibres had an average diameter of 354 ± 37 nm. EDS showed the presence of Cu, which is the active entity in laccase enzymes. The laccase-modified membranes were hydrophilic (50°-53° contact angle) and exhibited high BPA rejection of 89.6% as compared to the 52.4% demonstrated by pristine PES. The laccase-modified membranes also maintained a constant permeate flux (7.07 ± 5.54 L/m2 h) throughout the filtration process. Recyclability studies indicated that the membranes still maintained a high BPA removal of up to 79% even after four filtration cycles.
Collapse
Affiliation(s)
- Lebohang E Koloti
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
| | - Nonjabulo P Gule
- b Department of Polymer Science , Stellenbosch University , Stellenbosch , South Africa
| | - Omotayo A Arotiba
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
- c Centre for Nanomaterials Science Research , University of Johannesburg , Johannesburg , South Africa
| | - Soraya P Malinga
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
42
|
Yi S, Dai F, Wu Y, Zhao C, Si Y, Sun G. Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery. Int J Biol Macromol 2018; 111:738-745. [PMID: 29339287 DOI: 10.1016/j.ijbiomac.2018.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/23/2023]
Abstract
Fabricating adsorptive materials for fast and high efficient adsorption of enzymes is critical to match the great demands for separation and recovery of enzymes used as biocatalysts. However, it has proven extremely challenging. Here, we report a cost-effective strategy to construct the sulfated group surface-functionalized silk fibroin nanofibrous membranes (SS-SFNM) under mild conditions for positively charged Candida rugosa lipase adsorption. The naturally abundant silk is thus reconstructed into nanofibrous membranes with tunable surface functions. Thereby, the resultant SS-SFNM exhibited excellent adsorption performance towards lipase, including a superior adsorption capacity of 148 mg g-1, fast adsorption equilibrium within 3 h and good reversibility. The fabrication of such fascinating silk-based materials may provide new chance into the design and development of multi-functional membranes for various separated applications.
Collapse
Affiliation(s)
- Shixiong Yi
- College of Textile and Garment & State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Fangyin Dai
- College of Textile and Garment & State Key Laboratory of Silkworm Genome Biology & College of Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Yuehan Wu
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA
| | - Cunyi Zhao
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA
| | - Yang Si
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA.
| | - Gang Sun
- Fiber and Polymer Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
43
|
Synthesis, Characterization, and Applications of Nanographene-Armored Enzymes. Methods Enzymol 2018; 609:83-142. [DOI: 10.1016/bs.mie.2018.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Immobilization of β -galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor. Int J Biol Macromol 2017; 105:693-701. [DOI: 10.1016/j.ijbiomac.2017.07.088] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 11/18/2022]
|
45
|
Liu J, Xie Y, Peng C, Yu G, Zhou J. Molecular Understanding of Laccase Adsorption on Charged Self-Assembled Monolayers. J Phys Chem B 2017; 121:10610-10617. [DOI: 10.1021/acs.jpcb.7b08738] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Liu
- School
of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab
for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
- Key
Laboratory for Green Chemical Process of Ministry of Education, School
of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Yun Xie
- Huizhou University, Huizhou 516007, P. R. China
| | - Chunwang Peng
- School
of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab
for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Gaobo Yu
- School
of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab
for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
- School
of Materials and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Jian Zhou
- School
of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab
for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
46
|
Kabay G, Kaleli Can G, Mutlu M. Amyloid-like protein nanofibrous membranes as a sensing layer infrastructure for the design of mass-sensitive biosensors. Biosens Bioelectron 2017; 97:285-291. [PMID: 28618364 DOI: 10.1016/j.bios.2017.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 11/17/2022]
Abstract
Quartz crystal microbalances (QCMs) have been used in the literature for mass sensitive biosensor applications. However, their performance, reliability and stability have been limited by the chemical treatment steps required for the functionalization and activation of the QCM surface, prior to antibody immobilization. Specifically, these steps cause increased film thickness, which diminishes performance by mass overload, and create a harsh environment, which reduces biological activity. In this work, we eliminated this chemical step by introducing a sensing layer modification using electrospun amyloid like-bovine serum albumin (AL-BSA) nanofibers on QCM surfaces. Owing to the self-functionality of AL-BSA nanofibers, these modified QCM surfaces were directly activated by glutaraldehyde (GA). To assess the performance of these modified electrodes, a model protein, lysozyme (Lys), was selected as the biological agent to be immobilized. Frequency measurements were performed in batch (dip-and-dry) and continuous (flow-cell) processes, and binding performances were compared. AL-BSA modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), quartz crystal microbalance (QCM), contact angle (CA) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Protein detection was measured based on the frequency shift before and after the covalent bonding of Lys. Under optimized conditions, the proposed immobilization platforms could bind 335ng/mL and 250ng/mL of Lys for batch and continuous processes, respectively. Our results demonstrate the potential usage of these self-functional electrospun AL-BSA infrastructure sensing layers on QCM surfaces. This modification enables the direct immobilization of bioactive agents by eliminating any surface functionalization process for further mass-sensitive biosensor applications.
Collapse
Affiliation(s)
- Gözde Kabay
- Plasma Aided Biomedical Research Group (pabmed), Biomedical Engineering Division, Graduate School of Science and Technology, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Gizem Kaleli Can
- Plasma Aided Biomedical Research Group (pabmed), Biomedical Engineering Division, Graduate School of Science and Technology, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Mehmet Mutlu
- Plasma Aided Biomedical Research Group (pabmed), Biomedical Engineering Division, Graduate School of Science and Technology, TOBB University of Economics and Technology, Ankara 06560, Turkey; Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey.
| |
Collapse
|
47
|
Rodríguez-deLuna SE, Moreno-Cortez IE, Garza-Navarro MA, Lucio-Porto R, López Pavón L, González-González VA. Thermal stability of the immobilization process of horseradish peroxidase in electrospun polymeric nanofibers. J Appl Polym Sci 2017. [DOI: 10.1002/app.44811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofía E. Rodríguez-deLuna
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Iván E. Moreno-Cortez
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - M. A. Garza-Navarro
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Raúl Lucio-Porto
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Luis López Pavón
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| | - Virgilio A. González-González
- Fac. de Ingeniería Mecánica y Eléctrica (FIME); Universidad Autónoma de Nuevo León (UANL); Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza Nuevo León 66455 Mexico
- Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT); Universidad Autónoma de Nuevo León (UANL); Apodaca Nuevo León Mexico
| |
Collapse
|
48
|
Liu C, Saeki D, Matsuyama H. A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Adv 2017. [DOI: 10.1039/c7ra10012d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A simple and efficient enzyme immobilization strategy on microporous membrane surfaces using dicarboxylic acid halides as a spacer offers a tool to design membranes used in enzymatic membrane reactors.
Collapse
Affiliation(s)
- Cuijing Liu
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| | - Daisuke Saeki
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology
- Department of Chemical Science and Engineering
- Kobe University
- Kobe
- Japan
| |
Collapse
|
49
|
Han H, Zhou Y, Li S, Wang Y, Kong XZ. Immobilization of Lipase from Pseudomonas fluorescens on Porous Polyurea and Its Application in Kinetic Resolution of Racemic 1-Phenylethanol. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25714-25724. [PMID: 27618157 DOI: 10.1021/acsami.6b07979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A porous polyurea (PPU) was prepared through a simple protocol by reacting toluene diisocyanate with water in binary solvent of water-acetone. Its amine group was determined through spectrophotometric absorbance based on its iminization with p-nitrobenzaldehyde amines. PPU was then used as a novel polymer support for enzyme immobilization, through activation by glutaraldehyde followed by immobilization of an enzyme, lipase from Pseudomonas fluorescens (PFL), via covalent bonding with the amine groups of lipase molecules. Influences of glutaraldehyde and enzyme concentration and pH in the process were studied. The results revealed that the activity of the immobilized PFL reached a maximum at GA concentration of 0.17 mol/L and at pH 8. Immobilization rate of 60% or higher for PFL was obtained under optimized condition with an enzyme activity of 283 U/mg. The porous structure of PPU, prior to and after GA activation and PFL immobilization, was characterized. The activity of the immobilized PFL at different temperature and pH and its stability at 40 °C as well as its reusability were tested. The immobilized enzyme was finally used as enantioselective catalyst in kinetic resolution of racemic 1-phenylethanol (1-PEOH), and its performance compared with the free PFL. The results demonstrate that the enzyme activity and stability were greatly improved for the immobilized PFL, and highly pure enantiomers from racemic 1-PEOH were effectively achieved using the immobilized PFL. Noticeable deactivation of PFL in the resolution was observed by acetaldehyde in situ formed. In addition, the immobilized PFL was readily recovered from the reaction system for reuse. A total of 73% of the initial activity was retained after 5 repeated reuse cycles. This work provides a novel route to preparation of a polyurea porous material and its enzyme immobilization, leading to a novel type of immobilized enzyme for efficient kinetic resolution of racemic molecules.
Collapse
Affiliation(s)
- Hui Han
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yamei Zhou
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
- College of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Yinping Wang
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| |
Collapse
|
50
|
Wang W, Lu Y, Luo M, Zhao Q, Wang Y, Liu Q, Li M, Wang D. Zwitterionic-polymer-functionalized poly(vinyl alcohol-co-ethylene) nanofiber membrane for resistance to the adsorption of bacteria and protein. J Appl Polym Sci 2016. [DOI: 10.1002/app.44169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wenwen Wang
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Ying Lu
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Mengying Luo
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Qinghua Zhao
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Yuedan Wang
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Qiongzhen Liu
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Mufang Li
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| | - Dong Wang
- School of Materials Science and Engineering; Wuhan Textile University; Wuhan 430200 China
| |
Collapse
|