1
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
2
|
Influence of Synthesis Parameters and Polymerization Methods on the Selective and Adsorptive Performance of Bio-Inspired Ion Imprinted Polymers. SEPARATIONS 2022. [DOI: 10.3390/separations9100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ion-imprinted polymers (IIPs) have been widely used in different fields of Analytical Sciences due to their intrinsic selective properties. However, the success of chemical imprinting in terms of selectivity, as well as the stability, specific surface area, and absence of swelling effect depends on fully understanding the preparation process. Therefore, the proposal of this review is to describe the influence of relevant parameters on the production processes of ion-imprinted polymers, including the nature (organic, inorganic, or hybrid materials), structure, properties of the salt (source of the metal ion), ligand, crosslinking agent, porogenic solvent, and initiator. Additionally, different polymerization methods are discussed, the classification of IIPs as well as the applications of these adsorbent materials in the last years (2017–2022).
Collapse
|
3
|
Azizinezhad F, Moghimi A. A rapid and sensitive method for separation of Cu 2+ ions from industrial wastewater sample and water samples with methacrylamide-ethylene glycol dimethacrylate: A new synthesis of molecularly imprinted polymer. IET Nanobiotechnol 2021; 15:698-709. [PMID: 34694745 PMCID: PMC8806121 DOI: 10.1049/nbt2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, new molecularly imprinted polymer particles (MIP) were synthesised to extract Cu2+ ions from aqueous solutions using radical polymerisation. MIP was developed using the methacrylamide‐ethylene glycol dimethacrylate (EGDMA) cross linking agent, methacrylamide monomer, and ACV initiator by the radical polymerisation method. A comparison of various cross linking agents in MIP production showed that the best cross linking agents are EGDMA and gallic acid. The template ions were removed by leaching with 0.100 M HCl. The polymer particles were characterised by FTIR spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effect of different parameters such as cross linkers, pH, time, maximum adsorption capacity, and kinetic and isotherm adsorption were investigated. The best conditions were determined (pH = 8.0, t = 10 min, and qm = 262.53 mg g−1). The adsorption data were best fitted by Freundlich isotherm and pseudo second order kinetic models, as well. Due to its high adsorption capacity and multi‐layer behaviour, this method is an easy, fast and safe way to extract cations. Removal of Cu2+ in certified tap water and rain water was demonstrated and the industrial wastewater sample (Charmshahr, Iran) with which the MIP was developed using Methacrylamide‐ Ethylene Glycol Dimethacrylate (EGDMA) was good enough for Cu2+ determination in matrices containing components with similar chemical property such as Co2+, Zn2+, Fe2.
Collapse
Affiliation(s)
- Fariborz Azizinezhad
- Department of Chemistry and Chemical Engineering, College of Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Ali Moghimi
- Department of Chemistry and Chemical Engineering, College of Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
4
|
Synthesis and performance of cross-linked poly(vinylpyridine-co-protoporphyrin) for effective cobalt determination using a micro-packed column hyphenated system coupled to FAAS. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Kusumkar VV, Galamboš M, Viglašová E, Daňo M, Šmelková J. Ion-Imprinted Polymers: Synthesis, Characterization, and Adsorption of Radionuclides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1083. [PMID: 33652580 PMCID: PMC7956459 DOI: 10.3390/ma14051083] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Growing concern over the hazardous effect of radionuclides on the environment is driving research on mitigation and deposition strategies for radioactive waste management. Currently, there are many techniques used for radionuclides separation from the environment such as ion exchange, solvent extraction, chemical precipitation and adsorption. Adsorbents are the leading area of research and many useful materials are being discovered in this category of radionuclide ion separation. The adsorption technologies lack the ability of selective removal of metal ions from solution. This drawback is eliminated by the use of ion-imprinted polymers, these materials having targeted binding sites for specific ions in the media. In this review article, we present recently published literature about the use of ion-imprinted polymers for the adsorption of 10 important hazardous radionuclides-U, Th, Cs, Sr, Ce, Tc, La, Cr, Ni, Co-found in the nuclear fuel cycle.
Collapse
Affiliation(s)
- Vipul Vilas Kusumkar
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Michal Galamboš
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Eva Viglašová
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Martin Daňo
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehová 7, 115 19 Prague, Czech Republic;
| | - Jana Šmelková
- Department of Administrative Law and Environmental Law, Faculty of Law, Comenius University in Bratislava, Safarikovo namestie 6, 810 00 Bratislava, Slovakia;
| |
Collapse
|
6
|
Guan L, Kang H, Liu W, Tian D. Adsorption behavior of copper ions using crown ether-modified konjac glucomannan. Int J Biol Macromol 2021; 177:48-57. [PMID: 33610605 DOI: 10.1016/j.ijbiomac.2021.02.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/01/2022]
Abstract
A novel supramolecular polysaccharide composite [KGM + DB18C6] was prepared from konjac glucomannan (KGM) and dibenzo-18-crown-6 (DB18C6) using ceric ammonium nitrate as initiator. The products were characterized by FTIR, TG, DSC, UV-Vis, XRD, solid-state 13C NMR, and SEM. Due to the introduction of crown ether, [KGM + DB18C6] showed good adsorption performance for Cu2+ in aqueous, and the maximum adsorption capacity was 194 mg/g under the optimal adsorption condition. The adsorption kinetics of [KGM + DB18C6] on Cu2+ could be described by the pseudo-second-order kinetic model. The adsorption isotherms of [KGM + DB18C6] on Cu2+ followed the dual-site Langmuir-Freundlich model. In addition, high recoveries of Cu2+ (from 82.65 to 88.47%), and low relative standard deviation (below 5.00%) were obtained by applying the product in real samples, indicating that [KGM + DB18C6] was a good absorbent for removing Cu2+ in wastewater.
Collapse
Affiliation(s)
- Lianxiong Guan
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Huiting Kang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Wei Liu
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, People's Republic of China; Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, People's Republic of China.
| |
Collapse
|
7
|
Han P, Li Z, Wei X, Tang L, Li M, Liang Z, Yin X, Wei S. Ion-imprinted thermosensitive chitosan derivative for heavy metal remediation. Carbohydr Polym 2020; 248:116732. [DOI: 10.1016/j.carbpol.2020.116732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022]
|
8
|
Adauto A, Khan S, Augusto da Silva M, Gomes Neto JA, Picasso G, Sotomayor MDPT. Synthesis, characterization and application of a novel ion hybrid imprinted polymer to adsorb Cd(II) in different samples. ENVIRONMENTAL RESEARCH 2020; 187:109669. [PMID: 32445943 DOI: 10.1016/j.envres.2020.109669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Two new ionic imprinted hybrid polymers (IIHP) and their corresponding non imprinted hybrid polymers (NIHP) were synthesized. The prepared IIHP was highly selective to Cd2+. To prepare the IIHP, 1-vinylimidazole (VIN) was used as the functional monomer, (3-mercaptopropyl) trimethoxysilane (MP) or (3-aminopropyl) trimethoxysilane (AMP) was used as the functional organosilane, trimethylolpropane (TRIM) was used as the crosslinking agent, AIBN was used as a radical initiator and TEOS was used as a functional precursor. The functional monomer was selected considering calculations based on the density functional theory (DFT). The fabricated materials were characterized via field emission gun scanning electron microscopy (FEG-SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX) and thermogravimetric analysis (TGA). The maximum adsorption capacity of Cd2+ was achieved at a pH of 7.2 in the tris-HCl medium. The adsorption test indicated that the reaction followed pseudo second order kinetics, and the equilibrium sorption data fitted well into the Langmuir isotherm model. The relative selectivity coefficients of polymers IIHP-VIN-AMP and IIHP-VIN-MP, as evaluated in binary mixtures of Cd2+ and interferent cations (Pb2+, Zn2+, Hg2+, Cu2+, Ni2+, Ca2+, Mg2+, and Na+) at different molar ratios, were greater than one due to the presence of specific recognition sites for Cd2+ ions. Moreover, the selective materials exhibited a high reusability and reproducibility in the context of Cd2+ adsorption. These adsorbent materials, specifically IIHP-VIN-MP, exhibited a % removal efficiency of more than 90% for the Cd2+ in river water samples.
Collapse
Affiliation(s)
- Anais Adauto
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru
| | - Sabir Khan
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru; Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970, Araraquara, SP, Brazil
| | - Matheus Augusto da Silva
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970, Araraquara, SP, Brazil
| | - José Anchieta Gomes Neto
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970, Araraquara, SP, Brazil
| | - Gino Picasso
- Laboratory of Physical Chemistry Research, Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima, Peru.
| | - Maria Del Pilar Taboada Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970, Araraquara, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil.
| |
Collapse
|
9
|
Rais S, Islam A, Ahmad I, Kumar S, Chauhan A, Javed H. Preparation of a new magnetic ion-imprinted polymer and optimization using Box-Behnken design for selective removal and determination of Cu(II) in food and wastewater samples. Food Chem 2020; 334:127563. [PMID: 32791433 DOI: 10.1016/j.foodchem.2020.127563] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022]
Abstract
A new magnetic Cu(II) IIP (Fe3O4@IIP-IDC) is synthesized by polymerization of Imidazole-4,5-dicarboxylic acid functionalized Allyl chloride, and significant improvement of its performance has been compared. SPE parameters were optimized using Box-Behnken design to achieve the twin objectives of quantitative determination and removal of Cu(II). FLPSO kinetic model and BS isotherm model fits well with the capacity of 175 mg g-1. Analytical figures of merit includes a linearity range of 10-5,000 µg L-1 (R2 = 0.9986), preconcentration factor of 50 after eluting with 5 mL of 1 M HNO3, LOD of 1.03 µg L-1 and LOQ of 4.5 µg L-1. Accuracy was assessed by analysis of SRM (Standard Reference Material) and recovery experiments after spiking in food samples (Tea, coffee, chocolate, spinach, infant milk substitute) and battery wastewater. Ease of use, reusability (15 cycles), rapid adsorption and high selectivity makes it a promising candidate for efficient and selective removal and trace determination.
Collapse
Affiliation(s)
- Saman Rais
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Aminul Islam
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Izhar Ahmad
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Suneel Kumar
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Anjali Chauhan
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Javed
- Analytical Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
10
|
Development of a new ion-imprinted polymer (IIP) with Cd2+ ions based on divinylbenzene copolymers containing amidoxime groups. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02842-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Ferreira VR, Azenha MA, Pereira CM, Fernando Silva A. Molecularly imprinted polymers for enhanced impregnation and controlled release of l-tyrosine. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Preparation and application of nanocomposite based on imprinted poly(methacrylic acid)-PAN/MWCNT as a new electrochemical selective sensing platform of Pb2+ in water samples. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.12.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
On-line micro-solid phase preconcentration of Cd2+ coupled to TS-FF-AAS using a novel ion-selective bifunctional hybrid imprinted adsorbent. Microchem J 2017. [DOI: 10.1016/j.microc.2016.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Basaglia AM, Corazza MZ, Segatelli MG, Tarley CRT. Synthesis of Pb(ii)-imprinted poly(methacrylic acid) polymeric particles loaded with 1-(2-pyridylazo)-2-naphthol (PAN) for micro-solid phase preconcentration of Pb2+ on-line coupled to flame atomic absorption spectrometry. RSC Adv 2017. [DOI: 10.1039/c7ra02964k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new ion-selective imprinted polymer based on poly(methacrylic acid) loaded with 1-(2-pyridylazo)-2-naphthol (PAN) (IIP/PAN) has been synthesized, characterized and evaluated for the preconcentration of Pb2+ with on-line determination by flame atomic absorption spectrometry.
Collapse
Affiliation(s)
- Andréia M. Basaglia
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| | - Marcela Z. Corazza
- Faculdade de Ciências Exatas e Tecnologia, FACET
- Universidade Federal da Grande Dourados (UFGD)
- Dourados
- Brazil
| | - Mariana G. Segatelli
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| | - César R. T. Tarley
- Universidade Estadual de Londrina (UEL)
- Departamento de Química
- Centro de Ciências Exatas
- Londrina
- Brazil
| |
Collapse
|
16
|
Wong A, de Oliveira FM, Tarley CRT, Del Pilar Taboada Sotomayor M. Study on the cross-linked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective adsorption of diuron. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Lü H, Wang X, Yang J, Xie Z. One-step synthesis of CDTA coated magnetic nanoparticles for selective removal of Cu(II) from aqueous solution. Int J Biol Macromol 2015; 78:209-14. [DOI: 10.1016/j.ijbiomac.2015.03.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/09/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
|
18
|
Tarley CRT, Corazza MZ, Somera BF, Segatelli MG. Preparation of new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb²⁺ ions. J Colloid Interface Sci 2015; 450:254-263. [PMID: 25823729 DOI: 10.1016/j.jcis.2015.02.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/11/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
A new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) prepared via a double-imprinting process was developed for the recognition and preconcentration of Pb(2+) from water samples. The sorbent was characterized by FT-IR, SEM, TGA and textural data. The maximum dynamic sorption capacity of Pb(2+) was 42.04 mg Pb(2+) g(-1) of the double-imprinted polymer. The sorption kinetics data were described by a pseudo-second-order model. The double-imprinted polymer exhibited a higher sorption efficiency of Pb(2+) than the blank polymer (non-imprinted polymer). The preconcentration procedure involved the loading of a Pb(2+) solution at pH 7.25 through 40.0 mg of the double-imprinted polymer packed in a mini-column at 5.0 mL min(-1). The selective efficiency of proposed method for the Pb(2+) preconcentration was assured by competitive sorption using different proportions of Pb(2+)/cations and Pb(2+)/anions. An analytical curve was obtained in the range 0.0-300.0 μg L(-1) (r=0.999) and a limit of detection of 2.46 μg L(-1) was obtained. The preconcentration factor was found to be 21, the consumptive index 0.95 mL and the concentration efficiency 5.25 min(-1). The preconcentration method was successfully applied to the Pb(2+) ions determination in different kinds of water samples with high recovery values (91.3-108.9%).
Collapse
Affiliation(s)
- César Ricardo Teixeira Tarley
- Universidade Estadual de Londrina (UEL), Departamento de Química, Centro de Ciências Exatas, Rodovia Celso Garcia Cid, PR 445, km 380, Londrina, PR 86050-482, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) de Bioanalítica, Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Departamento de Química Analítica, Cidade Universitária Zeferino Vaz, s/n, Campinas, SP 13083-970, Brazil.
| | - Marcela Zanetti Corazza
- Universidade Estadual de Londrina (UEL), Departamento de Química, Centro de Ciências Exatas, Rodovia Celso Garcia Cid, PR 445, km 380, Londrina, PR 86050-482, Brazil
| | - Bruna Fabrin Somera
- Universidade Estadual de Londrina (UEL), Departamento de Química, Centro de Ciências Exatas, Rodovia Celso Garcia Cid, PR 445, km 380, Londrina, PR 86050-482, Brazil
| | - Mariana Gava Segatelli
- Universidade Estadual de Londrina (UEL), Departamento de Química, Centro de Ciências Exatas, Rodovia Celso Garcia Cid, PR 445, km 380, Londrina, PR 86050-482, Brazil
| |
Collapse
|