1
|
Fu H, Gao B, Zhou X, Hao Y, Liu C, Lan A, Tang J, Zhou F. DNA dioxygenase TET2 deficiency aggravates sepsis-induced acute lung injury by targeting ITGA10 via the PI3K/AKT signaling pathway. Cell Mol Biol Lett 2025; 30:60. [PMID: 40389853 PMCID: PMC12090539 DOI: 10.1186/s11658-025-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is a clinical condition with high morbidity and mortality, and impaired endothelial function is the main pathological characteristic. As a member of DNA demethylases, ten-eleven translocation protein 2 (TET2) is involved in a variety of biological processes. However, the role of TET2 in endothelial dysfunction of sepsis-induced ALI remains unclear. METHODS We used cecal ligation and puncture (CLP) to establish a sepsis-induced acute lung injury mouse model and screened out Tet2 from TET family proteins. The results suggested that Tet2 was obviously declined. We used lipopolysaccharide (LPS) to stimulate human pulmonary microvascular endothelial cells (HPMECs) as an in vitro model, and we found the expression of TET2 was also decreased. Then we used small interfering RNAs and adenovirus to knockdown or overexpress TET2 to investigate the effect of TET2 on the function of HPMECs. The changes in sepsis-induced ALI symptoms were also analyzed in Tet2-deficient mice generated by adeno-associated virus 6 (AAV6). Next, RNA sequencing and KEGG analysis were used to find the TET2-regulated downstream target genes and signaling pathways under LPS stimulation. Finally, the rescue experiments were performed to analyze the role of target genes and signaling pathways modulated by TET2 in LPS-treated HPMECs. RESULTS TET2 and 5-hmC levels were significantly decreased in both in vitro and in vivo models of sepsis-induced ALI. TET2 knockdown exacerbated the dysfunction and apoptosis of HPMECs induced by LPS. Conversely, TET2 overexpression significantly alleviated these dysfunctions and reduced apoptosis. Meanwhile, the lung injury of Tet2-deficient mice was aggravated by increased inflammation and apoptosis. RNA sequencing and subsequent experiments showed that TET2 overexpression could increase the expression of Integrin α10 (ITGA10) by reducing the methylation level of ITGA10 promoter. This, in turn, activated the PI3K-AKT signaling pathway. Knocking down ITGA10 weakened the beneficial effects of TET2 overexpression in LPS-stimulated endothelial cells. CONCLUSIONS In our study, we demonstrated that TET2 deficiency aggravates endothelial cell dysfunction and promotes acute lung injury by targeting ITGA10 via the PI3K-AKT pathway. These findings indicate that TET2 may be a promising therapeutic target for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Hongxue Fu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bin Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingting Hao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chang Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ailin Lan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingyi Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Fachun Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Ji H, Zhang X, Linderholm AL, Juarez M, Schivo M, Kuhn B, Harper RW, Zeki AA, Haczku A. Low TET1 Expression Levels in COPD Are Associated with Airway and Blood Neutrophilia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.15.25325889. [PMID: 40330597 PMCID: PMC12051492 DOI: 10.1101/2025.04.15.25325889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Epigenetic dysregulation, particularly DNA methylation variations, is implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Ten-eleven translocation (TET) proteins (TET1, TET2, and TET3) regulate DNA methylation and gene transcription. Impaired TET1 expression was previously associated with airway inflammation and asthma. Here we investigated TET gene associations with COPD severity. We found that reduced TET1 expression in peripheral blood mononuclear cells was associated with higher sputum and blood neutrophil counts, decreased lung function and increased disease severity in patients. These findings support a potential protective role and warrant further mechanistic investigations into the actions of TET1 in COPD.
Collapse
Affiliation(s)
- Hong Ji
- UC Davis Lung Center, University of California, Davis, CA
- Department of Anatomy, Physiology and Cell biology; School of Veterinary Medicine, Davis, CA
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Angela L. Linderholm
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
| | - Maya Juarez
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
| | - Michael Schivo
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
| | - Brooks Kuhn
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
| | - Richart W. Harper
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
- Veterans Affairs Medical Center, Mather, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
- Veterans Affairs Medical Center, Mather, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine, School of Medicine, Davis, CA
| |
Collapse
|
3
|
Shen C, Liu H, Chen Y, Liu M, Wang Q, Liu J, Liu J. Helicobacter pylori induces GBA1 demethylation to inhibit ferroptosis in gastric cancer. Mol Cell Biochem 2025; 480:1845-1863. [PMID: 39283563 DOI: 10.1007/s11010-024-05105-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/21/2024] [Indexed: 02/21/2025]
Abstract
This research investigates potential therapeutic targets for gastric cancer, focusing on ferroptosis-related genes. Gastric cancer is known for its lower survival rates, necessitating new treatment strategies. This study employed Mendelian randomization to identify ferroptosis-related genes and methylation sites in gastric cancer, examining correlations between Helicobacter pylori infection, GBA1 gene expression, and promoter methylation with single-cell datasets and the TCGA-STAD database. We used Helicobacter pylori-infected gastric cancer cell models and used next-generation sequencing to monitor methylation changes pre- and post-infection. GBA1 expression levels were assessed via qRT-PCR and Western blot both before and after infection. The effect of Helicobacter pylori on GC cell proliferation was analyzed using CCK-8 and EdU assays after knocking down the GBA1 gene. The association between Helicobacter pylori infection and ferroptosis, including its reversibility after GBA1 knockdown, was evaluated using FerrOrange, GSH, MDA, and C11-BODIPY assays. Mass spectrometry measured the impact of Helicobacter pylori and GBA1 knockdown on lipid metabolism. An in vivo subcutaneous tumor-bearing model was also established to confirm these findings. Mendelian randomization analysis revealed that high GBA1 expression and reduced methylation levels of its promoter are risk factors for gastric cancer. Single-cell sequencing and TCGA-STAD datasets indicated a positive correlation between Helicobacter pylori infection and GBA1 expression, with a concurrent negative correlation between GBA1 promoter methylation and GBA1 expression. In gastric cancer cell lines, Helicobacter pylori infection was observed to enhance GBA1 expression and decrease methylation levels at its promoter. Additionally, Helicobacter pylori promoted GC cell proliferation, an effect mitigated by knocking down GBA1. Infection also reduced lipid peroxidation, increased glutathione levels, and impeded ferroptosis in GC cells; however, these effects were reversed following GBA1 knockdown. Changes in sphingolipid metabolism induced by I were detected in GC cell lines. In vivo experiments using a subcutaneous tumor-bearing model demonstrated that Helicobacter pylori infection fosters tumorigenesis in GC cells. Our study demonstrates that Helicobacter pylori infection triggers demethylation and upregulation of GBA1, subsequently inhibiting ferroptosis in gastric cancer cells. These findings suggest that targeting the GBA1 pathway may offer a novel therapeutic approach for managing gastric cancer.
Collapse
Affiliation(s)
- Chenjie Shen
- Department of Oncology, Jiangnan University Affiliated Hospital, No. 1000, Hefeng Road, Wuxi, Jiangsu, China
- Department of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu, China
| | - Huan Liu
- Department of Oncology, Jiangnan University Affiliated Hospital, No. 1000, Hefeng Road, Wuxi, Jiangsu, China
- Department of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu, China
| | - Yuhan Chen
- Department of Oncology, Jiangnan University Affiliated Hospital, No. 1000, Hefeng Road, Wuxi, Jiangsu, China
- Department of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu, China
| | - Mengpei Liu
- Department of Oncology, Jiangnan University Affiliated Hospital, No. 1000, Hefeng Road, Wuxi, Jiangsu, China
- Department of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu, China
| | - Qian Wang
- Department of Oncology, Jiangnan University Affiliated Hospital, No. 1000, Hefeng Road, Wuxi, Jiangsu, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital Fudan University, 12 Middle Wulumuqi Road, Shanghai, China.
| | - Jingjing Liu
- Department of Oncology, Jiangnan University Affiliated Hospital, No. 1000, Hefeng Road, Wuxi, Jiangsu, China.
- Department of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Liu MJ, Xu ZP, Guan YQ, Wang YY, Wen XS, Li GH, Wang XN, Shen T. Ethyl acetate fraction of Thesium chinense Turcz. alleviates chronic obstructive pulmonary disease through inhibition of ferroptosis mediated by activating Nrf2/SLC7A11/GPX4 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118776. [PMID: 39222758 DOI: 10.1016/j.jep.2024.118776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Thesium chinense Turcz., a traditional Chinese herbal medicine, displays good therapeutic efficiency against respiratory diseases (e.g. pneumonia, pharyngitis) in clinical applications, however, its effects on COPD and the mechanism of action are still unclear. AIM OF THE STUDY This study aims to investigate the therapeutic effect of the ethyl acetate fraction of Thesium chinense Turcz. (TCEA) on COPD and reveal the underlying mechanism. MATERIALS AND METHODS A cigarette smoke (CS)-induced mouse COPD model was established, and the efficacy of TCEA was evaluated using peripheral blood testing, HE and Masson staining, qRT-PCR and ELISA assays. TCEA was analyzed for chemical composition by LC-MS/MS and HPLC. Prediction of major signaling pathways and potential targets was performed by network pharmacology. The molecular mechanism of TCEA was explored by immunoblotting, immunofluorescence staining, flow cytometry, and ubiquitination assay. Finally, potential active small molecules in TCEA were identified by molecular virtual screening. RESULTS TCEA treatment significantly inhibited the secretion of pro-inflammatory factors and attenuated pathological emphysema. The main chemical constituents of TCEA were identified as flavonoids by UPLC-MS/MS. Network pharmacology analysis enriched the Nrf2 signaling pathway closely related to oxidative stress. Our results suggested that TCEA inhibited ferroptosis by activating Nrf2/SLC7A11/GPX4 axis and inhibiting lipid metabolism-related proteins, ACSL4, ALOX5 and COX2 in vivo and in vitro. Noteworthily, the beneficial impact of TCEA on regulation of SLC7A11 and GPX4 vanished after silencing Nrf2. Moreover, Nrf2 ubiquitination was inhibited by TCEA treatment. Finally, several flavonoids modulating Nrf2 were identified by molecular virtual screening. CONCLUSIONS TCEA significantly alleviated COPD progression by inhibiting ferroptosis primarily through activation of Nrf2/SLC7A11/GPX4 signaling. Flavonoids are the main active components that exert their effects. These findings shed light on the mechanism of action of TCEA and its potential active components, providing a feasible approach for the treatment of COPD.
Collapse
Affiliation(s)
- Ming-Jie Liu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zhen-Peng Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yue-Qin Guan
- Jiuhua Huayuan Pharmaceutical Co., Ltd., Chuzhou, People's Republic of China
| | - Ying-Yue Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xue-Sen Wen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Guo-Hui Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Department of Pharmacy, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
5
|
Pan M, Zhang L, Chang S, Jiang X, Shen J, Feng X, Xu F, Zha X, Chen X, Fan X. Poly-l-arginine promotes ferroptosis in asthmatic airway epithelial cells by modulating PBX1/GABARAPL1 axis. Int J Biol Macromol 2025; 286:138478. [PMID: 39645127 DOI: 10.1016/j.ijbiomac.2024.138478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Eosinophils play a featured role among inflammatory cells participating in the onset and development of asthma. Activated eosinophils release several cytotoxic granular proteins, such as major basic protein (MBP), posing a significant threat to airway epithelium. Ferroptosis, a novel form of cell death, is gaining recognition for its involvement in asthma pathogenesis, though the specific mechanisms remain largely unknown. Herein, we revealed that poly-l-arginine (PLA), an MBP mimic, induced ferroptosis in airway epithelium by downregulating γ-aminobutyric acid receptor-associated protein-like 1 (GABARAPL1). Reduced GABARAPL1 expression was further confirmed in ovalbumin (OVA)-induced asthma mice and PLA-treated human airway organoids (hAOs). Mechanistically, PLA activated mechanistic target of rapamycin complex 1 (mTORC1) signaling, inhibiting pre-B-cell leukemia transcription factor 1 (PBX1), which in turn leads to transcriptional downregulation of GABARAPL1. Furthermore, MBP extracted from eosinophils, similar to PLA, induced ferroptosis in airway epithelial cells, as well as modulating mTORC1/PBX1/GABARAPL1 pathway. Finally, Ferrostatin-1 treatment or GABARAPL1 overexpression alleviated ferroptosis and airway inflammation in asthmatic mice. Overall, our findings highlight the cell communication between eosinophils and airway epithelial cells. MBP modulates the mTORC1/PBX1/GABARAPL1 axis, thereby serving as a significant contributor to ferroptosis in airway epithelium and airway inflammation. This suggests that suppressing ferroptosis in airway epithelium or targeting eosinophils and MBP could lead to novel therapeutic strategies for asthma management.
Collapse
Affiliation(s)
- Min Pan
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Ling Zhang
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Shuang Chang
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Xueqin Jiang
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Jiapan Shen
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Xiaoxia Feng
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China
| | - Fangzhou Xu
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xu Chen
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China.
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Geriatric Institute, Hefei, China; Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China.
| |
Collapse
|
6
|
Jiang X, Peng Z, He B, Li S, Huang Q. A comprehensive review of ferroptosis in environmental pollutants-induced chronic obstructive pulmonary disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177534. [PMID: 39542274 DOI: 10.1016/j.scitotenv.2024.177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic lung disease that impacts hundreds of millions of individuals worldwide. It is principally characterized by irreversible and progressive airflow limitation. Environmental pollutants, including cigarette smoke, air pollution, occupational pollutants, remain predominant risk factors for COPD and play remarkable roles in COPD progression. Despite the availability of treatments to alleviate symptoms of COPD, it continues to exert a serious health and socioeconomic burden. Ferroptosis, a unique form of iron-dependent cell death distinguished by lipid peroxidation, is implicated in various diseases. Recent studies, utilizing COPD patients samples, animal models, and Gene Expression Omnibus (GEO) database, have revealed that ferroptosis is involved in pathogenesis of COPD. Inhibiting ferroptosis signaling pathways halts the progression of COPD. This review consolidates current insights into the mechanisms of ferroptosis in environmental pollutants-induced COPD, which might offer a novel therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Wang L, Wang C, He H. The Potential Regulatory Role of Ferroptosis in Orthodontically Induced Inflammatory Root Resorption. Int J Mol Sci 2024; 25:13617. [PMID: 39769377 PMCID: PMC11728003 DOI: 10.3390/ijms252413617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
People, in increasing numbers, are seeking orthodontic treatment to correct malocclusion, while some of them are suffering from orthodontically induced inflammatory root resorption (OIIRR). Recent evidence suggests that the immune-inflammatory response occurring during bone remodeling may be responsible for OIIRR. Ferroptosis, a new type of programmed cell death (PCD), has been found to have a close interrelation with inflammation during disease progression. While ferroptosis has been extensively studied in bone-related diseases, its role in OIIRR is poorly understood. Considering that the tooth root shares a lot of similar characteristics with bone, it is reasonable to hypothesize that ferroptosis contributes to the development of OIIRR. Nevertheless, direct evidence supporting this theory is currently lacking. In this review, we introduced ferroptosis and elucidated the mechanisms underlying orthodontic tooth movement (OTM) and OIIRR, with a special focus on the pivotal role inflammation plays in these processes. Additionally, we covered recent research exploring the connections between inflammation and ferroptosis. Lastly, we emphasized the important regulatory function of ferroptosis in bone homeostasis. Further investigations are required to clarify the modulation mechanisms of ferroptosis in OIIRR and to develop novel and potential therapeutic strategies for the management of OIIRR.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
9
|
Hou T, Zhu L, Zhang Y, Tang Y, Gao Y, Hua S, Ci X, Peng L. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD. Redox Biol 2024; 77:103388. [PMID: 39374556 PMCID: PMC11491731 DOI: 10.1016/j.redox.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pyroptosis is an inflammatory form of regulated necrosis that has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the role of lipid peroxidation in pyroptosis and its underlying mechanisms in COPD remain unclear. METHODS In vitro, human bronchial epithelial cells (Beas-2b cells) were exposed to cigarette smoke extract (CSE) for 24 h. In vivo, mice were exposed to cigarette smoke (CS) for 4 weeks. To investigate the role of xCT, we used siRNA and AAV6 to conditionally knock down xCT in vitro and in vivo, respectively. RESULTS The administration of ferrostatin-1 (Fer-1), a ferroptosis inhibitor that inhibits lipid peroxidation, significantly reduced the cytotoxicity of CSE to Beas-2b cells and mitigated inflammatory exudation, lung injury and mucus hypersecretion in mice with CS-induced COPD. Fer-1 suppressed gasdermin D (GSDMD)-mediated pyroptosis caused by CS in vitro and in vivo. However, in Beas-2b cells and the lung epithelial cells of mice, conditional knockdown of xCT (a negative regulatory factor of lipid peroxidation) inhibited the xCT/GPx4 axis, leading to more severe lipid peroxidation and GSDMD-mediated pyroptosis during cigarette smoke exposure. Moreover, we found that CS promoted the degradation of xCT through the ubiquitin proteasome system (UPS) and that treatment with MG132 significantly inhibited the degradation of xCT and downregulated the expression of pyroptosis-related proteins. CONCLUSION The results of this study suggested that the ubiquitination-mediated degradation of xCT drives GSDMD-mediated pyroptosis in COPD and is a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ying Tang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yun Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Cao Z, Zhao S, Hu S, Wu T, Sun F, Shi LI. Screening COPD-Related Biomarkers and Traditional Chinese Medicine Prediction Based on Bioinformatics and Machine Learning. Int J Chron Obstruct Pulmon Dis 2024; 19:2073-2095. [PMID: 39346628 PMCID: PMC11438478 DOI: 10.2147/copd.s476808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose To employ bioinformatics and machine learning to predict the characteristics of immune cells and genes associated with the inflammatory response and ferroptosis in chronic obstructive pulmonary disease (COPD) patients and to aid in the development of targeted traditional Chinese medicine (TCM). Mendelian randomization analysis elucidates the causal relationships among immune cells, genes, and COPD, offering novel insights for the early diagnosis, prevention, and treatment of COPD. This approach also provides a fresh perspective on the use of traditional Chinese medicine for treating COPD. Methods R software was used to extract COPD-related data from the Gene Expression Omnibus (GEO) database, differentially expressed genes were identified for enrichment analysis, and WGCNA was used to pinpoint genes within relevant modules associated with COPD. This analysis included determining genes linked to the inflammatory response in COPD patients and analyzing their correlation with ferroptosis. Further steps involved filtering core genes, constructing TF-miRNA‒mRNA network diagrams, and employing three types of machine learning to predict the core miRNAs, key immune cells, and characteristic genes of COPD patients. This process also delves into their correlations, single-gene GSEA, and diagnostic model predictions. Reverse inference complemented by molecular docking was used to predict compounds and traditional Chinese medicines for treating COPD; Mendelian randomization was applied to explore the causal relationships among immune cells, genes, and COPD. Results We identified 2443 differential genes associated with COPD through the GEO database, along with 8435 genes relevant to WGCNA and 1226 inflammation-related genes. A total of 141 genes related to the inflammatory response in COPD patients were identified, and 37 core genes related to ferroptosis were selected for further enrichment analysis and analysis. The core miRNAs predicted for COPD include hsa-miR-543, hsa-miR-181c, and hsa-miR-200a, among others. The key immune cells identified were plasma cells, activated memory CD4 T cells, gamma delta T cells, activated NK cells, M2 macrophages, and eosinophils. Characteristic genes included EGF, PLG, PTPN22, and NR4A1. A total of 78 compounds and 437 traditional Chinese medicines were predicted. Mendelian randomization analysis revealed a causal relationship between 36 types of immune cells and COPD, whereas no causal relationship was found between the core genes and COPD. Conclusion A definitive causal relationship exists between immune cells and COPD, while the prediction of core miRNAs, key immune cells, characteristic genes, and targeted traditional Chinese medicines offers novel insights for the early diagnosis, prevention, and treatment of COPD.
Collapse
Affiliation(s)
- Zhenghua Cao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shengkun Zhao
- Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Shaodan Hu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Tong Wu
- Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Feng Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - L I Shi
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China
| |
Collapse
|
11
|
Tao Z, Bai S, Wu G, Zhai S, Zhang P, Fu C, Yu L. Therapeutic effect of ginkgetin on smoke-induced airway inflammation by down-regulating the c/EBPβ signaling pathway and CCL2 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118284. [PMID: 38735420 DOI: 10.1016/j.jep.2024.118284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba leaf and seed have been traditionally used in ancient China for the treatment of cough and asthma. However, there is limited literature available on the anti-COPD effects and mechanisms of Ginkgo biloba. AIMS OF THE STUDY The aim of this study was to comprehensively investigate the therapeutic potential of ginkgo extracts in COPD through a combination of in vivo and in vitro functional experiments. Transcriptomic analyses were also employed to uncover novel molecular mechanisms underlying the therapeutic effects of ginkgetin in COPD. MATERIALS AND METHODS The therapeutic efficacy of ginkgo extracts was assessed in a COPD model. The anti-inflammatory effects of ginkgetin and its underlying molecular mechanisms were examined in A549 cells treated with cigarette smoke extract (CSE). Additionally, transcriptomic analyses were conducted to identify novel molecular pathways influenced by ginkgetin. These findings were further validated using quantitative real-time polymerase chain reaction (qPCR) and Western blot techniques. RESULTS The ethyl acetate extract of Ginkgo biloba L. seeds and ginkgetin treatment significantly reduced cytokine production in COPD mice. Following drug administration, lung function improved in different groups. The transcriptome data strongly supports the inhibitory effect of ginkgetin on CSE-induced inflammation through the downregulation of the c/EBPβ signaling pathway and subsequent inhibition of CCL2 expression. CONCLUSION Our results demonstrate that ginkgetin, one of the biflavones found in Ginkgo biloba, exhibits inhibitory effects on smoke-induced airway inflammation. This effect is achieved through the downregulation of the c/EBPβ signaling pathway and the reduction of CCL2 expression.
Collapse
Affiliation(s)
- Zhu Tao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China; Hubei Engineering Research Centre for Dual-use Resource Development of Food and Medicine, Wuhan 430074, China
| | - Shaoliang Bai
- Wuhan Aimin Pharmaceutical Co., Ltd Ezhou 436032, China
| | - Guodong Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengbing Zhai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pei Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunhua Fu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Centre for Dual-use Resource Development of Food and Medicine, Wuhan 430074, China.
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Centre for Dual-use Resource Development of Food and Medicine, Wuhan 430074, China.
| |
Collapse
|
12
|
Da W, Song Z, Liu X, Wang Y, Wang S, Ma J. The role of TET2 in solid tumors and its therapeutic potential: a comprehensive review. Clin Transl Oncol 2024; 26:2156-2165. [PMID: 38598002 DOI: 10.1007/s12094-024-03478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Indeed, tumors are a significant health concern worldwide, and understanding the underlying mechanisms of tumor development is crucial for effective prevention and treatment. Epigenetics, which refers to changes in gene expression that are not caused by alterations in the DNA sequence itself, plays a critical role in the entire process of tumor development. It goes without saying that the effect of methylation on tumors is a significant aspect of epigenetics. Among the methylation modifications, DNA methylation is an important part, which plays a regulatory role in tumor-related genes. Ten-eleven translocation 2 (TET2) is a highly influential protein involved in the modification of DNA methylation. Its primary role is associated with the suppression of tumor development, making it a significant player in cancer research. However, TET2 is frequently mentioned in hematological diseases, its role in solid tumors has received little attention. Studying the changes of TET2 in solid tumors and the regulatory mechanism will facilitate its investigation as a clinical target for targeted therapy and may also provide directions for clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Wenxin Da
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Ziyu Song
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Xiaodong Liu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Yahui Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China.
| |
Collapse
|
13
|
Liu L, Zhang Y, Xu D, Zhu D, Zhou Y, Chen Z, Huang X. Overexpression of USP8 inhibits inflammation and ferroptosis in chronic obstructive pulmonary disease by regulating the OTUB1/SLC7A11 signaling pathway. Allergol Immunopathol (Madr) 2024; 52:60-67. [PMID: 38970266 DOI: 10.15586/aei.v52i4.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a familiar disease, and owns high morbidity and mortality, which critically damages the health of patients. Ubiquitin-specific peptidase 8 (USP8) is a pivotal protein to join in the regulation of some diseases. In a previous report, it was determined that USP8 expression is down-regulated in LPS-treated BEAS-2B cells, and USP8 restrains inflammatory response and accelerates cell viability. However, the regulatory roles of USP8 on ferroptosis in COPD are rarely reported, and the associated molecular mechanisms keep vague. OBJECTIVE To investigate the regulatory functions of USP8 in COPD progression. MATERIAL AND METHODS The lung functions were measured through the Buxco Fine Pointe Series Whole Body Plethysmography (WBP). The Fe level was tested through the Fe assay kit. The protein expressions were assessed through western blot. The levels of tumor necrosis -factor-α, interleukin 6, and interleukin 8 were evaluated through enzyme-linked immunosorbent serologic assay. Cell viability was tested through CCK-8 assay. RESULTS In this work, it was discovered that overexpression of USP8 improved lung function in COPD mice. In addition, overexpression of USP8 repressed ferroptosis by regulating glutathione peroxidase 4 and acyl-CoA synthetase long-chain family 4 expressions in COPD mice. Overexpression of USP8 suppressed inflammation in COPD mice. Furthermore, overexpression of USP8 suppressed ferroptosis in COPD cell model. At last, it was verified that overexpression of USP8 accelerated ubiquitin aldehyde-binding protein 1 (OTUB1)/solute carrier family 7 member 11 (SLC7A11) pathway. CONCLUSION This study manifested that overexpression of USP8 restrained inflammation and ferroptosis in COPD by regulating the OTUB1/SLC7A11 signaling pathway. This discovery hinted that USP8 could be a potential target for COPD treatment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Yu Zhang
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China;
| | - Di Xu
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Dan Zhu
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Zhihai Chen
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Xiufeng Huang
- Department of Respiratory and Critical Care Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Zhang F, Xiang Y, Ma Q, Guo E, Zeng X. A deep insight into ferroptosis in lung disease: facts and perspectives. Front Oncol 2024; 14:1354859. [PMID: 38562175 PMCID: PMC10982415 DOI: 10.3389/fonc.2024.1354859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
In the last decade, ferroptosis has received much attention from the scientific research community. It differs from other modes of cell death at the morphological, biochemical, and genetic levels. Ferroptosis is mainly characterized by non-apoptotic iron-dependent cell death caused by iron-dependent lipid peroxide excess and is accompanied by abnormal iron metabolism and oxidative stress. In recent years, more and more studies have shown that ferroptosis is closely related to the occurrence and development of lung diseases. COPD, asthma, lung injury, lung fibrosis, lung cancer, lung infection and other respiratory diseases have become the third most common chronic diseases worldwide, bringing serious economic and psychological burden to people around the world. However, the exact mechanism by which ferroptosis is involved in the development and progression of lung diseases has not been fully revealed. In this manuscript, we describe the mechanism of ferroptosis, targeting of ferroptosis related signaling pathways and proteins, summarize the relationship between ferroptosis and respiratory diseases, and explore the intervention and targeted therapy of ferroptosis for respiratory diseases.
Collapse
Affiliation(s)
- Fan Zhang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Yu Xiang
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - Qiao Ma
- Wuhan University of Science and Technology, School of Medicine, Wuhan, China
| | - E. Guo
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiansheng Zeng
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
15
|
Kong J, Lyu H, Ouyang Q, Shi H, Zhang R, Xiao S, Guo D, Zhang Q, Chen XZ, Zhou C, Tang J. Insights into the Roles of Epigenetic Modifications in Ferroptosis. BIOLOGY 2024; 13:122. [PMID: 38392340 PMCID: PMC10886775 DOI: 10.3390/biology13020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Ferroptosis is a non-apoptotic mode of cell death driven by membrane lipid peroxidation and is characterized by elevated intracellular levels of Fe2+, ROS, and lipid peroxidation. Studies have shown that ferroptosis is related to the development of multiple diseases, such as cancer, neurodegenerative diseases, and acute myeloid leukemia. Ferroptosis plays a dual role in the occurrence and development of these diseases. Ferroptosis mainly involves iron metabolism, ROS, and lipid metabolism. Various mechanisms, including epigenetic regulation, have been reported to be deeply involved in ferroptosis. Abnormal epigenetic modifications have been reported to promote tumor onset or other diseases and resistance to chemotherapy drugs. In recent years, diversified studies have shown that epigenetic modification is involved in ferroptosis. In this review, we reviewed the current resistance system of ferroptosis and the research progress of epigenetic modification, such as DNA methylation, RNA methylation, non-coding RNAs, and histone modification in cancer and other diseases by regulating ferroptosis.
Collapse
Affiliation(s)
- Jinghua Kong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (J.K.); (H.L.); (Q.O.); (H.S.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Hao Lyu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (J.K.); (H.L.); (Q.O.); (H.S.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Qian Ouyang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (J.K.); (H.L.); (Q.O.); (H.S.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Hao Shi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (J.K.); (H.L.); (Q.O.); (H.S.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Qi Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada;
| | - Cefan Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (J.K.); (H.L.); (Q.O.); (H.S.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (J.K.); (H.L.); (Q.O.); (H.S.)
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (S.X.); (D.G.); (Q.Z.)
| |
Collapse
|
16
|
Liu K, Xu Y. Downregulation of TET2 Contributes to Nasal Polypogenesis Through Hypoxia-Inducible Factor 1α-Mediated Epithelial-to-Mesenchymal Transition. Clin Exp Otorhinolaryngol 2024; 17:64-77. [PMID: 38228132 PMCID: PMC10933810 DOI: 10.21053/ceo.2023.01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVES Hypoxia-inducible factor 1α (HIF1α) and Tet methylcytosine dioxygenase 2 (TET2) have been reported to mediate nasal polypogenesis through the epithelial-to-mesenchymal transition (EMT). Additionally, HIF1α can regulate the expression and function of TET2. However, the precise mechanism of how TET2 regulates the EMT through HIF1α mediation in nasal epithelial cells is still poorly understood. METHODS Nasal tissue samples were collected from patients with chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. The expression of HIF1α and TET2 was detected using Western blotting and immunohistochemistry. EMT markers (E-cadherin and vimentin) were also evaluated by immunohistochemistry. Primary human nasal epithelial cells (hNECs) were stimulated with CoCl2 to mimic hypoxia. Vitamin C (VC), a TET2 non-specific activator, and small interfering RNA (siRNA) transfection of TET2 were used to further determine the role of TET2 in hypoxia-induced EMT. Finally, reactive oxygen species (ROS) and Nrf2 were measured to explore the downstream consequences of TET2 in hypoxic hNECs. RESULTS TET2 levels were lower in the nasal epithelium of CRSwNP patients and were positively correlated with E-cadherin but negatively correlated with vimentin in CRS. However, HIF1α exhibited the opposite pattern and was negatively correlated with TET2 expression. CoCl2-simulated hypoxia led to EMT and increased HIF1α in hNECs in vitro, with simultaneous downregulation of TET2 expression. Addition of VC activated TET2 expression in hNECs, but inhibited EMT and HIF1α expression. Furthermore, siRNA knockdown of TET2 contributed to the EMT in CoCl2-simulated hNECs despite the addition of VC. Finally, TET2 regulated the EMT in hypoxic hNECs through Nrf2 expression and ROS generation. CONCLUSION TET2 was negatively correlated with HIF1α and EMT in vivo. TET2 was downregulated by HIF1α, resulting in the EMT in CoCl2-hypoxic hNECs via regulation of oxidative stress in vitro. Hence, TET2 might provide a new therapeutic approach for CRSwNP.
Collapse
Affiliation(s)
- Kunyu Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|