1
|
Peng X, Wei Y, Peng Y, Zhao H, Tong T, He Q. Enantiomeric separation of tryptophan via novel chiral polyamide composite membrane. Chirality 2024; 36:e23674. [PMID: 38699859 DOI: 10.1002/chir.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing β-cyclodextrin (β-CD) and piperazine (PIP) as mixed monomers in the aqueous phase. The chiral separation process was facilitated by β-CD, serving as a chiral selective agent. The resulting membrane were characterized using SEM, FT-IR, and XPS. Subsequently, the chiral separation performance of the membrane for DL-tryptophan (Trp) was investigated. Lastly, the water flux, dye rejection, and stability of the membrane were also examined. The results showed that the optimized chiral PIP0.5β-CD0.5 membrane achieved an enantiomeric excess percentage (ee%) of 43.0% for D-Trp, with a solute flux of 66.18 nmol·cm-2·h-1, and maintained a good chiral separation stability. Additionally, the membrane demonstrated positive performance in the selective separation of mixed dyes, allowing for steady operation over a long period of time. This study offers fresh insights into membrane-based chiral separations.
Collapse
Affiliation(s)
- Xinwei Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongming Wei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yangfeng Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongliang Zhao
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Tianzhong Tong
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Quan He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
2
|
Zhou J, Wei Y, Wu J, Li S, Xu Z, Peng Y. Novel ethylenediamine-β-cyclodextrin grafted membranes for the chiral separation of mandelic acid and its derivatives. Chirality 2024; 36:e23662. [PMID: 38572642 DOI: 10.1002/chir.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
In the present study, flat cellulose acetate ultrafiltration membranes were prepared first by nonsolvent induced phase separation method. Then chiral membranes for separating the enantiomers were prepared by grafting the ultrafiltration membranes using ethylenediamine-β-cyclodextrin as the chiral selector and epichlorohydrin as the spacer arm. The pure water permeability of the ultrafiltration membrane was around 115 L·m-2·h-1·bar-1. The properties of the chiral membranes were characterized using infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The chiral membrane performance in enantiomer separation was evaluated with racemates, such as mandelic acid (MA), 2-chloromandelic acid (2-ClMA), 4-chloromandelic acid (4-ClMA), and methyl mandelate (MM). The influence of feed concentration on the separation efficiency was also investigated. The results indicated that the enantiomeric excess percentages (e.e%) of the racemic mixtures for these four chiral compounds were up to 31.8%, 25.4%, 17.8%, and 32.6%, respectively. The binding free energy of the chiral selector with the (S)-enantiomer calculated by molecular dynamics simulations was stronger than that with the (R)-enantiomer, which was consistent with the experimental results (higher concentration of (R)-enantiomer in the permeate). This supports the affinity absorption-separation mechanism.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yongming Wei
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiaojie Wu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuqin Li
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhenliang Xu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yangfeng Peng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Cheng Q, Ma Q, Pei H, He S, Wang R, Guo R, Liu N, Mo Z. Enantioseparation Membranes: Research Status, Challenges, and Trends. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300376. [PMID: 36794289 DOI: 10.1002/smll.202300376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Indexed: 05/18/2023]
Abstract
The purity of enantiomers plays a critical role in human health and safety. Enantioseparation is an effective way and necessary process to obtain pure chiral compounds. Enantiomer membrane separation is a new chiral resolution technique, which has the potential for industrialization. This paper mainly summarizes the research status of enantioseparation membranes including membrane materials, preparation methods, factors affecting membrane properties, and separation mechanisms. In addition, the key problems and challenges to be solved in the research of enantioseparation membranes are analyzed. Last but not least, the future development trend of the chiral membrane is expected.
Collapse
Affiliation(s)
- Qingsong Cheng
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Qian Ma
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Rui Wang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
4
|
Recent progress of membrane technology for chiral separation: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Chen C, Guo Y, Zhao S, Toufouki S, Song H, Yao S. Chiral ionic liquid-multi walled carbon nanotubes composite membrane applied to the separation of amino acid enantiomers. J Chromatogr A 2022; 1685:463630. [PMID: 36347072 DOI: 10.1016/j.chroma.2022.463630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
Abstract
Various membranes are playing more and more important roles in the field of analytical and preparative applications of general interest, and some of them have been used in enantioresolution for amino acids (AAs) or similar bioactive molecules. In this study, a new composite membrane was prepared with chiral ionic liquid (CIL) of [BuPyro] [L-Pro] as chiral selector together with multi walled carbon nanotubes (MWCNTs) and additives through a simple way for the first time. Based on such a separation medium, the enantioresolution of amino acid enantiomers were achieved by forming ternary ligand complexes with Cu(II). It was comprehensively characterized by various ways, and key preparation conditions were discovered. After comparing the performance of three operation modes on the resolution of racemic phenylalanine, the effects of main influential factors were investigated and enantiomeric excess value (e.e.%) was 90.2% for the (D,L)-Phe aqueous solution (membrane thickness: 0.15±0.02 mm, total weight: 80 mg, CIL: 41.7%). Through effective desorption, up to 98.1% of the target was recovered. Finally, the mechanism of resolution was revealed by molecular simulation, kinetics and isotherm models, and the difference of interactive energy between ternary complexes of L-Phe-Cu(II)-CIL and D-Phe-Cu(II)-CIL was calculated as 1.56 kcal/mol. The membrane also remained stable after the post-treatment and showed good potential in chiral separation.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingying Guo
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Siyu Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Sara Toufouki
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hang Song
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
High mechanical strength conductive inorganic–organic composite membranes for chiral separation and in situ cleaning. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
|
8
|
Evaluation of chiral separation by Pirkle-type chiral selector based mixed matrix membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
|
10
|
Zhao Y, Zhu X, Jiang W, Liu H, Sun B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules 2021; 26:1145. [PMID: 33669919 PMCID: PMC7924630 DOI: 10.3390/molecules26041145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
With the rapid development of global industry and increasingly frequent product circulation, the separation and detection of chiral drugs/pesticides are becoming increasingly important. The chiral nature of substances can result in harm to the human body, and the selective endocrine-disrupting effect of drug enantiomers is caused by differential enantiospecific binding to receptors. This review is devoted to the specific recognition and resolution of chiral molecules by chromatography and membrane-based enantioseparation techniques. Chromatographic enantiomer separations with chiral stationary phase (CSP)-based columns and membrane-based enantiomer filtration are detailed. In addition, the unique properties of these chiral resolution methods have been summarized for practical applications in the chemistry, environment, biology, medicine, and food industries. We further discussed the recognition mechanism in analytical enantioseparations and analyzed recent developments and future prospects of chromatographic and membrane-based enantioseparations.
Collapse
Affiliation(s)
| | | | | | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.Z.); (X.Z.); (W.J.); (B.S.)
| | | |
Collapse
|
11
|
Abstract
Rosy prospects of chiral membranes are proposed with novel and robust materials.
Collapse
Affiliation(s)
- Hongda Han
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Wei Liu
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin Engineering Research Center of Functional Fine Chemicals
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaofei Ma
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yong Wang
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| |
Collapse
|
12
|
Ke J, Yang K, Bai X, Luo H, Ji Y, Chen J. A novel chiral polyester composite membrane: Preparation, enantioseparation of chiral drugs and molecular modeling evaluation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Deposition of Dopamine and Polyethyleneimine on Polymeric Membranes: Improvement of Performance of Ultrafiltration Process. Macromol Res 2020. [DOI: 10.1007/s13233-020-8156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Wang Y, Jin L, Xue T, Shao F, Yao Y, Li X. Mussel inspired durable pH-responsive mesh for high-efficient oil/water separation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03915-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
|
16
|
Ke J, Zhang Y, Zhang X, Liu Y, Ji Y, Chen J. Novel chiral composite membrane prepared via the interfacial polymerization of diethylamino-beta-cyclodextrin for the enantioseparation of chiral drugs. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117635] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Ganj M, Asadollahi M, Mousavi SA, Bastani D, Aghaeifard F. Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1832-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Aged PVDF and PSF ultrafiltration membranes restored by functional polydopamine for adjustable pore sizes and fouling control. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Fitriyani S, Liu CY, Yuniarti Y, Liu JH. Chiral effect on the self-assembly of chiral molecules synthesized from cholesterol. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry (Basel) 2017. [DOI: 10.3390/sym9100206] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|