1
|
Zhao L, Cui M, Yang S, Zhou H, Li M. The relationship between serum uric acid and homocysteine is influenced by kidney function. Nutr Metab Cardiovasc Dis 2025; 35:103807. [PMID: 39732587 DOI: 10.1016/j.numecd.2024.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND AND AIM Prior research has established a relationship between homocysteine (Hcy) and serum uric acid (SUA) levels; however, the precise mechanisms underlying this association remain unclear. The objective of this research was to explore the correlation between SUA and Hcy and to evaluate the possible role of kidney function as a mediator in the connection between SUA and Hcy. METHODS AND RESULTS Consecutive enrollment of 16870 participants aged 20-60 years was conducted at the Third Xiangya Hospital of Central South University. Self-reported health questionnaires were used to gather information on health behaviors and medical backgrounds. Trained personnel performed laboratory examinations using standard methods. A mediation analysis was performed to explore the possible effect of renal function on the association between SUA and Hcy levels. Estimated glomerular filtration rate (eGFR) was used to assess kidney function. Logistic regression analysis showed that SUA levels were positively correlated with Hcy levels and hyperhomocysteinemia (HHcy) risk (p < 0.01). Subgroup analysis showed the robustness of the results. Significant mediation effects of eGFR were found in the relationship between SUA and Hcy, as demonstrated by the subsequent mediation analysis. In the overall study group, the percentage of eGFR mediated in the association between SUA and Hcy was 63.36 %, with 41.59 % and 57.59 % in women and men, respectively. CONCLUSIONS SUA was positively correlated with Hcy and HHcy risks, and the effects of SUA on Hcy may be mediated by renal function indicators (eGFR).
Collapse
Affiliation(s)
- Linlin Zhao
- Health Management Medicine Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Health Management Research Center of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Man Cui
- Department of Medical Administration, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250001, People's Republic of China
| | - Saiqi Yang
- Health Management Medicine Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Health Management Research Center of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Hui Zhou
- Health Management Medicine Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China; Health Management Research Center of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Meng Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250001, People's Republic of China.
| |
Collapse
|
2
|
Lin K, Xu K, Chen Y, Lu Y, Zhou M, Cao F. Homocysteine S-Methyltransferase 3 Positively Regulates Cadmium Tolerance in Maize. PLANT, CELL & ENVIRONMENT 2025; 48:1705-1716. [PMID: 39483059 DOI: 10.1111/pce.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The increasing contamination of agricultural soils with cadmium (Cd) poses a significant threat to human health and global food security. Plants initiate a series of mechanisms to reduce Cd toxicity. However, the response of maize to Cd toxicity remains poorly understood. In this study, we identified that ZmHMT3, which encodes a homocysteine S-methyltransferases family protein, acted as a regulator of Cd tolerance in maize. Subcellular localization and in situ PCR exhibited that ZmHMT3 was localized in the cytoplasm and predominantly expressed in the phloem. Overexpression of ZmHMT3 enhanced Cd tolerance and reduced Cd concentration in both shoots and roots. In contrast, ZmHMT3 mutants attenuated Cd tolerance but did not change shoot Cd concentration. Heterologous overexpression of ZmHMT3 in rice enhanced Cd tolerance and reduced grain Cd concentration. Transcriptome analysis revealed that ZmHMT3 upregulated the expression of stress-responsive genes, especially glutathione S-transferases (GSTs) and transcription factors, including MYBs, NACs and WRKYs, and modulates the expression of different ATP-binding cassette (ABC) transporters, thereby enhancing Cd tolerance. Collectively, these findings highlight the pivotal role of ZmHMT3 in Cd tolerance and as a candidate gene for improving Cd tolerance in elite maize varieties.
Collapse
Affiliation(s)
- Kaina Lin
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kewen Xu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yiqing Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifan Lu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Tasmania, Australia
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Kukułowicz J, Siwek A, Wolak M, Bröer A, Yadav A, Bröer S, Bajda M. Insight into the Structure of the Neutral Amino Acid Transporter B 0AT2 Enabled the Discovery of Tiagabine as an Inhibitor. ACS Chem Neurosci 2025; 16:262-274. [PMID: 39729024 DOI: 10.1021/acschemneuro.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The sodium-dependent membrane transporter SLC6A15 (B0AT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. B0AT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids. Its main substrates, branched-chain amino acids, and proline serve for glutamate biosynthesis, whereas silencing of B0AT2 leads to lower levels of neuronal glutamate. Recent research revealed that polymorphisms in the vicinity of slc6a15 are associated with major depressive disorder and anxiety. Mouse B0AT2 knockouts, by contrast, showed an antianxiety feature. Applying computational tools, we constructed models of B0AT2. Their structure was discussed extensively, enabling insight into the determinants of transport mechanism and substrate selectivity. Understanding the molecular basis of the B0AT2 inhibition by loratadine led to the discovery of a new inhibitor that is tiagabine, an anticonvulsant drug prescribed off-label in the treatment of anxiety and possessing antidepressant features. The results showed that tiagabine appears to have a higher affinity to the transporter than loratadine, which is the most potent inhibitor to date. Our findings support the development of new B0AT2 inhibitors that could be useful for investigating their therapeutic relevance, while the identification of tiagabine as a novel SLC6A15 inhibitor adds a new dimension to the pharmacological complexity of this drug.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Małgorzata Wolak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Aditya Yadav
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Cracow 30-688, Poland
| |
Collapse
|
4
|
Liu L, Chen L, Hu Y, Zhang Q, Chen K, Zhang J. Genome-wide DNA methylation regulated by AHCY through SAM / SAH axis promotes psoriasis pathogenesis. J Dermatol Sci 2024; 116:100-110. [PMID: 39521647 DOI: 10.1016/j.jdermsci.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease that affects a significant proportion of the global population. The involvement of S-adenosine homocysteine hydrolase (AHCY) in psoriasis and its impact on DNA methylation have not been extensively studied. OBJECTIVE This study aimed to investigate the role of AHCY and its impact on DNA methylation in psoriasis pathogenesis. METHODS In the present study, we investigated the expression of AHCY in psoriatic lesions and assessed its association with the severity of the disease. Moreover, knockdown experiments were conducted to elucidate the impact of AHCY on psoriatic symptoms, keratinocyte proliferation, and aberrant differentiation. Furthermore, alterations in DNA methylation patterns resulting from AHCY knockdown were analyzed. RESULTS Our findings revealed that AHCY was upregulated in psoriatic lesions and exhibited a positive correlation with disease severity. Knockdown of AHCY alleviated psoriatic symptoms, inhibited keratinocyte proliferation, and prevented abnormal differentiation. Moreover, AHCY knockdown led to reduced levels of DNA methylation and alterations in methylation patterns. Notably, differential methylation was observed at specific gene loci associated with psoriasis-related inflammation. CONCLUSION This study highlights the potential role of AHCY in psoriasis development through its influence on DNA methylation. The findings underscore the complex interaction among AHCY, epigenetic modifications, and inflammation in the pathogenesis of psoriasis. Consequently, AHCY may serve as a promising therapeutic target for psoriasis treatment.
Collapse
Affiliation(s)
- Lingxi Liu
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Lihao Chen
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yu Hu
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qian Zhang
- Department of Dermatology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Chen
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Jiaan Zhang
- Institute of Dermatology and Hospital for Skin Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
5
|
Noya SB, Sengupta A, Yue Z, Weljie A, Sehgal A. Balancing brain metabolic states during sickness and recovery sleep. Eur J Neurosci 2024; 60:6605-6616. [PMID: 39542871 PMCID: PMC11612838 DOI: 10.1111/ejn.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Sickness sleep and rebound following sleep deprivation share humoral signals including the rise of cytokines, in particular interleukins. Nevertheless, they represent unique physiological states with unique brain firing patterns and involvement of specific circuitry. Here, we performed untargeted metabolomics of mouse cortex and hippocampus to uncover changes with sickness and rebound sleep as compared with normal daily sleep. We found that the three settings are biochemically unique with larger differences in the cortex than in the hippocampus. Both sickness and rebound sleep shared an increase in tryptophan. Surprisingly, these two sleep conditions showed opposite modulation of the methionine-homocysteine cycle and differences in terms of the energetic signature, with sickness impinging on glycolysis intermediates whilst rebound increased the triphosphorylated form of nucleotides. These findings indicate that rebound following sleep deprivation stimulates an energy rich setting in the brain that is devoid during sickness sleep.
Collapse
Affiliation(s)
- Sara B. Noya
- Howard Hughes Medical InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Translational Medicine and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aalim Weljie
- Department of Systems Pharmacology and Translational TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Translational Medicine and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Amita Sehgal
- Howard Hughes Medical InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Chronobiology and Sleep Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Yang WY, Ben Issa M, Saaoud F, Xu K, Shao Y, Lu Y, Dornas W, Cueto R, Jiang X, Wang H, Yang X. Perspective: Pathological transdifferentiation-a novel therapeutic target for cardiovascular diseases and chronic inflammation. Front Cardiovasc Med 2024; 11:1500775. [PMID: 39660114 PMCID: PMC11628510 DOI: 10.3389/fcvm.2024.1500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Pathological transdifferentiation, where differentiated cells aberrantly transform into other cell types that exacerbate disease rather than promote healing, represents a novel and significant concept. This perspective discusses its role and potential targeting in cardiovascular diseases and chronic inflammation. Current therapies mainly focus on mitigating early inflammatory response through proinflammatory cytokines and pathways targeting, including corticosteroids, TNF-α inhibitors, IL-1β monoclonal antibodies and blockers, IL-6 blockers, and nonsteroidal anti-inflammatory drugs (NSAIDs), along with modulating innate immune memory (trained immunity). However, these approaches often fail to address long-term tissue damage and functional regeneration. For instance, fibroblasts can transdifferentiate into myofibroblasts in cardiac fibrosis, and endothelial cells may undergo endothelial to mesenchymal transition (EndMT) in vascular remodeling, resulting in fibrosis and impaired tissue function. Targeting pathological transdifferentiation represents a promising therapeutic avenue by focusing on key signaling pathways that drive these aberrant cellular phenotypic and transcriptomic transitions. This approach seeks to inhibit these pathways or modulate cellular plasticity to promote effective tissue regeneration and prevent fibrosis. Such strategies have the potential to address inflammation, cell death, and the resulting tissue damage, providing a more comprehensive and sustainable treatment solution. Future research should focus on understanding the mechanisms behind pathological transdifferentiation, identifying relevant biomarkers and master regulators, and developing novel therapies through preclinical and clinical trials. Integrating these new therapies with existing anti-inflammatory treatments could enhance efficacy and improve patient outcomes. Highlighting pathological transdifferentiation as a therapeutic target could transform treatment paradigms, leading to better management and functional recovery of cardiovascular tissues in diseases and chronic inflammation.
Collapse
Affiliation(s)
- William Y. Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohammed Ben Issa
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Waleska Dornas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Cueto
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Ouyang S, Zeng Z, He J, Luo L. Epigenetic regulation of targeted ferroptosis: A new strategy for drug development. J Pharm Anal 2024; 14:101012. [PMID: 39850234 PMCID: PMC11755343 DOI: 10.1016/j.jpha.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 01/25/2025] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases. Recent studies have shown that epigenetic modifications can impact pathways related to ferroptosis, potentially leading to organ dysfunction. Despite the increasing focus on this relationship, the role of epigenetic regulation in drug development remains largely unexplored. This article explores current research on the interplay between epigenetic regulation and ferroptosis, delving into their regulatory mechanisms and discussing the effects of existing epigenetic modification regulators on diseases. Additionally, we highlight ongoing research on epigenetic factors involved in targeting ferroptosis in cancer, providing new insights for the development of cancer treatments.
Collapse
Affiliation(s)
- Shengli Ouyang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jieyi He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
8
|
Aiello A, Calabrone L, Noonan DM, Corradino P, Nofri S, Cristoni S, Accardi G, Candore G, Caruso C, Zinellu A, Albini A. Effect of a Phytochemical-Rich Olive-Derived Extract on Anthropometric, Hematological, and Metabolic Parameters. Nutrients 2024; 16:3068. [PMID: 39339668 PMCID: PMC11435251 DOI: 10.3390/nu16183068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Extra virgin olive oil is a fundamental component of the Mediterranean diet. It contains several molecules that sustain human well-being by modulating cellular metabolism and exerting antioxidant, anti-inflammatory, and anti-ageing effects to protect normal tissues, and it can exert anti-angiogenic and pro-apoptotic effects on cancer cells. Metabolites found in different parts of the olive tree, including leaves, also possess properties that might help in cancer prevention and promote wellness in aging. Olive mill wastewater (OMWW), a liquid residue produced during olive oil extraction, represents an environmental issue. However, it is rich in phytochemicals with potential beneficial properties. Dietary supplements based on OMWW can be produced for nutritional supplementation with advantages to the ecology. PURPOSE This work aims to measure hematochemical, anthropometric, and metabolomic parameters in volunteers taking an OMWW dietary supplement, Oliphenolia® (OMWW-OL). METHODS The supplementation of OMWW-OL 25 mL twice daily for 30 days was tested on a pilot cohort of volunteers with characteristics close to metabolic syndrome. Hematochemical, anthropometric, serum biomarkers and serum metabolomic parameters were analyzed before the intervention, at 30 days, and 30 days after stopping consumption. RESULTS A total of 29 volunteers were enrolled, and 23 completed the study. The participants' parameters at baseline were measured, and then twice daily at 30 days of treatment and 30 days after assumption discontinuation. Although treatment was with an olive derivative, their weight did not increase. Their body mass index, instead of augmenting, slightly decreased, particularly in the women. Also, hydration increased, especially in the women, while blood pressure, glycemia, and insulin decreased. Cholesterol, high-density lipoproteins, and triglycerides were stable, and LDL levels decreased, while vitamin D levels, alongside calcium, perceptibly increased. Albumin also increased. All the values were in support of an equilibrium, with no damaging effects. By mass spectrometry analysis, we also found favorable changes in the vitamin D/histamine and homocysteine/methionine ratios, an increase in a new metabolite of unknown formula, and the vitamin D/unknown metabolite ratio. CONCLUSIONS Supplementation of OMWW-OL has no detrimental effects and might imply the beneficial modulation of several biological parameters. Although this is a small pilot study, with limited potency, it preliminarily suggests that the OMWW extract use could be potentially valuable for people at risk of metabolic syndrome. Some of these parameters could also be relevant in supporting healthy ageing and in cancer prevention.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Luana Calabrone
- ISB—Ion Source & Biotecnologie Srl, Rho, 20017 Milan, Italy; (L.C.); (S.C.)
| | - Douglas M. Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Paola Corradino
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Sara Nofri
- University of Florence, 50139 Florence, Italy;
| | - Simone Cristoni
- ISB—Ion Source & Biotecnologie Srl, Rho, 20017 Milan, Italy; (L.C.); (S.C.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy; (A.A.); (G.A.); (G.C.); (C.C.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Adriana Albini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| |
Collapse
|
9
|
Chai GS, Gong J, Mao YM, Wu JJ, Bi SG, Wang F, Zhang YQ, Shen MT, Lei ZY, Nie YJ, Yu H. H3K4 Trimethylation Mediate Hyperhomocysteinemia Induced Neurodegeneration via Suppressing Histone Acetylation by ANP32A. Mol Neurobiol 2024; 61:6788-6804. [PMID: 38351418 DOI: 10.1007/s12035-024-03995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Homocysteine (Hcy) is an independent and serious risk factor for dementia, including Alzheimer's disease (AD), but the precise mechanisms are still poorly understood. In the current study, we observed that the permissive histone mark trimethyl histone H3 lysine 4 (H3K4me3) and its methyltransferase KMT2B were significantly elevated in hyperhomocysteinemia (HHcy) rats, with impairment of synaptic plasticity and cognitive function. Further research found that histone methylation inhibited synapse-associated protein expression, by suppressing histone acetylation. Inhibiting H3K4me3 by downregulating KMT2B could effectively restore Hcy-inhibited H3K14ace in N2a cells. Moreover, chromatin immunoprecipitation revealed that Hcy-induced H3K4me3 resulted in ANP32A mRNA and protein overexpression in the hippocampus, which was regulated by increased transcription Factor c-fos and inhibited histone acetylation and synapse-associated protein expression, and downregulating ANP32A could reverse these changes in Hcy-treated N2a cells. Additionally, the knockdown of KMT2B restored histone acetylation and synapse-associated proteins in Hcy-treated primary hippocampal neurons. These data have revealed a novel crosstalk mechanism between KMT2B-H3K4me3-ANP32A-H3K14ace, shedding light on its role in Hcy-related neurogenerative disorders.
Collapse
Affiliation(s)
- Gao-Shang Chai
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Juan Gong
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Ming Mao
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jia-Jun Wu
- Department of Electrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Children's Healthcare Center), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430010, People's Republic of China
| | - Shu-Guang Bi
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Qi Zhang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Meng-Ting Shen
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zhuo-Ya Lei
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yun-Juan Nie
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Haitao Yu
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
10
|
Mucha P, Kus F, Cysewski D, Smolenski RT, Tomczyk M. Vitamin B 12 Metabolism: A Network of Multi-Protein Mediated Processes. Int J Mol Sci 2024; 25:8021. [PMID: 39125597 PMCID: PMC11311337 DOI: 10.3390/ijms25158021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.
Collapse
Affiliation(s)
- Patryk Mucha
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| |
Collapse
|
11
|
Cueto R, Shen W, Liu L, Wang X, Wu S, Mohsin S, Yang L, Khan M, Hu W, Snyder N, Wu Q, Ji Y, Yang XF, Wang H. SAH is a major metabolic sensor mediating worsening metabolic crosstalk in metabolic syndrome. Redox Biol 2024; 73:103139. [PMID: 38696898 PMCID: PMC11070633 DOI: 10.1016/j.redox.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA β-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wen Shen
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Lu Liu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ling Yang
- Medical Genetics & Molecular Biochemistry, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nathaniel Snyder
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Sun S, Lu W, Zhang C, Wang G, Hou Y, Zhou J, Wang Y. Folic acid and S-adenosylmethionine reverse Homocysteine-induced Alzheimer's disease-like pathological changes in rat hippocampus by modulating PS1 and PP2A methylation levels. Brain Res 2024; 1841:149095. [PMID: 38917878 DOI: 10.1016/j.brainres.2024.149095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Abnormally elevated homocysteine (Hcy) is recognized as a biomarker and risk factor for Alzheimer's disease (AD). However, the underlying mechanisms by which Hcy affects AD are still unclear. OBJECTIVES This study aimed to elucidate the effects and mechanisms by which Hcy affects AD-like pathological changes in the hippocampus through in vivo and in vitro experiments, and to investigate whether folic acid (FA) and S-adenosylmethionine (SAM) supplementation could improve neurodegenerative injuries. METHODS In vitro experiments hippocampal neurons of rat were treated with Hcy, FA or SAM for 24 h; while the hyperhomocysteinemia (HHcy) in Wistar rats was established by intraperitoneal injection of Hcy, and FA was added to feed. The expression of β-amyloid (Aβ), phosphorylated tau protein, presenilin 1 (PS1) at the protein level and the activity of protein phosphatase 2A (PP2A) were detected, the immunopositive cells for Aβ and phosphorylated tau protein in the rat hippocampus were also evaluated by immunohistochemical staining. RESULTS FA and SAM significantly repressed Hcy-induced AD-like pathological changes in the hippocampus, including the increased tau protein phosphorylation at Ser214, Ser396 and the expression of Aβ42. In addition, Hcy-induced PS1 expression increased at the protein level and PP2A activity decreased, while FA and SAM were able to retard that. CONCLUSIONS The increase in PS1 expression and decrease in PP2A activity may be the mechanisms underlying the Hcy-induced AD-like pathology. FA and SAM significantly repressed the Hcy-induced neurodegenerative injury by modulating PS1 and PP2A methylation levels.
Collapse
Affiliation(s)
- Shoudan Sun
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Wei Lu
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Chunhong Zhang
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Guanyu Wang
- Institute of Environmental and Operational Medicine, Tianjin 30050, China
| | - Yue Hou
- Institute of Environmental and Operational Medicine, Tianjin 30050, China
| | - Jian Zhou
- School of Public Health, Weifang Medical College, Weifang 261053, China.
| | - Yonghui Wang
- Institute of Environmental and Operational Medicine, Tianjin 30050, China.
| |
Collapse
|
13
|
Zhang Y, Ji X, Han P, Liu Y, Chen P, Chen G. Microenvironment-differential Imaging of Demethylated Metabolites of Methionine for Identifying Ferroptosis Regional Preferences with Path-independent Equifinal Fluorescence Probes. Angew Chem Int Ed Engl 2024; 63:e202400459. [PMID: 38317310 DOI: 10.1002/anie.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
We realized the microenvironment-differential Imaging of demethylated metabolites of methionine and the regional regulation of ferroptosis.
Collapse
Affiliation(s)
- Yuanchao Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xinrui Ji
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L3G1, Canada
| | - Ping Han
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Yuxia Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L3G1, Canada
| | - Guang Chen
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
14
|
Sirichoat A, Dornlakorn O, Saenno R, Aranarochana A, Sritawan N, Pannangrong W, Wigmore P, Welbat JU. Caffeic acid protects against l-methionine induced reduction in neurogenesis and cognitive impairment in a rat model. Heliyon 2024; 10:e26919. [PMID: 38455532 PMCID: PMC10918208 DOI: 10.1016/j.heliyon.2024.e26919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
l-methionine (L-met) is a substantial non-polar amino acid for normal development. L-met is converted to homocysteine that leads to hyperhomocysteinemia and subsequent excessive homocysteine in serum resulting in stimulating oxidative stress and vascular dementia. Several studies have found that hyperhomocysteine causes neuronal cell damage, which leads to memory impairment. Caffeic acid is a substrate in phenolic compound discovered in plant biosynthesis. Caffeic acid contains biological antioxidant and neuroprotective properties. The neuroprotective reaction of caffeic acid can protect against the brain disruption from hydrogen peroxide produced by oxidative stress. It also enhances GSH and superoxide dismutase activities, which protect against neuron cell loss caused by oxidative stress in the hippocampus. Hence, we investigated the protective role of caffeic acid in hippocampal neurogenesis and cognitive impairment induced by L-met in rats. Six groups of Sprague Dawley rats were assigned including control, L-met (1.7 g/kg/day), caffeic acid (20, 40 mg/kg), and L-met + caffeic acid (20, 40 mg/kg) groups. Spatial and recognition memories were subsequently examined using novel object location (NOL) and novel object recognition (NOR) tests. Moreover, the immunofluorescence technique was performed to detect Ki-67/RECA-1, bromodeoxyuridine (BrdU)/NeuN and p21 markers to represent hippocampal neurogenesis changes. The results revealed decreases in vasculature related cell proliferation and neuronal cell survival. By contrast, cell cycle arrest was increased in the L-met group. These results showed the association of the spatial and recognition memory impairments. However, the deterioration can be restored by co-administration with caffeic acid.
Collapse
Affiliation(s)
- Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Oabnithi Dornlakorn
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rasa Saenno
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
15
|
Li S, Zhong H, Wang Z, Chen J, Huang Z, Zou T, You J. Dietary protein restriction regulates skeletal muscle fiber metabolic characteristics associated with the FGF21-ERK1/2 pathway. iScience 2024; 27:109249. [PMID: 38450157 PMCID: PMC10915561 DOI: 10.1016/j.isci.2024.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/10/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Under conditions of dietary amino acid balance, decreasing the dietary crude protein (CP) level in pigs has a beneficial effect on meat quality. To further elucidate the mechanism, we explored the alteration of muscle fiber characteristics and key regulators related to myogenesis in the skeletal muscle of pigs fed a protein restricted diet. Compared to pigs fed a normal protein diet, dietary protein restriction significantly increased the slow-twitch muscle fiber proportion in skeletal muscle, succinic dehydrogenase (SDH) activity, the concentrations of ascorbate, biotin, palmitoleic acid, and the ratio of s-adenosylhomocysteine (SAM) to s-adenosylhomocysteine (SAH), but the fast-twitch muscle fiber proportion, lactate dehydrogenase (LDH) activity, the concentrations of ATP, glucose-6-phosphate, SAM, and SAH in skeletal muscle, and the ratio of serum triiodothyronine (T3) to tetraiodothyronine (T4) were decreased. In conclusion, we demonstrated that dietary protein restriction induced skeletal muscle fiber remodeling association the regulation of FGF21-ERK1/2-mTORC1 signaling in weaned piglets.
Collapse
Affiliation(s)
- Shuo Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haopeng Zhong
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhouyin Huang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Saaoud F, Lu Y, Xu K, Shao Y, Praticò D, Vazquez-Padron RI, Wang H, Yang X. Protein-rich foods, sea foods, and gut microbiota amplify immune responses in chronic diseases and cancers - Targeting PERK as a novel therapeutic strategy for chronic inflammatory diseases, neurodegenerative disorders, and cancer. Pharmacol Ther 2024; 255:108604. [PMID: 38360205 PMCID: PMC10917129 DOI: 10.1016/j.pharmthera.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
The endoplasmic reticulum (ER) is a cellular organelle that is physiologically responsible for protein folding, calcium homeostasis, and lipid biosynthesis. Pathological stimuli such as oxidative stress, ischemia, disruptions in calcium homeostasis, and increased production of normal and/or folding-defective proteins all contribute to the accumulation of misfolded proteins in the ER, causing ER stress. The adaptive response to ER stress is the activation of unfolded protein response (UPR), which affect a wide variety of cellular functions to maintain ER homeostasis or lead to apoptosis. Three different ER transmembrane sensors, including PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1), are responsible for initiating UPR. The UPR involves a variety of signal transduction pathways that reduce unfolded protein accumulation by boosting ER-resident chaperones, limiting protein translation, and accelerating unfolded protein degradation. ER is now acknowledged as a critical organelle in sensing dangers and determining cell life and death. On the other hand, UPR plays a critical role in the development and progression of several diseases such as cardiovascular diseases (CVD), metabolic disorders, chronic kidney diseases, neurological disorders, and cancer. Here, we critically analyze the most current knowledge of the master regulatory roles of ER stress particularly the PERK pathway as a conditional danger receptor, an organelle crosstalk regulator, and a regulator of protein translation. We highlighted that PERK is not only ER stress regulator by sensing UPR and ER stress but also a frontier sensor and direct senses for gut microbiota-generated metabolites. Our work also further highlighted the function of PERK as a central hub that leads to metabolic reprogramming and epigenetic modification which further enhanced inflammatory response and promoted trained immunity. Moreover, we highlighted the contribution of ER stress and PERK in the pathogenesis of several diseases such as cancer, CVD, kidney diseases, and neurodegenerative disorders. Finally, we discuss the therapeutic target of ER stress and PERK for cancer treatment and the potential novel therapeutic targets for CVD, metabolic disorders, and neurodegenerative disorders. Inhibition of ER stress, by the development of small molecules that target the PERK and UPR, represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | | | - Hong Wang
- Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA; Metabolic Disease Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Stojanović M, Todorović D, Gopčević K, Medić A, Labudović Borović M, Despotović S, Djuric D. Effects of Aerobic Treadmill Training on Oxidative Stress Parameters, Metabolic Enzymes, and Histomorphometric Changes in Colon of Rats with Experimentally Induced Hyperhomocysteinemia. Int J Mol Sci 2024; 25:1946. [PMID: 38396625 PMCID: PMC10888247 DOI: 10.3390/ijms25041946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 μmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 μmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752-10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562-5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels.
Collapse
Affiliation(s)
- Marija Stojanović
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dušan Todorović
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Kristina Gopčević
- Institute of Chemistry in Medicine "Petar Matavulj", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Medić
- Institute of Chemistry in Medicine "Petar Matavulj", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Labudović Borović
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sanja Despotović
- Institute of Histology and Embryology "Aleksandar Ð. Kostić", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Liu N, Su H, Lou Y, Kong J. The improvement of homocysteine-induced myocardial inflammation by vitamin D depends on activation of NFE2L2 mediated MTHFR. Int Immunopharmacol 2024; 127:111437. [PMID: 38150882 DOI: 10.1016/j.intimp.2023.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVES Myocardial inflammation underlies a broad spectrum of conditions that cause damage to the myocardium and lead to structural and functional defects. Homocysteine (Hcy) is closely related to the occurrence and development of cardiovascular diseases. We investigated the mechanism underlying the effects of vitamin D as a prophylactic treatment for Hcy-induced cardiac inflammation. METHODS The levels of 25(OH)D3 and Hcy were assessed using ELISA kits. Expression levels of the vitamin D receptor (VDR), NFE2 like bZIP transcription factor 2 (NFE2L2), methylenetetrahydrofolate reductase (MTHFR) and inflammatory factors were examined by Western blotting, immunohistochemistry and real time polymerase chain reaction. NFE2L2/MTHFR-knockdown HL-1 cells and NFE2L2+/- mouse were used to test the effects of vitamin D. RESULTS We found the levels of Hcy in the serum and myocardial tissue of mice in the Hcy + CCE group were lower than in the Hcy groups, which was opposed to the trend exhibited by the serum 25(OH)D3 level of mice. The mRNA and protein expression levels of the inflammatory factors in cardiac tissues and cardiomyocytes were strongly decreased by the Hcy treatment, compared to the Hcy + CCE/Hcy + 1,25(OH)2D3 groups. Moreover, the results revealed that the level of nuclear NFE2L2 in Hcy + CCE/Hcy + 1,25(OH)2D3 group was increased compared to Hcy group with a reciprocal decrease in the level of cytosolic NFE2L2 in vivo and in vitro. Similarly, the MTHFR mRNA and protein expression in the Hcy + CCE group was higher than the Hcy group. We determined that NFE2L2 promoted the expression of MTHFR. However, based on Hcy treatment, the combination of 1,25(OH)2D3 and MTHFR-/- reversed the decline in IL-6 and TNFα expression caused by 1,25(OH)2D3 alone. Chromatin immunoprecipitation and luciferase reporter assays showed the up-regulation effect of VDR on NFE2L2 and NFE2L2 on MTHFR. CONCLUSIONS Our findings indicate that vitamin D/VDR could improve Hcy-induced myocardial inflammation through activation of NFE2L2 mediated MTHFR.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Han Su
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yan Lou
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
19
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Mussap M, Puddu M, Fanos V. Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology. Curr Med Chem 2024; 31:1046-1068. [PMID: 37165503 DOI: 10.2174/0929867330666230509110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Identifying metabolic signatures induced by the immune response to vaccines allows one to discriminate vaccinated from non-vaccinated subjects and decipher the molecular mechanisms associated with the host immune response. This review illustrates and discusses the results of metabolomics-based studies on the innate and adaptive immune response to vaccines, long-term functional reprogramming (immune memory), and adverse reactions. Glycolysis is not overexpressed by vaccines, suggesting that the immune cell response to vaccinations does not require rapid energy availability as necessary during an infection. Vaccines strongly impact lipids metabolism, including saturated or unsaturated fatty acids, inositol phosphate, and cholesterol. Cholesterol is strategic for synthesizing 25-hydroxycholesterol in activated macrophages and dendritic cells and stimulates the conversion of macrophages and T cells in M2 macrophage and Treg, respectively. In conclusion, the large-scale application of metabolomics enables the identification of candidate predictive biomarkers of vaccine efficacy/tolerability.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Melania Puddu
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, School of Medicine, University of Cagliari, Cittadella Universitaria S.S. 554, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
21
|
Su Z, Liu Z, Lei W, Xia K, Xiao A, Hu Z, Zhou M, Zhu F, Tian J, Yang M, Wang D, Xiang AP, Nie J. Hyperhomocysteinemia lowers serum testosterone concentration via impairing testosterone production in Leydig cells. Cell Biol Toxicol 2023; 39:3077-3100. [PMID: 37495868 DOI: 10.1007/s10565-023-09819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.
Collapse
Affiliation(s)
- Zhiyuan Su
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuoliang Liu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenjing Lei
- Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - An Xiao
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zheng Hu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Miaomiao Zhou
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fengxin Zhu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianwei Tian
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Manqiu Yang
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
22
|
Wang X, Liu L, Jiang X, Saredy J, Xi H, Cueto R, Sigler D, Khan M, Wu S, Ji Y, Snyder NW, Hu W, Yang X, Wang H. Identification of methylation-regulated genes modulating microglial phagocytosis in hyperhomocysteinemia-exacerbated Alzheimer's disease. Alzheimers Res Ther 2023; 15:164. [PMID: 37789414 PMCID: PMC10546779 DOI: 10.1186/s13195-023-01311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) has been linked to development of Alzheimer's disease (AD) neuropathologically characterized by the accumulation of amyloid β (Aβ). Microglia (MG) play a crucial role in uptake of Aβ fibrils, and its dysfunction worsens AD. However, the effect of HHcy on MG Aβ phagocytosis remains unstudied. METHODS We isolated MG from the cerebrum of HHcy mice with genetic cystathionine-β-synthase deficiency (Cbs-/-) and performed bulk RNA-seq. We performed meta-analysis over transcriptomes of Cbs-/- mouse MG, human and mouse AD MG, MG Aβ phagocytosis model, human AD methylome, and GWAS AD genes. RESULTS HHcy and hypomethylation conditions were identified in Cbs-/- mice. Through Cbs-/- MG transcriptome analysis, 353 MG DEGs were identified. Phagosome formation and integrin signaling pathways were found suppressed in Cbs-/- MG. By analyzing MG transcriptomes from 4 AD patient and 7 mouse AD datasets, 409 human and 777 mouse AD MG DEGs were identified, of which 37 were found common in both species. Through further combinatory analysis with transcriptome from MG Aβ phagocytosis model, we identified 130 functional-validated Aβ phagocytic AD MG DEGs (20 in human AD, 110 in mouse AD), which reflected a compensatory activation of Aβ phagocytosis. Interestingly, we identified 14 human Aβ phagocytic AD MG DEGs which represented impaired MG Aβ phagocytosis in human AD. Finally, through a cascade of meta-analysis of transcriptome of AD MG, functional phagocytosis, HHcy MG, and human AD brain methylome dataset, we identified 5 HHcy-suppressed phagocytic AD MG DEGs (Flt1, Calponin 3, Igf1, Cacna2d4, and Celsr) which were reported to regulate MG/MΦ migration and Aβ phagocytosis. CONCLUSIONS We established molecular signatures for a compensatory response of Aβ phagocytosis activation in human and mouse AD MG and impaired Aβ phagocytosis in human AD MG. Our discoveries suggested that hypomethylation may modulate HHcy-suppressed MG Aβ phagocytosis in AD.
Collapse
Affiliation(s)
- Xianwei Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Lu Liu
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Jason Saredy
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Hang Xi
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Danni Sigler
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Science, Lewis Kats School of Medicine, Temple University, MERB, Room 1060, 3500 N. Broad Street, Philadelphia, USA.
| |
Collapse
|
23
|
Jiachen Z, Paul Kwong Hang T, Kenneth Kak Yuen W, Vincent Chi Hang L. Pathological role of methionine in the initiation and progression of biliary atresia. Front Pediatr 2023; 11:1263836. [PMID: 37772039 PMCID: PMC10522914 DOI: 10.3389/fped.2023.1263836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 09/30/2023] Open
Abstract
Methionine (Met) is an essential amino acid, and its excessive dietary intake and/or its metabolism disturbance could lead to accumulation/depletion of hepatic Met and some of the key intermediates of these pathways, which would interfere normal liver function and would be associated with liver diseases. Biliary atresia (BA) is a life-threatening disease characterized by inflammatory fibrosclerosing changes of the intrahepatic and extrahepatic biliary systems and is the primary cause of obstructive neonatal cholestasis with a rapid course of liver failure. However, its pathogenesis remains unknown. Previous studies reported elevated Met level in patients with obstructive cholestasis, suggesting a potential link between Met and BA. This paper reviews the Met metabolism in normal conditions and its dysregulation under abnormal conditions, the possible causes of hypermethioninemia, and its connection to BA pathogenesis: Abnormal hepatic level of Met could lead to a perturbation of redox homeostasis and mitochondrial functions of hepatocytes, enhancement of viral infectivity, and dysregulation of innate and adaptative immune cells in response to infection/damage of the liver contributing to the initiation/progression of BA.
Collapse
Affiliation(s)
- Zheng Jiachen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tam Paul Kwong Hang
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Wong Kenneth Kak Yuen
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Surgery, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lui Vincent Chi Hang
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Liu Y, Qiao Y, Pan S, Chen J, Mao Z, Ren K, Yang Y, Feng Q, Liu D, Liu Z. Broadening horizons: the contribution of mitochondria-associated endoplasmic reticulum membrane (MAM) dysfunction in diabetic kidney disease. Int J Biol Sci 2023; 19:4427-4441. [PMID: 37781026 PMCID: PMC10535705 DOI: 10.7150/ijbs.86608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a global health issue that presents a complex pathogenesis and limited treatment options. To provide guidance for precise therapies, it is crucial to accurately identify the pathogenesis of DKD. Several studies have recognized that mitochondrial and endoplasmic reticulum (ER) dysfunction are key drivers of the pathogenesis of DKD. The mitochondria-associated ER membrane (MAM) is a dynamic membrane contact site (MSC) that connects the ER and mitochondria and is essential in maintaining the normal function of the two organelles. MAM is involved in various cellular processes, including lipid synthesis and transport, calcium homeostasis, mitochondrial fusion and fission, and ER stress. Meanwhile, recent studies confirm that MAM plays a significant role in the pathogenesis of DKD by regulating glucose metabolism, lipid metabolism, inflammation, ER stress, mitochondrial fission and fusion, and autophagy. Herein, this review aims to provide a comprehensive summary of the physiological function of MAMs and their impact on the progression of DKD. Subsequently, we discuss the trend of pharmaceutical studies that target MAM resident proteins for treating DKD. Furthermore, we also explore the future development prospects of MAM in DKD research, thereby providing a new perspective for basic studies and clinical treatment of DKD.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zihui Mao
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
25
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Gadanec LK, Andersson U, Apostolopoulos V, Zulli A. Glycyrrhizic Acid Inhibits High-Mobility Group Box-1 and Homocysteine-Induced Vascular Dysfunction. Nutrients 2023; 15:3186. [PMID: 37513606 PMCID: PMC10383373 DOI: 10.3390/nu15143186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) worsens cardiovascular outcomes by impairing vascular function and promoting chronic inflammation via release of danger-associated molecular patterns, such as high-mobility group box-1 (HMGB-1). Elevated levels of HMGB-1 have recently been reported in patients with HHcy. Therefore, targeting HMGB-1 may be a potential therapy to improve HHcy-induced cardiovascular pathologies. This study aimed to further elucidate HMGB-1's role during acute HHcy and HHcy-induced atherogenesis and to determine if inhibiting HMGB-1 with glycyrrhizic acid (Glyz) improved vascular function. Male New Zealand White rabbits (n = 25) were placed on either a standard control chow (CD; n = 15) or atherogenic diet (AD; n = 10) for 4 weeks. Rabbit serum and Krebs taken from organ bath studies were collected to quantify HMGB-1 levels. Isometric tension analysis was performed on abdominal aorta (AA) rings from CD and AD rabbits. Rings were incubated with homocysteine (Hcy) [3 mM] for 60 min to induce acute HHcy or rhHMGB-1 [100 nM]. Vascular function was assessed by relaxation to cumulative doses of acetylcholine. Markers of vascular dysfunction and inflammation were quantified in the endothelium, media, and adventitia of AA rings. HMGB-1 was significantly upregulated in serum (p < 0.0001) and Krebs (p < 0.0001) after Hcy exposure or an AD. Incubation with Hcy (p < 0.0001) or rhHMGB-1 (p < 0.0001) and an AD (p < 0.0001) significantly reduced relaxation to acetylcholine, which was markedly improved by Glyz. HMGB-1 expression was elevated (p < 0.0001) after Hcy exposure and AD (p < 0.0001) and was normalized after Glyz treatment. Moreover, markers of vascular function, cell stress and inflammation were also reduced after Glyz. These results demonstrate that HMGB-1 has a central role during HHcy-induced vascular dysfunction and inhibiting it with Glyz could be a potential treatment option for cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Vasso Apostolopoulos
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute of Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
27
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
28
|
Kong L, Zhao H, Wang F, Zhang R, Yao X, Zuo R, Li J, Xu J, Qian Y, Kang Q, Fan C. Endocrine modulation of brain-skeleton axis driven by neural stem cell-derived perilipin 5 in the lipid metabolism homeostasis for bone regeneration. Mol Ther 2023; 31:1293-1312. [PMID: 36760127 PMCID: PMC10188646 DOI: 10.1016/j.ymthe.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Factors released from the nervous system always play crucial roles in modulating bone metabolism and regeneration. How the brain-driven endocrine axes maintain bone homeostasis, especially under metabolic disorders, remains obscure. Here, we found that neural stem cells (NSCs) residing in the subventricular zone participated in lipid metabolism homeostasis of regenerative bone through exosomal perilipin 5 (PLIN5). Fluorescence-labeled exosomes tracing and histological detection identified that NSC-derived exosomes (NSC-Exo) could travel from the lateral ventricle into bone injury sites. Homocysteine (Hcy) led to osteogenic and angiogenic impairment, whereas the NSC-Exo were confirmed to restore it. Mecobalamin, a clinically used neurotrophic drug, further enhanced the protective effects of NSC-Exo through increased PLIN5 expression. Mechanistically, NSC-derived PLIN5 reversed excessive Hcy-induced lipid metabolic imbalance and aberrant lipid droplet accumulation through lipophagy-dependent intracellular lipolysis. Intracerebroventricular administration of mecobalamin and/or AAV-shPlin5 confirmed the effects of PLIN5-driven endocrine modulations on new bone formation and vascular reconstruction in hyperhomocysteinemic and high-fat diet models. This study uncovered a novel brain-skeleton axis that NSCs in the mammalian brain modulated bone regeneration through PLIN5-driven lipid metabolism modulation, providing evidence for lipid- or bone-targeted medicine development.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Haoyu Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Feng Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Rui Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Rongtai Zuo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Jia Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| |
Collapse
|
29
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV. Epigenetic Mechanisms Involved in the Effects of Maternal Hyperhomocysteinemia on the Functional State of Placenta and Nervous System Plasticity in the Offspring. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:435-456. [PMID: 37080931 DOI: 10.1134/s0006297923040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yulia P Milyutina
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Anastasia D Shcherbitskaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb O Kerkeshko
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Irina V Zalozniaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
30
|
Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, Yao T, Ping F, Chen F, Liu X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med 2023; 9:1109445. [PMID: 36727029 PMCID: PMC9884709 DOI: 10.3389/fcvm.2022.1109445] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Homocysteine (Hcy) is an intermediate amino acid formed during the conversion from methionine to cysteine. When the fasting plasma Hcy level is higher than 15 μmol/L, it is considered as hyperhomocysteinemia (HHcy). The vascular endothelium is an important barrier to vascular homeostasis, and its impairment is the initiation of atherosclerosis (AS). HHcy is an important risk factor for AS, which can promote the development of AS and the occurrence of cardiovascular events, and Hcy damage to the endothelium is considered to play a very important role. However, the mechanism by which Hcy damages the endothelium is still not fully understood. This review summarizes the mechanism of Hcy-induced endothelial injury and the treatment methods to alleviate the Hcy induced endothelial dysfunction, in order to provide new thoughts for the diagnosis and treatment of Hcy-induced endothelial injury and subsequent AS-related diseases.
Collapse
|
31
|
Metabolomic and Mitochondrial Fingerprinting of the Epithelial-to-Mesenchymal Transition (EMT) in Non-Tumorigenic and Tumorigenic Human Breast Cells. Cancers (Basel) 2022; 14:cancers14246214. [PMID: 36551699 PMCID: PMC9776482 DOI: 10.3390/cancers14246214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is key to tumor aggressiveness, therapy resistance, and immune escape in breast cancer. Because metabolic traits might be involved along the EMT continuum, we investigated whether human breast epithelial cells engineered to stably acquire a mesenchymal phenotype in non-tumorigenic and H-RasV12-driven tumorigenic backgrounds possess unique metabolic fingerprints. We profiled mitochondrial-cytosolic bioenergetic and one-carbon (1C) metabolites by metabolomic analysis, and then questioned the utilization of different mitochondrial substrates by EMT mitochondria and their sensitivity to mitochondria-centered inhibitors. "Upper" and "lower" glycolysis were the preferred glucose fluxes activated by EMT in non-tumorigenic and tumorigenic backgrounds, respectively. EMT in non-tumorigenic and tumorigenic backgrounds could be distinguished by the differential contribution of the homocysteine-methionine 1C cycle to the transsulfuration pathway. Both non-tumorigenic and tumorigenic EMT-activated cells showed elevated mitochondrial utilization of glycolysis end-products such as lactic acid, β-oxidation substrates including palmitoyl-carnitine, and tricarboxylic acid pathway substrates such as succinic acid. Notably, mitochondria in tumorigenic EMT cells distinctively exhibited a significant alteration in the electron flow intensity from succinate to mitochondrial complex III as they were highly refractory to the inhibitory effects of antimycin A and myxothiazol. Our results show that the bioenergetic/1C metabolic signature, the utilization rates of preferred mitochondrial substrates, and sensitivity to mitochondrial drugs significantly differs upon execution of EMT in non-tumorigenic and tumorigenic backgrounds, which could help to resolve the relationship between EMT, malignancy, and therapeutic resistance in breast cancer.
Collapse
|
32
|
Yang X, Yang H, Li N, Li C, Liang W, Zhang X. Increased serum homocysteine in first episode and drug-naïve individuals with schizophrenia: sex differences and correlations with clinical symptoms. BMC Psychiatry 2022; 22:759. [PMID: 36463129 PMCID: PMC9719155 DOI: 10.1186/s12888-022-04416-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Accumulating evidence shows that homocysteine (Hcy) is implicated in the pathophysiology of schizophrenia, and plays an important role in clinical characteristics. This study evaluated the relationships between Hcy levels and clinical features in first-episode, Chinese Han, drug-naïve (FEDN) patients with schizophrenia. METHODS FEDN individuals (119 with schizophrenia and 81 healthy controls matched for age, sex, education, and body mass index (BMI)) were enrolled. The serum Hcy levels were determined by enzyme cycle assay experiments. Severities of clinical symptoms were rated on the Positive and Negative Syndrome Scale (PANSS). RESULTS FEDN individuals with schizophrenia had higher Hcy levels compared with healthy controls (F = 46.865, P < 0.001). Correlation analysis and multiple stepwise regression analyses showed that serum Hcy levels in FEDN schizophrenia individuals were positively correlated with PANSS general psychopathology subscale (r = 0.294, P = 0.001) and PANSS total score (r = 0.273, P = 0.003). No significant association was found between Hcy and age, BMI, PANSS positive subscale, and the PANSS negative subscale (all, P > 0.05). Male individuals had significantly higher serum Hcy levels than female individuals (F = 7.717, P = 0.006) after controlling for confounding factors (F = 0.759, P = 0.011). CONCLUSIONS Serum Hcy levels were increased in FEDN individuals with schizophrenia, and Hcy levels may be involved in pathophysiological mechanisms. Sex differences in Hcy levels were observed, with higher levels in male FEDN individuals compared to females.
Collapse
Affiliation(s)
- Xu Yang
- Department of Psychiatry, Beijing Hui Long Guan Hospital, Peking University Hui Long Guan Clinical Medical School, Beijing, 100096 People’s Republic of China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People’s Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003 People’s Republic of China
| | - Na Li
- Department of Pathology, Beijing Kingmed Clinical Laboratory, Affiliated Peking University, Beijing, 100015 People’s Republic of China
| | - Chunyu Li
- Clinical Laboratory, Beijing Hui Long Guan Hospital, Peking University Hui Long Guan Clinical Medical School, Beijing, 100096 People’s Republic of China
| | - Weiye Liang
- Department of Psychiatry, Beijing Hui Long Guan Hospital, Peking University Hui Long Guan Clinical Medical School, Beijing, 100096 People’s Republic of China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137 People’s Republic of China
| |
Collapse
|
33
|
Targeting Ferroptosis Holds Potential for Intervertebral Disc Degeneration Therapy. Cells 2022; 11:cells11213508. [PMID: 36359904 PMCID: PMC9653619 DOI: 10.3390/cells11213508] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common pathological condition responsible for lower back pain, which can significantly increase economic and social burdens. Although considerable efforts have been made to identify potential mechanisms of disc degeneration, the treatment of IVDD is not satisfactory. Ferroptosis, a recently reported form of regulated cell death (RCD), is characterized by iron-dependent lipid peroxidation and has been demonstrated to be responsible for a variety of degenerative diseases. Accumulating evidence suggests that ferroptosis is implicated in IVDD by decreasing viability and increasing extracellular matrix degradation of nucleus pulposus cells, annulus fibrosus cells, or endplate chondrocytes. In this review, we summarize the literature regarding ferroptosis of intervertebral disc cells and discuss its molecular pathways and biomarkers for treating IVDD. Importantly, ferroptosis is verified as a promising therapeutic target for IVDD.
Collapse
|
34
|
Morphological Assessment and Biomarkers of Low-Grade, Chronic Intestinal Inflammation in Production Animals. Animals (Basel) 2022; 12:ani12213036. [PMID: 36359160 PMCID: PMC9654368 DOI: 10.3390/ani12213036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Production animals are continuously exposed to environmental and dietary factors that might induce a state of low-grade, chronic intestinal inflammation. This condition compromises the productive performance and well-fare of these animals, requiring studies to understand what causes it and to develop control strategies. An intestinal inflammatory process is generally associated with alterations in the structure and functionality of its wall, resulting in the release of cellular components into the blood and/or feces. These components can act as biomarkers, i.e., they are measured to identify and quantify an inflammatory process without requiring invasive methods. In this review we discuss the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the identification of biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies. Abstract The complex interaction between the intestinal mucosa, the gut microbiota, and the diet balances the host physiological homeostasis and is fundamental for the maximal genetic potential of production animals. However, factors such as chemical and physical characteristics of the diet and/or environmental stressors can continuously affect this balance, potentially inducing a state of chronic low-grade inflammation in the gut, where inflammatory parameters are present and demanding energy, but not in enough intensity to provoke clinical manifestations. It’s vital to expand the understanding of inflammation dynamics and of how they compromise the function activity and microscopic morphology of the intestinal mucosa. These morphometric alterations are associated with the release of structural and functional cellular components into the feces and the blood stream creating measurable biomarkers to track this condition. Moreover, the identification of novel, immunometabolic biomarkers can provide dynamic and predictors of low-grade chronic inflammation, but also provide indicators of successful nutritional or feed additive intervention strategies. The objective of this paper is to review the mechanisms of low-grade inflammation, its effects on animal production and sustainability, and the biomarkers that could provide early diagnosis of this process and support studies of useful interventional strategies.
Collapse
|
35
|
Wu M, Huang X, Liu D. Distribution and Determinants of Plasma Homocysteine Levels in a Preconception Population: A Retrospective Single-Center Study. Med Sci Monit 2022; 28:e937987. [PMID: 36266935 PMCID: PMC9595030 DOI: 10.12659/msm.937987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Raised plasma homocysteine (Hcy) levels have been associated with various diseases and pregnancy complications. Preconception is the primary prevention period to prevent birth defects. This retrospective study aimed to investigate the distribution of plasma Hcy levels among men and women at preconception and further evaluate the factors influencing plasma Hcy levels in a Southern China population. MATERIAL AND METHODS Sex, age, serum folate levels, plasma Hcy levels, and the time of Hcy and folate detection were obtained by medical records. Univariate analysis and multi-factor mixed virtual linear regression were used to explore the distribution and determinants of plasma Hcy levels. RESULTS A total of 3031 participants (1091 men [35.99%] and 1940 women [64.01%]) were included. The average levels of Hcy and the rates of hyperhomocysteinemia (HHcy) in men were higher than those in women (P<0.05). Hcy levels were observed to be lowest during autumn and highest during winter (P<0.05). In the normal Hcy (NHcy) group, serum folate levels were higher than in the HHcy group (P<0.05). Regression analysis suggested that sex, season, and serum folate levels had an effect on Hcy levels, but age was not an influencing factor of Hcy level in the preconception population. CONCLUSIONS This retrospective study showed that Hcy levels are higher in men and in the winter season. Sex, season, and serum folate levels were the influencing factors of Hcy in the preconception population.
Collapse
|
36
|
Zhao Y, Dong X, Chen B, Zhang Y, Meng S, Guo F, Guo X, Zhu J, Wang H, Cui H, Li S. Blood levels of circulating methionine components in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14:934070. [PMID: 35936764 PMCID: PMC9354989 DOI: 10.3389/fnagi.2022.934070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCirculating methionine components have been reported to be associated with Alzheimer’s disease (AD) and mild cognitive impairment (MCI), although outcomes are not always consistent.Materials and methodsDatabase searching was conducted using PubMed, Embase, Cochrane Library, and Web of Science from inception to 26 December 2021. In this study, two reviewers independently identified eligible articles and extracted the data. We used Joanna Briggs Institute (JBI) Critical Appraisal tools to assess the overall quality of the included studies. STATA software was employed to perform meta-analysis evaluating the standardized mean difference (SMD) with its 95% confidence intervals (CIs) using random-effects models. Evidence quality was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria.ResultsTotally, 30 observational studies were eligible for inclusion. Compared with cognitively normal controls, patients with AD had increased homocysteine (Hcy) levels in the blood [standardized mean difference (SMD) = 0.59, 95% confidence interval [CI]: 0.36–0.82, P = 0.000], plasma (SMD = 0.39, 95% CI: 0.23–0.55, P = 0.000), and serum (SMD = 1.56, 95% CI: 0.59–2.95, P = 0.002). Patients with MCI were not significantly different from controls (SMD = 0.26, 95% CI: –0.07–0.58, P = 0.127). Patients with AD or MCI did not significantly differ from controls of blood vitamin B12 levels, AD (SMD = –0.05, 95% CI: –0.19–0.08, P = 0.440), or MCI (SMD = 0.01, 95% CI: –0.16–0.17, P = 0.94). Some cohort studies have suggested that higher Hcy, methionine, and S-adenosylmethionine levels may accelerate cognitive decline in patients with MCI or AD, and vitamin B12 deficiency is a risk factor for the disease; however, the results of other studies were inconsistent. According to the GRADE system, all these outcomes scored very low to low quality, and no high-quality evidence was found.ConclusionOnly Hcy levels in the plasma and serum were found to be inversely related to the risk of AD. However, due to the low quality of supporting these results, high-quality studies are needed to verify these findings.Systematic Review Registrationhttp://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022308961.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Dong
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Bingyu Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Sijia Meng
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Guo
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Jialei Zhu
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Haoyue Wang
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- Huixian Cui,
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Sha Li,
| |
Collapse
|
37
|
D’Souza SW, Glazier JD. Homocysteine Metabolism in Pregnancy and Developmental Impacts. Front Cell Dev Biol 2022; 10:802285. [PMID: 35846363 PMCID: PMC9280125 DOI: 10.3389/fcell.2022.802285] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Homocysteine is a metabolite generated by methionine cycle metabolism, comprising the demethylated derivative of methionine. Homocysteine can be metabolised by the transsulphuration pathway to cystathionine, which requires vitamin B6, or can undergo remethylation to methionine. Homocysteine remethylation to methionine is catalysed by methionine synthase activity which requires vitamin B12, regenerating methionine to allow synthesis of the universal methyl donor S-adenosylmethionine required for methylation and gene transcription regulation. The methyl-group donated for homocysteine remethylation comes from 5-methyltetrahydrofolate generated by the folate cycle, which allows tetrahydrofolate to be returned to the active folate pool for nucleotide biosynthesis. Therefore the integrated actions of the methionine and folate cycles, required to metabolise homocysteine, also perpetuate methylation and nucleotide synthesis, vitally important to support embryonic growth, proliferation and development. Dysregulated activities of these two interdependent metabolic cycles, arising from maternal suboptimal intake of nutrient co-factors such as folate and vitamin B12 or gene polymorphisms resulting in reduced enzymatic activity, leads to inefficient homocysteine metabolic conversion causing elevated concentrations, known as hyperhomocysteinemia. This condition is associated with multiple adverse pregnancy outcomes including neural tube defects (NTDs). Raised homocysteine is damaging to cellular function, binding to proteins thereby impairing their function, with perturbed homocysteine metabolism impacting negatively on embryonic development. This review discusses the "cross-talk" of maternal-fetal homocysteine interrelationships, describes the placental transport of homocysteine, homocysteine impacts on pregnancy outcomes, homocysteine and methylation effects linking to NTD risk and proposes a putative pathway for embryonic provision of folate and vitamin B12, homocysteine-modulating nutrients that ameliorate NTD risk.
Collapse
Affiliation(s)
- Stephen W. D’Souza
- Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Rivastigmine Reverses the Decrease in Synapsin and Memory Caused by Homocysteine: Is There Relation to Inflammation? Mol Neurobiol 2022; 59:4517-4534. [PMID: 35578101 DOI: 10.1007/s12035-022-02871-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/05/2022] [Indexed: 12/28/2022]
Abstract
Elevated levels of homocysteine (Hcy) in the blood, called hyperhomocysteinemia (HHcy), is a prevalent risk factor for it has been shown that Hcy induces oxidative stress and increases microglial activation and neuroinflammation, as well as causes cognitive impairment, which have been linked to the neurodegenerative process. This study aimed to evaluate the effect of mild hyperhomocysteinemia with or without ibuprofen and rivastigmine treatments on the behavior and neurochemical parameters in male rats. The chronic mild HHcy model was chemically induced in Wistar rats by subcutaneous administration of Hcy (4055 mg/kg body weight) twice daily for 30 days. Ibuprofen (40 mg/kg) and rivastigmine (0.5 mg/kg) were administered intraperitoneally once daily. Motor damage (open field, balance beam, rotarod, and vertical pole test), cognitive deficits (Y-maze), neurochemical parameters (oxidative status/antioxidant enzymatic defenses, presynaptic protein synapsin 1, inflammatory profile parameters, calcium binding adapter molecule 1 (Iba1), iNOS gene expression), and cholinergic anti-inflammatory pathway were investigated. Results showed that mild HHcy caused cognitive deficits in working memory, and impaired motor coordination reduced the amount of synapsin 1 protein, altered the neuroinflammatory picture, and caused changes in the activity of catalase and acetylcholinesterase enzymes. Both rivastigmine and ibuprofen treatments were able to mitigate this damage caused by mild HHcy. Together, these neurochemical changes may be associated with the mechanisms by which Hcy has been linked to a risk factor for AD. Treatments with rivastigmine and ibuprofen can effectively reduce the damage caused by increased Hcy levels.
Collapse
|
39
|
Association of dietary factors with plasma homocysteine and coronary heart disease outcome. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.12.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Wang SD, Wang X, Zhao Y, Xue BH, Wang XT, Chen YX, Zhang ZQ, Tian YR, Xie F, Qian LJ. Homocysteine-Induced Disturbances in DNA Methylation Contribute to Development of Stress-Associated Cognitive Decline in Rats. Neurosci Bull 2022; 38:887-900. [PMID: 35435568 PMCID: PMC9352847 DOI: 10.1007/s12264-022-00852-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic stress is generally accepted as the main risk factor in the development of cognitive decline; however, the underlying mechanisms remain unclear. Previous data have demonstrated that the levels of homocysteine (Hcy) are significantly elevated in the plasma of stressed animals, which suggests that Hcy is associated with stress and cognitive decline. To test this hypothesis, we analyzed the cognitive function, plasma concentrations of Hcy, and brain-derived neurotropic factor (BDNF) levels in rats undergoing chronic unpredicted mild stress (CUMS). The results showed that decreased cognitive behavioral performance and decreased BDNF transcription and protein expression were correlated with hyperhomocysteinemia (HHcy) levels in stressed rats. Diet-induced HHcy mimicked the cognitive decline and BDNF downregulation in the same manner as CUMS, while Hcy reduction (by means of vitamin B complex supplements) alleviated the cognitive deficits and BDNF reduction in CUMS rats. Furthermore, we also found that both stress and HHcy disturbed the DNA methylation process in the brain and induced DNA hypermethylation in the BDNF promoter. In contrast, control of Hcy blocked BDNF promoter methylation and upregulated BDNF levels in the brain. These results imply the possibility of a causal role of Hcy in stress-induced cognitive decline. We also used ten-eleven translocation (TET1), an enzyme that induces DNA demethylation, to verify the involvement of Hcy and DNA methylation in the regulation of BDNF expression and the development of stress-related cognitive decline. The data showed that TET1-expressing viral injection into the hippocampus inhibited BDNF promoter methylation and significantly mitigated the cognitive decline in HHcy rats. Taken together, novel evidence from the present study suggests that Hcy is likely involved in chronic stress-induced BDNF reduction and related cognitive deficits. In addition, the negative side-effects of HHcy may be associated with Hcy-induced DNA hypermethylation in the BDNF promoter. The results also suggest the possibility of Hcy as a target for therapy and the potential value of vitamin B intake in preventing stress-induced cognitive decline.
Collapse
|
41
|
Pi T, Lang G, Liu B, Shi J. Protective Effects of Dendrobium nobile Lindl. Alkaloids on Alzheimer's Disease-like Symptoms Induced by High-methionine Diet. Curr Neuropharmacol 2022; 20:983-997. [PMID: 34370639 PMCID: PMC9881098 DOI: 10.2174/1570159x19666210809101945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND High methionine-diet (HMD) causes Alzheimer's disease (AD)-like symptoms. Previous studies have shown that Dendrobium nobile Lindle. alkaloids (DNLA) have potential benefits for AD Object: The objective of this study has been to explore whether DNLA can improve AD-like symptoms induced by HMD. METHODS Mice were fed with 2% HMD diet for 11 weeks; the DNLA20 control group (20 mg/kg), DNLA10 group (10 mg/kg), and DNLA20 group (20 mg/kg) were administered DNLA for 3 months. Morris water maze test was used to detect learning and memory ability. Neuron damage was evaluated by HE and Nissl staining. Levels of homocysteine (Hcy), beta-amyloid 1-42 (Aβ1-42), S-adenosine methionine (SAM) and S-adenosine homocysteine (SAH) were detected by ELISA. Immunofluorescence and western blotting (WB) were used to determine the expression of proteins. CPG island methylation levels were accessed by Methylation-specific PCR (MSP) and MethylTarget methylation detection. RESULTS Morris water maze test revealed that DNLA improved learning and memory dysfunction. HE, Nissl, and immunofluorescence staining showed that DNLA alleviated neuron damage and reduced the 5-methylcytosine (5-mC), Aβ1-40) and Aβ1-42) levels. DNLA also decreased the levels of Hcy and Aβ1-42) in the serum, along with decreasing SAM/SAH level in the liver tissue. WB results showed that DNLA down-regulated the expression of amyloid-precursor protein (APP), presenilin-1 (PS1), beta-secretase-1 (BACE1), DNA methyltransferase1 (DNMT1), Aβ1-40) and Aβ1-42) proteins. DNLA also up-regulated the proteins expression of insulin-degrading enzyme (IDE), neprilysin (NEP), DNMT3a and DNMT3b. Meanwhile, DNLA increased CPG island methylation levels of APP and BACE1 genes. CONCLUSION DNLA alleviated AD-like symptoms induced by HMD via the DNA methylation pathway.
Collapse
Affiliation(s)
- Tingting Pi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Bo Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China,Address correspondence to this author at the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Guizhou Province, China; Tel: +86 851 2864 3666; E-mail:
| |
Collapse
|
42
|
Dai Y, Chen D, Xu T. DNA Methylation Aberrant in Atherosclerosis. Front Pharmacol 2022; 13:815977. [PMID: 35308237 PMCID: PMC8927809 DOI: 10.3389/fphar.2022.815977] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis (AS) is a pathological process involving lipid oxidation, immune system activation, and endothelial dysfunction. The activated immune system could lead to inflammation and oxidative stress. Risk factors like aging and hyperhomocysteinemia also promote the progression of AS. Epigenetic modifications, including DNA methylation, histone modification, and non-coding RNA, are involved in the modulation of genes between the environment and AS formation. DNA methylation is one of the most important epigenetic mechanisms in the pathogenesis of AS. However, the relationship between the progression of AS and DNA methylation is not completely understood. This review will discuss the abnormal changes of DNA methylation in AS, including genome-wide hypermethylation dominating in AS with an increase of age, hypermethylation links with methyl supply and generating hyperhomocysteinemia, and the influence of oxidative stress with the demethylation process by interfering with the hydroxyl-methylation of TET proteins. The review will also summarize the current status of epigenetic treatment, which may provide new direction and potential therapeutic targets for AS.
Collapse
|
43
|
Quevedo-Ocampo J, Escobedo-Calvario A, Souza-Arroyo V, Miranda-Labra RU, Bucio-Ortiz L, Gutiérrez-Ruiz MC, Chávez-Rodríguez L, Gomez-Quiroz LE. Folate Metabolism in Hepatocellular Carcinoma. What Do We Know So Far? Technol Cancer Res Treat 2022; 21:15330338221144446. [PMID: 36503290 DOI: 10.1177/15330338221144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer cells are characterized by accelerated proliferation and an outstanding adaptation of their metabolic pathways to meet energy demands. The folate cycle, also known as folate metabolism or one-carbon metabolism, through enzymatic interconversions, provides metabolites necessary for nucleotide synthesis, methylation, and reduction power, helping to maintain the high rate of proliferation; therefore, the study of this metabolic pathway is of great importance in the study of cancer. Moreover, multiple enzymes involved in this cycle have been implicated in different types of cancer, corroborating the cell's adaptations under this pathology. During the last decade, nonalcoholic fatty liver disease has emerged as the leading etiology related to the rise in the incidence and deaths of hepatocellular carcinoma. Specifically, cholesterol accumulation has been a determinant promoter of tumor formation, with solid evidence that an enriched-cholesterol diet plays a crucial role in accelerating the development of an aggressive subtype of hepatocellular carcinoma compared to other models. In this review, we will discuss the most recent findings to understand the contribution of folate metabolism to cancer cells and tumor microenvironment while creating a link between the dynamics given by cholesterol and methylenetetrahydrofolate dehydrogenase 1-like, a key enzyme of the cycle located in the mitochondrial compartment.
Collapse
Affiliation(s)
- Jaqueline Quevedo-Ocampo
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María C Gutiérrez-Ruiz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
44
|
Zhou LP, Zhang RJ, Jia CY, Kang L, Zhang ZG, Zhang HQ, Wang JQ, Zhang B, Shen CL. Ferroptosis: A potential target for the intervention of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1042060. [PMID: 36339421 PMCID: PMC9630850 DOI: 10.3389/fendo.2022.1042060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death marked by phospholipid peroxidation, is regulated by complex cellular metabolic pathways including lipid metabolism, iron balance, redox homeostasis, and mitochondrial activity. Initial research regarding the mechanism of ferroptosis mainly focused on the solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 (GPX4) signal pathway. Recently, novel mechanisms of ferroptosis, independent of GPX4, have been discovered. Numerous pathologies associated with extensive lipid peroxidation, such as drug-resistant cancers, ischemic organ injuries, and neurodegenerative diseases, are driven by ferroptosis. Ferroptosis is a new therapeutic target for the intervention of IVDD. The role of ferroptosis in the modulation of intervertebral disc degeneration (IVDD) is a significant topic of interest. This is a novel research topic, and research on the mechanisms of IVDD and ferroptosis is ongoing. Herein, we aim to review and discuss the literature to explore the mechanisms of ferroptosis, the relationship between IVDD and ferroptosis, and the regulatory networks in the cells of the nucleus pulposus, annulus fibrosus, and cartilage endplate to provide references for future basic research and clinical translation for IVDD treatment.
Collapse
|
45
|
Lee E, Park S. Serum folate concentration and health-related quality of life among the elderly in South Korea. Health Qual Life Outcomes 2021; 19:267. [PMID: 34930296 PMCID: PMC8686217 DOI: 10.1186/s12955-021-01899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background The purpose of this study was to investigate the association between serum folate concentration and health-related quality of life (HRQOL) among the elderly in South Korea. Materials and methods The data used in this study were drawn from 1,021 participants over 65 years old in the Korea National Health and Nutrition Examination Survey from 2016–2018. HRQOL was measured by the EQ-5D questionnaire. Participants were divided into tertiles of folate concentration (ranges 1.7–5.6, 5.7–9.4, and 9.5–31.9 ng/mL). We performed multivariable linear regression to examine the relationship between folate and HRQOL, and multivariable logistic regression to examine the relationship between folate and the dimensional problem of HRQOL. Results Higher folate concentrations were significantly associated with higher HRQOL in the elderly. The average HRQOL score of the elderly in the highest tertile of the folate level was 0.0289 higher than that of the lowest tertile (coefficient: 0.0289; 95% CI 0.0016, 0.0563). The HRQOL score increased by 0.0174 points when the folate concentration increased by 100%. When analyzing specific dimensions, a significant association with folate concentration was found only for the self-care dimension of HRQOL (odds ratio for self-care problems: 0.63; 95% CI 0.41, 0.99). Conclusions The elderly with higher serum folate concentration tended to have higher HRQOL. Among HRQOL dimensions, self-care was only significantly associated with folate concentration.
Collapse
Affiliation(s)
- Eunmi Lee
- Graduate School of Urban Public Health & Department of Urban Big Data Convergence, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Sangshin Park
- Graduate School of Urban Public Health & Department of Urban Big Data Convergence, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
46
|
Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. J Immunol Res 2021; 2021:3928323. [PMID: 34859106 PMCID: PMC8632388 DOI: 10.1155/2021/3928323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
We performed a panoramic analysis on both human nonalcoholic steatohepatitis (NASH) microarray data and microarray/RNA-seq data from various mouse models of nonalcoholic fatty liver disease NASH/NAFLD with total 4249 genes examined and made the following findings: (i) human NASH and NAFLD mouse models upregulate both cytokines and chemokines; (ii) pathway analysis indicated that human NASH can be classified into metabolic and immune NASH; methionine- and choline-deficient (MCD)+high-fat diet (HFD), glycine N-methyltransferase deficient (GNMT-KO), methionine adenosyltransferase 1A deficient (MAT1A-KO), and HFCD (high-fat-cholesterol diet) can be classified into inflammatory, SAM accumulation, cholesterol/mevalonate, and LXR/RXR-fatty acid β-oxidation NAFLD, respectively; (iii) canonical and noncanonical inflammasomes play differential roles in the pathogenesis of NASH/NAFLD; (iv) trained immunity (TI) enzymes are significantly upregulated in NASH/NAFLD; HFCD upregulates TI enzymes more than cytokines, chemokines, and inflammasome regulators; (v) the MCD+HFD is a model with the upregulation of proinflammatory cytokines and canonical and noncanonical inflammasomes; however, the HFCD is a model with upregulation of TI enzymes and lipid peroxidation enzymes; and (vi) caspase-11 and caspase-1 act as upstream master regulators, which partially upregulate the expressions of cytokines, chemokines, canonical and noncanonical inflammasome pathway regulators, TI enzymes, and lipid peroxidation enzymes. Our findings provide novel insights on the synergies between hyperlipidemia and hypomethylation in establishing TI and promoting inflammation in NASH and NAFLD progression and novel targets for future therapeutic interventions for NASH and NAFLD, metabolic diseases, transplantation, and cancers.
Collapse
|
47
|
Xie L, Ma S, Ding N, Wang Y, Lu G, Xu L, Wang Q, Liu K, Jie Y, Zhang H, Yang A, Gao Y, Zhang H, Jiang Y. Homocysteine induces podocyte apoptosis by regulating miR-1929-5p expression through c-Myc, DNMT1 and EZH2. Mol Oncol 2021; 15:3203-3221. [PMID: 34057794 PMCID: PMC8564658 DOI: 10.1002/1878-0261.13032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a common and complex disease in kidneys which has been associated with an increased risk of renal cell carcinoma. Elevated homocysteine (Hcy) levels are known to influence the development and progression of CKD by regulating podocyte injury and apoptosis. To investigate the molecular mechanisms triggered in podocytes by Hcy, we used cbs+/- mice and observed that higher Hcy levels increased the apoptosis rate of podocytes with accompanying glomerular damage. Hcy-induced podocyte injury and apoptosis in cbs+/- mice was regulated by inhibition of microRNA (miR)-1929-5p expression. Overexpression of miR-1929-5p in podocytes inhibited apoptosis by upregulating Bcl-2. Furthermore, the expression of miR-1929-5p was regulated by epigenetic modifications of its promoter. Hcy upregulated DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, resulting in increased DNA methylation and H3K27me3 levels on the miR-1929-5p promoter. Additionally, we observed that c-Myc recruited DNMT1 and EZH2 to the miR-1929-5p promoter and suppressed the expression of miR-1929-5p. In summary, we demonstrated that Hcy promotes podocyte apoptosis through the regulation of the epigenetic modifiers DNMT1 and EZH2, which are recruited by c-Myc to the promoter of miR-1929-5p to silence miR-1929-5p expression.
Collapse
Affiliation(s)
- Lin Xie
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Shengchao Ma
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Ning Ding
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yanhua Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Guanjun Lu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Lingbo Xu
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Qingqing Wang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Kun Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Yuzheng Jie
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Department of Clinical MedicineNingxia Medical UniversityYinchuanChina
| | - Hui Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Anning Yang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Yujing Gao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| | - Huiping Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
- Prenatal Diagnosis Center of General HospitalNingxia Medical UniversityYinchuanChina
| | - Yideng Jiang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- NHC Key Laboratory of Metabolic Cardiovascular Diseases ResearchNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuanChina
| |
Collapse
|
48
|
Wong D, Broberg DN, Doad J, Umoh JU, Bellyou M, Norley CJD, Holdsworth DW, Montero-Odasso M, Beauchet O, Annweiler C, Bartha R. Effect of Memantine Treatment and Combination with Vitamin D Supplementation on Body Composition in the APP/PS1 Mouse Model of Alzheimer's Disease Following Chronic Vitamin D Deficiency. J Alzheimers Dis 2021; 81:375-388. [PMID: 33780366 DOI: 10.3233/jad-201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin D deficiency and altered body composition are common in Alzheimer's disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-β exposure and glutamate toxicity. OBJECTIVE To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. METHODS Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. RESULTS In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p < 0.01) and absolute skeletal tissue mass (9.3% increase, p < 0.05) and volume (9.2% increase, p < 0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. CONCLUSION Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.
Collapse
Affiliation(s)
- Dickson Wong
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dana N Broberg
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jagroop Doad
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Joseph U Umoh
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Chris J D Norley
- Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - David W Holdsworth
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Preclinical Imaging Research Centre, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Manuel Montero-Odasso
- Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, University of Western Ontario, London, ON, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Olivier Beauchet
- Department of Medicine, University of Montreal and McGill University, Montreal, QC, Canada
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.,UPRES EA 4638, University of Angers, Angers, France
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
49
|
Untargeted Metabolomics Analysis Revealed Lipometabolic Disorders in Perirenal Adipose Tissue of Rabbits Subject to a High-Fat Diet. Animals (Basel) 2021; 11:ani11082289. [PMID: 34438746 PMCID: PMC8388361 DOI: 10.3390/ani11082289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Simply Summary A high-fat diet is widely recognized as a significant modifiable risk for metabolic diseases. In this study, untargeted metabolomics, combined with liquid chromatography and high-resolution mass spectrometry, was used to evaluate perirenal adipose tissue metabolic changes. Our study revealed 206 differential metabolites. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a high-fat diet causes significant lipometabolic disorders; these metabolites may inhibit oxygen respiration by increasing adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thereby increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes. Abstract A high-fat diet (HFD) is widely recognized as a significant modifiable risk for insulin resistance, inflammation, Type 2 diabetes, atherosclerosis and other metabolic diseases. However, the biological mechanism responsible for key metabolic disorders in the PAT of rabbits subject to HFD remains unclear. Here, untargeted metabolomics (LC-MS/MS) combined with liquid chromatography (LC) and high-resolution mass spectrometry (MS) were used to evaluate PAT metabolic changes. Histological observations showed that the adipocytes cells and density of PAT were significantly increased in HFD rabbits. Our study revealed 206 differential metabolites (21 up-regulated and 185 down-regulated); 47 differential metabolites (13 up-regulated and 34 down-regulated), comprising mainly phospholipids, fatty acids, steroid hormones and amino acids, were chosen as potential biomarkers to help explain metabolic disorders caused by HFD. These metabolites were mainly associated with the biosynthesis of unsaturated fatty acids, the arachidonic acid metabolic pathway, the ovarian steroidogenesis pathway, and the platelet activation pathway. Our study revealed that a HFD caused significant lipometabolic disorders. These metabolites may inhibit oxygen respiration by increasing the adipocytes cells and density, cause mitochondrial and endoplasmic reticulum dysfunction, produce inflammation, and finally lead to insulin resistance, thus increasing the risk of Type 2 diabetes, atherosclerosis, and other metabolic syndromes.
Collapse
|
50
|
Bam S, Buchanan E, Mahony C, O'Ryan C. DNA Methylation of PGC-1α Is Associated With Elevated mtDNA Copy Number and Altered Urinary Metabolites in Autism Spectrum Disorder. Front Cell Dev Biol 2021; 9:696428. [PMID: 34381777 PMCID: PMC8352569 DOI: 10.3389/fcell.2021.696428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder that is underpinned by numerous dysregulated biological pathways, including pathways that affect mitochondrial function. Epigenetic mechanisms contribute to this dysregulation and DNA methylation is an important factor in the etiology of ASD. We measured DNA methylation of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), as well as five genes involved in regulating mitochondrial homeostasis to examine mitochondrial dysfunction in an ASD cohort of South African children. Using targeted Next Generation bisulfite sequencing, we found differential methylation (p < 0.05) at six key genes converging on mitochondrial biogenesis, fission and fusion in ASD, namely PGC-1α, STOML2, MFN2, FIS1, OPA1, and GABPA. PGC-1α, the transcriptional regulator of biogenesis, was significantly hypermethylated at eight CpG sites in the gene promoter, one of which contained a putative binding site for CAMP response binding element 1 (CREB1) (p = 1 × 10–6). Mitochondrial DNA (mtDNA) copy number, a marker of mitochondrial function, was elevated (p = 0.002) in ASD compared to controls and correlated significantly with DNA methylation at the PGC-1α promoter and there was a positive correlation between methylation at PGC-1α CpG#1 and mtDNA copy number (Spearman’s r = 0.2, n = 49, p = 0.04) in ASD. Furthermore, DNA methylation at PGC-1α CpG#1 and mtDNA copy number correlated significantly (p < 0.05) with levels of urinary organic acids associated with mitochondrial dysfunction, oxidative stress, and neuroendocrinology. Our data show differential methylation in ASD at six key genes converging on PGC-1α-dependent regulation of mitochondrial biogenesis and function. We demonstrate that methylation at the PGC-1α promoter is associated with elevated mtDNA copy number and metabolomic evidence of mitochondrial dysfunction in ASD. This highlights an unexplored role for DNA methylation in regulating specific pathways involved in mitochondrial biogenesis, fission and fusion contributing to mitochondrial dysfunction in ASD.
Collapse
Affiliation(s)
- Sophia Bam
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Erin Buchanan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Caitlyn Mahony
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|