1
|
Yang J, Gui Y, Zheng Y, He H, Chen L, Li T, Liu H, Wang D, Yuan D, Yuan C. Total saponins from Panax japonicus reduced lipid deposition and inflammation in hepatocyte via PHD2 and hepatic macrophage-derived exosomal miR-463-5p. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119376. [PMID: 39842748 DOI: 10.1016/j.jep.2025.119376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax japonicus (T. Nees) C.A. Mey. (PJ) is a traditional Chinese herbal medicine revered as the "King of Herbs" in Tujia and Hmong medical practices. Clinically, it is primarily used to treat weakness and fatigue, wound bleeding, arthritis, hyperlipidemia, and fatty liver. It is rich in saponins, and the total saponins from PJ (TSPJ), possess immunomodulatory, antioxidant, and lipid-lowering effects. These properties hold significant potential in managing liver-related metabolic diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). AIM OF STUDY Evaluate the therapeutic effects of TSPJ on lipid metabolism disorders in a NASH model and explore the possible underlying mechanisms. MATERIALS AND METHODS To model NASH, C57BL/6J mice were fed a high-fat diet (HFD) and RAW264.7 cells were stimulated with lipopolysaccharide (LPS) and palmitic acid (PA). The animal and cell models were also treated with TSPJ, and the changes in inflammation and lipid metabolism were measured. Additional models were created by transfecting lentiviral vectors to cause miR-463-5p knockdown in the C57BL/6J mouse and the RAW264.7 cells. RESULTS In the HFD-induced mice, TSPJ reduced the body weight and liver weight, lowered the serum levels of TG, T-CHO, ALT, and AST, and reduced the hepatic lipid droplet formation and vacuolization. In the RAW264.7 cells, TSPJ upregulated the M2 markers and downregulated the M1 markers. TSPJ also significantly increased the expression of miR-463-5p in the exosomes derived from the RAW264.7 cells or the primary mouse hepatic macrophages, and miR-463-5p suppressed the expression of PHD2 in hepatocytes to improve lipid metabolism. However, when the exosome secretion inhibitor GW4869 was applied, TSPJ became less effective in alleviating the lipid deposition and inflammation in hepatocytes. CONCLUSIONS TSPJ significantly upregulated the expression of miR-463-5p in the exosomes of hepatic macrophages to thus downregulate PHD2 expression in hepatocytes and improve hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jingjie Yang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Yibei Gui
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ying Zheng
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haodong He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Lihan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Tongtong Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Haoran Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Dongshuo Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China.
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
2
|
Virtanen N, Pesonen E, Saarela U, Hurskainen E, Arffman RK, Koivunen P, Piltonen T. Association of hemoglobin levels with metabolic traits in women with PCOS. Acta Obstet Gynecol Scand 2025; 104:357-367. [PMID: 39740096 PMCID: PMC11782057 DOI: 10.1111/aogs.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Within normal variation, higher hemoglobin (Hb) levels are associated with poorer metabolic profile in population cohorts, underlying the link between oxygen delivery and cell metabolism. Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women and is commonly accompanied by metabolic derangements. In this study we sought to investigate Hb levels, and their metabolic associations, in women with PCOS. MATERIAL AND METHODS We used data from Northern Finland Birth Cohort 1966 to evaluate Hb levels in women with or without PCOS at the ages of 31 and 46 years. Linear regression models were used to investigate associations between Hb levels and essential metabolic parameters in both groups. RESULTS Women with PCOS had higher Hb levels than controls at the age of 31 years but not at the age of 46 years. Hb levels were associated positively with most of the metabolic parameters tested (body mass index, waist circumference, fasting insulin, homeostatic model assessment-insulin resistance (HOMA-IR), blood pressure, inflammatory markers, and blood lipids), with stronger associations in women with PCOS than in non-PCOS controls. There were fewer associations at the age of 46 than at 31 years, and body mass index seemed to explain many, though not all, differences between the PCOS and non-PCOS groups. CONCLUSIONS Women with PCOS have higher Hb levels at the age of 31 years. In both women with and without PCOS, Hb levels associate with poorer metabolic profile.
Collapse
Affiliation(s)
- Nikke Virtanen
- Department of Obstetrics and Gynecology, Medical Research Centre, Research Unit of Clinical MedicineUniversity of Oulu, Oulu University HospitalOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Emilia Pesonen
- Department of Obstetrics and Gynecology, Medical Research Centre, Research Unit of Clinical MedicineUniversity of Oulu, Oulu University HospitalOuluFinland
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Medical Research Centre, Research Unit of Clinical MedicineUniversity of Oulu, Oulu University HospitalOuluFinland
| | - Elisa Hurskainen
- Department of Obstetrics and Gynecology, Medical Research Centre, Research Unit of Clinical MedicineUniversity of Oulu, Oulu University HospitalOuluFinland
| | - Riikka K. Arffman
- Department of Obstetrics and Gynecology, Medical Research Centre, Research Unit of Clinical MedicineUniversity of Oulu, Oulu University HospitalOuluFinland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Terhi Piltonen
- Department of Obstetrics and Gynecology, Medical Research Centre, Research Unit of Clinical MedicineUniversity of Oulu, Oulu University HospitalOuluFinland
| |
Collapse
|
3
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
4
|
Gao R, Lv C, Qu Y, Yang H, Hao C, Sun X, Hu X, Yang Y, Tang Y. Remote Ischemic Conditioning Mediates Cardio-protection After Myocardial Ischemia/Reperfusion Injury by Reducing 4-HNE Levels and Regulating Autophagy via the ALDH2/SIRT3/HIF1α Signaling Pathway. J Cardiovasc Transl Res 2024; 17:169-182. [PMID: 36745288 DOI: 10.1007/s12265-023-10355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Remote ischemic conditioning (RIC) can be effectively applied for cardio-protection. Here, to clarify whether RIC exerts myocardial protection via aldehyde dehydrogenase 2 (ALDH2), we established a myocardial ischemia/reperfusion (I/R) model in C57BL/6 and ALDH2 knockout (ALDH2-KO) mice and treated them with RIC. Echocardiography and single-cell contraction experiments showed that RIC significantly improved myocardial function and alleviated I/R injury in C57BL/6 mice but did not exhibit its cardioprotective effects in ALDH2-KO mice. TUNEL, Evan's blue/triphenyl tetrazolium chloride, and reactive oxygen species (ROS) assays showed that RIC's effect on reducing myocardial cell apoptosis, myocardial infarction area, and ROS levels was insignificant in ALDH2-KO mice. Our results showed that RIC could increase ALDH2 protein levels, activate sirtuin 3 (SIRT3)/hypoxia-inducible factor 1-alpha (HIF1α), inhibit autophagy, and exert myocardial protection. This study revealed that RIC could exert myocardial protection via the ALDH2/SIRT3/HIF1α signaling pathway by reducing 4-HNE secretion.
Collapse
Affiliation(s)
- Rifeng Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, Shanghai, China
| | - Chunyu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Hen Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Chuangze Hao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaolei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xiaosheng Hu
- First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Yiqing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, Shanghai, China.
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
5
|
Qiu F, Zeng R, Li D, Ye T, Xu W, Wang X, Yan X, Li H, Hu X. Establishment and bioinformatics evaluation of the ethanol combined with palmitic acid-induced mouse hepatocyte AFLD model (the Hu-Qiu Model). Heliyon 2023; 9:e19359. [PMID: 37681138 PMCID: PMC10481297 DOI: 10.1016/j.heliyon.2023.e19359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Chronic alcoholic liver disease has brought great harm to human health. Alcoholic fatty liver disease is the first stage in the progression of all chronic alcoholic liver diseases. At present, there is no cell model that fully matches the etiology (high-fat diet + alcohol) of human alcoholic fatty liver disease. We used 100 mM ethanol +6.25 μM PA to establish the ethanol combined with PA-induced mouse hepatocyte AFLD model (EP-AFLD hepatocyte model) and performed the RNA-seq transcriptome sequencing. Through bioinformatics analysis and comparison, we discovered that the EP-AFLD hepatocyte model was more suitable for studying the pathological mechanism of AFLD than the mouse AFLD hepatocyte model induced by ethanol alone. And through bioinformatics analysis, we further discovered that 77 genes from the differential expression gene set of EP-AFLD hepatocyte model were engaged in the pathological process of mouse AFLD and 40 genes were involved in the pathogenesis of both mouse AFLD and human AFLD. In this study, a novel mouse hepatocyte AFLD model was successfully established by combining ethanol and PA, which can be used to study the molecular mechanism of the pathogenesis of AFLD in mice or humans. This study will provide a brand-new in vitro experimental platform for the in-depth study of AFLD pathogenesis and the screening of AFLD therapeutic drugs.
Collapse
Affiliation(s)
| | | | - Du Li
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tingjie Ye
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Xu
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoling Wang
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaofeng Yan
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Li
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xudong Hu
- Department of Biology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Tapio J, Halmetoja R, Dimova EY, Mäki JM, Laitala A, Walkinshaw G, Myllyharju J, Serpi R, Koivunen P. Contribution of HIF-P4H isoenzyme inhibition to metabolism indicates major beneficial effects being conveyed by HIF-P4H-2 antagonism. J Biol Chem 2022; 298:102222. [PMID: 35787374 PMCID: PMC9352911 DOI: 10.1016/j.jbc.2022.102222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs 1-3) are druggable targets in renal anemia, where pan-HIF-P4H inhibitors induce an HIF-mediated erythropoietic response. HIF is also a potent regulator of energy metabolism. Preclinical data suggest that HIF-P4Hs could also be treatment targets for metabolic dysfunction, although the contributions of the isoenzymes and various tissues to the metabolic phenotype are inadequately understood. We used mouse lines that were gene-deficient for HIF-P4Hs 1-3 and two preclinical pan-HIF-P4H inhibitors to study the contributions of the isoenzymes to the anthropometric and metabolic outcome and HIF response. Both inhibitors induced the HIF response in wild-type white adipose tissue (WAT), liver and skeletal muscle and alleviated metabolic dysfunction during a six-week treatment period, but they did not alter healthy metabolism. Our data show that HIF-P4H-1 contributed especially to skeletal muscle and WAT metabolism and that its loss lowered body weight and serum cholesterol levels upon aging. HIF-P4H-3-mediated effects on the liver and WAT and its loss increased body weight, adiposity, liver weight and triglyceride levels, WAT inflammation and cholesterol levels and resulted in hyperglycemia and insulin resistance, especially upon aging. HIF-P4H-2 contributed to all the tissues studied and its inhibition lowered body and liver weight and serum cholesterol levels and improved glucose tolerance. There was specificity in the regulation of metabolic HIF target mRNAs in tissues, very few being regulated by the inhibition of all isoenzymes, thus suggesting a potential for selective therapeutic tractability. Altogether, these data provide specifications for the development of HIF-P4H inhibitors for metabolic diseases.
Collapse
Affiliation(s)
- Joona Tapio
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joni M Mäki
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Anu Laitala
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Medicine, University of Oulu, Oulu, Finland. Biobank Borealis of Northern Finland, Oulu University Hospital, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Röning T, Magga J, Laitakari A, Halmetoja R, Tapio J, Dimova EY, Szabo Z, Rahtu-Korpela L, Kemppi A, Walkinshaw G, Myllyharju J, Kerkelä R, Koivunen P, Serpi R. Activation of the hypoxia response pathway protects against age-induced cardiac hypertrophy. J Mol Cell Cardiol 2021; 164:148-155. [PMID: 34919895 DOI: 10.1016/j.yjmcc.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
AIMS We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Tapio Röning
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Johanna Magga
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Laitakari
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Halmetoja
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Lea Rahtu-Korpela
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Anna Kemppi
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Biocenter Oulu and Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| | - Raisa Serpi
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Medicine, University of Oulu, Oulu, Finland; Biobank Borealis of Northern Finland, Oulu University Hospital, Finland
| |
Collapse
|
9
|
Wang W, Zhong GZ, Long KB, Liu Y, Liu YQ, Xu AL. Silencing miR-181b-5p upregulates PIAS1 to repress oxidative stress and inflammatory response in rats with alcoholic fatty liver disease through inhibiting PRMT1. Int Immunopharmacol 2021; 101:108151. [PMID: 34836796 DOI: 10.1016/j.intimp.2021.108151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to probe the function of microRNA-181b-5p (miR-181b-5p)/protein inhibitor of activated STAT1 (PIAS1)/protein arginine methyltransferase 1 (PRMT1) axis in the progression of alcoholic fatty liver disease (AFLD). METHODS A rat model of AFLD was established and treated with altered miR-181b-5p, PIAS1 or PRMT1 expression constructs to identify their effects on liver function, serum inflammation, liver tissue oxidative stress, hepatocyte apoptosis and pathological changes of liver tissue in rats using a series of assays. miR-181b-5p, PIAS1 and PRMT1 levels were detected, and the targeting relationship between miR-181b-5p and PIAS1 was confirmed. RESULTS MiR-181b-5p and PRMT1 were elevated while PIAS1 was reduced in AFLD rat liver tissues, miR-181b-5p inhibition, PIAS1 overexpression or PRMT1 inhibition improved liver function, attenuated inflammation, oxidative stress, pathological changes and hepatocyte apoptosis in AFLD rat liver tissues. The impacts of miR-181b-5p inhibition on AFLD rats were reversed by PIAS1 silencing. PIAS1 was confirmed as a target gene of miR-181b-5p, and miR-181b-5p regulated PRMT1 expression through binding to PIAS1. CONCLUSION Inhibiting miR-181b-5p can promote the expression of PIAS1, thereby inhibiting PRMT1 and ultimately improving AFLD.
Collapse
Affiliation(s)
- Wei Wang
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha 410205, Hunan, China
| | - Guan-Zhen Zhong
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha 410205, Hunan, China
| | - Kai-Bing Long
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha 410205, Hunan, China
| | - Yang Liu
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha 410205, Hunan, China
| | - Ya-Qian Liu
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha 410205, Hunan, China
| | - Ai-Lei Xu
- Gastroenterology Department, Hunan Aerospace Hospital, Changsha 410205, Hunan, China.
| |
Collapse
|
10
|
Tapio J, Vähänikkilä H, Kesäniemi YA, Ukkola O, Koivunen P. Higher hemoglobin levels are an independent risk factor for adverse metabolism and higher mortality in a 20-year follow-up. Sci Rep 2021; 11:19936. [PMID: 34620927 PMCID: PMC8497471 DOI: 10.1038/s41598-021-99217-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to cross-sectionally and longitudinally examine whether higher hemoglobin (Hb) levels within the normal variation associate with key components of metabolic syndrome and total and cardiovascular mortality. The study included 967 Finnish subjects (age 40-59 years) followed for ≥ 20 years. The focus was on Hb levels, cardiovascular diseases (CVDs) and mortality rates. Higher Hb levels associated positively with key anthropometric and metabolic parameters at baseline. At the follow-up similar associations were seen in men. The highest Hb quartile showed higher leptin levels and lower adiponectin levels at baseline and follow-up (p < 0.05) and lower plasma ghrelin levels at baseline (p < 0.05). Higher baseline Hb levels associated independently with prevalence of type 2 diabetes at follow-up (p < 0.01). The highest Hb quartile associated with higher serum alanine aminotransferase levels (p < 0.001) and independently with increased risk for liver fat accumulation (OR 1.63 [1.03; 2.57]) at baseline. The highest Hb quartile showed increased risk for total (HR = 1.48 [1.01; 2.16]) and CVD-related mortality (HR = 2.08 [1.01; 4.29]). Higher Hb levels associated with an adverse metabolic profile, increased prevalence of key components of metabolic syndrome and higher risk for CVD-related and total mortality.
Collapse
Affiliation(s)
- Joona Tapio
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - Hannu Vähänikkilä
- Northern Finland Birth Cohorts, Arctic Biobank, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Y Antero Kesäniemi
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Olavi Ukkola
- Medical Research Center Oulu, Faculty of Medicine, Oulu University Hospital and Research Unit of Internal Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
| | - Peppi Koivunen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
11
|
Zhang X, Sun A, Ge J. Origin and Spread of the ALDH2 Glu504Lys Allele. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:222-228. [PMID: 36939783 PMCID: PMC9590465 DOI: 10.1007/s43657-021-00017-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/14/2023]
Abstract
Gene polymorphism of acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme for alcohol metabolism in humans, can affect catalytic activity. The ALDH2 Glu504Lys mutant allele has a high-frequency distribution in East Asian populations and has been demonstrated to be associated with an increased risk of cardiovascular disease, stroke, and tumors. Available evidence suggests that the evolution of the ALDH2 gene has been influenced by multiple factors. Random mutations produce Glu504Lys, and genetic drift alters the frequency of this allele; additionally, environmental factors such as hepatitis B virus infection and high-elevation hypoxia affect its frequency through selective effects, ultimately resulting in a high frequency of this allele in East Asian populations. Here, the origin, selection, and spread of the ALDH2 Glu504Lys allele are discussed, and an outlook for further research is proposed to realize a precision medical strategy based on the genetic and environmental variations in ALDH2.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Määttä J, Serpi R, Hörkkö S, Izzi V, Myllyharju J, Dimova EY, Koivunen P. Genetic Ablation of Transmembrane Prolyl 4-Hydroxylase Reduces Atherosclerotic Plaques in Mice. Arterioscler Thromb Vasc Biol 2021; 41:2128-2140. [PMID: 34039020 DOI: 10.1161/atvbaha.121.316034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jenni Määttä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Sohvi Hörkkö
- Institute of Biomedicine (S.H.), University of Oulu, Finland
| | - Valerio Izzi
- Faculty of Medicine (V.I.), University of Oulu, Finland
- Finnish Cancer Institute, Helsinki, Finland (V.I.)
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research (J. Määttä, R.S., V.I., J. Myllyharju, E.Y.D., P.K.), University of Oulu, Finland
| |
Collapse
|
13
|
Thapa K, Grewal AS, Kanojia N, Rani L, Sharma N, Singh S. Alcoholic and Non-Alcoholic Liver Diseases: Promising Molecular Drug Targets and their Clinical Development. Curr Drug Discov Technol 2021; 18:333-353. [PMID: 31965945 DOI: 10.2174/1570163817666200121143959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Alcoholic and non-alcoholic fatty liver diseases have become a serious concern worldwide. Both these liver diseases have an identical pathology, starting from simple steatosis to cirrhosis and, ultimately to hepatocellular carcinoma. Treatment options for alcoholic liver disease (ALD) are still the same as they were 50 years ago which include corticosteroids, pentoxifylline, antioxidants, nutritional support and abstinence; and for non-alcoholic fatty liver disease (NAFLD), weight loss, insulin sensitizers, lipid-lowering agents and anti-oxidants are the only treatment options. Despite broad research in understanding the disease pathophysiology, limited treatments are available for clinical use. Some therapeutic strategies based on targeting a specific molecule have been developed to lessen the consequences of disease and are under clinical investigation. Therefore, focus on multiple molecular targets will help develop an efficient therapeutic strategy. This review comprises a brief overview of the pathogenesis of ALD and NAFLD; recent molecular drug targets explored for ALD and NAFLD that may prove to be effective for multiple therapeutic regimens and also the clinical status of these promising drug targets for liver diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
14
|
Kietzmann T, Mäkelä VH. The hypoxia response and nutritional peptides. Peptides 2021; 138:170507. [PMID: 33577839 DOI: 10.1016/j.peptides.2021.170507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Hypoxia controls metabolism at several levels, e.g., via mitochondrial ATP production, glucose uptake and glycolysis. Hence it is likely that hypoxia also affects the action and/or production of many peptide hormones linked to food intake and appetite control. Many of those are produced in the gastrointestinal tract, endocrine pancreas, adipose tissue, and selective areas in the brain which modulate and concert their actions. However, the complexity of the hypoxia response and the links to peptides/hormones involved in food intake and appetite control in the different organs are not well known. This review summarizes the role of the hypoxia response and its effects on major peptides linked to appetite regulation, nutrition and metabolism.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland.
| | - Ville H Mäkelä
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu, Finland
| |
Collapse
|
15
|
Liu A, Walter M, Wright P, Bartosik A, Dolciami D, Elbasir A, Yang H, Bender A. Prediction and mechanistic analysis of drug-induced liver injury (DILI) based on chemical structure. Biol Direct 2021; 16:6. [PMID: 33461600 PMCID: PMC7814730 DOI: 10.1186/s13062-020-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is a major safety concern characterized by a complex and diverse pathogenesis. In order to identify DILI early in drug development, a better understanding of the injury and models with better predictivity are urgently needed. One approach in this regard are in silico models which aim at predicting the risk of DILI based on the compound structure. However, these models do not yet show sufficient predictive performance or interpretability to be useful for decision making by themselves, the former partially stemming from the underlying problem of labeling the in vivo DILI risk of compounds in a meaningful way for generating machine learning models. RESULTS As part of the Critical Assessment of Massive Data Analysis (CAMDA) "CMap Drug Safety Challenge" 2019 ( http://camda2019.bioinf.jku.at ), chemical structure-based models were generated using the binarized DILIrank annotations. Support Vector Machine (SVM) and Random Forest (RF) classifiers showed comparable performance to previously published models with a mean balanced accuracy over models generated using 5-fold LOCO-CV inside a 10-fold training scheme of 0.759 ± 0.027 when predicting an external test set. In the models which used predicted protein targets as compound descriptors, we identified the most information-rich proteins which agreed with the mechanisms of action and toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs), one of the most important drug classes causing DILI, stress response via TP53 and biotransformation. In addition, we identified multiple proteins involved in xenobiotic metabolism which could be novel DILI-related off-targets, such as CLK1 and DYRK2. Moreover, we derived potential structural alerts for DILI with high precision, including furan and hydrazine derivatives; however, all derived alerts were present in approved drugs and were over specific indicating the need to consider quantitative variables such as dose. CONCLUSION Using chemical structure-based descriptors such as structural fingerprints and predicted protein targets, DILI prediction models were built with a predictive performance comparable to previous literature. In addition, we derived insights on proteins and pathways statistically (and potentially causally) linked to DILI from these models and inferred new structural alerts related to this adverse endpoint.
Collapse
Affiliation(s)
- Anika Liu
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Moritz Walter
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Peter Wright
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aleksandra Bartosik
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Daniela Dolciami
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Abdurrahman Elbasir
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- ICT Department, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Hongbin Yang
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
16
|
Rubinsztajn A, Fouque D. Prolyl-hydroxylase domain inhibitors in chronic kidney disease, a promising alternative for erythropoiesis-stimulating agent. Eur J Intern Med 2020; 76:28-30. [PMID: 32327320 DOI: 10.1016/j.ejim.2020.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Affiliation(s)
- A Rubinsztajn
- Division of Nephrology, Nutrition, Dialysis; Hôpital Lyon Sud, Hospices Civils de Lyon, Université de Lyon, F-69495 Pierre Bénite, France
| | - D Fouque
- Division of Nephrology, Nutrition, Dialysis; Hôpital Lyon Sud, Hospices Civils de Lyon, Université de Lyon, F-69495 Pierre Bénite, France
| |
Collapse
|
17
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Laitakari A, Tapio J, Mäkelä KA, Herzig KH, Dengler F, Gylling H, Walkinshaw G, Myllyharju J, Dimova EY, Serpi R, Koivunen P. HIF-P4H-2 inhibition enhances intestinal fructose metabolism and induces thermogenesis protecting against NAFLD. J Mol Med (Berl) 2020; 98:719-731. [PMID: 32296880 PMCID: PMC7220983 DOI: 10.1007/s00109-020-01903-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
Abstract Non-alcoholic fatty liver disease (NAFLD) parallels the global obesity epidemic with unmet therapeutic needs. We investigated whether inhibition of hypoxia-inducible factor prolyl 4-hydroxylase-2 (HIF-P4H-2), a key cellular oxygen sensor whose inhibition stabilizes HIF, would protect from NAFLD by subjecting HIF-P4H-2-deficient (Hif-p4h-2gt/gt) mice to a high-fat, high-fructose (HFHF) or high-fat, methionine-choline-deficient (HF-MCD) diet. On both diets, the Hif-p4h-2gt/gt mice gained less weight and had less white adipose tissue (WAT) and its inflammation, lower serum cholesterol levels, and lighter livers with less steatosis and lower serum ALT levels than the wild type (WT). The intake of fructose in majority of the Hif-p4h-2gt/gt tissues, including the liver, was 15–35% less than in the WT. We found upregulation of the key fructose transporter and metabolizing enzyme mRNAs, Slc2a2, Khka, and Khkc, and higher ketohexokinase activity in the Hif-p4h-2gt/gt small intestine relative to the WT, suggesting enhanced metabolism of fructose in the former. On the HF-MCD diet, the Hif-p4h-2gt/gt mice showed more browning of the WAT and increased thermogenesis. A pharmacological pan-HIF-P4H inhibitor protected WT mice on both diets against obesity, metabolic dysfunction, and liver damage. These data suggest that HIF-P4H-2 inhibition could be studied as a novel, comprehensive treatment strategy for NAFLD. Key messages • HIF-P4H-2 inhibition enhances intestinal fructose metabolism protecting the liver. • HIF-P4H-2 inhibition downregulates hepatic lipogenesis. • Induced browning of WAT and increased thermogenesis can also mediate protection. • HIF-P4H-2 inhibition offers a novel, comprehensive treatment strategy for NAFLD. Electronic supplementary material The online version of this article (10.1007/s00109-020-01903-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Joona Tapio
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Kari A Mäkelä
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center and University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Helena Gylling
- Internal Medicine, University of Helsinki and Helsinki University Hospital, 00029 HUS, Helsinki, Finland
| | | | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Aapistie 7C, FIN-90014, Oulu, Finland.
| |
Collapse
|
19
|
Laitakari A, Huttunen R, Kuvaja P, Hannuksela P, Szabo Z, Heikkilä M, Kerkelä R, Myllyharju J, Dimova EY, Serpi R, Koivunen P. Systemic long-term inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 ameliorates aging-induced changes in mice without affecting their life span. FASEB J 2020; 34:5590-5609. [PMID: 32100354 DOI: 10.1096/fj.201902331r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Huttunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Paula Kuvaja
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Pauliina Hannuksela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minna Heikkilä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| |
Collapse
|
20
|
CCl 4-Induced Liver Injury Was Ameliorated by Qi-Ge Decoction through the Antioxidant Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5941263. [PMID: 31976000 PMCID: PMC6955120 DOI: 10.1155/2019/5941263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Qi-Ge decoction (QGD), which is derived from the Huangqi Gegen decoction, contains three traditional Chinese herbs: Astragalus membranaceus (Huangqi), Pueraria lobata (Gegen), and Citri Reticulatae Blanco Pericarpium (Chenpi). Gastric mucosal damage caused by ethanol was prevented and alleviated by QGD. However, the role of QGD in protecting the liver from toxins has not been reported. High-performance liquid chromatography with diode-array detection was used to qualitatively analyze QGD. Positive control (silymarin 100 mg/kg/day), QGD (20, 10, or 5 g/kg/day), and Nrf2 inhibitor brusatol (0.4 mg/kg/2 d) were administered to rats for 7 days, and then, liver injury was induced by injecting 2 mL/kg 25% CCl4. After 24 h, blood and liver were collected for analysis and evaluation. QGD was found to contain 12 main components including calycosin, puerarin, and hesperidin. QGD treatment significantly reduced liver damage and decreased serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase activities. QGD increased superoxide dismutase and catalase activities, and glutathione levels, but decreased malondialdehyde levels in livers from CCl4-treated rats. Compared to rats treated with CCl4 alone, after QGD administration, mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 were increased, while those of Kelch-like ECH-related protein 1 (Keap1) and cytochrome P450 (CYP)2E1 were decreased. However, these improvements in QGD were reversed by brusatol. In conclusion, QGD can achieve its hepatoprotective effect through an antioxidant mechanism by activating the Nrf2 pathway.
Collapse
|
21
|
Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. Int J Mol Sci 2019; 20:ijms20092347. [PMID: 31083568 PMCID: PMC6540308 DOI: 10.3390/ijms20092347] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
The liver and its zonation contribute to whole body homeostasis. Acute and chronic, not always liver, diseases impair proper metabolic zonation. Various underlying pathways, such as β-catenin, hedgehog signaling, and the Hippo pathway, along with the physiologically occurring oxygen gradient, appear to be contributors. Interestingly, hypoxia and hypoxia-inducible transcription factors can orchestrate those pathways. In the current review, we connect novel findings of liver zonation in health and disease and provide a view about the dynamic interplay between these different pathways and cell-types to drive liver zonation and systemic homeostasis.
Collapse
|