1
|
Yilmaz EG, Küçük BN, Aslan Y, Erdem Ö, Saylan Y, Inci F, Denizli A. Theranostic advances and the role of molecular imprinting in disease management. iScience 2025; 28:112186. [PMID: 40224001 PMCID: PMC11986986 DOI: 10.1016/j.isci.2025.112186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Molecular imprinting has become an effective technology in the realm of diagnosing diseases, providing unparalleled specificity and sensitivity. This method is a promising trend in current medical research. This review examines the utilization of molecularly imprinted polymers (MIPs) in theranostic that integrates diagnostic functionalities for personalized medicine. The present work briefly discusses the fundamental concepts of molecular imprinting and how it has evolved into a versatile platform. Subsequently, the utilization of MIPs in the advancement of biosensors is focused, specifically emphasizing their contribution to the detection and diagnosis of diseases. The therapeutic potential of MIPs, focusing on targeted drug delivery and controlled release systems and the integration of MIPs into theranostic platforms is explored through case studies, showcasing the technology's ability to simultaneously diagnose and treat diseases. Finally, we address the current challenges facing MIPs and discuss future perspectives, emphasizing the potential of this technology to revolutionize the next generation.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Beyza Nur Küçük
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yusuf Aslan
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Wei J, Shen Y, Ouyang G. Determination of circulating tumor cells by surface-enhanced Raman scattering based on molecularly imprinted polymers doped with silver nanoparticles. ANAL SCI 2025; 41:447-455. [PMID: 39998807 DOI: 10.1007/s44211-025-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
The rapid and simple detection of circulating tumor cells (CTCs) can help with early diagnosis of tumor diseases and assist clinical judgment of tumor disease development status and prognosis. An important alteration in cancer progression is a significant increase in sialic acid (SA) levels, making sialic acid one of an interesting biomarker for cancer type diversity. Here, novel SERS nano-biosensors were fabricated employing molecularly imprinted polymers (MIPs) particles loaded with Ag nanoparticles (AgNPs) to form high affinity toward sialic acid on CTCs. In this work, the glycol-specific MIPs are produced using precipitation polymerization. The nanocomposite was characterized by Fourier transform infrared spectroscopy (FTIR), zeta potential, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Consequently, CTC can be rapidly detected in mouse blood in a specific and sensitive manner, as low as 1 cells/ml. In addition, a good linear relationship was observed between CTC concentration and signal intensity (R2 = 0.9881). Moreover, the SERS nano-biosensors was used to detect CTC with excellent precision (relative standard deviation, RSD = 3.9%) and good repeatability (RSD = 6.8%). Therefore, this inexpensive, highly sensitive, and rapid method using SERS nano-biosensors can quickly detect CTCs and may prove to be a new platform to be an early diagnostic tool for cancer patient detection.
Collapse
Affiliation(s)
- JunJie Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510000, China
| | - GangFeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Di Giulio T, Asif MI, Corsi M, De Benedetto GE, Malitesta C, Haupt K, Barillaro G, Gonzato C, Mazzotta E. Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers. SMALL METHODS 2025; 9:e2401315. [PMID: 39853948 PMCID: PMC12020366 DOI: 10.1002/smtd.202401315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Indexed: 01/26/2025]
Abstract
Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited. This limitation mainly arises from the need for precise control over the MIP features (such as thickness) during deposition on nanostructured transducers. This work explores the potential of depositing MIPs directly onto nanostructured transducers via controlled radical photopolymerization, focusing on nanoporous silica (PSiO2) with pore sizes of 40 nm and aspect ratio exceeding 100 as an interferometric optical nanotransducer. Leveraging the covalent attachment of a photo-iniferter agent onto the PSiO2 surface, we achieved effective control over the polymerization process, resulting in the deposition of thin and uniform MIP layers on PSiO2. As a case study, we developed an MIP-based PSiO2 optical sensor for propranolol, used as the template molecule, showcasing excellent linearity, a low detection limit, and efficacy in real matrices such as tap water. The results further demonstrate the sensor selectivity for the target molecule, along with its reusability and stability for at least 60 days.
Collapse
Affiliation(s)
- Tiziano Di Giulio
- Laboratory of Analytical ChemistryDepartment of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.)University of Salentovia MonteroniLecce73100Italy
| | - Muhammad Ibrar Asif
- Laboratory of Analytical ChemistryDepartment of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.)University of Salentovia MonteroniLecce73100Italy
| | - Martina Corsi
- Information Engineering DepartmentUniversity of Pisavia G. Caruso 16Pisa56122Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical Mass SpectrometryCultural Heritage DepartmentUniversity of SalentoVia MonteroniLecce73100Italy
| | - Cosimino Malitesta
- Laboratory of Analytical ChemistryDepartment of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.)University of Salentovia MonteroniLecce73100Italy
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering LaboratoryUniversité de Technologie de CompiègneRue du Docteur Schweitzer CS 60319Compiègne60203France
- Institut Universitaire de FranceParisFrance
| | - Giuseppe Barillaro
- Information Engineering DepartmentUniversity of Pisavia G. Caruso 16Pisa56122Italy
| | - Carlo Gonzato
- CNRS Enzyme and Cell Engineering LaboratoryUniversité de Technologie de CompiègneRue du Docteur Schweitzer CS 60319Compiègne60203France
| | - Elisabetta Mazzotta
- Laboratory of Analytical ChemistryDepartment of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.)University of Salentovia MonteroniLecce73100Italy
| |
Collapse
|
4
|
Batista Junior AC, Maciel LÍL, Rocha YA, Assis JVB, Chaves AR. Molecularly imprinted polymer-based paper spray ionization mass spectrometry: shaping the future of bioanalysis. Bioanalysis 2025; 17:383-387. [PMID: 40011053 PMCID: PMC11959891 DOI: 10.1080/17576180.2025.2472735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
|
5
|
Oluz Z, Yazlak MG, Kurşun TT, Nayab S, Glasser G, Yameen B, Duran H. Silica Nanoparticles Tailored with a Molecularly Imprinted Copolymer Layer as a Highly Selective Biorecognition Element. Macromol Rapid Commun 2024; 45:e2400471. [PMID: 39183584 DOI: 10.1002/marc.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Indexed: 08/27/2024]
Abstract
Molecularly imprinted silica nanoparticles (SP-MIP) are synthesized for the real-time optical detection of low-molecular-weight compounds. Azo-initiator-modified silica beads are functionalized through reversible addition-fragmentation chain transfer (RAFT) polymerization, which leads to efficient control of the grafted layer. The copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) on azo initiator-coated silica particles (≈100 nm) using chain transfer agent (2-phenylprop-2-yl-dithiobenzoate) is carried out in the presence of a target analyte molecule (l-Boc-phenylalanine anilide, l-BFA). The chemical and morphological properties of SP-MIP are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface analysis, and thermogravimetric analysis. Finally, SP-MIP is located on the gold surface to be used as a biorecognition layer on the surface plasmon resonance spectrometer (SPR). The sensitivity, response time, and selectivity of SP-MIP are investigated by three similar analogous molecules (l-Boc-Tryptophan, l-Boc-Tyrosine, and l-Boc-Phenylalanine) and the imprinted particle surface showed excellent relative selectivity toward l-Boc-Phenylalanine (l-BFA) (k = 61), while the sensitivity is recorded as limit of detection = 1.72 × 10-4 m.
Collapse
Affiliation(s)
- Zehra Oluz
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
| | - Mustafa Göktürk Yazlak
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
| | - Tuğana Talya Kurşun
- Chemistry Department, Gazi University, Bandırma Cad. No:6/1, Ankara, 06560, Turkiye
| | - Sana Nayab
- Department of Chemistry, School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Gunnar Glasser
- Max-Planck-Institute fuer Polymerforschung, Ackermannweg 10, 55128, Mainz, Rhineland-Palatinate, Germany
| | - Basit Yameen
- Department of Chemistry, School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkiye
| |
Collapse
|
6
|
Kaur R, Rana S, Mehra P, Kaur K. Surface-Initiated Reversible Addition-Fragmentation Chain Transfer Polymerization (SI-RAFT) to Produce Molecularly Imprinted Polymers on Graphene Oxide for Electrochemical Sensing of Methylparathion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49889-49901. [PMID: 39251248 DOI: 10.1021/acsami.4c08168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A nonenzymatic redox-responsive sensor was put forward for the detection of methylparathion (MP) by designing globular nanostructures of molecularly imprinted polymers on graphene oxide (GO@MIPs) via surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT). Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and small-angle X-ray scattering (SAXS) studies have confirmed the successful formation of receptor layers of MIPs on RAFT agent-functionalized GO sheets. The electrochemical signal with an amplified current response was attained because of the enhanced diffusion rate of ions at the interface provided by widening the pore size of the MIP film. The analytical response of GO@MIPs, validated by recording square-wave anodic stripping voltammetry (SWASV) at varying MP concentrations, followed the linear response between 0.2 and 200 ng/mL. Under optimized conditions, the sensor exhibited a limit of detection of 4.25 ng/mL with high selectivity over other interfering ions or molecules. The anti-interfering ability and good recovery (%) in food samples directed the use of the proposed sensor toward real-time monitoring and also toward future mimicking of surfaces.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
- University Centre for Research & Development (UCRD), Department of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Shweta Rana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Palak Mehra
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Khushwinder Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Merli D, Cutaia A, Hallulli I, Bonanni A, Alberti G. Molecularly Imprinted Polypyrrole-Modified Screen-Printed Electrode for Dopamine Determination. Polymers (Basel) 2024; 16:2528. [PMID: 39274160 PMCID: PMC11397747 DOI: 10.3390/polym16172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
This paper introduces a quantitative method for dopamine determination. The method is based on a molecularly imprinted polypyrrole (e-MIP)-modified screen-printed electrode, with differential pulse voltammetry (DPV) as the chosen measurement technique. The dopamine molecules are efficiently entrapped in the polymeric film, creating recognition cavities. A comparison with bare and non-imprinted polypyrrole-modified electrodes clearly demonstrates the superior sensitivity, selectivity, and reproducibility of the e-MIP-based one; indeed, a sensitivity of 0.078 µA µM-1, a detection limit (LOD) of 0.8 µM, a linear range between 0.8 and 45 µM and a dynamic range of up to 350 µM are achieved. The method was successfully tested on fortified synthetic and human urine samples to underline its applicability as a screening method for biomedical tests.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Cutaia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ines Hallulli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Bonanni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Zanoni C, Dallù LV, Costa C, Cutaia A, Alberti G. A Screen-Printed Voltammetric Sensor Modified with Electropolymerized Molecularly Imprinted Polymer (eMIP) to Determine Gallic Acid in Non-Alcoholic and Alcoholic Beverages. Polymers (Basel) 2024; 16:1076. [PMID: 38674995 PMCID: PMC11054643 DOI: 10.3390/polym16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This paper presents a low-cost disposable sensor for gallic acid (GA) detection in non-alcoholic and alcoholic beverages using a screen-printed cell (SPC) whose working electrode (in graphite) is modified with electrosynthesized molecularly imprinted polypyrrole (eMIP). Our preliminary characterization of the electrochemical process shows that gallic acid (GA) undergoes irreversible oxidation at potentials of about +0.3 V. The peak potential is not affected by the presence of the eMIP film and alcohol percentages (ethanol) up to 20%. The GA determination is based on a differential pulse voltammetry (DPV) analysis leveraging its oxidation peak. The calibration data and the figures of merit of the analytical method (LOD, LOQ, and linear range) are calculated. To validate the feasibility of the sensor's application for the dosing of GA in real matrices, some non-alcoholic and alcoholic beverages are analyzed. The results are then compared with those reported in the literature and with the total polyphenol content determined by the Folin-Ciocalteu method. In all cases, the concentrations of GA align with those previously found in the literature for the beverages examined. Notably, the values are consistently lower than the total polyphenol content, demonstrating the sensor's selectivity in discriminating the target molecule from other polyphenols present.
Collapse
Affiliation(s)
| | | | | | | | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
9
|
Turk F, Yildirim-Tirgil N. Molecularly imprinted electrochemical biosensor for thrombin detection by comparing different monomers. Bioanalysis 2024; 16:331-345. [PMID: 38426317 DOI: 10.4155/bio-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: Investigating molecularly imprinted polymers (MIPs) in electrochemical biosensors for thrombin detection, an essential protein biomarker. Comparing different monomers to showcase distinct sensitivity, specificity and stability advantages. Materials & methods: Dopamine, thionine and ethanolamine serve as monomers for MIP synthesis. Electrochemical methods and atomic force microscopy characterize sensor surfaces. Performance is evaluated, emphasizing monomer-specific electrochemical responses. Results: Monomer-specific electrochemical responses highlight dopamine's superior signal change and stability over 30 days. Notably, a low 5 pg/ml limit of detection, a broad linear range (5-200 pg/ml) and enhanced selectivity against interferents are observed. Conclusion: Dopamine-based MIPs show promise for high-performance electrochemical thrombin biosensors, suggesting significant applications in clinical diagnostics.
Collapse
Affiliation(s)
- Fatih Turk
- Metallurgical & Materials Engineering Department, Faculty of Engineering & Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, 06010, Turkey
| | - Nimet Yildirim-Tirgil
- Metallurgical & Materials Engineering Department, Faculty of Engineering & Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, 06010, Turkey
- Biomedical Engineering Department, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, Ankara, 06010, Turkey
| |
Collapse
|
10
|
Massey RS, Appadurai RR, Prakash R. A Surface Imprinted Polymer EIS Sensor for Detecting Alpha-Synuclein, a Parkinson's Disease Biomarker. MICROMACHINES 2024; 15:273. [PMID: 38399001 PMCID: PMC10892569 DOI: 10.3390/mi15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disease, causing loss of motor function and, in some instances, cognitive decline and dementia in those affected. The quality of life can be improved, and disease progression delayed through early interventions. However, current methods of confirming a PD diagnosis are extremely invasive. This prevents their use as a screening tool for the early onset stages of PD. We propose a surface imprinted polymer (SIP) electroimpedance spectroscopy (EIS) biosensor for detecting α-Synuclein (αSyn) and its aggregates, a biomarker that appears in saliva and blood during the early stages of PD as the blood-brain barrier degrades. The surface imprinted polymer stamp is fabricated by low-temperature melt stamping polycaprolactone (PCL) on interdigitated EIS electrodes. The result is a low-cost, small-footprint biosensor that is highly suitable for non-invasive monitoring of the disease biomarker. The sensors were tested with αSyn dilutions in deionized water and in constant ionic concentration matrix solutions with decreasing concentrations of αSyn to remove the background effects of concentration. The device response confirmed the specificity of these devices to the target protein of monomeric αSyn. The sensor limit of detection was measured to be 5 pg/L, and its linear detection range was 5 pg/L-5 µg/L. This covers the physiological range of αSyn in saliva and makes this a highly promising method of quantifying αSyn monomers for PD patients in the future. The SIP surface was regenerated, and the sensor was reused to demonstrate its capability for repeat sensing as a potential continuous monitoring tool for the disease biomarker.
Collapse
Affiliation(s)
| | | | - Ravi Prakash
- Department of Electronics Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (R.S.M.); (R.R.A.)
| |
Collapse
|
11
|
He X, Ji W, Xing S, Feng Z, Li H, Lu S, Du K, Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition. Talanta 2024; 268:125283. [PMID: 37857111 DOI: 10.1016/j.talanta.2023.125283] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Molecular imprinting technology (MIT) has become a promising recognition technology in various fields due to its specificity, high efficiency, stability and eco-friendliness in the recognition of target. Molecularly imprinted polymers (MIPs), known as 'artificial receptors', are shown similar properties to natural receptors as a biomimetic material. The selectivity of recognition for targets can be greatly improved when MIPs are introduced into sensors, as known that MIPs, are suitable for the pretreatment and analysis of trace substances in complex matrix samples. At present, various sensors has been developed by the combination with MIPs for detecting and identifying trace compounds, biological macromolecules or other substances, such as optical, electrochemical and piezoelectric sensors. Smart phones, with their built-in sensors and powerful digital imaging capabilities, provide a unique platform for the needs of portability and instant detection. MIP sensors based on smart phones are expected to become a new research direction in the future. This review discusses the latest applications of MIP sensors in the field of detection and recognition in recent years, summarizes the frontier progress of MIP sensor research based on smart phones in the past two years, and points out the challenges, limitations and future development prospects.
Collapse
Affiliation(s)
- Xicheng He
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Sijia Xing
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhixuan Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongyan Li
- Tianjin JOYSTAR Technology Co., Ltd, No.453, Hengshan Road, Modern Industrial Park, Tianjin Economic Technological Development Area, Tianjin, 300457, China
| | - Shanshan Lu
- BaiyangDian Basin Ecological Environment Monitoring Center, Baoding, Hebei, 071000, China
| | - Kunze Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
12
|
Cho MG, Hyeong S, Park KK, Chough SH. Enantioselective Molecularly Imprinted Polymer for Tyrosine, Tryptophan, and Phenylalanine, and the Possibility of the Crop-Circle-Like Imprinting. Macromol Rapid Commun 2024; 45:e2300555. [PMID: 38016789 DOI: 10.1002/marc.202300555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Molecularly imprinted polymer (L-MIP) for L-tyrosine (L-Tyr) is prepared by the complexation between quaternized poly(4-vinylpyridine/divinylbenzene) (QVP) and poly(acrylamide-co-acrylic acid) (PAmA) in alkaline solution. The L-MIP shows higher enantioselectivity for L-isomers of tyrosine, together with tryptophan (Trp) and phenylalanine (Phe) compared to the D-isomers of them. The sorption isotherms of the three D-enantiomers are converged to one isotherm. It can reflect that the sorption of D-enantiomers can be relied mainly on the common segment, -CH2 -CH(NH2 )-COOH, neglecting any effect of bulkier aromatic groups. The imprinted common segment can be opened on the surface of MIP from the D-enantiomers. For the L-enantiomers, the sorption discrepancies are depended on the size of the aromatic group implying that the phenolic moiety of L-Tyr can be also opened. Thus, the imprinted sites are proposed to be opened on the surface of L-MIP similar to the crop-circle-like. The enantioselectivity factors, αef = QL /QD , for Tyr, Trp, and Phe are 1.52, 1.30, and 1.52 for L- to D-isomers, respectively. And the uptake differences between D- and L-enantiomers of Tyr, Trp, and Phe are 31.8, 20.7, and 29 mg per 1 g MIP, respectively.
Collapse
Affiliation(s)
- Min Gi Cho
- Health Science Research Center, 310 Industry Incubation II, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seonghoon Hyeong
- Biotechnology Laboratory, Dong Yang Chem. Co, 36-8 Doncheon-ro, 10 Beon-gil, Gwangju, 61901, Republic of Korea
| | - Kyung Kgi Park
- Department of Urology, Jeju National University Hospital, School of Medicine, Jeju National University, Jeju, 63231, Republic of Korea
| | - Sung Hyo Chough
- Department of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
13
|
Zhang X, Yarman A, Bagheri M, El-Sherbiny IM, Hassan RYA, Kurbanoglu S, Waffo AFT, Zebger I, Karabulut TC, Bier FF, Lieberzeit P, Scheller FW. Imprinted Polymers on the Route to Plastibodies for Biomacromolecules (MIPs), Viruses (VIPs), and Cells (CIPs). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:107-148. [PMID: 37884758 DOI: 10.1007/10_2023_234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Around 30% of the scientific papers published on imprinted polymers describe the recognition of proteins, nucleic acids, viruses, and cells. The straightforward synthesis from only one up to six functional monomers and the simple integration into a sensor are significant advantages as compared with enzymes or antibodies. Furthermore, they can be synthesized against toxic substances and structures of low immunogenicity and allow multi-analyte measurements via multi-template synthesis. The affinity is sufficiently high for protein biomarkers, DNA, viruses, and cells. However, the cross-reactivity of highly abundant proteins is still a challenge.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Aysu Yarman
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Istanbul, Turkey
| | - Mahdien Bagheri
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria
| | - Ibrahim M El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza, Egypt
- Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | | | - Ingo Zebger
- Institut für Chemie, PC 14 Technische Universität Berlin, Berlin, Germany
| | | | - Frank F Bier
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany
| | - Peter Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna, Vienna, Austria.
| | - Frieder W Scheller
- Institute for Biochemistry and Biology, Universität Potsdam, Potsdam, Germany.
| |
Collapse
|
14
|
Nazim T, Lusina A, Cegłowski M. Recent Developments in the Detection of Organic Contaminants Using Molecularly Imprinted Polymers Combined with Various Analytical Techniques. Polymers (Basel) 2023; 15:3868. [PMID: 37835917 PMCID: PMC10574876 DOI: 10.3390/polym15193868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) encompass a diverse array of polymeric matrices that exhibit the unique capacity to selectively identify a designated template molecule through specific chemical moieties. Thanks to their pivotal attributes, including exceptional selectivity, extended shelf stability, and other distinct characteristics, this class of compounds has garnered interest in the development of highly responsive sensor systems. As a result, the incorporation of MIPs in crafting distinctive sensors and analytical procedures tailored for specific analytes across various domains has increasingly become a common practice within contemporary analytical chemistry. Furthermore, the range of polymers amenable to MIP formulation significantly influences the potential utilization of both conventional and innovative analytical methodologies. This versatility expands the array of possibilities in which MIP-based sensing can be employed in recognition systems. The following review summarizes the notable progress achieved within the preceding seven-year period in employing MIP-based sensing techniques for analyte determination.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (T.N.); (A.L.)
| |
Collapse
|
15
|
Zelikovich D, Dery L, Sagi-Cohen H, Mandler D. Imprinting of nanoparticles in thin films: Quo Vadis? Chem Sci 2023; 14:9630-9650. [PMID: 37736620 PMCID: PMC10510851 DOI: 10.1039/d3sc02178e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.
Collapse
Affiliation(s)
- Din Zelikovich
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Linoy Dery
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Hila Sagi-Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
16
|
Mazzotta E, Di Giulio T, Mariani S, Corsi M, Malitesta C, Barillaro G. Vapor-Phase Synthesis of Molecularly Imprinted Polymers on Nanostructured Materials at Room-Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302274. [PMID: 37222612 DOI: 10.1002/smll.202302274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Molecularly imprinted polymers (MIPs) have recently emerged as robust and versatile artificial receptors. MIP synthesis is carried out in liquid phase and optimized on planar surfaces. Application of MIPs to nanostructured materials is challenging due to diffusion-limited transport of monomers within the nanomaterial recesses, especially when the aspect ratio is >10. Here, the room temperature vapor-phase synthesis of MIPs in nanostructured materials is reported. The vapor phase synthesis leverages a >1000-fold increase in the diffusion coefficient of monomers in vapor phase, compared to liquid phase, to relax diffusion-limited transport and enable the controlled synthesis of MIPs also in nanostructures with high aspect ratio. As proof-of-concept application, pyrrole is used as the functional monomer thanks to its large exploitation in MIP preparation; nanostructured porous silicon oxide (PSiO2 ) is chosen to assess the vapor-phase deposition of PPy-based MIP in nanostructures with aspect ratio >100; human hemoglobin (HHb) is selected as the target molecule for the preparation of a MIP-based PSiO2 optical sensor. High sensitivity and selectivity, low detection limit, high stability and reusability are achieved in label-free optical detection of HHb, also in human plasma and artificial serum. The proposed vapor-phase synthesis of MIPs is immediately transferable to other nanomaterials, transducers, and proteins.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Stefano Mariani
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Martina Corsi
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Barillaro
- Information Engineering Department, University of Pisa, via G. Caruso 16, Pisa, 56122, Italy
| |
Collapse
|
17
|
Goswami MK, Srivastava A, Dohare RK, Tiwari AK, Srivastav A. Recent advances in conducting polymer-based magnetic nanosorbents for dyes and heavy metal removal: fabrication, applications, and perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27458-4. [PMID: 37195615 DOI: 10.1007/s11356-023-27458-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Globally, treating and disposing of industrial pollutants is a techno-economic challenge. Industries' large production of harmful heavy metal ions (HMIs) and dyes and inappropriate disposal worsen water contamination. Much attention is required on the development of efficient and cost-effective technologies and approaches for removing toxic HMIs and dyes from wastewater as they pose a severe threat to public health and aquatic ecosystems. Due to the proven superiority of adsorption over other alternative methods, various nanosorbents have been developed for the efficient removal of HMIs and dyes from wastewater and aqueous solutions. Being a good adsorbent, conducting polymer-based magnetic nanocomposites (CP-MNCPs) has drawn more attention for HMIs and dye removal. Conductive polymers' pH-responsiveness makes CP-MNCP ideal for wastewater treatment. The composite material absorbed dyes and/or HMIs from contaminated water could be removed by changing the pH. Here, we review the production strategies and applications of CP-MNCPs for HMIs and dye removal. The review also sheds light on the adsorption mechanism, adsorption efficiency, kinetic and adsorption models, and regeneration capacity of the various CP-MNCPs. To date, various modifications to conducting polymers (CPs) have been explored to improve the adsorption properties. It is evident from the literature survey that the combination of SiO2, graphene oxide (GO), and multi-walled carbon nanotubes (MWCNTs) with CPs-MNCPs enhances the adsorption capacity of nanocomposites to a large extent, so future research should lean toward the development of cost-effective hybrid CPs-nanocomposites.
Collapse
Affiliation(s)
| | | | - Rajeev Kumar Dohare
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, UP, India
| | - Anupam Srivastav
- Department of Chemistry, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| |
Collapse
|
18
|
Bogdanowicz N, Lusina A, Nazim T, Cegłowski M. Rapid quantification of 2,4-dichlorophenol in river water samples using molecularly imprinted polymers coupled to ambient plasma mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131068. [PMID: 36857825 DOI: 10.1016/j.jhazmat.2023.131068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rapid quantification of environmental pollutants is important for water quality control and environmental monitoring. In this work, we report the development of molecularly imprinted polymers (MIPs) obtained from poly(methyl vinyl ether-alt-maleic acid) polymer. The synthesized materials were used for selective preconcentration of 2,4-dichlorophenol, a priority pollutant which creates a threat to public health. The structure of poly(methyl vinyl ether-alt-maleic acid) was functionalized with 4-aminomethylpyridine (4-AMP) to incorporate pyridine groups presumably responsible for increased affinity towards 2,4-dichlorophenol. The synthesis was performed with different degree (10%, 20% and 30%) of 4-AMP functionalization to investigate the influence of pyridine group content on the final MIPs properties. The molecular imprinting process was conducted by amidation of polymers' anhydride groups with diethylenetriamine. Moreover, the experimental data indicated that maximum adsorption capacity was observed for the highest 4-AMP functionalization degree. Similarly, MIPs with the highest 4-AMP content proved to possess the highest selectivity towards the analyte. Finally, the functionalized MIPs were used to quantify 2,4-dichlorophenol by their direct introduction into a specially designed ambient mass spectrometry setup. The detection limits were improved significantly over the ones measured for pure analyte solution. The proposed analytical technique was used to quantify 2,4-dichlorophenol in river water and wastewater samples. Good recovery results were obtained, which proves that the method can be used for analysis of complex real-life samples.
Collapse
Affiliation(s)
- Natalia Bogdanowicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Aleksandra Lusina
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Tomasz Nazim
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| |
Collapse
|
19
|
Tasfaout A, Ibrahim F, Morrin A, Brisset H, Sorrentino I, Nanteuil C, Laffite G, Nicholls IA, Regan F, Branger C. Molecularly imprinted polymers for per- and polyfluoroalkyl substances enrichment and detection. Talanta 2023; 258:124434. [PMID: 36940572 DOI: 10.1016/j.talanta.2023.124434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly toxic pollutants of significant concern as they are being detected in water, air, fish and soil. They are extremely persistent and accumulate in plant and animal tissues. Traditional methods of detection and removal of these substances use specialised instrumentation and require a trained technical resource for operation. Molecularly imprinted polymers (MIPs), polymeric materials with predetermined selectivity for a target molecule, have recently begun to be exploited in technologies for the selective removal and monitoring of PFAS in environmental waters. This review offers a comprehensive overview of recent developments in MIPs, both as adsorbents for PFAS removal and sensors that selectively detect PFAS at environmentally-relevant concentrations. PFAS-MIP adsorbents are classified according to their method of preparation (e.g., bulk or precipitation polymerization, surface imprinting), while PFAS-MIP sensing materials are described and discussed according to the transduction methods used (e.g., electrochemical, optical). This review aims to comprehensively discuss the PFAS-MIP research field. The efficacy and challenges facing the different applications of these materials in environmental water applications are discussed, as well as a perspective on challenges for this field that need to be overcome before exploitation of the technology can be fully realised.
Collapse
Affiliation(s)
- Aicha Tasfaout
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Farah Ibrahim
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Toulon, France
| | - Aoife Morrin
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Hugues Brisset
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Toulon, France
| | - Ilaria Sorrentino
- Klearia, 61 Avenue Simone Veil, CEEI Nice Côte d'Azur - Immeuble Premium, 06200, Nice, France
| | - Clément Nanteuil
- Klearia, 61 Avenue Simone Veil, CEEI Nice Côte d'Azur - Immeuble Premium, 06200, Nice, France
| | - Guillaume Laffite
- Klearia, 61 Avenue Simone Veil, CEEI Nice Côte d'Azur - Immeuble Premium, 06200, Nice, France
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Fiona Regan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Catherine Branger
- Université de Toulon, Laboratoire Matériaux Polymères Interfaces Environnement Marin (MAPIEM), Toulon, France.
| |
Collapse
|
20
|
Akgönüllü S, Denizli A. Molecular imprinting-based sensors: Lab-on-chip integration and biomedical applications. J Pharm Biomed Anal 2023; 225:115213. [PMID: 36621283 DOI: 10.1016/j.jpba.2022.115213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
The innovative technology of a marketable lab-on-a-chip platform for point-of-care (POC) in vitro detection has recently attracted remarkable attention. The POC tests can significantly enhance the high standard of medicinal care. In the last decade, clinical diagnostic technology has been broadly advanced and successfully performed in several areas. It seems that lab-on-a-chip approaches play a significant role in these technologies. However, high-cost and time-consuming methods are increasing the challenge and the development of a cost-effective, rapid and efficient method for the detection of biomolecules is urgently needed. Recently, polymer-coated sensing platforms have been a promising area that can be employed in medical diagnosis, pharmaceutical bioassays, and environmental monitoring. The designed on-chip sensors are based on molecular imprinting polymers (MIPs) that use label-free detection technology. Molecular imprinting shines out as a potentially promising technique for creating artificial recognition material with molecular recognition sites. MIPs provide unique advantages such as excellent recognition specificity, high selectivity, and good reusability. This review article aims to define several methods using molecular imprinting for biomolecules and their incorporation with several lab-on-chip technologies to describe the most promising methods for the development of sensing systems based on molecularly imprinted polymers. The higher selectivity, more user-friendly operation is believed to provide MIP-based lab-on-a-chip devices with great potential academic and commercial value in on-site clinical diagnostics and other point-of-care assays.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
21
|
Tlili A, Ayed D, Attia G, Fourati N, Zerrouki C, Othmane A. Comparative study of two surface techniques of proteins imprinting in a polydopamine matrix. Application to immunoglobulin detection. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Yulianti ES, Rahman SF, Whulanza Y. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Cortisol. BIOSENSORS 2022; 12:1090. [PMID: 36551057 PMCID: PMC9776045 DOI: 10.3390/bios12121090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As a steroid hormone, cortisol has a close relationship with the stress response, and therefore, can be used as a biomarker for early detection of stress. An electrochemical immunosensor is one of the most widely used methods to detect cortisol, with antibodies as its bioreceptor. Apart from conventional laboratory-based methods, the trend for cortisol detection has seemed to be exploiting antibodies and aptamers. Both can provide satisfactory performance with high selectivity and sensitivity, but they still face issues with their short shelf life. Molecularly imprinted polymers (MIPs) have been widely used to detect macro- and micro-molecules by forming artificial antibodies as bioreceptors. MIPs are an alternative to natural antibodies, which despite demonstrating high selectivity and a low degree of cross-reactivity, often also show a high sensitivity to the environment, leading to their denaturation. MIPs can be prepared with convenient and relatively affordable fabrication processes. They also have high durability in ambient conditions, a long shelf life, and the ability to detect cortisol molecules at a concentration as low as 2 ag/mL. By collecting data from the past five years, this review summarizes the antibody and aptamer-based amperometric sensors as well as the latest developments exploiting MIPs rather than antibodies. Lastly, factors that can improve MIPs performance and are expected to be developed in the future are also explained.
Collapse
Affiliation(s)
- Elly Septia Yulianti
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| | - Siti Fauziyah Rahman
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| | - Yudan Whulanza
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| |
Collapse
|
23
|
Design of molecularly imprinted polymer materials relying on hydrophobic interactions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
25
|
Zhang Y, Tian X, Zhang Z, Tang N, Ding Y, Wang Y, Li D. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121023. [PMID: 35182922 DOI: 10.1016/j.saa.2022.121023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In order to prepare a kind of efficient fluorescence sensors for determination of cis-diol-containing flavonoids, novel imprinted quantum dots for myricetin (Myr) were prepared based on boronate affinity-based template-immobilization surface imprinting. The obtained boronate affinity-based surface imprinted silica (imprinted APBA-functionalized CdTe QDs) was used as recognition elements. The quantum dots were used as signal-transduction materials. Under the optimum conditions, according to fluorescence quenching of imprinted APBA-functionalized CdTe QDs by Myr, the imprinting factor (IF) for Myr was evaluated to be 7.88. The result indicated that the boronate affinity functionalized quantum dots coated with imprinted silica were successfully prepared. The prepared imprinted APBA-functionalized CdTe QDs exhibited good sensitivity and selectivity for Myr. The fluorescence intensity was inversely proportional to the concentration of Myr in the 0.30-40 μM concentration range. And its detection limit was obtained to be 0.08 μM. Using the fluorescence sensors, the detection of Myr in real samples was successfully carried out, and the concentration of Myr in green tea and apple juice samples was evaluated to be 2.26 mg/g and 0.73 mg/g, respectively. The recoveries for the spiked green tea and apple juice samples were 95.2-105.0% and 91.5-111.0%, respectively. This study also provides an efficient fluorescent detection method for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| |
Collapse
|
26
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
27
|
Influence of the synthesis parameters on the efficiency of fluorescent ion-imprinted polymers for lead detection. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
|
29
|
Sudjarwo WAA, Dobler MT, Lieberzeit PA. QCM-based assay designs for human serum albumin. Anal Bioanal Chem 2022; 414:731-741. [PMID: 34950982 PMCID: PMC8748353 DOI: 10.1007/s00216-021-03771-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Solid-phase synthesis is an elegant way to create molecularly imprinted polymer nanoparticles (nano-MIPs) comprising a single binding site, i.e. mimics of antibodies. When using human serum albumin (HSA) as the template, one achieves nano-MIPs with 53 ± 19 nm diameter, while non-imprinted polymer nanoparticles (nano-NIPs) reach 191 ± 96 nm. Fluorescence assays lead to Stern-Volmer plots revealing selective binding to HSA with selectivity factors of 1.2 compared to bovine serum albumin (BSA), 1.9 for lysozyme, and 4.1 for pepsin. Direct quartz crystal microbalance (QCM) assays confirm these results: nano-MIPs bind to HSA immobilized on QCM surfaces. This opens the way for competitive QCM-based assays for HSA: adding HSA to nanoparticle solutions indeed reduces binding to the QCM surfaces in a concentration-dependent manner. They achieve a limit of detection (LoD) of 80 nM and a limit of quantification (LoQ) of 244 nM. Furthermore, the assay shows recovery rates around 100% for HSA even in the presence of competing analytes.
Collapse
Affiliation(s)
- Wisnu Arfian A Sudjarwo
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Mathias Thomas Dobler
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Development of a MIP-Based QCM Sensor for Selective Detection of Penicillins in Aqueous Media. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pharmaceuticals wastes have been recognized as emerging pollutants to the environment. Among those, antibiotics in the aquatic environment are one of the major sources of concern, as chronic, low-dose exposure can lead to antibiotic resistance. Herein, we report on molecularly imprinted polymers (MIP) to recognize penicillin V potassium salt (PenV-K), penicillin G potassium salt (PenG-K), and amoxicillin sodium salt (Amo-Na), which belong to the most widespread group of antibiotics worldwide. Characterization and optimization led to two MIPs comprising methacrylic acid as the monomer and roughly 55% ethylene glycol dimethacrylate as the crosslinker. The obtained layers led to sensitive, selective, repeatable, and reusable sensor responses on quartz crystal microbalances (QCM). The LoD for PenV-K, PenG-K, and Amo-Na sensors are 0.25 mM, 0.30 mM, and 0.28 mM, respectively; imprinting factors reach at least around three. Furthermore, the sensors displayed relative selectivity factors of up to 50% among the three penicillins, which is appreciable given their structural similarity.
Collapse
|
31
|
Preparation of a Molecularly Imprinted Film on Quartz Crystal Microbalance Chip for Determination of Furanic Compounds. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structural preferences of furanic compounds were studied using a combination of a molecularly imprinted film (MIF) on a piezoelectric-quartz chip. The furanic compounds and their derivatives were used as the templates. Owing to their similar heterocyclic structures, it is difficult to verify the structural differences between the templates. Therefore, a new cross-linker (Methacr-l-Cys-NHBn)2, was employed to generate a platform on a quartz crystal microbalance (QCM) chip. The cross-linker self-assembled to link the surface of the chip to copolymerize with other functional monomers. A layered film with chiral hydrophobicity and rigidity was thus fabricated. Subsequently, Acr-l-Ser-NHBn was utilized as a chiral monomer to construct MIF on a QCM chip. Forcomparison, we synthesized a more hydrophobic monomer, Methacr-l-Ser-NHBn, to enhance the binding ability of the MIF. The QCM flow injection system was handled in an organic solvent system. The proportion of the monomers was adjusted to optimize the recognition ability of these films. As the binding ability of the MIF toward model templates and structurally-related furanic compounds was improved, a MIF derived from 2-furaldehyde (FUL) achieved a lower detection limit (10 ng/mL). The binding properties of MIFs prepared against furanic compounds exhibited strong similarities to the binding properties of other compounds with heterocyclic ring structures. For example, 2-furaldehyde is very similar to 2-formylthiazole, 2-acetylfuran is similar to 2-acetylthiazole, and 2-furfuryl alcohol is similar to imidazole-2-methanol. Such recognition ability can help distinguish between the structural counterparts of other small heterocyclic compounds.
Collapse
|
32
|
Bräuer B, Unger C, Werner M, Lieberzeit PA. Biomimetic Sensors to Detect Bioanalytes in Real-Life Samples Using Molecularly Imprinted Polymers: A Review. SENSORS 2021; 21:s21165550. [PMID: 34450992 PMCID: PMC8400518 DOI: 10.3390/s21165550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Molecularly imprinted polymers (MIPs) come with the promise to be highly versatile, useful artificial receptors for sensing a wide variety of analytes. Despite a very large body of literature on imprinting, the number of papers addressing real-life biological samples and analytes is somewhat limited. Furthermore, the topic of MIP-based sensor design is still, rather, in the research stage and lacks wide-spread commercialization. This review summarizes recent advances of MIP-based sensors targeting biological species. It covers systems that are potentially interesting in medical applications/diagnostics, in detecting illicit substances, environmental analysis, and in the quality control of food. The main emphasis is placed on work that demonstrates application in real-life matrices, including those that are diluted in a reasonable manner. Hence, it does not restrict itself to the transducer type, but focusses on both materials and analytical tasks.
Collapse
|