1
|
Srivastava N, Roy Choudhury A. Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites. Carbohydr Polym 2025; 351:123101. [PMID: 39779015 DOI: 10.1016/j.carbpol.2024.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored. This study is the first attempt to integrate gellan and amino acids to develop an innovative hydrogel bioreactor. The performance of this system was determined by cultivating Rhodosporidium sp. (MTCC 9733) as a model organism and evaluating its metabolite production. Further, gellan and amino acids concentration was optimized using one-factor-at-a-time and D-optimal response surface methodologies to produce β-carotene, lipid, and protein. Additionally, a comparison of productivity, yield, and process economics suggested that novel solid-state hydrogel fermentation approach outperformed classical submerged fermentation in YMB liquid media. Moreover, rheological properties of optimized hydrogel, conducted before and after yeast cultivation, revealed that this system possesses significant mechanical strength and structural integrity. Such attributes render the hydrogel suitable for utilization across multiple fermentation cycles. Hence, this study illustrates the potential of gellan-amino acid hydrogels as sustainable, efficient alternatives to conventional fermentation methods.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Manoj N, Pradhan M, Kundu D, Abhiramy DS, Balakumaran PA, Sherpa KC. Nanochitin: Green nanomaterial for sustainable applications in agriculture and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178607. [PMID: 39889571 DOI: 10.1016/j.scitotenv.2025.178607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
The need for a green and sustainable nanomaterial sourced from biomass in the form of nanochitin has raised interest in paving the way towards incorporating biological resources for the production of functional materials. Nanochitin as nanofibers and nanocrystals/whiskers have attractive features like their ability to self-assemble into multidimensional biomaterials while retaining their intrinsic characteristics. Herein, the review discusses chitin's molecular association and hierarchical assemblies and gives an overview of the extraction methods adopted to produce nanochitin. Recent progress in the development of advanced functional nanochitin-based materials/composites and their current application in agriculture and environmental remediation are reviewed to gain a better understanding of their applicability for forthcoming research and improvement. Furthermore, the environmental impact assessment of chitin has been discussed, followed by the techno-economic analysis, thus providing scope for improvement in manufacturing and perspectives on the potential of nanochitin in the context of sustainable material and their role in circular bioeconomy.
Collapse
Affiliation(s)
- Neeraja Manoj
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Meghna Pradhan
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Deepan Shammy Abhiramy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Knawang Chhunji Sherpa
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Vale AC, Leite L, Pais V, Bessa J, Cunha F, Fangueiro R. Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres. Polymers (Basel) 2024; 16:3602. [PMID: 39771455 PMCID: PMC11679467 DOI: 10.3390/polym16243602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted.
Collapse
Affiliation(s)
- Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Liliana Leite
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
4
|
Svensson SE, Wijayarathna ERKB, Kalita NK, Hakkarainen M, Zamani A. Development of hydrogels from cell wall of Aspergillus oryzae containing chitin-glucan and wet spinning to monofilaments. Int J Biol Macromol 2024; 278:134285. [PMID: 39128384 DOI: 10.1016/j.ijbiomac.2024.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
Fungal mycelium is emerging as a source for sustainable bio-based materials. Fungal biomass of Aspergillus oryzae was prepared by cultivation on bread waste hydrolysate to valorize this abundant food waste. Chitin-glucan-rich alkali-insoluble material (AIM) was isolated from fungal biomass, formed into hydrogels, and wet spun into monofilaments. AIM in the form of fungal microfibers containing 0.09 g polymer of glucosamine (GlcN)/g AIM was subjected to freeze-thaw and deacetylation treatments to increase the amount of GlcN. The GlcN fraction was 0.19 and 0.34 g polymer of GlcN/g AIM, for AIM subjected to deacetylation (AIM-DAC) and freeze-thaw cycles and deacetylation (AIM-FRTH-DAC), respectively. The increased GlcN fraction enabled the formation of hydrogels via the protonation of amino groups after the addition of lactic acid. Morphological differences in the hydrogels included aggregation of the fungal microfibers in the AIM-DAC hydrogel, whereas the microfibers in the AIM-FRTH-DAC hydrogel had a porous and interconnected network. Rheological assessment revealed shear thinning behavior and gel properties of the produced hydrogels. Wet spinning of the hydrogels resulted in monofilaments with tensile strengths of up to 70 MPa and 12 % elongation at break. This demonstrates promising avenues for biomaterial development from fungal cell walls containing chitin-glucan via food waste valorization.
Collapse
Affiliation(s)
- Sofie E Svensson
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| | | | - Naba Kumar Kalita
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Akram Zamani
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden.
| |
Collapse
|
5
|
Chonanant C, Chancharoen P, Kiatkulanusorn S, Luangpon N, Klarod K, Surakul P, Thamwiriyasati N, Singsanan S, Ngernyuang N. Biocomposite Scaffolds Based on Chitosan Extraction from Shrimp Shell Waste for Cartilage Tissue Engineering Application. ACS OMEGA 2024; 9:39419-39429. [PMID: 39346874 PMCID: PMC11425810 DOI: 10.1021/acsomega.4c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
Chitosan-based scaffolding possesses unique properties that make it highly suitable for tissue engineering applications. Chitosan is derived from deacetylating chitin, which is particularly abundant in the shells of crustaceans. This study aimed to extract chitosan from shrimp shell waste (Macrobrachium rosenbergii) and produce biocomposite scaffolds using the extracted chitosan for cartilage tissue engineering applications. Chitinous material from shrimp shell waste was deproteinized and deacetylated. The extracted chitosan was characterized and compared to commercial chitosan through various physicochemical analyses. The findings revealed that the extracted chitosan shares similar trends in the Fourier transform infrared spectroscopy spectrum, energy dispersive X-ray mapping, and X-ray diffraction pattern to commercial chitosan. Despite differences in the degree of deacetylation, these results underscore its comparable quality. The extracted chitosan was mixed with agarose, collagen, and gelatin to produce the blending biocomposite AG-CH-COL-GEL scaffold by freeze-drying method. Results showed AG-CH-COL-GEL scaffolds have a 3D interconnected porous structure with pore size 88-278 μm, high water uptake capacity (>90%), and degradation percentages in 21 days between 5.08% and 30.29%. Mechanical compression testing revealed that the elastic modulus of AG-CH-COL-GEL scaffolds ranged from 44.91 to 201.77 KPa. Moreover, AG-CH-COL-GEL scaffolds have shown significant potential in effectively inducing human chondrocyte proliferation and enhancing aggrecan gene expression. In conclusion, AG-CH-COL-GEL scaffolds emerge as promising candidates for cartilage tissue engineering with their optimal physical properties and excellent biocompatibility. This study highlights the potential of using waste-derived chitosan and opens new avenues for sustainable and effective tissue engineering solutions.
Collapse
Affiliation(s)
- Chirapond Chonanant
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Pongrung Chancharoen
- Department
of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Sirirat Kiatkulanusorn
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Nongnuch Luangpon
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Kultida Klarod
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Pornprom Surakul
- Department
of Physical Therapy, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Niramon Thamwiriyasati
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Sanita Singsanan
- Department
of Medical Technology, Faculty of Allied Health Science, Burapha University, Chonburi, 20131, Thailand
| | - Nipaporn Ngernyuang
- Thammasat
University Research Unit in Biomedical Science, Thammasat University, Pathum
Thani 12120, Thailand
- Chulabhorn
International College of Medicine, Thammasat
University, Pathum
Thani 12120, Thailand
| |
Collapse
|
6
|
Wang Z, Mahmood N, Budhathoki-Uprety J, Brown AC, King MW, Gluck JM. Preparation and Characterization of Hydrogels Fabricated From Chitosan and Poly(vinyl alcohol) for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2024; 7:5519-5529. [PMID: 39037196 DOI: 10.1021/acsabm.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In this study, we report on the preparation, characterization, and cytocompatibility of hydrogels for biomedical applications made from two different molecular weights of chitosan (CS) blended with poly(vinyl alcohol) (PVA) and chemically cross-linked with tetraethyl orthosilicate (TEOS) followed by freeze-drying. A series of CS-PVA hydrogels were synthesized with different amounts of chitosan (1%, 2%, and 3% by weight). The structure of these CS-PVA hydrogels was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The hydrogel samples were also characterized for tensile strength, contact angle, swelling behavior, and degradation at physiological body temperature. Their physicochemical properties, biocompatibility, and cell viability when cultured with human dermal fibroblasts were assessed using alamarBlue and live/dead assays and compared to optimize their functionality. SEM analysis showed that the concentration and molecular weight of the chitosan component affected the pore size. Furthermore, the contact angle decreased with increasing chitosan content, indicating that chitosan increased its hydrophilic properties. The in vitro degradation study revealed a nonlinear time-dependent relationship between chitosan concentration or molecular weight, and the rate of degradation was affected by the pore size of the hydrogel. All of the CS-PVA hydrogels exhibited good cell proliferation, particularly with the high molecular weight chitosan samples.
Collapse
Affiliation(s)
- Ziyu Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nasif Mahmood
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Januka Budhathoki-Uprety
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, North Carolina 27695, United States
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
- College of Textiles, Donghua University, Songjiang, Shanghai 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Liang S, Wang X, Sun S, Xie L, Dang X. Extraction of chitin from flammulina velutipes waste: A low-concentration acid pretreatment and aspergillus Niger fermentation approach. Int J Biol Macromol 2024; 273:133224. [PMID: 38897518 DOI: 10.1016/j.ijbiomac.2024.133224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
In recent years, with the booming of the edible mushroom industry, chitin production has become increasingly dependent on fungi and other non-traditional sources. Fungal chitin has advantages including superior performance, simpler separation processes, abundant raw materials, and the absence of shellfish allergens. As a kind of edible mushroom, flammulina velutipes (F. velutipes) also has the advantages of wide source and large annual yield. This provided the possibility for the extraction of chitin. Here, a procedure to extract chitin from F. velutipes waste be presented. This method comprises low-concentration acid pretreatment coupled with consolidated bioprocessing with Aspergillus niger. Characterization by SEM, FTIR, XRD, NMR, and TGA confirmed that the extracted chitin was β-chitin. To achieve optimal fermentation of F. velutipes waste (80 g/L), ammonium sulfate and glucose were selected as nitrogen and carbon sources (5 g/L), with a fermentation time of 5 days. The extracted chitin could be further deacetylated and purified to obtain high-purity chitosan (99.2 % ± 1.07 %). This chitosan exhibited a wide degree of deacetylation (50.0 % ± 1.33 % - 92.1 % ± 0.97 %) and a molecular weight distribution of 92-192 kDa. Notably, the yield of chitosan extracted in this study was increased by 56.3 % ± 0.47 % compared to the traditional chemical extraction method.
Collapse
Affiliation(s)
- Shuang Liang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Siwei Sun
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Long Xie
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High-Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
8
|
El Feky AR, Ismaiel M, Yılmaz M, Madkour FM, El Nemr A, Ibrahim HAH. Biodegradable plastic formulated from chitosan of Aristeus antennatus shells with castor oil as a plasticizer agent and starch as a filling substrate. Sci Rep 2024; 14:11161. [PMID: 38750054 PMCID: PMC11096362 DOI: 10.1038/s41598-024-61377-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Biodegradable plastics are those subjected easily to a degradation process, in which they can be decomposed after disposal in the environment through microbial activity. 30 bioplastic film formulations based only on chitosan film were used in the current investigation as a positive control together with chitosan film recovered from chitin-waste of locally obtained Aristeus antennatus. Additionally, castor oil was used as a plasticizer. While the yield of chitosan was 18% with 7.65% moisture content and 32.27% ash in the shells, the isolated chitin had a degree of deacetylation (DD) of 86%. The synthesized bioplastic films were characterized via numerous criteria. Firstly, the swelling capacity of these biofilms recorded relatively high percentages compared to polypropylene as synthetic plastic. Noticeably, the FTIR profiles, besides DSC, TGA, and XRD, confirmed the acceptable characteristics of these biofilms. In addition, their SEM illustrated the homogeneity and continuity with a few straps of the chitosan film and showed the homogeneous mixes of chitosan and castor oil with 5 and 20%. Moreover, data detected the antibacterial activity of different bioplastic formulas against some common bacterial pathogens (Enterococcus feacalis, Kelbsiella pnumina, Bacillus subtilis, and Pseudomonas aeruginosa). Amazingly, our bioplastic films have conducted potent antimicrobial activities. So, they may be promising in such a direction. Further, the biodegradability efficacy of bioplastic films formed was proved in numerous environments for several weeks of incubation. However, all bioplastic films decreased in their weights and changed in their colors, while polypropylene, was very constant all the time. The current findings suggest that our biofilms may be promising for many applications, especially in the field of food package protecting the food, and preventing microbial contamination, consequently, it may help in extending the shelf life of products.
Collapse
Affiliation(s)
- Ayaat R El Feky
- Oceanographic Sciences Department, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Mohammed Ismaiel
- Oceanographic Sciences Department, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Murat Yılmaz
- Bahçe Vocational School, Department of Chemistry and Chemical Processing Technologies, Osmaniye Korkut Ata University, Osmaniye, 80000, Turkey
| | - Fedekar M Madkour
- Oceanographic Sciences Department, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| | - Hassan A H Ibrahim
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| |
Collapse
|
9
|
Vadivel D, Cartabia M, Scalet G, Buratti S, Di Landro L, Benedetti A, Auricchio F, Babbini S, Savino E, Dondi D. Innovative chitin-glucan based material obtained from mycelium of wood decay fungal strains. Heliyon 2024; 10:e28709. [PMID: 38590850 PMCID: PMC11000025 DOI: 10.1016/j.heliyon.2024.e28709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Fungi are an alternative source to animal-based chitin. In fungi, chitin fibrils are strongly interconnected and bound with glucans that justify the unique matrix. The present study aimed to extract chitin and glucans from the mycelium of several wood decay fungal strains in order to obtain flexible materials and to check correlations between chitin content and the mechanical properties of these materials. Five strains were chosen in consideration of their different cell wall chemical composition (high content of α-glucans, β-glucans or chitin) to evaluate how these differences could influence the mechanical and chemical characteristics of the material. The fungal strains were cultivated in liquid-submerged dynamic fermentation (both flasks and bioreactor). Chitin and glucans were crosslinked with acetic acid and plasticized with glycerol to obtain flexible sheets. Abortiporus biennis, Fomitopsis iberica and Stereum hirsutum strains were found to adapt to produce material with adequate flexibility. The obtained materials were characterized by Thermogravimetric analysis (TGA) for the understanding of the material composition. The material obtained from each species was mechanically tested in terms of tear strength, elongation at break, and Young's modulus.
Collapse
Affiliation(s)
- Dhanalakshmi Vadivel
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Marco Cartabia
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via S. Epifanio 14, 27100, Pavia, Italy
- MOGU S.r.l., Via S. Francesco d’Assisi 62, 21020, Inarzo, VA, Italy
| | - Giulia Scalet
- Dep. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Simone Buratti
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via S. Epifanio 14, 27100, Pavia, Italy
| | - Luca Di Landro
- Department of Aerospace Science and Technology (DAER), Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Alessandra Benedetti
- Department of Aerospace Science and Technology (DAER), Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Ferdinando Auricchio
- Dep. of Civil Engineering and Architecture (DICAr), University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Stefano Babbini
- MOGU S.r.l., Via S. Francesco d’Assisi 62, 21020, Inarzo, VA, Italy
| | - Elena Savino
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, Via S. Epifanio 14, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
10
|
Derivation of composites of chitosan-nanoparticles from crustaceans source for nanomedicine: A mini review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Biocompatible fibers from fungal and shrimp chitosans for suture application. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Vallejo I, Jaramillo JD, Agudelo Escobar LM. Submerged culture fermentation of Colletotrichum lindemuthianum DSM 12250 as biotechnological strategy for fungal chitin biotransformation. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1988581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Isabella Vallejo
- Industrial and Environmental Microbiology, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Jaramillo
- Industrial and Environmental Microbiology, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
13
|
In vivo and in vitro evaluation of the wound healing properties of chitosan extracted from Trametes versicolor. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02773-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Hasanuzzaman M, Parvin K, Bardhan K, Nahar K, Anee TI, Masud AAC, Fotopoulos V. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells 2021; 10:cells10102537. [PMID: 34685517 PMCID: PMC8533957 DOI: 10.3390/cells10102537] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants’ interaction with ROS signaling and the antioxidant defense system of the plants.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
- Correspondence: (M.H.); (V.F.)
| | - Khursheda Parvin
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Navsari 396450, India;
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Abdul Awal Chowdhury Masud
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (A.A.C.M.)
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, P.O. Box 50329, Lemesos 3603, Cyprus
- Correspondence: (M.H.); (V.F.)
| |
Collapse
|
15
|
van Leeuwe TM, Arentshorst M, Punt PJ, Ram AF. Interrogation of the cell wall integrity pathway in Aspergillus niger identifies a putative negative regulator of transcription involved in chitin deposition. Gene 2021; 763S:100028. [PMID: 32550555 PMCID: PMC7285910 DOI: 10.1016/j.gene.2020.100028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
Abstract
Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10–30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in Aspergillus niger. This screen revealed a mutant strain (RD15.4#55) that showed a 30–40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named cwcA (cell wall chitin A), encodes an orthologue of Saccharomyces cerevisiae Bypass of ESS1 (BYE1), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall. An Aspergillus niger UV-mutant with increased cell wall chitin was characterized. Causative mutation was identified in a single gene, named cell wall chitin A (cwcA). CwcA is orthologous to yeast Bye1p and exists as a single copy gene. Three relevant domains are found in both CwcA and Bye1p: PHD, TFIIS and SPOC. CwcA acts as negative regulator of CWI signaling.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Corresponding author at: Leiden University, Institute of Biology, Department Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
16
|
Characterization of chitin-glucan complex from Tremella fuciformis fermentation residue and evaluation of its antibacterial performance. Int J Biol Macromol 2021; 186:649-655. [PMID: 34118291 DOI: 10.1016/j.ijbiomac.2021.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022]
Abstract
Submerged fermentation of fungi is an efficient way to obtain extracellular polysaccharides, however, in this process, excess discarded biomass is produced. In this study, Tremella fuciformis mycelia were reused as the raw material to isolate a novel fungal chitin-glucan complex (CGC-TFM) using alkaline extraction. Characteristic analysis revealed that the CGC-TFM consisted of glucosamine/acetylglucosamine and glucose (GlcN:Glc = 26:74 mol%), indicating a reference to the β polymorphism of chitin-glucan complex, with the molecular weight and crystallinity index of 256 ± 3.0 kDa and 54.25 ± 1.04%, respectively. Fourier transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and scanning electron microscopy analyses confirmed that the chitin portion of the CGC-TFM exhibited a typical β configuration and N-acetylation degree of 70.52 ± 2.09%. Furthermore, the CGC-TFM exhibited good thermal stability and effective Escherichia coli inhibition ability, indicating that it could be applied as a potential food packaging material.
Collapse
|
17
|
Valencia AM, Valencia CH, Zuluaga F, Grande-Tovar CD. Synthesis and fabrication of films including graphene oxide functionalized with chitosan for regenerative medicine applications. Heliyon 2021; 7:e07058. [PMID: 34095569 PMCID: PMC8165423 DOI: 10.1016/j.heliyon.2021.e07058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/08/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Graphene oxide (GO) has recently gained attention as a scaffold reinforcing agent for tissue engineering. Biomechanical and biological properties through a synergistic effect can be strengthened when combined with other materials such as chitosan (CS). For that reason, chitosan was used for Graphene Oxide (GO) functionalization through an amide group whose formation was evident by bands around 1600 cm−1 in the FTIR analysis. Furthermore, bands located at 1348 cm−1 (D band), 1593 cm−1 (G band), and 2416 cm−1 (2D band) in the RAMAN spectrum, and the displacement of the signal at 87.03 ppm (C5) in solid-state 13C-NMR confirmed the amide formation. Films including the CS-GO compound were prepared and characterized by thermogravimetric analysis (TGA), where CS-GO film presented a lighter mass loss (~10% less loosed) than CS due probably to the covalent functionalization with GO, providing film thermal resistance. The CS-GO films synthesized were implanted in Wistar rats' subdermal tissue as a first approximation to the biological response. In vivo tests showed a low inflammatory response, good cicatrization, and advanced resorption at 60 days of implantation, as indicated by histological images. It was evidenced that the covalent union between CS and GO increased biocompatibility and the degradation/resorption capacity, demonstrating tissue regeneration with typical characteristics and tiny remnants of implanted material surrounded by a type III collagen capsule. These results show the potential application of the new synthesized films, including the CS-GO compound, in tissue engineering.
Collapse
Affiliation(s)
- Ana María Valencia
- Laboratorio SIMERQO Polímeros, Departamento de Química, Universidad del Valle, Calle 13 # 100-00, Cali 76001, Colombia
| | - Carlos Humberto Valencia
- Escuela de Odontología, Grupo Biomateriales Dentales, Universidad del Valle, Calle 4B No. 36-00, Cali 76001, Colombia
| | - Fabio Zuluaga
- Laboratorio SIMERQO Polímeros, Departamento de Química, Universidad del Valle, Calle 13 # 100-00, Cali 76001, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
18
|
Cao J, Sun Z, Li J, Zhu Y, Yuan Z, Zhang Y, Li D, Wang L, Han W. Microbe-Assisted Assembly of Ti 3C 2T x MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS NANO 2021; 15:3423-3433. [PMID: 33496566 DOI: 10.1021/acsnano.0c10491] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a typical family of two-dimensional (2D) materials, MXenes present physiochemical properties and potential for use in energy storage applications. However, MXenes suffer some of the inherent disadvantages of 2D materials, such as severe restacking during processing and service and low capacity of energy storage. Herein, a MXene@N-doped carbonaceous nanofiber structure is designed as the anode for high-performance sodium- and potassium-ion batteries through an in situ bioadsorption strategy; that is, Ti3C2Tx nanosheets are assembled onto Aspergillus niger biofungal nanoribbons and converted into a 2D/1D heterostructure. This microorganism-derived 2D MXene-1D N-doped carbonaceous nanofiber structure with fully opened pores and transport channels delivers high reversible capacity and long-term stability to store both Na+ (349.2 mAh g-1 at 0.1A g-1 for 1000 cycles) and K+ (201.5 mAh g-1 at 1.0 A g-1 for 1000 cycles). Ion-diffusion kinetics analysis and density functional theory calculations reveal that this porous hybrid structure promotes the conduction and transport of Na and K ions and fully utilizes the inherent advantages of the 2D material. Therefore, this work expands the potential of MXene materials and provides a good strategy to address the challenges of 2D energy storage materials.
Collapse
Affiliation(s)
- Junming Cao
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, P.R. China
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4001, Australia
| | - Junzhi Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yukun Zhu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - Zeyu Yuan
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Yuming Zhang
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Dongdong Li
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Wei Han
- Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
19
|
Selvasekaran P, Mahalakshmi, Roshini F, Angalene LA, Chandini, Sunil T, Chidambaram R. Fungal Exopolysaccharides: Production and Biotechnological Industrial Applications in Food and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Kim H, Kang S, Li K, Jung D, Park K, Lee J. Preparation and characterization of various chitin-glucan complexes derived from white button mushroom using a deep eutectic solvent-based ecofriendly method. Int J Biol Macromol 2020; 169:122-129. [PMID: 33333095 DOI: 10.1016/j.ijbiomac.2020.12.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022]
Abstract
Deep eutectic solvents (DESs) have gained great interests as ecofriendly and safe solvents in diverse areas. Herein, various chitin-glucan complexes (CGCs) were prepared from white button mushroom (Agaricus bisporus) using DESs. Ultrasonication of mushroom in five DESs yielded two types of CGCs from each DES, one from the DES-insoluble residue (DES_P) and another from the DES-soluble extract (DES_S). The ten resulting CGCs with varying chitin-to-β-glucan ratios were compared with alkali-insoluble matter (AIM), chemically prepared using NaOH. BU_S and BU_P, prepared using BU comprising betaine and urea, were obtained in the highest yields with reasonably low protein and mineral contents. Despite different acetylation degrees (77.3% and 57.3%, respectively), BU_S and BU_P both degraded at 318 °C and showed remarkably low crystallinity (32.0% and 37.0% for BU_S and BU_P, respectively) compared to AIM, commercial chitin, and the reported CGCs. The surface of BU_S and BU_P was very porous and rough compared with AIM as a result of reduced H-bonds and lowered crystallinity. The DES-based method can potentially enable the preparation of advanced biomaterials from mushrooms under mild and ecofriendly conditions.
Collapse
Affiliation(s)
- Hireem Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seulgi Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ke Li
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Dasom Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Keunbae Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea.
| |
Collapse
|
21
|
β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydr Polym 2020; 248:116811. [DOI: 10.1016/j.carbpol.2020.116811] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/25/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
|
22
|
Jiménez-Gómez CP, Cecilia JA. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020; 25:E3981. [PMID: 32882899 PMCID: PMC7504732 DOI: 10.3390/molecules25173981] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Although chitin is of the most available biopolymers on Earth its uses and applications are limited due to its low solubility. The deacetylation of chitin leads to chitosan. This biopolymer, composed of randomly distributed β-(1-4)-linked D-units, has better physicochemical properties due to the facts that it is possible to dissolve this biopolymer under acidic conditions, it can adopt several conformations or structures and it can be functionalized with a wide range of functional groups to modulate its superficial composition to a specific application. Chitosan is considered a highly biocompatible biopolymer due to its biodegradability, bioadhesivity and bioactivity in such a way this biopolymer displays a wide range of applications. Thus, chitosan is a promising biopolymer for numerous applications in the biomedical field (skin, bone, tissue engineering, artificial kidneys, nerves, livers, wound healing). This biopolymer is also employed to trap both organic compounds and dyes or for the selective separation of binary mixtures. In addition, chitosan can also be used as catalyst or can be used as starting molecule to obtain high added value products. Considering these premises, this review is focused on the structure and modification of chitosan as well as its uses and applications.
Collapse
Affiliation(s)
| | - Juan Antonio Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
| |
Collapse
|
23
|
Varma R, Vasudevan S. Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus modiolus. ACS OMEGA 2020; 5:20224-20230. [PMID: 32832775 PMCID: PMC7439375 DOI: 10.1021/acsomega.0c01903] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/22/2020] [Indexed: 05/23/2023]
Abstract
Chitin and chitosan have been proved to have enormous applications in biomedical, pharmaceutical, and industrial fields. The horse mussel, Modiolus modiolus, a refuse of the fishery industries at Thondi, is a reserve of rich chitin. The aim of this work is to extract chitosan from the horse mussel and its further characterization using Fourier transform infrared spectroscopy (FTIR), micro-Raman spectroscopy, X-ray diffraction (XRD), and elemental analysis. The result of FTIR studies revealed different functional groups of organic compounds such as out-of-plane bending (564 cm-1), C-O-C stretching (711 cm-1), and CH2 stretching (1174 cm-1) in chitosan. The degree of acetylation of the extracted chitosan was observed to be 57.43%, which makes it suitable as a biopolymer for biomedical applications. Prominent peaks observed with micro-Raman studies were at 484 cm-1 (14,264 counts/s), 2138 cm-1 (45,061 counts/s), and 2447 cm-1 (45,636 counts/s). XRD studies showed the crystalline nature of the polymer, and the maximum peak was observed at 20.04°. Elemental analysis showed a considerable decrease in the percentage of nitrogen and carbon upon the conversion of chitin to chitosan, while chitosan had a higher percentage of hydrogen and sulfur. The antibacterial activities of chitosan from the horse mussel were found to be efficient at a 200 μg/mL concentration against all the bacterial strains tested with a comparatively higher antibacterial activity against Escherichia coli (9 mm) and Bacillus subtilis (8 mm).
Collapse
|
24
|
Liao J, Huang H. Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures. Int J Biol Macromol 2020; 156:1279-1286. [DOI: 10.1016/j.ijbiomac.2019.11.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
|
25
|
Sudatta BP, Sugumar V, Varma R, Nigariga P. Extraction, characterization and antimicrobial activity of chitosan from pen shell, Pinna bicolor. Int J Biol Macromol 2020; 163:423-430. [PMID: 32629046 DOI: 10.1016/j.ijbiomac.2020.06.291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
Chitosan is a biopolymer discovered abundantly on earth specifically in the exoskeleton of shrimps, crabs and insects. In the present study, isolation and characterization of chitosan from the pen shell Pinna bicolor was carried out. In addition to this, the chitosan acquired from the pen shell was tested for its antibacterial activity against five bacterial strains. The FTIR analysis confirmed the presence of NH out of plane bending (872 cm-1) and C-O-C stretching (1016 cm-1) for chitosan with 59.76% degree of deacetylation. The Micro Raman showed peaks at 1658 cm-1, 1595 cm-1 and at 954 cm-1 corresponding to chitosan. The XRD was able to establish the crystallinity of the chitosan sample with a maximum peak at 29.3°. The elemental analysis of chitosan sample confirmed higher level of carbon (10.75%) when compared to other elements such as nitrogen, hydrogen and sulphur. The antimicrobial activity of extracted chitosan was evident with greater zone of inhibition against Salmonella typhi (20 mm) and least against Shigella dysenteriae. Thus, the present study unravels the properties of chitosan extracted from P. bicolor thereby paving way for its further use in the field of biomedical science and nanotechnology.
Collapse
Affiliation(s)
- B P Sudatta
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi 630 003, Tamilnadu, India
| | - V Sugumar
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi 630 003, Tamilnadu, India.
| | - Rahul Varma
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi 630 003, Tamilnadu, India
| | - P Nigariga
- Department of Oceanography and Coastal Area Studies, Alagappa University, Science Campus, Karaikudi 630 003, Tamilnadu, India
| |
Collapse
|
26
|
Yasrebi N, Hatamian Zarmi AS, Larypoor M. Optimization of Chitosan Production from Iranian Medicinal Fungus Trametes- Versicolor by Taguchi Method and Evaluation of Antibacterial Properties. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2020. [DOI: 10.30699/ijmm.14.3.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Green magnetic hydrogels synthesis, characterization and flavourzyme immobilization based on chitin from Hericium erinaceus residue and polyvinyl alcohol. Int J Biol Macromol 2019; 138:462-472. [DOI: 10.1016/j.ijbiomac.2019.07.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022]
|
28
|
Liao J, Huang H. Magnetic chitin hydrogels prepared from Hericium erinaceus residues with tunable characteristics: A novel biosorbent for Cu2+ removal. Carbohydr Polym 2019; 220:191-201. [DOI: 10.1016/j.carbpol.2019.05.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
|
29
|
Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EMB, Mazzola PG. Modified-release topical hydrogels: a ten-year review. JOURNAL OF MATERIALS SCIENCE 2019; 54:10963-10983. [DOI: 10.1007/s10853-019-03557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2025]
|
30
|
Allylated chitosan-poly(N-isopropylacrylamide) hydrogel based on a functionalized double network for controlled drug release. Carbohydr Polym 2019; 214:8-14. [PMID: 30926010 DOI: 10.1016/j.carbpol.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 03/03/2019] [Indexed: 01/13/2023]
Abstract
Smart hydrogels with dual network were presented since a new allylated chitosan was conceived. As a double network hydrogel, its first network consisted of poly(N-isopropylacrylamide) worked as the gel matrix, and its second network with Schiff base bond enabled itself function as a molecular switch through the formation and break of the bond. When only the intestinal fluid was used, the second network could provide efficient protection for the loaded drug, and the drug release mechanism conformed to the non-Fickian type diffusion. While pre-treated with simulated gastric fluid, the switch would be opened and the mechanism was the Fickian type, which increased the cumulative percentage of drug release by about 25% and the release time by about 300 min. Besides, the hydrogel was characterized by 1H NMR, FT-IR and SEM. The effects of allylated chitosan, pH and crosslinker on the swelling ratio and morphology of hydrogel were also studied.
Collapse
|
31
|
Sun C, Fu D, Jin L, Chen M, Zheng X, Yu T. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydr Polym 2018; 199:341-352. [DOI: 10.1016/j.carbpol.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/05/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
32
|
Hassainia A, Satha H, Boufi S. Chitin from Agaricus bisporus: Extraction and characterization. Int J Biol Macromol 2018; 117:1334-1342. [DOI: 10.1016/j.ijbiomac.2017.11.172] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
|
33
|
Synthesis of stimuli–responsive chitosan–based hydrogels by Diels–Alder cross–linking `click´ reaction as potential carriers for drug administration. Carbohydr Polym 2018; 183:278-286. [DOI: 10.1016/j.carbpol.2017.12.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
|
34
|
Geoghegan IA, Gurr SJ. Investigating chitin deacetylation and chitosan hydrolysis during vegetative growth in Magnaporthe oryzae. Cell Microbiol 2017; 19. [PMID: 28371146 PMCID: PMC5573952 DOI: 10.1111/cmi.12743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Chitin deacetylation results in the formation of chitosan, a polymer of β1,4-linked glucosamine. Chitosan is known to have important functions in the cell walls of a number of fungal species, but its role during hyphal growth has not yet been investigated. In this study, we have characterized the role of chitin deacetylation during vegetative hyphal growth in the filamentous phytopathogen Magnaporthe oryzae. We found that chitosan localizes to the septa and lateral cell walls of vegetative hyphae and identified 2 chitin deacetylases expressed during vegetative growth-CDA1 and CDA4. Deletion strains and fluorescent protein fusions demonstrated that CDA1 is necessary for chitin deacetylation in the septa and lateral cell walls of mature hyphae in colony interiors, whereas CDA4 deacetylates chitin in the hyphae at colony margins. However, although the Δcda1 strain was more resistant to cell wall hydrolysis, growth and pathogenic development were otherwise unaffected in the deletion strains. The role of chitosan hydrolysis was also investigated. A single gene encoding a putative chitosanase (CSN) was discovered in M. oryzae and found to be expressed during vegetative growth. However, chitosan localization, vegetative growth, and pathogenic development were unaffected in a CSN deletion strain, rendering the role of this enzyme unclear.
Collapse
Affiliation(s)
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, Oxford, UK.,Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
35
|
Bilbao-Sainz C, Chiou BS, Williams T, Wood D, Du WX, Sedej I, Ban Z, Rodov V, Poverenov E, Vinokur Y, McHugh T. Vitamin D-fortified chitosan films from mushroom waste. Carbohydr Polym 2017; 167:97-104. [PMID: 28433182 DOI: 10.1016/j.carbpol.2017.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 11/18/2022]
Abstract
Brown mushroom (Agaricus bisporus) stalk bases from mushroom waste were treated with UV-B light to rapidly increase vitamin D2 content. Chitin was also recovered from this waste and converted into chitosan by N-deacetylation. FTIR spectra showed that the mushroom chitosan were similar to chitosan from animal sources. Chitosan films were prepared using high molecular weight (HW), low molecular weight (LW) and fungal chitosan. UV-B treated mushroom particles were also incorporated into fungal chitosan films. The fungal chitosan films showed similar density, porosity and water vapor barrier properties to the LW and HW chitosan films. However, fungal chitosan films were more hydrophobic and less flexible than the LW and HW chitosan films. Addition of mushroom particles did not significantly affect mechanical or water barrier properties of the fungal chitosan films.
Collapse
Affiliation(s)
- Cristina Bilbao-Sainz
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, CA, United States.
| | - Bor-Sen Chiou
- Bioproducts Research Unit, U.S. Department of Agriculture, Albany, CA, United States
| | - Tina Williams
- Bioproducts Research Unit, U.S. Department of Agriculture, Albany, CA, United States
| | - Delilah Wood
- Bioproducts Research Unit, U.S. Department of Agriculture, Albany, CA, United States
| | - Wen-Xian Du
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, CA, United States
| | - Ivana Sedej
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, CA, United States
| | - Zhaojun Ban
- Postharvest and Food Science Institute, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Victor Rodov
- Postharvest and Food Science Institute, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Elena Poverenov
- Postharvest and Food Science Institute, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Yakov Vinokur
- Postharvest and Food Science Institute, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 50250, Israel
| | - Tara McHugh
- Healthy Processed Foods Research, U.S. Department of Agriculture, Albany, CA, United States
| |
Collapse
|
36
|
Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Bueno J. Fungal Bionanotechnology, When Knowledge Merge into a New Discipline to Combat Antimicrobial Resistance. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68424-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Abdel-Rahman RM, Abdel-Mohsen A, Hrdina R, Burgert L, Fohlerova Z, Pavliňák D, Sayed O, Jancar J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. Int J Biol Macromol 2016; 89:725-36. [DOI: 10.1016/j.ijbiomac.2016.04.087] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 11/25/2022]
|
39
|
Borca CH, Arango CA. Molecular Dynamics of a Water-Absorbent Nanoscale Material Based on Chitosan. J Phys Chem B 2016; 120:3754-64. [PMID: 26938052 DOI: 10.1021/acs.jpcb.5b11230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although hydrogels have been widely investigated for their use in materials science, nanotechnology, and novel pharmaceuticals, mechanistic details explaining their water-absorbent features are not well understood. We performed an all-atom molecular dynamics study of the structural transformation of chitosan nanohydrogels due to water absorption. We analyzed the conformation of dry, nanoscaled chitosan, the structural modifications that emerge during the process of water inclusion, and the dynamics of this biopolymer in the presence of nature's solvent. Two sets of nanoscaled, single-chained chitosan models were simulated: one to study the swelling dependence upon the degree of self-cross-linking and other to observe the response with respect to the degree of protonation. We verified that nanohydrogels keep their ability to absorb water and grow, regardless of their degree of cross-linking. Noteworthy, we found that the swelling behavior of nanoscaled chitosan is pH-dependent, and it is considerably more limited than that of larger scale hydrogels. Thus, our study suggests that properties of nanohydrogels are significantly different from those of larger hydrogels. These findings might be important in the design of novel controlled-release and targeted drug-delivery systems based on chitosan.
Collapse
Affiliation(s)
- Carlos H Borca
- Departament of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States.,Departamento de Ciencias Químicas, Universidad Icesi , Cali, Valle del Cauca, Colombia
| | - Carlos A Arango
- Departamento de Ciencias Químicas, Universidad Icesi , Cali, Valle del Cauca, Colombia
| |
Collapse
|
40
|
Dabóczi M, Albert E, Agócs E, Kabai-Faix M, Hórvölgyi Z. Bilayered (silica–chitosan) coatings for studying dye release in aqueous media: The role of chitosan properties. Carbohydr Polym 2016; 136:137-45. [DOI: 10.1016/j.carbpol.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
|