1
|
Gao H, Sun Z, Hu X, Song W, Liu Y, Zou M, Zhu M, Cheng Z. Identification of glycolysis-related gene signatures for prognosis and therapeutic targeting in idiopathic pulmonary fibrosis. Front Pharmacol 2025; 16:1486357. [PMID: 40093327 PMCID: PMC11906445 DOI: 10.3389/fphar.2025.1486357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Background Glycolysis plays a crucial role in fibrosis, but the specific genes involved in glycolysis in idiopathic pulmonary fibrosis (IPF) are not well understood. Methods Three IPF gene expression datasets were obtained from the Gene Expression Omnibus (GEO), while glycolysis-related genes were retrieved from the Molecular Signatures Database (MsigDB). Differentially expressed glycolysis-related genes (DEGRGs) were identified using the "limma" R package. Diagnostic glycolysis-related genes (GRGs) were selected through least absolute shrinkage and selection operator (LASSO) regression regression and support vector machine-recursive feature elimination (SVM-RFE). A prognostic signature was developed using LASSO regression, and time-dependent receiver operating characteristic (ROC) curves were generated to evaluate predictive performance. Single-cell RNA sequencing (scRNA-seq) data were analyzed to examine GRG expression across various cell types. Immune infiltration analysis, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were performed to elucidate potential molecular mechanisms. A bleomycin (BLM)-induced pulmonary fibrosis mouse model was used for experimental validation via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results 14 GRGs (VCAN, MERTK, FBP2, TPBG, SDC1, AURKA, ARTN, PGP, PLOD2, PKLR, PFKM, DEPDC1, AGRN, CXCR4) were identified as diagnostic markers for IPF, with seven (ARTN, AURKA, DEPDC1, FBP2, MERTK, PFKM, SDC1) forming a prognostic model demonstrating predictive power (AUC: 0.831-0.793). scRNA-seq revealed cell-type-specific GRG expression, particularly in macrophages and fibroblasts. Immune infiltration analysis linked GRGs to imbalanced immune responses. Experimental validation in a bleomycin-induced fibrosis model confirmed the upregulation of GRGs (such as AURKA, CXCR4). Drug prediction identified inhibitors (such as Tozasertib for AURKA, Plerixafor for CXCR4) as potential therapeutic agents. Conclusion This study identifies GRGs as potential prognostic biomarkers for IPF and highlights their role in modulating immune responses within the fibrotic lung microenvironment. Notably, AURKA, MERTK, and CXCR4 were associated with pathways linked to fibrosis progression and represent potential therapeutic targets. Our findings provide insights into metabolic reprogramming in IPF and suggest that targeting glycolysis-related pathways may offer novel pharmacological strategies for antifibrotic therapy.
Collapse
Affiliation(s)
- Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiwei Song
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Fourth Ward of Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Minghui Zhu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
2
|
Jin Y, Liao L, Chen Q, Tang B, Jiang J, Zhu J, Bai M. Multi-omics analysis reveals that neutrophil extracellular traps related gene TIMP1 promotes CRC progression and influences ferroptosis. Cancer Cell Int 2025; 25:31. [PMID: 39891145 PMCID: PMC11786501 DOI: 10.1186/s12935-025-03643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Previous studies have found that neutrophil extracellular traps (NETs) are highly expressed in colorectal cancer (CRC) and are associated with poor prognosis. Currently, there are few studies on the relationship between NETs and CRC, so we tried to explore new markers based on NETs to assist in the treatment of CRC. METHOD We jointly screened three major NETs genes through machine learning. Large-sample RNA transcriptome and single-cell transcriptome analysis further confirmed that TIMP1 is a core gene in NETs. We used small interfering RNA to knockdown TIMP1, and verified the ability of TIMP1 in CRC proliferation, invasion and migration through western blot, transwell, cell scratch assay, cell clone formation and other experiments. RESULT We screened out three major NETs Genes: TIMP1, F3, and CRISPLD2 based on machine learning. The NETs score constructed based on this not only predicts the prognosis of CRC patients but also shows significant differences in MSI status, chenckpoints expression, and predicted efficacy of PD-L1 targeted therapy. Transcriptome and single-cell data reveal that TIMP1 is highly expressed in neutrophils and is associated with poor prognosis in colorectal cancer patients and the occurrence of ferroptosis. Biological experiments have proven that TIMP1 can promote the proliferation, invasion and migration of CRC. CONCLUDE Bioinformatics analysis combined with experimental verification showed that TIMP1 is related to ferroptosis and plays a promoting role in the invasion, migration and proliferation of CRC.
Collapse
Affiliation(s)
- Yuzhao Jin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Luyu Liao
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Qianping Chen
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 31400, China
| | - Ji Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China.
| | - Minghua Bai
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou, Hangzhou, 310000, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, 310000, China.
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Bayne EF, Buck KM, Towler AG, Zhu Y, Pergande MR, Zhou T, Price S, Rossler KJ, Morales-Tirado V, Lloyd S, Wang F, He Y, Tian Y, Ge Y. High-Throughput Extracellular Matrix Proteomics of Human Lungs Enabled by Photocleavable Surfactant and diaPASEF. J Proteome Res 2024; 23:2908-2918. [PMID: 38315831 PMCID: PMC11791785 DOI: 10.1021/acs.jproteome.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The extracellular matrix (ECM) is a complex assembly of proteins that provide interstitial scaffolding and elastic recoil for human lungs. The pulmonary extracellular matrix is increasingly recognized as an independent bioactive entity, by creating biochemical and mechanical signals that influence disease pathogenesis, making it an attractive therapeutic target. However, the pulmonary ECM proteome ("matrisome") remains challenging to analyze by mass spectrometry due to its inherent biophysical properties and relatively low abundance. Here, we introduce a strategy designed for rapid and efficient characterization of the human pulmonary ECM using the photocleavable surfactant Azo. We coupled this approach with trapped ion mobility MS with diaPASEF to maximize the depth of matrisome coverage. Using this strategy, we identify nearly 400 unique matrisome proteins with excellent reproducibility that are known to be important in lung biology, including key core matrisome proteins.
Collapse
Affiliation(s)
- Elizabeth F. Bayne
- Department of Chemistry, University of Wisconsin-Madison,
Madison, WI 53706, USA
| | - Kevin M. Buck
- Department of Chemistry, University of Wisconsin-Madison,
Madison, WI 53706, USA
| | - Anna G. Towler
- Department of Chemistry, University of Wisconsin-Madison,
Madison, WI 53706, USA
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of
Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, School of Medicine and Public
Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa R. Pergande
- Department of Cell and Regenerative Biology, University of
Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, School of Medicine and Public
Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianhua Zhou
- Department of Medicine, University of Wisconsin-Madison,
Madison, WI 53705, USA
| | - Scott Price
- Department of Medicine, University of Wisconsin-Madison,
Madison, WI 53705, USA
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of
Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Training Program,
University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vanessa Morales-Tirado
- Discovery Immunology, Pharmacology and Pathology, AbbVie
Bioresearch Center, Worcester, MA 01605
| | - Sarah Lloyd
- Discovery Immunology, Pharmacology and Pathology, AbbVie,
Inc., North Chicago, IL 60064
| | - Fei Wang
- Quantitative Translational & ADME Science, AbbVie
Bioresearch Center, Worcester, MA 01605
| | - Yupeng He
- Discovery Immunology, Pharmacology and Pathology, AbbVie,
Inc., North Chicago, IL 60064
| | - Yu Tian
- Quantitative Translational & ADME Science, AbbVie
Bioresearch Center, Worcester, MA 01605
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison,
Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, University of
Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, School of Medicine and Public
Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Dou JY, Cui ZY, Xuan MY, Gao C, Li ZX, Lian LH, Cui HZ, Nan JX, Wu YL. Diallyl disulfide, the bioactive component of Allium species, ameliorates pulmonary fibrosis by mediating the crosstalk of farnesoid X receptor and yes-associated protein 1 signaling pathway. Phytother Res 2024; 38:4009-4021. [PMID: 38863408 DOI: 10.1002/ptr.8268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 06/13/2024]
Abstract
Environmental pollution, virus infection, allergens, and other factors may cause respiratory disease, which could be improved by dietary therapy. Allium species are common daily food seasoning and have high nutritional and medical value. Diallyl disulfide (DADS) is the major volatile oil compound of Allium species. The present study aims to explore the preventive effect and potential mechanism of DADS on pulmonary fibrosis. C57BL/6J mice were intratracheally injected with bleomycin (BLM) to establish pulmonary fibrosis and then administrated with DADS. Primary lung fibroblasts or A549 were stimulated with BLM, followed by DADS, farnesoid X receptor (FXR) agonist (GW4064), yes-associated protein 1 (YAP1) inhibitor (verteporfin), or silencing of FXR and YAP1. In BLM-stimulated mice, DADS significantly ameliorated histopathological changes and interleukin-1β levels in bronchoalveolar lavage fluid. DADS decreased fibrosis markers, HIF-1α, inflammatory cytokines, and epithelial-mesenchymal transition in pulmonary mice and activated fibroblasts. DADS significantly enhanced FXR expression and inhibited YAP1 activation, which functions as GW4064 and verteporfin. A deficiency of FXR or YAP1 could result in the increase of these two protein expressions, respectively. DADS ameliorated extracellular matrix deposition, hypoxia, epithelial-mesenchymal transition, and inflammation in FXR or YAP1 knockdown A549. Taken together, targeting the crosstalk of FXR and YAP1 might be the potential mechanism for DADS against pulmonary fibrosis. DADS can serve as a potential candidate or dietary nutraceutical supplement for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia-Yi Dou
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| | - Zhen-Yu Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| | - Mei-Yan Xuan
- School of Pharmaceutical Sciences, Josai University, Sakado, Japan
| | - Chong Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| | - Zhao-Xu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| | - Hao-Zhen Cui
- Department of Chinese Traditional Medicine, Medical College, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Ministry of Education), Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
5
|
Lee JU, Hong J, Park E, Baek J, Choi YM, Chin SS, Jeon KJ, Kim WJ, Park SW, Jeong SH. Gene expression changes in mouse lung induced by subacute inhalation of PM 10-rich particulate matter. Inhal Toxicol 2024; 36:431-441. [PMID: 39388309 DOI: 10.1080/08958378.2024.2410736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Particulate matter (PM) air pollution is associated with an increased incidence of lung diseases, but the underlying mechanisms have not been fully elucidated. In this study, a mouse model of subacute lung inflammation was employed to investigate the cellular responses and gene expression changes induced by exposure to natural ambient air pollution. METHODS C57BL/6J mice were exposed to road dust (primarily PM10) at 150 µg/m³ for 21 days (8 h/day) through a nose-only inhalation exposure system. Lung tissues were analyzed for the expression of proinflammatory signaling, oxidative stress, and fibrosis markers. RNA-sequencing analysis was conducted to identify differentially expressed genes (DEGs). A gene ontology over-representation analysis was performed to identify the altered genetic pathways. RESULTS Elevated levels of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and an increase in phosphorylated MAPK were determined in the road dust exposure group compared to the control group. Histopathological examinations revealed more severe lung inflammation and damage in the exposed mice, including fibrosis and bronchiolar hyperplasia. Gene expression profiling identified 108 DEGs, with decreases in most except genes such as Krt15 and Reg3g. The protein-protein interaction network analysis together with text-mining identified 18 key hub genes, associated with fatty acid oxidation, lipid metabolism, and peroxisomes. CONCLUSION This study identified key genes, signaling pathways, and cellular responses in mouse lung affected by road dust exposure. These findings contribute to a deeper understanding of the transcriptional and cellular responses induced by subacute exposure to the PM in road dust.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Eunji Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Junyeong Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Ye Min Choi
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-Do, South Korea
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, Incheon, South Korea
| | - Woo-Jin Kim
- Department of Internal Medicine Environmental Health Center, Kangwon National University, Chuncheon-si, Gangwon-do, South Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Sung Hwan Jeong
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University, Gil Medical Center, Incheon, South Korea
| |
Collapse
|
6
|
Liu G, Li B, Qin S, Nice EC, Yang J, Yang L, Huang C. Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. Cell Oncol (Dordr) 2024; 47:429-445. [PMID: 37792154 DOI: 10.1007/s13402-023-00884-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The extracellular matrix (ECM), a fundamental constituent of all tissues and organs, is crucial for shaping the tumor microenvironment. Dysregulation of ECM remodeling has been closely linked to tumor initiation and progression, where specific signaling pathways, including redox signaling, play essential roles. Reactive oxygen species (ROS) are risk factors for carcinogenesis whose excess can facilitate the oxidative damage of biomacromolecules, such as DNA and proteins. Emerging evidence suggests that redox effects can aid the modification, stimulation, and degradation of ECM, thus affecting ECM remodeling. These alterations in both the density and components of the ECM subsequently act as critical drivers for tumorigenesis. In this review, we provide an overview of the functions and primary traits of the ECM, and it delves into our current understanding of how redox reactions participate in ECM remodeling during cancer progression. We also discuss the opportunities and challenges presented by clinical strategies targeting redox-controlled ECM remodeling to overcome cancer. CONCLUSIONS The redox-mediated ECM remodeling contributes importantly to tumor survival, progression, metastasis, and poor prognosis. A comprehensive investigation of the concrete mechanism of redox-mediated tumor ECM remodeling and the combination usage of redox-targeted drugs with existing treatment means may reveal new therapeutic strategy for future antitumor therapies.
Collapse
Affiliation(s)
- Guowen Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jinlin Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Li Yang
- Department of Gastroenterology & Hepatology, West China Hospital of Sichuan University, Sichuan Province, No.37 Guoxue Alley, Chengdu, 610041, China.
- Department of Gastroenterology & Hepatology, Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, and , Chengdu, 610041, China.
| |
Collapse
|
7
|
Chen X, Haribowo AG, Baik AH, Fossati A, Stevenson E, Chen YR, Reyes NS, Peng T, Matthay MA, Traglia M, Pico AR, Jarosz DF, Buchwalter A, Ghaemmaghami S, Swaney DL, Jain IH. In vivo protein turnover rates in varying oxygen tensions nominate MYBBP1A as a mediator of the hyperoxia response. SCIENCE ADVANCES 2023; 9:eadj4884. [PMID: 38064566 PMCID: PMC10708181 DOI: 10.1126/sciadv.adj4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Oxygen deprivation and excess are both toxic. Thus, the body's ability to adapt to varying oxygen tensions is critical for survival. While the hypoxia transcriptional response has been well studied, the post-translational effects of oxygen have been underexplored. In this study, we systematically investigate protein turnover rates in mouse heart, lung, and brain under different inhaled oxygen tensions. We find that the lung proteome is the most responsive to varying oxygen tensions. In particular, several extracellular matrix (ECM) proteins are stabilized in the lung under both hypoxia and hyperoxia. Furthermore, we show that complex 1 of the electron transport chain is destabilized in hyperoxia, in accordance with the exacerbation of associated disease models by hyperoxia and rescue by hypoxia. Moreover, we nominate MYBBP1A as a hyperoxia transcriptional regulator, particularly in the context of rRNA homeostasis. Overall, our study highlights the importance of varying oxygen tensions on protein turnover rates and identifies tissue-specific mediators of oxygen-dependent responses.
Collapse
Affiliation(s)
- Xuewen Chen
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Augustinus G. Haribowo
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan H. Baik
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Fossati
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Erica Stevenson
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yiwen R. Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nabora S. Reyes
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tien Peng
- Department of Medicine and Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michael A. Matthay
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Alexander R. Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, CA, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Danielle L. Swaney
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Isha H. Jain
- Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Roman J. Fibroblasts-Warriors at the Intersection of Wound Healing and Disrepair. Biomolecules 2023; 13:945. [PMID: 37371525 DOI: 10.3390/biom13060945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Wound healing is triggered by inflammation elicited after tissue injury. Mesenchymal cells, specifically fibroblasts, accumulate in the injured tissues, where they engage in tissue repair through the expression and assembly of extracellular matrices that provide a scaffold for cell adhesion, the re-epithelialization of tissues, the production of soluble bioactive mediators that promote cellular recruitment and differentiation, and the regulation of immune responses. If appropriately deployed, these processes promote adaptive repair, resulting in the preservation of the tissue structure and function. Conversely, the dysregulation of these processes leads to maladaptive repair or disrepair, which causes tissue destruction and a loss of organ function. Thus, fibroblasts not only serve as structural cells that maintain tissue integrity, but are key effector cells in the process of wound healing. The review will discuss the general concepts about the origins and heterogeneity of this cell population and highlight the specific fibroblast functions disrupted in human disease. Finally, the review will explore the role of fibroblasts in tissue disrepair, with special attention to the lung, the role of aging, and how alterations in the fibroblast phenotype underpin disorders characterized by pulmonary fibrosis.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and The Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Jain S, Saha P, Syamprasad NP, Panda SR, Rajdev B, Jannu AK, Sharma P, Naidu VGM. Targeting TLR4/3 using chlorogenic acid ameliorates LPS+POLY I:C-induced acute respiratory distress syndrome via alleviating oxidative stress-mediated NLRP3/NF-κB axis. Clin Sci (Lond) 2023; 137:785-805. [PMID: 36951146 DOI: 10.1042/cs20220625] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/24/2023]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a life-threatening condition caused due to significant pulmonary and systemic inflammation. Chlorogenic acid (CGA) has been shown to possess potent antioxidant, anti-inflammatory, and immunoprotective properties. However, the protective effect of CGA on viral and bacterial-induced ALI/ARDS is not yet explored. Hence, the current study is aimed to evaluate the preclinical efficacy of CGA in lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (POLY I:C)-induced ALI/ARDS models in vitro and in vivo. Human airway epithelial (BEAS-2B) cells exposed to LPS+POLY I:C significantly elevated oxidative stress and inflammatory signaling. Co-treatment with CGA (10 and 50 µM) prevented inflammation and oxidative stress mediated by TLR4/TLR3 and NLRP3 inflammasome axis. BALB/c mice, when chronically challenged with LPS+POLY I:C showed a significant influx of immune cells, up-regulation of pro-inflammatory cytokines, namely: IL-6, IL-1β, and TNF-α, and treatment with intranasal CGA (1 and 5 mg/kg) normalized the elevated levels of immune cell infiltration as well as pro-inflammatory cytokines. D-Dimer, the serum marker for intravascular coagulation, was significantly increased in LPS+ POLY I:C challenged animals which was reduced with CGA treatment. Further, CGA treatment also has a beneficial effect on the lung and heart, as shown by improving lung physiological and cardiac functional parameters accompanied by the elevated antioxidant response and simultaneous reduction in tissue damage caused by LPS+POLY I:C co-infection. In summary, these comprehensive, in vitro and in vivo studies suggest that CGA may be a viable therapeutic option for bacterial and viral-induced ALI-ARDS-like pathology.
Collapse
Affiliation(s)
- Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Pritam Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Nayadi Parambil Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Samir Rajan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Arun Kumar Jannu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
- Department of Biotechnology, Centre for the Excellence of GMP Extraction Facility, National Institute of Pharmaceutical Education and Research Guwahati, Assam, India
| |
Collapse
|
10
|
Lee YJ, Hwang IC, Ahn HY. The association between oxidative balance score and lung function: A nationwide cross-sectional survey. Heliyon 2023; 9:e14650. [PMID: 36994413 PMCID: PMC10040707 DOI: 10.1016/j.heliyon.2023.e14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Purpose Given the impact of oxidative imbalance on the development of airway pathologies, this study was undertaken to investigate the association between oxidative balance (OB) scores and lung function in the adult Korean population. Methods Data of 17,368 adults with available OB scores and pulmonary function test results were extracted from the 2013-2019 Korean National Health and Nutrition Examination Surveys. Multivariable logistic regression models were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for reduced forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per 1-point decrease in OB score. Dose dependent association of reduced lung function with OB scores was also investigated. Results Males, low-income subjects, individuals with comorbidities, and those with reduced pulmonary function had lower OB scores (representing oxidative balance). Overall, the association between oxidative imbalance and reduced lung function was remarkable in FVC than FEV1 (OR [95% CI], 1.06 [1.04-1.07] vs. 1.03 [1.02-1.04]; both p < 0.001). Linear relationships between the level of reduced lung function and OB scores were significantly noted (p for trend<0.001 in both FEV1 and FVC). Conclusion Our findings suggest that oxidative imbalance is associated with reduced pulmonary function.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Department of Family Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - In Cheol Hwang
- Department of Family Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
- Corresponding author. 1198 Guwol-dong, Namdong-gu, Incheon 405-760, Republic of Korea.
| | - Hong Yup Ahn
- Department of Statistics, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Ren G, Xu G, Li R, Xie H, Cui Z, Wang L, Zhang C. Modulation of Bleomycin-induced Oxidative Stress and Pulmonary Fibrosis by Ginkgetin in Mice via AMPK. Curr Mol Pharmacol 2023; 16:217-227. [PMID: 35249515 DOI: 10.2174/1874467215666220304094058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ginkgetin, a flavonoid extracted from Ginkgo biloba, has been shown to exhibit broad anti-inflammatory, anticancer, and antioxidative bioactivity. Moreover, the extract of Ginkgo folium has been reported on attenuating bleomycin-induced pulmonary fibrosis, but the anti-fibrotic effects of ginkgetin are still unclear. This study was intended to investigate the protective effects of ginkgetin against experimental pulmonary fibrosis and its underlying mechanism. METHODS In vivo, bleomycin (5 mg/kg) in 50 μL saline was administrated intratracheally in mice. One week after bleomycin administration, ginkgetin (25 or 50 mg/kg) or nintedanib (40 mg/kg) was administrated intragastrically daily for 14 consecutive days. In vitro, the AMPK-siRNA transfection in primary lung fibroblasts further verified the regulatory effect of ginkgetin on AMPK. RESULTS Administration of bleomycin caused characteristic histopathology structural changes with elevated lipid peroxidation, pulmonary fibrosis indexes, and inflammatory mediators. The bleomycin- induced alteration was normalized by ginkgetin intervention. Moreover, this protective effect of ginkgetin (20 mg/kg) was equivalent to that of nintedanib (40 mg/kg). AMPK-siRNA transfection in primary lung fibroblasts markedly blocked TGF-β1-induced myofibroblasts transdifferentiation and abolished oxidative stress. CONCLUSION All these results suggested that ginkgetin exerted ameliorative effects on bleomycininduced oxidative stress and lung fibrosis mainly through an AMPK-dependent manner.
Collapse
Affiliation(s)
- Guoqing Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Gonghao Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Haifeng Xie
- Chengdu Biopurify Phytochemicals Ltd., Chengdu, P.R. China
| | - Zhengguo Cui
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Department of Environmental Health, 23-3 Matsuoka Shimoaizuki, Eiheiji,Fukui 910-1193, Japan
| | - Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
12
|
Thomas MA, Fahey MJ, Pugliese BR, Irwin RM, Antonyak MA, Delco ML. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles. Front Bioeng Biotechnol 2022; 10:870193. [PMID: 36082164 PMCID: PMC9446449 DOI: 10.3389/fbioe.2022.870193] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Cartilage and other skeletal soft tissues heal poorly after injury, in part due to their lack of vascularity and low metabolic rate. No pharmacologic approaches have proven effective in preventing chronic degenerative disease after joint injury. Mesenchymal stromal cells (MSCs) have been investigated for their ability to treat pain associated with osteoarthritis (OA) and preserve articular cartilage. Limitations of MSCs include variability in cell phenotype, low engraftment and retention rates, and inconsistent clinical outcomes. Therefore, acellular biologic therapies such as extracellular vesicles (EVs) are currently being investigated. MSC-derived EVs have been found to replicate many of the therapeutic effects of their cells of origin, but the mechanisms driving this remain unclear. Recent evidence in non-orthopedic tissues suggests MSCs can rescue injured cells by donating mitochondria, restoring mitochondrial function in recipient cells, preserving cell viability, and promoting tissue repair. Our group hypothesized that MSCs package mitochondria for export into EVs, and that these so-called "mitoEVs" could provide a delivery strategy for cell-free mitochondria-targeted therapy. Therefore, the goals of this study were to: 1) characterize the vesicle fractions of the MSCs secretome with respect to mitochondrial cargoes, 2) determine if MSC-EVs contain functional mitochondria, and 3) determine if chondrocytes can take up MSC-derived mitoEVs. We isolated exosome, microvesicle, and vesicle-free fractions from MSC-conditioned media. Using a combination of dynamic light scattering and nanoparticle tracking, we determined that MSC-EV populations fall within the three size categories typically used to classify EVs (exosomes, microvesicles, apoptotic bodies). Fluorescent nanoparticle tracking, immunoblotting, and flow cytometry revealed that mitochondrial cargoes are abundant across all EV size populations, and mitoEVs are nearly ubiquitous among the largest EVs. Polarization staining indicated a subset of mitoEVs contain functional mitochondria. Finally, flow cytometry and fluorescent imaging confirmed uptake of mitoEVs by chondrocytes undergoing rotenone/antimycin-induced mitochondrial dysfunction. These data indicate that MSCs package intact, functional mitochondria into EVs, which can be transferred to chondrocytes in the absence of direct cell-cell interactions. This work suggests intercellular transfer of healthy MT to chondrocytes could represent a new, acellular approach to augment mitochondrial content and function in poorly-healing avascular skeletal soft tissues.
Collapse
Affiliation(s)
- Matthew A. Thomas
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, United States
| | - Megan J. Fahey
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, United States
| | - Brenna R. Pugliese
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, United States
| | - Rebecca M. Irwin
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, United States
| | - Marc A. Antonyak
- Cornell University College of Veterinary Medicine, Department of Molecular Medicine, Ithaca, NY, United States
| | - Michelle L. Delco
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, Ithaca, NY, United States
| |
Collapse
|
13
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Network-Based Redox Communication Between Abiotic Interactive Materials. iScience 2022; 25:104548. [PMID: 35747390 PMCID: PMC9209720 DOI: 10.1016/j.isci.2022.104548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/28/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Recent observations that abiotic materials can engage in redox-based interactive communication motivates the search for new redox-active materials. Here we fabricated a hydrogel from a four-armed thiolated polyethylene glycol (PEG-SH) and the bacterial metabolite, pyocyanin (PYO). We show that: (i) the PYO-PEG hydrogel is reversibly redox-active; (ii) the molecular-switching and directed electron flow within this PYO-PEG hydrogel requires both a thermodynamic driving force (i.e., potential difference) and diffusible electron carriers that serve as nodes in a redox network; (iii) this redox-switching and electron flow is controlled by the redox network’s topology; and (iv) the ability of the PYO-PEG hydrogel to “transmit” electrons to a second insoluble redox-active material (i.e., a catechol-PEG hydrogel) is context-dependent (i.e., dependent on thermodynamic driving forces and appropriate redox shuttles). These studies provide an experimental demonstration of important features of redox-communication and also suggest technological opportunities for the fabrication of interactive materials. Thiol-pyocyanin reaction was used to create a redox-active and interactive hydrogel The electron flow and molecular switching requires diffusible mediators These mediators and pyocyanin hydrogel serve as “nodes” in a redox reaction network The networked flow of electrons between two separated hydrogels is reported
Collapse
|
15
|
Bronchoalveolar-Lavage-Derived Fibroblast Cell Line (B-LSDM7) as a New Protocol for Investigating the Mechanisms of Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11091441. [PMID: 35563747 PMCID: PMC9103910 DOI: 10.3390/cells11091441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background: The use of BAL to study ILDs has improved our understanding of IPF pathogenesis. BAL fluid is routinely collected and can be considered a clinical and research tool. The procedure is well tolerated and minimally invasive. No specific cell lines from BAL or immortalized cell lines from IPF patients are available commercially. A method to quickly isolate and characterize fibroblasts from BAL is an unmet research need. Materials and methods: Here we describe a new protocol by which we isolated a cell line from IPF. The cell line was expanded in vitro and characterized phenotypically, morphologically and functionally. Results: This culture showed highly filamentous cells with an evident central nucleus. From the phenotypic point of view, this cell line displays fibroblast/myofibroblast-like features including expression of alpha-SMA, vimentin, collagen type-1 and fibronectin. The results showed high expression of ROS in these cells. Oxidative stress invariably promotes extracellular matrix expression in lung diseases directly or through over-production of pro-fibrotic growth factors. Conclusions: Our protocol makes it possible to obtain fibroblasts BAL that is a routine non-invasive method that offers the possibility of having a large sample of patients. Standardized culture methods are important for a reliable model for testing molecules and eventual novel development therapeutic targets.
Collapse
|
16
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
17
|
Mesenchymal Stem-Cell Remodeling of Adsorbed Type-I Collagen-The Effect of Collagen Oxidation. Int J Mol Sci 2022; 23:ijms23063058. [PMID: 35328478 PMCID: PMC8953637 DOI: 10.3390/ijms23063058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
This study describes the effect of collagen type I (Col I) oxidation on its physiological remodeling by adipose tissue-derived mesenchymal stem cells (ADMSCs), both mechanical and proteolytic, as an in vitro model for the acute oxidative stress that may occur in vivo upon distinct environmental changes. Morphologically, remodeling was interpreted as the mechanical rearrangement of adsorbed FITC-labelled Col I into a fibril-like pattern. This process was strongly abrogated in cells cultured on oxidized Col I albeit without visible changes in cell morphology. Proteolytic activity was quantified utilizing fluorescence de-quenching (FRET effect). The presence of ADMSCs caused a significant increase in native FITC-Col I fluorescence, which was almost absent in the oxidized samples. Parallel studies in a cell-free system confirmed the enzymatic de-quenching of native FITC-Col I by Clostridial collagenase with statistically significant inhibition occurring in the oxidized samples. Structural changes to the oxidized Col I were further studied by differential scanning calorimetry. In the oxidized samples, an additional endotherm with sustained enthalpy (∆H) was observed at 33.6 °C along with Col I’s typical one at 40.5 °C. Collectively, these data support that the remodeling of Col I by ADMSCs is altered upon oxidation due to intrinsic changes to the protein’s structure, which represents a novel mechanism for the control of stem cell behavior.
Collapse
|
18
|
Aydemir D, Malik AN, Kulac I, Basak AN, Lazoglu I, Ulusu NN. Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 2022; 10:810243. [PMID: 35284425 PMCID: PMC8914018 DOI: 10.3389/fbioe.2022.810243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, and ALS incidence is increasing worldwide. Patients with ALS have respiratory failure at the disease’s end stages, leading to death; thus, the lung is one of the most affected organs during disease progression. Tissue stiffness increases in various lung diseases because of impaired extracellular matrix (ECM) homeostasis leading to tissue damage and dysfunction at the end. According to the literature, oxidative stress is the major contributor to ECM dysregulation, and mutant protein accumulation in ALS have been reported as causative to tissue damage and oxidative stress. In this study, we used SOD1G93A and SOD1WT rats and measured lung stiffness of rats by using a custom-built stretcher, where H&E staining is used to evaluate histopathological changes in the lung tissue. Oxidative stress status of lung tissues was assessed by measuring glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), catalase (CAT), and superoxide dismutase 1 (SOD1) levels. Western blot experiments were performed to evaluate the accumulation of the SOD1G93A mutated protein. As a result, increased lung stiffness, decreased antioxidant status, elevated levels of oxidative stress, impaired mineral and trace element homeostasis, and mutated SOD1G93A protein accumulation have been found in the mutated rats even at the earlier stages, which can be possible causative of increased lung stiffness and tissue damage in ALS. Since lung damage has altered at the very early stages, possible therapeutic approaches can be used to treat ALS or improve the life quality of patients with ALS.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Anjum Naeem Malik
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kirac Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koc University, Istanbul, Turkey
| | - Ismail Lazoglu
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
19
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
20
|
Papanicolaou M, He P, Rutting S, Ammit A, Xenaki D, van Reyk D, Oliver BG. Extracellular Matrix Oxidised by the Granulocyte Oxidants Hypochlorous and Hypobromous Acid Reduces Lung Fibroblast Adhesion and Proliferation In Vitro. Cells 2021; 10:3351. [PMID: 34943857 PMCID: PMC8699380 DOI: 10.3390/cells10123351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic airway inflammation and oxidative stress play crucial roles in the pathogenesis of chronic inflammatory lung diseases, with airway inflammation being a key driving mechanism of oxidative stress in the lungs. Inflammatory responses in the lungs activate neutrophils and/or eosinophils, leading to the generation of hypohalous acids (HOX). These HOX oxidants can damage the extracellular matrix (ECM) structure and may influence cell-ECM interactions. The ECM of the lung provides structural, mechanical, and biochemical support for cells and determines the airway structure. One of the critical cells in chronic respiratory disease is the fibroblast. Thus, we hypothesised that primary human lung fibroblasts (PHLF) exposed to an oxidised cell-derived ECM will result in functional changes to the PHLF. Here, we show that PHLF adhesion, proliferation, and inflammatory cytokine secretion is affected by exposure to HOX-induced oxidisation of the cell-derived ECM. Furthermore, we investigated the impact on fibroblast function from the presence of haloamines in the ECM. Haloamines are chemical by-products of HOX and, like the HOX, haloamines can also modify the ECM. In conclusion, this study revealed that oxidising the cell-derived ECM might contribute to functional changes in PHLF, a key mechanism behind the pathogenesis of inflammatory lung diseases.
Collapse
Affiliation(s)
- Michael Papanicolaou
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Patrick He
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Sandra Rutting
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - Alaina Ammit
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Dikaia Xenaki
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - David van Reyk
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| | - Brian G. Oliver
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.P.); (P.H.); (A.A.); (D.v.R.)
- Woolcock Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (S.R.); (D.X.)
| |
Collapse
|
21
|
Modulation of SOD3 Levels Is Detrimental to Retinal Homeostasis. Antioxidants (Basel) 2021; 10:antiox10101595. [PMID: 34679728 PMCID: PMC8533566 DOI: 10.3390/antiox10101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Retinal oxidative stress is a common secondary feature of many retinal diseases. Though it may not be the initial insult, it is a major contributor to the pathogenesis of highly prevalent retinal dystrophic diseases like macular degeneration, diabetic retinopathy, and retinitis pigmentosa. We explored the role of superoxide dismutase 3 (SOD3) in retinal homeostasis since SOD3 protects the extracellular matrix (ECM) from oxidative injury. We show that SOD3 is mainly extracellularly localized and is upregulated as a result of environmental and pathogenic stress. Ablation of SOD3 resulted in reduced functional electroretinographic responses and number of photoreceptors, which is exacerbated with age. By contrast, overexpression showed increased electroretinographic responses and increased number of photoreceptors at young ages, but appears deleterious as the animal ages, as determined from the associated functional decline. Our exploration shows that SOD3 is vital to retinal homeostasis but its levels are tightly regulated. This suggests that SOD3 augmentation to combat oxidative stress during retinal degenerative changes may only be effective in the short-term.
Collapse
|
22
|
Venkata-Subramani M, Nunley DR, Roman J. Donor factors and risk of primary graft dysfunction and mortality post lung transplantation: A proposed conceptual framework. Clin Transplant 2021; 35:e14480. [PMID: 34516007 DOI: 10.1111/ctr.14480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Lung transplantation remains a therapeutic option in end-stage lung disease. However, despite advances in the field, early allograft function can be compromised by the development of primary graft dysfunction (PGD); this being the leading cause of morbidity and mortality immediately following the lung transplant procedure. Several recipient factors have been associated with increased risk of PGD, but less is known about donor factors. Aging, tobacco, and chronic alcohol use are donor factors implicated, but how these factors promote PGD remains unclear. Herein, we discuss the available clinical data that link these donor factors with outcomes after lung transplantation, and how they might render the recipient susceptible to PGD through a two-hit process.
Collapse
Affiliation(s)
- Mrinalini Venkata-Subramani
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine, and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David R Nunley
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Lung Transplantation Program, The Ohio State University, Columbus, Ohio, USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine, and Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Redox Regulation in Aging Lungs and Therapeutic Implications of Antioxidants in COPD. Antioxidants (Basel) 2021; 10:antiox10091429. [PMID: 34573061 PMCID: PMC8470212 DOI: 10.3390/antiox10091429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Mammals, including humans, are aerobic organisms with a mature respiratory system to intake oxygen as a vital source of cellular energy. Despite the essentiality of reactive oxygen species (ROS) as byproducts of aerobic metabolism for cellular homeostasis, excessive ROS contribute to the development of a wide spectrum of pathological conditions, including chronic lung diseases such as COPD. In particular, epithelial cells in the respiratory system are directly exposed to and challenged by exogenous ROS, including ozone and cigarette smoke, which results in detrimental oxidative stress in the lungs. In addition, the dysfunction of redox regulation due to cellular aging accelerates COPD pathogenesis, such as inflammation, protease anti-protease imbalance and cellular apoptosis. Therefore, various drugs targeting oxidative stress-associated pathways, such as thioredoxin and N-acetylcysteine, have been developed for COPD treatment to precisely regulate the redox system. In this review, we present the current understanding of the roles of redox regulation in the respiratory system and COPD pathogenesis. We address the insufficiency of current COPD treatment as antioxidants and discuss future directions in COPD therapeutics targeting oxidative stress while avoiding side effects such as tumorigenesis.
Collapse
|
24
|
Proteomics and metabonomics analyses of Covid-19 complications in patients with pulmonary fibrosis. Sci Rep 2021; 11:14601. [PMID: 34272434 PMCID: PMC8285535 DOI: 10.1038/s41598-021-94256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease, and the pathogenesis of this disease is not completely clear. Here, the medical records of 85 Covid-19 cases were collected, among which fibrosis and progression of fibrosis were analyzed in detail. Next, data independent acquisition (DIA) quantification proteomics and untargeted metabolomics were used to screen disease-related signaling pathways through clustering and enrichment analysis of the differential expression of proteins and metabolites. The main imaging features were lesions located in the bilateral lower lobes and involvement in five lobes. The closed association pathways were FcγR-mediated phagocytosis, PPAR signaling, TRP-inflammatory pathways, and the urea cycle. Our results provide evidence for the detection of serum biomarkers and targeted therapy in patients with Covid-19.
Collapse
|
25
|
Zhang P, Wang J, Luo W, Yuan J, Cui C, Guo L, Wu C. Kindlin-2 Acts as a Key Mediator of Lung Fibroblast Activation and Pulmonary Fibrosis Progression. Am J Respir Cell Mol Biol 2021; 65:54-69. [PMID: 33761308 DOI: 10.1165/rcmb.2020-0320oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis is a progressive and fatal lung disease characterized by activation of lung fibroblasts and excessive deposition of collagen matrix. We show here that the concentrations of kindlin-2 and its binding partner PYCR1, a key enzyme for proline synthesis, are significantly increased in the lung tissues of human patients with pulmonary fibrosis. Treatment of human lung fibroblasts with TGF-β1 markedly increased the expression of kindlin-2 and PYCR1, resulting in increased kindlin-2 mitochondrial translocation, formation of the kindlin-2-PYCR1 complex, and proline synthesis. The concentrations of the kindlin-2-PYCR1 complex and proline synthesis were markedly reduced in response to pirfenidone or nintedanib, two clinically approved therapeutic drugs for pulmonary fibrosis. Furthermore, depletion of kindlin-2 alone was sufficient to suppress TGF-β1-induced increases of PYCR1 expression, proline synthesis, and fibroblast activation. Finally, using a bleomycin mouse model of pulmonary fibrosis, we show that ablation of kindlin-2 effectively reduced the concentrations of PYCR1, proline, and collagen matrix and alleviate the progression of pulmonary fibrosis in vivo. Our results suggest that kindlin-2 is a key promoter of lung fibroblast activation, collagen matrix synthesis, and pulmonary fibrosis, underscoring the therapeutic potential of targeting the kindlin-2 signaling pathway for control of this deadly lung disease.
Collapse
Affiliation(s)
- Ping Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Weiren Luo
- Department of Pathology, Cancer Research Institute, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China; and
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Academy for Advanced Interdisciplinary Studies and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Evangelista-Leite D, Carreira ACO, Gilpin SE, Miglino MA. Protective Effects of Extracellular Matrix-Derived Hydrogels in Idiopathic Pulmonary Fibrosis. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:517-530. [PMID: 33899554 DOI: 10.1089/ten.teb.2020.0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with significant gas exchange impairment owing to exaggerated extracellular matrix (ECM) deposition and myofibroblast activation. IPF has no cure, and although nintedanib and pirfenidone are two approved medications for symptom management, the total treatment cost is exuberant and prohibitive to a global uninsured patient population. New therapeutic alternatives with moderate costs are needed to treat IPF. ECM hydrogels derived from decellularized lungs are cost-effective therapeutic candidates to treat pulmonary fibrosis because of their reported antioxidant properties. Oxidative stress contributes to IPF pathophysiology by damaging macromolecules, interfering with tissue remodeling, and contributing to myofibroblast activation. Thus, preventing oxidative stress has beneficial outcomes in IPF. For this purpose, this review describes ECM hydrogel's properties to regulate oxidative stress and tissue remodeling in IPF.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,NUCEL (Cell and Molecular Therapy Center), University of São Paulo, São Paulo, Brazil
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Ritzenthaler JD, Zhang M, Torres-Gonzalez E, Roman J. The Integrin Inhibitor Cilengitide and Bleomycin-Induced Pulmonary Fibrosis : Cilengitide and Bleomycin-Induced Pulmonary Fibrosis. Lung 2020; 198:947-955. [PMID: 33146772 DOI: 10.1007/s00408-020-00400-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Fibroproliferation and excess deposition of extracellular matrix (ECM) are the pathologic hallmarks of idiopathic pulmonary fibrosis (IPF), a chronic progressive disorder with high mortality and suboptimal treatment options. Although the etiologic mechanisms responsible for the development and progression of IPF remain unclear, cell-ECM interactions and growth factors are considered important. Cilengitide is a cyclic RGD pentapeptide with anti-angiogenic activity that targets αvβ3, αvβ5 and α5β1, integrins known to mediate cell-ECM interactions and activate the pro-fibrotic growth factor Transforming Growth Factor beta (TGF-β). METHODS Cilengitide was studied in vitro with the use of NIH/3T3 cells and primary lung fibroblasts, and in vivo in the well-characterized bleomycin-induced lung injury model. The extent of ECM deposition was determined by RT-PCR, Western blot, histologic analysis and hydroxyproline assay of lung tissue. Bronchoalveolar lavage analysis was used to determine cell counts. RESULTS Cilengitide treatment of cultured fibroblasts showed decreased adhesion to vitronectin and fibronectin, both integrin-dependent events. Cilengitide also inhibited TGF-β-induced fibronectin gene expression and reduced the accumulation of mRNAs and protein for fibronectin and collagen type I. Both preventive and treatment effects of daily injections of cilengitide (20 mg/kg) failed to inhibit the development of pulmonary fibrosis as determined by histological analysis (Ashcroft scoring), bronchoalveolar lavage (BAL) fluid cell counts, and hydroxyproline content. CONCLUSIONS Overall, our data suggest that, despite its in vitro activity in fibroblasts, daily injections of cilengitide (20 mg/kg) did not inhibit the development of or ameliorate bleomycin-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, 381, Philadelphia, PA, 19107, USA.
| | - Michael Zhang
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Edilson Torres-Gonzalez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, 381, Philadelphia, PA, 19107, USA
| | - Jesse Roman
- Department of Pharmacology & Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Louisville Health Sciences Center, Louisville, KY, USA.,Department of Medicine, Division of Pulmonary, Allergy and Critical Medicine, Jane & Leonard Korman Respiratory Institute, Thomas Jefferson University, Jefferson Alumni Hall, 381, Philadelphia, PA, 19107, USA.,Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
28
|
Liu Y, Zhou X, Hu N, Wang C, Zhao L. P311 regulates distal lung development via its interaction with several binding proteins. Mech Dev 2020; 163:103633. [PMID: 32682987 DOI: 10.1016/j.mod.2020.103633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/27/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023]
Abstract
Little is known about the molecular mechanisms underlying alveolar development. P311, a putative neuronal protein originally identified for its high expression during neuronal development, has once been reported to play a potential role in distal lung generation. However, the function of this protein has been poorly understood so far. Hence, we carried out a yeast two-hybrid screen, combining with other protein-protein interaction experiments, to isolate several binding partners of P311 during lung development, which may help us explore its function. We report 7 proteins here, including Gal-1, Loxl-1 and SPARC, etc, that can interact with it. Most of them have similar spatio-temporal expression patterns to P311. In addition, it was also found that P311 could stimulate their expression indirectly in L929 mouse fibroblast. Besides, computational methods were applied to construct a P311 centered protein-protein interaction network during alveolarization, using the 7 binding partners and their protein interaction information provided by public data resources. By analyzing the structure and function of this network, the effects of P311 on lung development were further clarified and all of the bioinformatic predictions from the network could be validated by real experiments. We have found here that P311 can control lung redox events, extracellular matrix and cell cycle progression, which are all crucial to pulmonary morphogenesis. This gives us a novel thought to explore the mechanisms controlling alveolarization.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaohai Zhou
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Naiyue Hu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunyan Wang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liqing Zhao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
29
|
Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2468986. [PMID: 32587657 PMCID: PMC7298344 DOI: 10.1155/2020/2468986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Slc7a11 is the key component of system Xc−, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.
Collapse
|
30
|
NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 2020; 33:101541. [PMID: 32360174 PMCID: PMC7251244 DOI: 10.1016/j.redox.2020.101541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.
Collapse
|
31
|
Smith MR, Walker DI, Uppal K, Utell MJ, Hopke PK, Mallon TM, Krahl PL, Rohrbeck P, Go YM, Jones DP. Benzo[a]pyrene Perturbs Mitochondrial and Amino Acid Metabolism in Lung Epithelial Cells and Has Similar Correlations With Metabolic Changes in Human Serum. J Occup Environ Med 2019; 61 Suppl 12:S73-S81. [PMID: 31800453 PMCID: PMC6897313 DOI: 10.1097/jom.0000000000001687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE A study was conducted to identifymetabolic-related effects of benzo[a]pyrene (BaP) on human lung epithelial cells and validate these findings using human sera. METHODS Human lung epithelial cells were treated with BaP, and extracts were analyzed with a global metabolome-wide association study (MWAS) to test for pathways and metabolites altered relative to vehicle controls. RESULTS MWAS results showed that BaP metabolites were among the top metabolites differing between BaP-treated cells and controls. Pathway enrichment analysis further confirmed that fatty acid, lipid, and mitochondrial pathways were altered by BaP. Human sera analysis showed that lipids varied with BaP concentration. BaP associations with amino acid metabolism were found in both models. CONCLUSIONS These findings show that BaP has broad metabolic effects, and suggest that air pollution exacerbates disease processes by altered mitochondrial and amino acid metabolism.
Collapse
Affiliation(s)
- Matthew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary
Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Douglas I. Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary
Medicine, Department of Medicine, Emory University, Atlanta, GA
- Current address: Department of Environmental Medicine and
Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary
Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Mark J. Utell
- Department of Environmental Medicine, University of
Rochester Medical Center, Rochester NY
- Department of Medicine, Pulmonary Division, University of
Rochester Medical Center, Rochester, NY
| | - Philip K. Hopke
- Department of Public Health Sciences, University of
Rochester Medical Center, Rochester, NY
| | - Timothy M. Mallon
- Uniformed Services University of the Health Sciences, F.
Edward Hébert School of Medicine, Department of Preventive Medicine &
Biostatistics, Bethesda, MD
| | - Pamela L. Krahl
- Uniformed Services University of the Health Sciences, F.
Edward Hébert School of Medicine, Department of Preventive Medicine &
Biostatistics, Bethesda, MD
| | | | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary
Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary
Medicine, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
32
|
Tetrandrine Ameliorates Airway Remodeling of Chronic Asthma by Interfering TGF- β1/Nrf-2/HO-1 Signaling Pathway-Mediated Oxidative Stress. Can Respir J 2019; 2019:7930396. [PMID: 31781316 PMCID: PMC6875008 DOI: 10.1155/2019/7930396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background Imbalanced oxidative stress and antioxidant defense are involved in airway remodeling in asthma. It has been demonstrated that Tetrandrine has a potent role in antioxidant defense in rheumatoid arthritis and hypertension. However, the correlation between Tetrandrine and oxidative stress in asthma is utterly blurry. This study aimed to investigate the role of Tetrandrine on oxidative stress-mediated airway remolding. Materials and Methods Chronic asthma was established by ovalbumin (OVA) administration in male Wistar rats. Histopathology was determined by HE staining. Immunofluorescence was employed to detect the expression of α-SMA and Nrf-2. Level of oxidative stress and matrix metalloproteinases were examined by ELISA kits. Cell viability and cell cycle of primary airway smooth muscle cells (ASMCs) were evaluated by CCK8 and flow cytometry, respectively. Signal molecules were detected using western blot. Results Tetrandrine effectively impairs OVA-induced airway inflammatory and airway remodeling by inhibiting the expression of CysLT1 and CysLTR1. The increase of oxidative stress and subsequent enhancement of MMP9 and TGF-β1 expression were rescued by the administration of Tetrandrine in the rat model of asthma. In in vitro experiments, Tetrandrine markedly suppressed TGF-β1-evoked cell viability and cell cycle promotion of ASMCs in a dose-dependent manner. Furthermore, Tetrandrine promoted Nrf-2 nuclear transcription and activated its downstream HO-1 in vivo and in vitro. Conclusion Tetrandrine attenuates airway inflammatory and airway remodeling in rat model of asthma and TGF-β1-induced cell proliferation of ASMCs by regulating oxidative stress in primary ASMCs, suggesting that Tetrandrine possibly is an effective candidate therapy for asthma.
Collapse
|
33
|
Diet-Induced Pulmonary Inflammation and Incipient Fibrosis in Mice: a Possible Role of Neutrophilic Inflammation. Inflammation 2019; 42:1886-1900. [DOI: 10.1007/s10753-019-01051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Cameli P, Carleo A, Bergantini L, Landi C, Prasse A, Bargagli E. Oxidant/Antioxidant Disequilibrium in Idiopathic Pulmonary Fibrosis Pathogenesis. Inflammation 2019; 43:1-7. [DOI: 10.1007/s10753-019-01059-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Wu CH, Ko JL, Pan HH, Chiu LY, Kang YT, Hsiao YP. Ni-induced TGF-β signaling promotes VEGF-a secretion via integrin β3 upregulation. J Cell Physiol 2019; 234:22093-22102. [PMID: 31066035 DOI: 10.1002/jcp.28772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022]
Abstract
Nickel compounds are associated with lung and skin cancer incidence increase and accumulation of nickel in the body contributes to carcinogenesis. Upregulation of certain integrins in the primary tumor is associated with cancer metastasis and poor prognosis. However, the molecular mechanisms of nickel-induced cancer metastasis are still unclear. The purpose of the present study was to investigate the effects of nickel chloride (NiCl2 ) on the progression of cancer during metastasis. The results of showed that NiCl2 induces the expression of integrin β3 mRNA and protein in a dose- and time-dependent manner. Inhibition of integrin αvβ3 activation by ITGB3 ligand mimetics and GR144053, as well as downregulation of ITGB3 by lentiviral shRNA gene silencing, diminished NiCl2 -induced secretion of vascular endothelial growth factor-a (VEGF-a). Furthermore, pretreatment with type I TGF-β receptor inhibitor, SB525334, suppressed the expression of ITGB3 at cell surface and secretion of VEGF-a in NiCl2 -treated cells. In conclusion, NiCl2 induces the expression of ITGB3 through TGF-β signaling activation, followed by increasing VEGF-a secretion, revealing a novel role for ITGB3 in nickel compound-induced cancer metastasis and tumor angiogenesis.
Collapse
Affiliation(s)
- Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsien Pan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pediatrics, Institute of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Sundarakrishnan A, Zukas H, Coburn J, Bertini BT, Liu Z, Georgakoudi I, Baugh L, Dasgupta Q, Black LD, Kaplan DL. Bioengineered in Vitro Tissue Model of Fibroblast Activation for Modeling Pulmonary Fibrosis. ACS Biomater Sci Eng 2019; 5:2417-2429. [PMID: 33405750 DOI: 10.1021/acsbiomaterials.8b01262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex disease of unknown etiology with no current curative treatment. Modeling pulmonary fibrotic (PF) tissue has the potential to improve our understanding of IPF disease progression and treatment. Rodent animal models do not replicate human fibroblastic foci (Hum-FF) pathology, and current iterations of in vitro model systems (e.g., collagen hydrogels, polyacrylamide hydrogels, and fibrosis-on-chip systems) are unable to replicate the three-dimensional (3D) complexity and biochemical composition of human PF tissue. Herein, we fabricated a 3D bioengineered pulmonary fibrotic (Eng-PF) tissue utilizing cell laden silk collagen type I dityrosine cross-linked hydrogels and Flexcell bioreactors. We show that silk collagen type I hydrogels have superior stability and mechanical tunability compared to other hydrogel systems. Using customized Flexcell bioreactors, we reproduced Hum-FF-like pathology with airway epithelial and microvascular endothelial cells. Eng-PF tissues can model myofibroblast differentiation and permit evaluation of antifibrotic drug treatments. Further, Eng-PF tissues could be used to model different facets of IPF disease, including epithelial injury with the addition of bleomycin and cellular recruitment by perfusion of cells through the hydrogel microchannel.
Collapse
Affiliation(s)
- Aswin Sundarakrishnan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Heather Zukas
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, Massachusetts 01605, United States
| | - Brian T Bertini
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren Baugh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Queeny Dasgupta
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Allawzi A, Elajaili H, Redente EF, Nozik-Grayck E. Oxidative Toxicology of Bleomycin: Role of the Extracellular Redox Environment. CURRENT OPINION IN TOXICOLOGY 2019; 13:68-73. [PMID: 31289762 PMCID: PMC6615752 DOI: 10.1016/j.cotox.2018.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bleomycin is a commonly used cancer therapeutic that is associated with oxidative stress leading to pulmonary toxicity. Bleomycin has been used in animal studies to model pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary hypertension secondary to interstitial lung disease. The toxicity with bleomycin is initiated by direct oxidative damage, which then leads to subsequent inflammation and fibrosis mediated by generation of both extracellular ROS and intracellular ROS. While most studies focus on the intracellular ROS implicated in TGFβ signaling and fibrosis, the changes in the extracellular redox environment, particularly with the initiation of early inflammation, is also critical to the pathogenesis of bleomycin induced injury and fibrosis. In this review, we focus on the role of extracellular redox environment in bleomycin toxicity, with attention to the generation of extracellular ROS, alterations in the redox state of extracellular thiols, and the central role of the extracellular isoform of superoxide dismutase in the development of bleomycin induced injury and fibrosis.
Collapse
Affiliation(s)
- Ayed Allawzi
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Hanan Elajaili
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Denver, CO
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Eva Nozik-Grayck
- Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
38
|
Rtibi K, Selmi S, Wannes D, Jridi M, Marzouki L, Sebai H. The potential of Thymus vulgaris aqueous extract to protect against delayed gastric emptying and colonic constipation in rats. RSC Adv 2019; 9:20593-20602. [PMID: 35515536 PMCID: PMC9065799 DOI: 10.1039/c9ra02042j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/16/2019] [Indexed: 11/27/2022] Open
Abstract
Thyme is a rich source of bioactive phytochemicals and it is frequently used in folk-medicine to treat gastroenteritis irritations. The current study was performed to examine the potential of Thymus vulgaris aqueous extract (TV-AE) to protect against delayed gastric emptying (DGE) and colonic constipation in rats. Stomach ulcer was caused by a single oral dose administration of indomethacin (INDO) (30 mg kg−1 of body weight). Constipation was induced following intravenous intoxication of rats with vinblastine (VINB) (2 mg kg−1 of body weight) for one week. The effect of TV-AE at two graduated doses (100 and 200 mg kg−1) on DGE, gastrointestinal transit (GIT) and constipated rats and biochemical parameters was estimated using phenol red, charcoal meal test and colorimetric methods, respectively. The phytochemical-profile of TV-AE was explored using high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization-mass spectrometry (HPLC-PDA/ESI-MS). INDO and VINB caused a significant reduction in (P < 0.05) DGE and GIT and colonic motility dysfunction. TV-AE consumption remarkably (P < 0.05) attenuated the DGE (from 58.56% to 69.871%) and difficulty in evacuating stools (from 48.5 to 55.5 fecal pellets per rat) and balanced the GIT (65% to 71%). These GI-ameliorative effects were accompanied by reversed INDO/VINB-related oxidative changes, lipid-metabolism alteration and intracellular pathway moderation. HPLC-PDA/ESI-MS-analysis identified several chemical constituents including rosmarinic acid, quinic acid, luteolin-7-o-glucoside, protocatechuic acid and trans-cinnamic acid. Thus, TV-AE bioactive components may be used as medicinal substances to regulate/attenuate gastrointestinal–physiological activities and disturbances, which support its pharmacological use. Thyme is a rich source of bioactive phytochemicals and it is frequently used in folk-medicine to treat gastroenteritis irritations.![]()
Collapse
Affiliation(s)
- Kaïs Rtibi
- Laboratory of Functional Physiology and Valorization of Bio-resources-Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | - Slimen Selmi
- Laboratory of Functional Physiology and Valorization of Bio-resources-Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | - Dalanda Wannes
- Laboratory of Functional Physiology and Valorization of Bio-resources-Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | - Mourad Jridi
- Laboratory of Enzymatic Engineering and Microbiology
- National School of Engineers of Sfax
- University of Sfax
- 3038 Sfax
- Tunisia
| | - Lamjed Marzouki
- Laboratory of Functional Physiology and Valorization of Bio-resources-Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources-Higher Institute of Biotechnology of Beja
- University of Jendouba
- 9000 Beja
- Tunisia
| |
Collapse
|
39
|
Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018773044. [PMID: 29714090 PMCID: PMC5987909 DOI: 10.1177/2045894018773044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH.
Collapse
Affiliation(s)
- Pratap Karki
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
41
|
Hecker L. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol 2017; 314:L642-L653. [PMID: 29351446 DOI: 10.1152/ajplung.00275.2017] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.
Collapse
Affiliation(s)
- Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona , Tucson, Arizona and Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
42
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
43
|
Qian CL, Fan R. Effect of Pingchuan Guben decoction on patients with chronic obstructive pulmonary disease: Results from a randomized comparative effectiveness research trial. Exp Ther Med 2017; 14:3915-3925. [PMID: 29043001 PMCID: PMC5639302 DOI: 10.3892/etm.2017.5018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is known to be a systemic low-grade ongoing inflammation exerting major health and economic burden worldwide. Complementary and alternative medicines, such as Traditional Chinese Medicine, are widely used for the treatment of patients with COPD. The present study was designed to investigate the efficacy of Pingchuan Guben decoction on patients with COPD through a double-blinded, open-labeled, randomized controlled trial. A total of 86 patients were randomly assigned to two groups, with 43 patients in the intervention group and 43 cases in the control group. The patients in the control group were treated with conventional western medicine, and the intervention group received a combination of conventional western medicine and Pingchuan Guben decoction. After 12 weeks of treatment, the mean 6-minute walking distance, forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC) and FEV1/FVC in the intervention group were significantly higher than those of the control group (P<0.05). The levels of inflammation factors and protease molecules were significantly ameliorated in the intervention group compared with the control group (P<0.05). The levels of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor-E2-related factor-2 (Nrf2), superoxide anions, malondialdehyde, glutathione S-transferase and glutathione peroxidase were significantly more improved in the intervention group compared with those in the control group over the 12-week study period (P<0.05). Therefore, combinations of western medicine with Pingchuan Guben decoction may exert therapeutic effects on patients with COPD via modulations of inflammation factors and protease molecules, as well as the activation of the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Cheng-Liang Qian
- Department of Chinese Medicine, Nanjing BenQ Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Rong Fan
- Department of Chinese Medicine, Nanjing BenQ Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
44
|
El-Mohandes EM, Moustafa AM, Khalaf HA, Hassan YF. The role of mast cells and macrophages in amiodarone induced pulmonary fibrosis and the possible attenuating role of atorvastatin. Biotech Histochem 2017; 92:467-480. [PMID: 28836856 DOI: 10.1080/10520295.2017.1350750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amiodarone (AM) is an effective anti-arrhythmic drug. We investigated the role of mast cells and macrophages on AM induced pulmonary fibrosis and the action of atorvastatin on this fibrosis. Rats were allocated into four groups; negative control (1), positive control (2), 30 mg/kg body weight/day AM (3) and AM + 10 mg/kg/day atorvastatin (4). Lungs were harvested and prepared for histology and immunohistochemistry. Hematoxylin and eosin stained sections of group 3 exhibited disorganized lung architecture. We found cellular debris in the lumen of both intrapulmonary bronchi and bronchioles with partial disruption of the thickened epithelial lining and mononuclear cellular infiltration into the lamina propria. We also observed thickening of the epithelial lining and the smooth muscle layer. Congested, dilated and thickened blood capillaries and thickened inter-alveolar septa were observed with mononuclear cellular infiltrates in the lung of group 3. Most alveoli were collapsed, but some dilated ones were detected. In some alveoli, type ІІ pneumocytes were increased, while type I cells were decreased. We observed significant increases in the amount of collagen in the thickened inter-alveolar septa, around bronchioles and around blood capillaries in sections from group 3. We found a significant increase in mast cells and alveolar macrophages in group 3 compared to group 1. Mast cells and macrophages appear to play important roles in AM induced pulmonary fibrosis. Atorvastatin appears to attenuate this condition.
Collapse
Affiliation(s)
- E M El-Mohandes
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| | - A M Moustafa
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| | - H A Khalaf
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| | - Y F Hassan
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| |
Collapse
|
45
|
Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 2017; 14:59-71. [PMID: 28869833 PMCID: PMC5582718 DOI: 10.1016/j.redox.2017.08.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Despite the increasingly important role of Hippo-Yap in hepatocellular carcinoma (HCC) development and progression, little insight is available at the time regarding the specifics interaction of Yap and cancer cells migration. Here, we identified the mechanism by which tumor-intrinsic Yap deletion resulted in HCC migratory inhibition. Yap was greatly upregulated in HCC and its expression promoted the cells migration. Functional studies found that knockdown of Yap induced JNK phosphorylation which closely bound to the Bnip3 promoter and contributed to Bnip3 expression. Higher Bnip3 employed excessive mitophagy leading to mitochondrial dysfunction and ATP shortage. The insufficient ATP inactivated SERCA and consequently triggered intracellular calcium overload. As the consequence of calcium oscillation, Ca/calmodulin-dependent protein kinases II (CaMKII) was signaled and subsequently inhibited cofilin activity via phosphorylated modification. The phosphorylated cofilin failed to manipulate F-actin polymerization and lamellipodium formation, resulting into the impairment of lamellipodium-based migration. Collectively, our results identified Hippo-Yap as the tumor promoter in hepatocellular carcinoma that mediated via activation of cofilin/F-actin/lamellipodium axis by limiting JNK-Bnip3-SERCA-CaMKII pathways, with potential application to HCC therapy involving cancer metastasis. Yap is upregulated in the hepatocellular carcinoma and promotes cancer cell migration. Loss of Yap impairs cell mobility via inhibiting cofilin/F-actin/lamellipodium by activation of JNK-Bnip3-SERCA-CaMKII. Loss of Yap enhances JNK phosphorylation which triggers Bnip3-required mitophagy. Excessive mitophagy induces mitochondrial energy disorder which blunts SERCA and causes calcium overload. The calcium overload drives CaMKII which inactivates cofilin, leading to F-actin degradation and lamellipodium collapse.
Collapse
Affiliation(s)
- Chen Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Li
- Department of Oncology, PLA General Hospital Cancer Center, Beijing, China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
46
|
Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J 2017; 50:50/1/1601805. [PMID: 28679607 DOI: 10.1183/13993003.01805-2016] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
The pulmonary extracellular matrix (ECM) determines the tissue architecture of the lung, and provides mechanical stability and elastic recoil, which are essential for physiological lung function. Biochemical and biomechanical signals initiated by the ECM direct cellular function and differentiation, and thus play a decisive role in lung development, tissue remodelling processes and maintenance of adult homeostasis. Recent proteomic studies have demonstrated that at least 150 different ECM proteins, glycosaminoglycans and modifying enzymes are expressed in the lung, and these assemble into intricate composite biomaterials. These highly insoluble assemblies of interacting ECM proteins and their glycan modifications can act as a solid phase-binding interface for hundreds of secreted proteins, which creates an information-rich signalling template for cell function and differentiation. Dynamic changes within the ECM that occur upon injury or with ageing are associated with several chronic lung diseases. In this review, we summarise the available data about the structure and function of the pulmonary ECM, and highlight changes that occur in idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and lung cancer. We discuss potential mechanisms of ECM remodelling and modification, which we believe are relevant for future diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Bettina Oehrle
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Herbert B Schiller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - Oliver Eickelberg
- Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| |
Collapse
|
47
|
Wu YH, Lin HR, Lee YH, Huang PH, Wei HC, Stern A, Chiu DTY. A novel fine tuning scheme of miR-200c in modulating lung cell redox homeostasis. Free Radic Res 2017; 51:591-603. [PMID: 28675952 DOI: 10.1080/10715762.2017.1339871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress induces miR-200c, the predominant microRNA (miRNA) in lung tissues; however, the antioxidant role and biochemistry of such induction have not been clearly defined. Therefore, a lung adenocarcinoma cell line (A549) and a normal lung fibroblast (MRC-5) were used as models to determine the effects of miR-200c expression on lung antioxidant response. Hydrogen peroxide (H2O2) upregulated miR-200c, whose overexpression exacerbated the decrease in cell proliferation, retarded the progression of cells in the G2/M-phase, and increased oxidative stress upon H2O2 stimulation. The expression of three antioxidant proteins, superoxide dismutase (SOD)-2, haem oxygenase (HO)-1, and sirtuin (SIRT) 1, was reduced upon H2O2 stimulation in miR-200c-overexpressed A549 cells. This phenomenon of increased oxidative stress and antioxidant protein downregulation also occurs simultaneously in miR-200c overexpressed MRC-5 cells. Molecular analysis revealed that miR-200c inhibited the gene expression of HO-1 by directly targeting its 3'-untranslated region. The downregulation of SOD2 and SIRT1 by miR-200c was mediated through zinc finger E-box-binding homeobox 2 (ZEB2) and extracellular signal-regulated kinase 5 (ERK5) pathways, respectively, where knockdown of ZEB2 or ERK5 decreased the expression of SOD2 or SIRT1 in A549 cells. LNA anti-miR-200c transfection in A549 cells inhibited the endogenous miR-200c expression, resulting in increased expressions of antioxidant proteins, reduced oxidative stress and recovered cell proliferation upon H2O2 stimulation. These findings indicate that miR-200c fine-tuned the antioxidant response of the lung cells to oxidative stress through several pathways, and thus this study provides novel information concerning the role of miR-200c in modulating redox homeostasis of lung.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Hsin-Ru Lin
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Ying-Hsuan Lee
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Pin-Hao Huang
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Huei-Chung Wei
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- d New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,e Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,f Department of Pediatric Hematology/Oncology , Linkou Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
48
|
Dasari BC, Cashman SM, Kumar-Singh R. Reducible PEG-POD/DNA Nanoparticles for Gene Transfer In Vitro and In Vivo: Application in a Mouse Model of Age-Related Macular Degeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:77-89. [PMID: 28918058 PMCID: PMC5491761 DOI: 10.1016/j.omtn.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/03/2023]
Abstract
Non-viral gene delivery systems are being developed to address limitations of viral gene delivery. Many of these non-viral systems are modeled on the properties of viruses including cell surface binding, endocytosis, endosomal escape, and nuclear targeting. Most non-viral gene transfer systems exhibit little correlation between in vitro and in vivo efficiency, hampering a systematic approach to their development. Previously, we have described a 3.5 kDa peptide (peptide for ocular delivery [POD]) that targets cell surface sialic acid. When functionalized with polyethylene glycol (PEG) via a sulfhydryl group on the N-terminal cysteine of POD, PEG-POD could compact plasmid DNA, forming 120- to 180-nm homogeneous nanoparticles. PEG-POD enabled modest gene transfer and rescue of retinal degeneration in vivo. Systematic investigation of different stages of gene transfer by PEG-POD nanoparticles was hampered by their inability to deliver genes in vitro. Herein, we describe functionalization of POD with PEG using a reducible orthopyridyl disulfide bond. These reducible nanoparticles enabled gene transfer in vitro while retaining their in vivo gene transfer properties. These reducible PEG-POD nanoparticles were utilized to deliver human FLT1 to the retina in vivo, achieving a 50% reduction in choroidal neovascularization in a murine model of age-related macular degeneration.
Collapse
Affiliation(s)
- Bhanu Chandar Dasari
- Department of Developmental, Molecular, and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular, and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular, and Chemical Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
49
|
Narkhede AA, Shevde LA, Rao SS. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis. Int J Cancer 2017; 141:1091-1109. [PMID: 28439901 DOI: 10.1002/ijc.30748] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
Abstract
The progression of breast cancer from the primary tumor setting to the metastatic setting is the critical event defining Stage IV disease, no longer considered curable. The microenvironment at specific organ sites is known to play a key role in influencing the ultimate fate of metastatic cells; yet microenvironmental mediated-molecular mechanisms underlying organ specific metastasis in breast cancer are not well understood. This review discusses biomimetic strategies employed to recapitulate metastatic organ microenvironments, particularly, bone, liver, lung and brain to elucidate the mechanisms dictating metastatic breast cancer cell homing and colonization. These biomimetic strategies include in vitro techniques such as biomaterial-based co-culturing techniques, microfluidics, organ-mimetic chips, bioreactor technologies, and decellularized matrices as well as cutting edge in vivo techniques to better understand the interactions between metastatic breast cancer cells and the stroma at the metastatic site. The advantages and disadvantages of these systems are discussed. In addition, how creation of biomimetic models will impact breast cancer metastasis research and their broad utility is explored.
Collapse
Affiliation(s)
- Akshay A Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| | - Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL
| |
Collapse
|
50
|
Gielis JF, Beckers PAJ, Briedé JJ, Cos P, Van Schil PE. Oxidative and nitrosative stress during pulmonary ischemia-reperfusion injury: from the lab to the OR. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:131. [PMID: 28462211 DOI: 10.21037/atm.2017.03.32] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative and nitrosative stress are an umbrella term for pathophysiological processes that involve free radical generation during inflammation. In this review, the involvement of reactive oxygen and nitrogen species is evaluated during lung ischemia-reperfusion injury (LIRI) from a surgical point of view. The main biochemical and cellular mechanisms behind free radical generation are discussed, together with surgical procedures that may cause reperfusion injury. Finally, different therapeutic strategies are further explored. A literature search was performed, searching for "lung ischemia reperfusion injury", "reperfusion injury", "large animal model" and different search terms for each section: "surgery", "treatment", "cellular mechanism", or "enzyme". Although reperfusion injury is not an uncommon entity and there is a lot of evidence concerning myocardial ischemia-reperfusion injury, in the lung this phenomenon is less extensively described and studies in large animals are not easy to come by. With increasing number of patients on waiting lists for lung transplant, awareness for this entity should all but rise.
Collapse
Affiliation(s)
- Jan F Gielis
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium.,Laboratory for Microbiology, Parasitology and Hygiene, Antwerp University, Antwerp, Belgium
| | - Paul A J Beckers
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Jacco J Briedé
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, Antwerp University, Antwerp, Belgium
| | - Paul E Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|