1
|
Nie H, Wang X, Guo L, Wei J, Wei Y, Gao Y, Wang J, Yip KC, Huang X, Zhang Q, Gao F, Li R. Hyperlipidemia Triggers Trophoblast Cell Dysfunction and Preeclampsia via the AMPK/GATA3/FTL Pathway. Hypertension 2025. [PMID: 40421527 DOI: 10.1161/hypertensionaha.125.24839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Preeclampsia, a severe pregnancy complication with an incompletely deciphered cause, is strongly associated with hyperlipidemia. Our previous studies demonstrated that FTL (ferritin light chain) expression was diminished in preeclampsia placentas and that FTL downregulation inhibited trophoblast invasiveness and migration while promoting apoptosis, contributing to preeclampsia development. However, the potential interplay between hyperlipidemia and FTL in the pathogenesis of preeclampsia, as well as the regulatory mechanism involved, remains to be elucidated. METHODS We conducted Spearman correlation analysis, used a high-fat diet-fed mice model, cell culture, and molecular biology assays, including immunohistochemistry, chromatin immunoprecipitation, and dual-luciferase reporter gene assays, to explore the impact of hyperlipidemia on the development of preeclampsia and to elucidate the molecular mechanisms involved. RESULTS Pregnant women with preeclampsia presented elevated serum total cholesterol, triglycerides, and low-density lipoprotein, with reduced high-density lipoprotein. Similarly, high-fat diet-fed mice exhibited dyslipidemia and preeclampsia-like characteristics. FTL expression was reduced in the placentas of patients with preeclampsia and high-fat diet-fed pregnant mice. In vitro, palmitic acid treatment reduced FTL expression, increased oxidative stress, and impaired trophoblast migration and invasion. GATA3 (GATA binding protein 3) was predicted to be an upstream transcription factor for FTL, with its knockdown reducing and its overexpression increasing FTL levels. Further analysis indicated that palmitic acid suppressed FTL expression by inhibiting GATA3 nuclear translocation and that AMPK (AMP-activated protein kinase) activation rescued FTL expression and restored trophoblast function. CONCLUSIONS This study revealed that high lipid levels contribute to preeclampsia by downregulating FTL through the AMPK-GATA3 pathway, highlighting potential therapeutic targets for preeclampsia management.
Collapse
Affiliation(s)
- Hanhui Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Lei Guo
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China. (L.G., Q.Z., F.G.)
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Yiling Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Yudie Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Jian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Xiaman Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| | - Qiao Zhang
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China. (L.G., Q.Z., F.G.)
| | - Feng Gao
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, China. (L.G., Q.Z., F.G.)
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, China. (F.G.)
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China (H.N., X.W., J.W., Y.W., Y.G., J.W., K.C.Y., X.H., R.L.)
| |
Collapse
|
2
|
Luo Q, Qiu J, Chen M, Yang N, Li X, Huang S, Ma Q, Li Z, Lou D, Du Y, Chen L, Shen Q, Chen F, Li C, Qiu P. Vine tea (Ampelopsis grossedentata) ameliorates chronic alcohol-induced hepatic steatosis, oxidative stress, and inflammation via YTHDF2/PGC-1α/SIRT3 axis. Food Res Int 2025; 209:116321. [PMID: 40253212 DOI: 10.1016/j.foodres.2025.116321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
For over a millennium, the leaves of Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang, commonly known as vine tea, have been revered as a popular tea and traditional herbal remedy, possessing antioxidant, anti-inflammatory, hepatoprotective, and antiviral properties. In recent years, the incidence of alcohol-related liver injury has been on the rise, imposing a significant public health burden worldwide. Previous studies have indicated that extracts of vine tea (AGE) can ameliorate alcoholic liver disease (ALD), yet the pharmacological mechanisms underlying this effect remain poorly understood. In this study, we first employed UPLC-Q-TOF-MS to analyze the chemical constituents of AGE. Subsequently, an ALD model was established in mice fed with Lieber-DeCarli diet, and the hepatoprotective benefits of AGE were assessed by measuring biochemical indicators and hepatic pathological changes. Moreover, a suite of bioinformatics tools, including transcriptomics, weighted gene co-expression network analysis, and single-cell data mining, were utilized to reveal that the YTHDF2/PGC-1α/SIRT3 signaling axis may be the potential mechanism by which AGE exerts its anti-ALD effects. Additionally, Western blotting and immunofluorescence staining techniques were employed to further substantiate the aforementioned mechanism. Our findings demonstrate that administration of vine tea significantly alleviated chronic ethanol-induced hepatic lipid accumulation, oxidative stress, and inflammation. Notably, knockdown of YTHDF2 partially protected the liver from ethanol-induced injury. Mechanistically, bioinformatics analysis and in vitro and in vivo experiments identified YTHDF2 as a key pharmacological target of AGE in treating ALD, acting through the downstream PGC-1α/SIRT3 pathway. In summary, in this study, we provide the first evidence that AGE mitigates ethanol-induced liver injury by inhibiting YTHDF2 and enhancing the expression of PGC-1α and SIRT3. Vine tea, as a tea food with unique medicinal value, shows significant potential and value in the treatment of ALD.
Collapse
Affiliation(s)
- Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Minxia Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Na Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zongyuan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dayong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| | - Fangming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Gong Y, You Q, Yuan X, Zeng F, Zhang F, Xiao J, Chen H, Liu Y, Wang T, Yan X, Chen W, Zhang Y, Zhang Q, Yao J, Zhang J, Li R, Zheng J. Mesenchymal stem cell-derived extracellular vesicles attenuate ferroptosis in aged hepatic ischemia/reperfusion injury by transferring miR-1275. Redox Biol 2025; 81:103556. [PMID: 39986119 PMCID: PMC11893313 DOI: 10.1016/j.redox.2025.103556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
With an aging global population, the proportion of aged donor livers in graft pools is steadily increasing. Compared to young livers, aged livers exhibit heightened susceptibility to hepatic ischemia/reperfusion injury (HIRI), which significantly limits their utilisation in liver transplantation (LT) and exacerbates organ shortages. Our previous study demonstrated that ferroptosis is a pivotal trigger for HIRI vulnerability in aged livers. However, effective clinical strategies for the inhibition of ferroptosis remain elusive. Utilizing an aged mouse HIRI model, primary hepatocytes, and human liver organoids, this study provides hitherto undocumented evidence that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) effectively alleviate HIRI in aged livers by inhibiting ferroptosis. Mechanistically, miR-1275, which was significantly enriched within MSC-EVs, was transferred to hepatocytes. Subsequently, miR-1275 downregulated the expression of SLC39A14, a crucial iron transporter that is upregulated in aged livers and plays a pivotal role in promoting ferroptosis. Furthermore, we found a negative correlation between SLC39A14 levels and prognosis of aged donor liver recipients using clinical LT samples. Silencing miR-1275 in MSC-EVs or modulating SLC39A14 levels in aged livers reversed MSC-EV-mediated mitigation of ferroptosis. Collectively, these findings revealed the novel therapeutic potential of MSC-EVs in attenuating aged HIRI, suggesting a promising treatment for improving prognosis and preventing serious complications in recipients of aged liver grafts during LT.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qiang You
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaofeng Yuan
- Department of General Intensive Care Unit, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Tingting Wang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Wenjie Chen
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Biological Treatment Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510530, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Yin X, Liu Z, Li C, Wang J. Hinokitiol ameliorates MASH in mice by therapeutic targeting of hepatic Nrf2 and inhibiting hepatocyte ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156472. [PMID: 39922149 DOI: 10.1016/j.phymed.2025.156472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH), an advanced stage of metabolic dysfunction-associated steatotic liver disease (MASLD), still lacks approved effective clinical drugs. Ferroptosis, a form of regulated cell death driven by excessive iron accumulation and uncontrollable lipid peroxidation, has been proven to be a trigger of inflammation and initiation of steatohepatitis. The pathogenic interplay is modulated by oxidative stress, while the Nrf2-mediated antioxidant response plays a regulatory role in ferroptosis. Phytochemical hinokitiol (Hino) has demonstrated positive efficacy in hepatocellular carcinoma (HCC) in the reported work, but it remains unknown whether its therapeutic effect attributes to delaying the progress of steatohepatitis to HCC. PURPOSE This work aimed to systemically investigate the significance of ferroptosis in the pathogenesis of MASH and to demonstrate that Hino, a bioactive monoterpene compound, attenuates the primary pathological characteristics of MASH via promotion of Nrf2/GPX4 signaling. METHODS In this work, a MASH model was established using the high-fat/high-cholesterol (HFHC) diet-fed in vivo and palmitic acid/oleic acid (PO)-stimulated hepatocytes in vitro. Biochemical indexes, pathological analysis, western blot, PCR assay, energy metabolic phenotype, molecular docking, and confirmatory assays were performed comprehensively to reveal the key link between the Nrf2/GPX4 axis and the treatment of MASH. RESULTS Under MASH conditions with increased oxidative stress, we show that Nrf2 was remarkable downregulated in HFHC diet-fed mice and PO-managed hepatocytes. Mechanistically, hepatic upregulation of Nrf2 through phytochemical Hino supplementation inhibited ferroptosis, enhanced lipid metabolism, and thereby alleviated hepatic steatosis, inflammation, and fibrosis. Conversely, silencing Nrf2 in hepatocytes further promoted the accumulation of key markers of ferroptosis and aggravated MASH phenotypes. CONCLUSION Increased ferroptosis promoted steatosis which further drove inflammation and hepatic fibrosis. Our results suggested the significance of Nrf2 in ameliorating MASH, which was regulated through Hino. Thus, targeted inhibition of ferroptosis through Hino administration is a feasible and effective approach for treating MASH.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China; Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China.
| | - Chang Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No.5625, Ren Min Street, Changchun, Jilin 130022, China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, USA.
| |
Collapse
|
5
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Lan D, Huang S, Li J, Zhou S, Deng J, Qin S, Zhou T, Meng F, Li W. Ferroptosis in Endometriosis: Traditional Chinese Medicine Interventions and Mechanistic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:385-408. [PMID: 40145281 DOI: 10.1142/s0192415x25500156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Endometriosis (EMS) is a chronic, estrogen-dependent inflammatory disease affecting 5-10% of women of reproductive age, characterized by the growth of endometrial tissue on the outside of the uterus. The dysregulation of iron metabolism leads to the accumulation of iron ions at the lesion sites, resulting in oxidative stress and pro-inflammatory responses that promote the progression of EMS. The mechanisms underlying ferroptosis in EMS primarily involve iron accumulation, lipid peroxidation, and loss of glutathione peroxidase 4 activity. These mechanisms confer resistance to ferroptosis within the ectopic tissues and facilitate cell survival and proliferation. Traditional Chinese medicine (TCM) has demonstrated therapeutic potential for modulating ferroptosis. Studies have shown that TCM monomers may regulate ferroptosis by modulating iron transport proteins and anti-oxidant defense mechanisms. TCM formulas employ distinct treatment strategies depending on the stage of EMS: in the early stages, they promote ferroptosis to control lesion growth, whereas in the later stages, they inhibit ferroptosis to reduce oxidative stress and inflammation in order to improve reproductive health and slow disease progression. This study provides a new perspective on potential therapeutic strategies for the management of EMS by summarizing the role of ferroptosis in its pathological mechanisms and reviewing findings on the use of TCM in regulating ferroptosis.
Collapse
Affiliation(s)
- Dingli Lan
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shuping Huang
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Jing Li
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shilang Zhou
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Jianli Deng
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Shuiyun Qin
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Ting Zhou
- Graduate School Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Fengyun Meng
- Yao College of Medicine Guangxi University of Chinese Medicine Nanning, P. R. China
| | - Weihong Li
- Department of Nursing Guangxi University of Chinese Medicine Nanning, P. R. China
| |
Collapse
|
7
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
8
|
El-Sehrawy AAMA, Rashid TA, Ullah MI, Uthirapathy S, Ganesan S, Singh A, Devi A, Joshi KK, Jasim AS, Kadhim AJ. Cutting edge: ferroptosis in metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis and therapy. Funct Integr Genomics 2025; 25:71. [PMID: 40131513 DOI: 10.1007/s10142-025-01579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Ferroptosis denotes a distinct form of controlled cell death marked by substantial iron buildup and significant lipid peroxidation, playing a crucial role in several disease processes linked to cell death. Given the liver's essential functions in iron and lipid metabolism and its vulnerability to oxidative damage, more research has investigated the correlation between ferroptosis and numerous hepatic diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). NAFLD has arisen as a worldwide public health concern due to elevated morbidity and high death rates. The pathogenesis of MASLD remains incompletely elucidated. Recent data suggests that ferroptosis is crucial in the pathophysiology of MASLD; nevertheless, the specific processes by which ferroptosis influences MASLD remain unclear. The present review summarizes the molecular processes of ferroptosis and its intricate regulatory networks, outlines the differing impacts of ferroptosis at different stages of MASLD, and examines possible approaches targeting ferroptosis for the therapy of MASLD, suggesting a novel approach for its management.
Collapse
Affiliation(s)
| | - Teeba Ammar Rashid
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Ahmed Salman Jasim
- Radiology Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 5100, Babylon, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
9
|
Xin X, Chen C, Xu X, Lv S, Sun Q, An Z, Chen Y, Xiong Z, Hu Y, Feng Q. Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9. Redox Biol 2025; 80:103499. [PMID: 39879738 PMCID: PMC11815699 DOI: 10.1016/j.redox.2025.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Caffeine (CAFF) is abundant in black coffee. As one of the most widely consumed beverages globally, coffee has been the focus of increasing clinical and basic research, particularly regarding its benefits in alleviating metabolic dysfunction-associated steatotic liver disease (MASLD). However, the therapeutic effects of CAFF on metabolic-associated steatohepatitis (MASH) and the underlying mechanisms remain unclear. In this study, we demonstrated that CAFF potently reduced hepatic steatosis, inflammation, and early-stage liver fibrosis in MASH mice induced by prolonged (36 weeks) high-fat high-carbohydrate (HFHC) diets and high-fat diets combined with carbon tetrachloride (CCl4) injections. By using multiple target-identifying strategies, including surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay, we identified dual-specificity phosphatase 9 (Dusp9) as a key therapeutic target, which was diminished by HFHC but restored with CAFF treatment. Dusp9 knockdown in vivo and in vitro exacerbated glycolipid metabolism disorders and stunningly counteracted the systemic therapeutic effects of CAFF in the MASH models. In addition, CAFF inactivated the ASK1-p38/JNK, a downstream signaling pathway of Dusp9, which regulates inflammation and apoptosis. Our study highlights the multifaceted benefits of CAFF in treating MASH by rescuing hepatic Dusp9 expression, thereby reversing glycolipid metabolism disorders, liver inflammation, and fibrosis. These findings provide experimental evidence supporting the clinical and daily use of CAFF and black coffee in managing MASH patients.
Collapse
Affiliation(s)
- Xin Xin
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Cheng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Sheng Lv
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Qinmei Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ziming An
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, USA
| | - Zhekun Xiong
- Department of Spleen, Stomach and Hepatobiliary, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China.
| | - Qin Feng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Zou L, Zhang T, Yang C, Liu W, Fahira A, Yang D, Zheng B, Yao X, Liu Y, Huang Z. Downregulation of SLC7A11 by Bis(4-Hydroxy-3,5-Dimethylphenyl) Sulfone Induces Ferroptosis in Hepatocellular Carcinoma Cell. Mol Carcinog 2025; 64:580-596. [PMID: 39763283 DOI: 10.1002/mc.23874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 02/13/2025]
Abstract
The progression of tumors has been demonstrated to have a strong correlation with ferroptosis. Bis(4-hydroxy-3,5-dimethylphenyl) sulfone (TMBPS) has been shown to effectively inhibit the proliferation of hepatocellular carcinoma (HCC), but its underlying mechanism is not clear. In this study, ferrostatin-1 (Fer-1) was employed to explore whether the death of HCC cells caused by TMBPS is related to ferroptosis. The intracellular lipid peroxides, Fe2+, malondialdehyde (MDA), GSH/GSSG, mitochondrial morphology, and potential of HCC cells were detected after TMBPS treatment. The target of TMBPS was predicted by the molecular docking approach and verified via quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and cellular heat transfer assay (CETSA). Our results revealed that Fer-1 effectively reversed the cell death induced by TMBPS in HCC cells. Treatment with TMBPS induced typical ferroptosis features, including increased levels of intracellular lipid peroxides, Fe2+, and MDA, along with a decreased GSSH/GSH ratio and mitochondrial potential. These effects were reversed by overexpressing SLC7A11. These findings suggest that the cell death triggered by TMBPS in HCC cells is linked to ferroptosis, potentially mediated through the inhibition of SLC7A11 expression.
Collapse
Affiliation(s)
- Liyi Zou
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Taomin Zhang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Cui Yang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Weijing Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Dongli Yang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Biao Zheng
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Yi Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Dongguan, Guangdong, China
| |
Collapse
|
11
|
Chen J, Yuan M, Wang J. Research progress of cysteine transporter SLC7A11 in endocrine and metabolic diseases. Mol Biol Rep 2025; 52:185. [PMID: 39899147 DOI: 10.1007/s11033-024-10193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
SLC7A11, often called xCT, belongs to the SLC family of transporters, which mediates the cellular influx of cystine and the efflux of glutamate. These transport processes are crucial for synthesizing GSH, enhancing the cell's ability to mitigate oxidative stress (OS). Emerging studies highlight the pivotal role of OS in triggering and exacerbating various metabolic and endocrine disorders, underlining the critical importance of regulating SLC7A11 expression levels. This study reviews the diverse roles of SLC7A11 in endocrine and metabolic diseases, examining its relationship with the metabolism of three key nutrients: proteins and amino acids, carbohydrates, and lipids. Additionally, the involvement of SLC7A11 in the onset and development of various common endocrine and metabolic disorders is analyzed. Additionally, it provides an overview of the current clinical and experimental use of SLC7A11 inhibitors and agonists. This review aims to offer insightful perspectives into the involvement of SLC7A11 in endocrine and metabolic pathologies and to foster the development of innovative therapeutic strategies that target SLC7A11.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Endocrinology and Metabolic Disease, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Mengzhu Yuan
- Department of Endocrinology and Metabolic Disease, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jianping Wang
- Department of Endocrinology and Metabolic Disease, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
12
|
Fan X, Liu S, Yu J, Hua J, Feng Y, Wang Z, Shen Y, Lan W, Wang J. Puerarin Ameliorates the Ferroptosis in Diabetic Liver Injure Through the JAK2/STAT3 Pathway Inhibition Based on Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2025; 19:737-757. [PMID: 39911447 PMCID: PMC11796443 DOI: 10.2147/dddt.s487496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
Background Diabetic liver injury (DLI) is a common complication of diabetes mellitus (DM), which seriously endangers the health of diabetic patients. Puerarin, the main active component of Pueraria lobata, has shown positive effects in lowering blood glucose and lipids, resisting oxidative stress, and protecting the liver. However, the mechanism of protective effect of Puerarin on DLI remains unclear. Methods Various databases were used to screen for targets of Puerarin, ferroptosis and DLI. Protein-protein interaction (PPI) network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used to predict key targets and pathways. Molecular docking was used to predict the interactions between Puerarin and core targets. KK/Upj-Ay/J (KKAy) mice and high glucose (HG)-induced AML12 cells were used to study the protective effect of Puerarin on DLI. The molecular mechanisms by which Puerarin acts were further verified by in vivo and in vitro experiments. Results KEGG analysis indicated that the JAK/STAT pathway might be related to the anti-DLI effect of Puerarin. Molecular docking revealed that Puerarin has good affinity for JAK2 and STAT3. In vivo, Puerarin (80 mg/kg) reduced body weight, blood glucose, blood lipids and liver function in KKAy mice fed a high-sugar, high-fat diet. Puerarin also ameliorated hepatic pathological changes and inflammatory responses, and attenuated oxidative stress and iron overload in KKAy mice. Western blotting results showed that Puerarin could regulate the expression of proteins related to JAK2/STAT3 pathway and ferroptosis pathway. In vitro, Puerarin (25, 50, 100 μM) increased cell viability and decreased steatosis and liver function indexes in AML12 cells induced by HG (30 mm) to varying degrees. More importantly, AG490 blocker experiments showed that the regulation of ferroptosis process by Puerarin was dependent on the JAK2/STAT3 pathway. Conclusion In conclusion, this study revealed Puerarin may regulate the ferroptosis process by inhibiting the JAK2/STAT3 pathway for the treatment of DLI.
Collapse
Affiliation(s)
- Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuangqiao Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jing Yu
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jian Hua
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yingtong Feng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yiwei Shen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wei Lan
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jingxia Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Yang T, Yu H, Xie Z. Curcumin-induced exosomal FTO from bone marrow stem cells alleviates sepsis-associated acute kidney injury by modulating the m6A methylation of OXSR1. Kaohsiung J Med Sci 2025; 41:e12923. [PMID: 39739936 PMCID: PMC11827542 DOI: 10.1002/kjm2.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXOCurcumin or BMSCs-EXOControl) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells. Cell proliferation and apoptosis were determined by cell counting kit 8 (CCK8) assay, 5-ethynyl-2-deoxyuridine (EdU) assay, and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was used for examining inflammatory factors. The levels of SOD, MDA, and ROS were tested to assess oxidative stress. The levels of fat mass and obesity-associated protein (FTO) and oxidative stress responsive 1 (OXSR1) were detected by quantitative real-time PCR and western blot. Methylated RNA immunoprecipitation (MeRIP) assay and RNA immunoprecipitation (RIP) assay were used for measuring the interaction between FTO and OXSR1. BMSCs-EXOCurcumin treatment could inhibit LPS-induced HK2 cell apoptosis, inflammation, and oxidative stress. FTO was downregulated in SA-AKI patients and LPS-induced HK2 cells, while was upregulated in BMSCs-EXOCurcumin. Exosomal FTO from curcumin-induced BMSCs suppressed apoptosis, inflammation, and oxidative stress in LPS-induced HK2 cells. FTO decreased OXSR1 expression through m6A modification, and the inhibitory effect of FTO on LPS-induced HK2 cell injury could be eliminated by OXSR1 overexpression. In animal experiments, BMSCs-EXOCurcumin alleviated kidney injury in SA-AKI mice models by regulating FTO/OXSR1 axis. In conclusion, exosomal FTO from curcumin-induced BMSCs reduced OXSR1 expression to alleviate LPS-induced HK2 cell injury and improve kidney function in CLP-induced mice models, providing a new target for SA-AKI.
Collapse
Affiliation(s)
- Ting Yang
- Department of Emergency MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hui Yu
- Department of Emergency MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Zheng Xie
- Department of Emergency MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| |
Collapse
|
14
|
Tian HY, Yu DJ, Xie T, Xu MX, Wang YH, Sun XL, Zhou XM, Han YX, Liao QQ, Zhao YJ, Liao J, El-Kassas M, Sun XD, Zhang YY. Cordycepin alleviates metabolic dysfunction-associated liver disease by restoring mitochondrial homeostasis and reducing oxidative stress via Parkin-mediated mitophagy. Biochem Pharmacol 2025; 232:116750. [PMID: 39793718 DOI: 10.1016/j.bcp.2025.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/01/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) keeps rising with only a few drugs available. The present study aims to investigate the effects and mechanisms of cordycepin on MASLD. Male C57BL/6 mice were induced with a 90-day high-fat diet (HFD) and intraperitoneal administration with streptozotocin to establish MASLD murine model. Then they were randomly divided into the HFD and cordycepin groups (15, 30, 45 mg/kg). Cordycepin was orally given for 30 days. Serum total cholesterol (TC), triacylglyceride (TG), and aspartate aminotransferase (AST) levels were measured. L02 cells were induced by oleate acid (OA) or lipopolysaccharides (LPS), and treated with cordycepin or combined with inhibitors including chloroquine, 3-Methyladenine, and compound C. Atg7 and Parkin were knocked down in L02 cells using siRNA. Oil Red O and Nile Red staining for measuring lipid deposition. Mitochondria were visualized by transfection with mCherry-TOMM20-N10. Quantitative real-time PCR, Western blotting, and immunofluorescence staining were used to determine expressions of key molecules in inflammation, lipid metabolism, mitochondria homeostasis, and oxidative stress. Cordycepin significantly mitigated lipid deposition and ballooning in the livers of MASLD mice. Serum TC, TG, and AST levels were decreased by cordycepin. Cordycepin alleviated OA-induced lipid deposition and LPS-induced inflammation in L02 cells, attenuated oxidative stress, promoted autophagy, and maintained the autophagic flux by activating AMP-activated protein kinase (AMPK). Cordycepin reduced the accumulation of impaired mitochondria by enhancing Parkin-dependent mitophagy and promoting mitochondrial biogenesis. Cordycepin alleviates MASLD by restoring mitochondrial homeostasis and reducing oxidative stress via activating the Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Hai-Ying Tian
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Dao-Jiang Yu
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Teng Xie
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meng-Xia Xu
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Hao Wang
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xi-Lu Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Meng Zhou
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying-Xuan Han
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Jie Zhao
- Medical College, Tibet University, Lhasa 850000, China
| | - Juan Liao
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt; Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA), Cairo, Egypt
| | - Xiao-Dong Sun
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Medical College, Tibet University, Lhasa 850000, China.
| | - Yuan-Yuan Zhang
- West China School of Pharmacy, West China School of Basic Medical Sciences & Forensic Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China.
| |
Collapse
|
15
|
Liu M, Li Z, Li J, Yan G, Liu C, Yin Q, Liu Y, Xu X. Chitosan oligosaccharide alleviates DON-induced liver injury via suppressing ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117530. [PMID: 39674026 DOI: 10.1016/j.ecoenv.2024.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Chitosan oligosaccharide (COS), a water-soluble derivative of chitin, has been recognized for its diverse biological properties. Deoxynivalenol (DON) is a prevalent mycotoxin, causing extreme liver damage. However, the mechanism whereby COS alleviates DON-induced liver injury remains unclear. In the present study, C57BL/6 mice were randomly divided into four groups: control (CON), DON (1.0 mg/d/kg BW DON), COS (200 mg/d/kg BW COS), and COS+DON (200 mg/d/kg BW COS + 1.0 mg/d/kg BW DON), with a period of 28 days. The results indicated that COS effectively reversed DON-induced weight loss, elevated liver index, and liver hemorrhage and swelling in mice. Moreover, COS significantly reduced liver reactive oxygen species (ROS) levels, malondialdehyde (MDA) content, and lactate dehydrogenase (LDH) release in DON-exposed mice, while restoring the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC). Further investigations revealed that COS modulated the expressions of pro-inflammatory cytokines and anti-apoptotic proteins through stimulation of the Nrf2/HO-1 signaling pathway and suppression of the NF-κB signaling pathway. Additionally, COS inhibited ferroptosis by modulating the SLC7A11/GSH/GPX4 pathway and the expression of FTH1 and FLC proteins, thereby reducing lipid peroxidation accumulation and iron overload. In summary, this research showed that COS mitigated DON-induced liver injury in mice by alleviating DON-induced oxidative stress, inflammation, apoptosis, and ferroptosis via modulating the Nrf2/HO-1/NF-κB and GPX4 signaling pathways. These results offer a theoretical basis for the development and application of COS as a novel liver protectant and propose innovative therapeutic strategies for combating DON-induced liver damage.
Collapse
Affiliation(s)
- Mengjie Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenlin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Guorong Yan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
16
|
Fan Y, Ren Y, Deng L, Lv D, Chen J, Ling Y, Tu J, Xu X, Wang D, Cai Z. Testosterone deficiency aggravates diet-induced non-alcoholic fatty liver disease by inducing hepatocyte ferroptosis via targeting BMAL1 in mice. Int Immunopharmacol 2025; 144:113641. [PMID: 39579542 DOI: 10.1016/j.intimp.2024.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Testosterone deficiency is linked to an increased prevalence of non-alcoholic fatty liver disease (NAFLD), although the mechanisms underlying this association are not fully understood. Ferroptosis, a regulated cell death pathway driven by iron-dependent lipid peroxidation, has been suggested to play a role in NAFLD pathogenesis. Since testosterone deficiency is associated with lipid disorders and iron deposition, we hepothesize that ferroptosis may be involved in the pathogenesis of diet-induced NAFLD exacerbated by testosterone deficiency. METHODS Apolipoprotein E (APOE-/-) mice were subjected to sham surgery or bilateral castration and subsequently fed a high-fat diet for 16 weeks. Liver gene expression was analyzed using RNA sequencing. Additional assessments included blood analysis, histological staining, measurement of iron and antioxidant enzyme levels, quantitative real-time PCR, Western blotting, and electron microscopy. The effects of testosterone on ferroptosis induced by free fatty acids (FFAs) and Erastin were further investigated in HepG2 cells in vitro. RESULTS Testosterone deficiency resulted in increased hepatic lipid accumulation and macrovesicular steatosis in high-fat diet-fed APOE-/- mice, accompanied by hepatic inflammation, fibrosis, and elevated liver enzyme levels. Transcriptomic analysis revealed that testosterone deficiency affects ferroptosis and circadian rhythm-related signaling pathways. Castrated APOE-/- mice exhibited significantly higher hepatic iron deposition, lipid peroxidation, and expression of key ferroptosis-related proteins, along with decreased Brain and muscle ARNT-like gene 1 (BMAL1) protein expression. In vitro, testosterone treatment reduced lipid and iron accumulation and lipid peroxidation in HepG2 cells subjected to FFAs and Erastin. Moreover, BMAL1 knockdown negated the protective effects of testosterone against ferroptosis in hepatocytes. CONCLUSION Our study demonstrated that testosterone deficiency exacerbates NAFLD induced by a high-fat diet by promoting hepatocyte ferroptosis through modulation of the circadian protein BMAL1.
Collapse
Affiliation(s)
- Yingying Fan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yujie Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liqun Deng
- Laboratory Animal Resources Center, Westlake University, Hangzhou, China, 310053
| | - Dongying Lv
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiayan Chen
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yun Ling
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoping Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dejun Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhaowei Cai
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Xiao Y, Jiang T, Qi X, Zhou J, Pan T, Liao Q, Liu S, Zhang H, Wang J, Yang X, Yu L, Liang Y, Liang X, Batsaikhan B, Damba T, Batchuluun K, Liang Y, Zhang Y, Li Y, Zhou L. PROTAC-mediated FTO protein degradation effectively alleviates diet-induced obesity and hepatic steatosis. Int J Biol Macromol 2025; 285:138292. [PMID: 39631579 DOI: 10.1016/j.ijbiomac.2024.138292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Demethylation of N6-Methyladenosine (m6A) by fat mass and obesity-associated protein (FTO) occurs in the development of obesity and fatty liver disease. In this study, we synthesized FTO-degradation targeted chimera (FTO-DT), which exhibited excellent lipid-lowering activity at low concentration. At a concentration of 0.33 nM, the FTO-DT continuously and efficiently degraded FTO protein and reduced fat deposition. The FTO-DT improved energy metabolism and oxidative stress by increasing intracellular m6A levels, and further reduced fat deposition in hepatocytes, adipocytes, and mice fed a high-fat diet. The findings support the potential of FTO degradation by FTO-DT as a therapy for obesity and metabolic-associated fatty liver disease (MAFLD). This study provides a theoretical basis for the application of PROTACs in the treatment of metabolic disease and describes a novel approach for the development of drugs targeting metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinyi Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinfeng Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Tingli Pan
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qichao Liao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hao Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiale Wang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinzhen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yuehui Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xue Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Batbold Batsaikhan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia; Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Khongorzul Batchuluun
- Center for Research and Development of Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia; Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ying Zhang
- School of Life Sciences, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
18
|
Li Q, Huang YH, Li QQ, Jia JN, Liu ZQ, Zhou HH, Zhou XY, Jin WL, Mao XY. Sodium valproate ablates ferroptosis in kainic acid-induced epileptic seizure via suppressing lysyl oxidase. Neuroreport 2024; 35:1090-1097. [PMID: 39423328 DOI: 10.1097/wnr.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The objective of this study is to explore whether sodium valproate (VPA) alleviates epileptic seizures via suppressing lysyl oxidase (Lox)-mediated ferroptosis. Epileptic seizure mouse model was prepared via intrahippocampal injection of kainic acid (250 ng/μl). After treatment with kainic acid, VPA was injected intraperitoneally by the dose of 250 mg/kg twice daily for 4 days. Ferroptosis-associated indices including lipid peroxides (LPO) level and Ptgs2 mRNA in hippocampal tissue samples were detected. Additionally, effects of VPA on Lox mRNA and enzymatic activity were assessed by quantitative real-time PCR and a commercial kit, respectively. Neuronal survival was assessed by Nissl staining. In kainic acid-induced epileptic seizure mouse model, VPA significantly suppressed LPO level and Ptgs2 mRNA and the suppression of ferroptosis was positively correlated with its anti-seizure effect. Lox mRNA and enzymatic activity were also found to decrease in hippocampus of epileptic seizure mice after VPA treatment. Furthermore, overexpression of Lox via adeno-associated virus infection remarkably abrogated the inhibitory effect of VPA on ferroptosis and neuronal impairment together with its anti-seizure effect. VPA suppresses Lox-mediated ferroptosis process, which can provide the explanation for its anti-seizure property.
Collapse
Affiliation(s)
- Qin Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
- Department of Clinical Trials Center, The Affiliated Hospital of Guizhou Medical University, Guiyang
| | - Yu-Han Huang
- Department of Intensive Care Medicine, Xiangya Hospital Central South University, Changsha
| | - Qiu-Qi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Ji-Ning Jia
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Department of Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University
- Institute of Clinical Pharmacology and Department of Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha
| |
Collapse
|
19
|
Cesarini L, Grignaffini F, Alisi A, Pastore A. Alterations in Glutathione Redox Homeostasis in Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:1461. [PMID: 39765791 PMCID: PMC11672975 DOI: 10.3390/antiox13121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Low molecular weight (LMW) thiols, particularly glutathione, play pathogenic roles in various multiorgan diseases. The liver is central for the production and systemic distribution of LMW thiols; thus, it is particularly susceptible to the imbalance of redox status that may determine increased oxidative stress and trigger the liver damage observed in metabolic dysfunction-associated steatotic liver disease (MASLD) models and humans. Indeed, increased LMW thiols at the cellular and extracellular levels may be associated with the severity of MASLD. Here, we present a systematic literature review of recent studies assessing the levels of LMW thiols in MASLD in in vivo and in vitro models and human subjects. Based on the PRISMA 2020 criteria, a search was conducted using PubMed and Scopus by applying inclusion/exclusion filters. The initial search returned 1012 documents, from which 165 eligible studies were selected, further described, and qualitatively analysed. Of these studies, most focused on animal and cellular models, while a minority used human fluids. The analysis of these studies revealed heterogeneity in the methods of sample processing and measurement of LMW thiol levels, which hinder cut-off values for diagnostic use. Standardisation of the analysis and measure of LMW thiol is necessary to facilitate future studies.
Collapse
Affiliation(s)
| | | | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (L.C.); (F.G.); (A.P.)
| | | |
Collapse
|
20
|
Viana AR, Poleze TC, da S Bruckmann F, Bottari NB, Peroza LR, Rosales I, Zago NS, Schetinger MRC, Krause LMF, Rhoden CRB, Mortari SR. Liposome preparation of alpha-arbutin: stability and toxicity assessment using mouse B16F10 melanoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:879-894. [PMID: 39221705 DOI: 10.1080/15287394.2024.2393308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Melanoma is the most aggressive type of skin cancer, with few therapeutic alternatives following metastasis development. In recent years, drug delivery-associated nanotechnology has shown promising targeted results with diminished adverse effects compared to conventional treatments. This study aimed to (1) examine the effects of plant-derived α-arbutin, a natural compound and (2) compare these findings with bioactively developed liposomes containing α-arbutin utilizing the B16-F10 murine melanoma cell line as a model. Liposomes were obtained through reversed-phase evaporation by applying a spray dryer to assess their stability. The following biologic assays were measured cytotoxicity/antiproliferative (MTT, Neutral Red, and dsDNA PicoGreen). In addition, the levels of melanin and purinergic enzymes were also measured. The production of reactive oxygen species (ROS) and nitric oxide (NO) was determined as a measure of oxidative state. Treatment with nano-liposome containing alpha-arbutin induced a significant 68.4% cytotoxicity, similar to the positive control, in the B16-F10 murine melanoma cell line at 72 hr. Further, arbutin and liposomes containing alpha-arbutin increased levels of ROS and nitrite formation at 72 hr at the highest concentration (100 and 300 µg/ml) of treatments. Arbutin and liposomes containing alpha-arbutin reduced melanin levels at all tested concentrations. In addition, arbutin and alpha-arbutin containing liposomes lowered nucleotides (AMP, ADP, and ATP) and nucleoside (adenosine) levels in melanoma cells. Evidence suggests that α-arbutin containing liposome can be considered as an alternative immunosuppressive agent stimulated in melanoma treatment.
Collapse
Affiliation(s)
- Altevir R Viana
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Thatyana C Poleze
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Franciele da S Bruckmann
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Nathieli B Bottari
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luis R Peroza
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Ingrid Rosales
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Natalia S Zago
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| | - Maria R C Schetinger
- Postgraduate Program in Toxicological Biochemistry, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Luciana M F Krause
- Department of Morphology, Federal University of Santa Maria-RS, Santa Maria, Brazil
| | - Cristiano R B Rhoden
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
- Laboratory of Nanostructured Magnetic Materials - LAMMAN, Franciscan University, Santa Maria, RS, Brazil
| | - Sergio R Mortari
- Postgraduate Program in Nanosciences, Franciscan University-UFN,Santa Maria, RS, Brazil
| |
Collapse
|
21
|
Qiu J, Le Y, Liu N, Chen L, Jiang Y, Wang Y, Fan X, Rong X, Yu Z, Li S, Dou X. Nuciferine Alleviates High-Fat Diet- and ApoE -/--Induced Hepatic Steatosis and Ferroptosis in NAFLD Mice via the PPARα Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24417-24431. [PMID: 39445611 DOI: 10.1021/acs.jafc.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) causes significant global mortality and healthcare costs with no recommended pharmacological intervention for clinical management. Nuciferine (Nuc) is an alkaloid with aromatic rings, abundantly found in Nelumbo nucifera Gaertn. In this study, we explored the protective mechanisms of Nuc against hepatic steatosis and ferroptosis in NAFLD. High-fat diet (HFD) and healthy male ApoE-/- mice were used to induce NAFLD and a hypercholesterolemia model. Nuc was administered to the mice for four consecutive weeks from the ninth week. Various assessments, including histopathology, RNA sequencing, lipid metabolism, and ferroptosis-related protein expression, showed that Nuc alleviated hepatic steatosis and ferroptosis. We further showed that Nuc improves fatty acid accumulation and ferroptosis through the PPARα signaling pathway in mice and RSL3-treated AML-12 cells. The PPARα inhibitor GW6471 blocked Nuc's protective effects, leading to excess accumulation of iron ions. Thus, Nuc may be a potential therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
- School of Public Health, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Nian Liu
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Lin Chen
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Shangcheng District, Hangzhou, Zhejiang 310020, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, No. 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Xianglu Rong
- Chinese Medicine Institute, Guangdong Pharmaceutical University, No. 280 Outer Ring East Road, University Town, Guangzhou, Guangdong 510006, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong 999077, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
22
|
Qu T, Sun Y, Zhao J, Liu N, Yang J, Lyu D, Huang W, Zhan W, Li T, Yao Z, Yan R, Zhang H, Hong H, Shi L, Meng X, Yin B. Scoulerine: A natural isoquinoline alkaloid targeting SLC6A3 to treat RCC. Biomed Pharmacother 2024; 180:117524. [PMID: 39395255 DOI: 10.1016/j.biopha.2024.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Scoulerine, an isoquinoline alkaloid derived from the corydalis plant, exhibits diverse therapeutic properties against tumors, Alzheimer's disease, and inflammation. This research delves into the pharmacological impact and underlying mechanism of scoulerine on renal cell carcinoma (RCC). Our findings suggest that Scoulerine displays promise as a potential therapeutic agent for RCC, demonstrating notable inhibitory effects in both in vivo and in vitro models. In addition, scoulerine inhibited the viability of 769-P and 786-O cell lines in a time-dependent and dose-dependent manner, and promoted the level of apoptosis associated with B-cell lymphoma-2 associated X protein (Bax). Moreover, the administration of scoulerine resulted in a significant suppression of the mitogen activated protein kinase (MAPK) signaling pathway. Subsequently, utilizing bioinformatics and spatial transcriptomic databases, we identified solute carrier family 6 Member 3 (SLC6A3) as the most promising target of scoulerine. Through experimental validation, we confirmed the functional and therapeutic relevance of SLC6A3 in scoulerine-mediated treatment of RCC. The results of our study indicate a significant affinity between scoulerine and SLC6A3, with competitive inhibition of this interaction leading to a reduction in the inhibitory impact of scoulerine on RCC cell viability. In conclusion, our findings suggest that scoulerine may induce apoptosis in RCC by targeting SLC6A3 and inhibiting the activation of the MAPK signaling pathway, thereby positioning it as a promising natural compound for potential future RCC treatment.
Collapse
Affiliation(s)
- Tianrui Qu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yu Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Jianli Yang
- Department of Laboratory Animals, China Medical University, Shenyang, Liaoning 110122, China
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Wenjie Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Weizhen Zhan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Tao Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zichuan Yao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rongbo Yan
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Hong Hong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, China.
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
23
|
Cao J, Su Z, Zhang B, Yang J, Wang Y, Huang L, Cao G, Xie H, Zhong X, Zhu H, Jiang R, Li T, Xie Z, Lu W. Deciphering heart failure: an integrated proteomic and transcriptomic approach with experimental validation. Funct Integr Genomics 2024; 24:196. [PMID: 39441209 DOI: 10.1007/s10142-024-01475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
This study analyzed transcriptomic and proteomic data to identify molecular changes during heart failure (HF). Additionally,we embarked on an exploration of the prospect of therapeutic intervention through the manipulation of proteins implicated in ferroptosis. Three publicly available microarray datasets (GSE135055, GSE147236, GSE161472) profiling left ventricular samples from HF patients and healthy controls were obtained. Differentially expressed genes were identified in each dataset and cross-analyzed to determine shared gene signatures. Enrichment analysis of Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and gene set enrichment analysis were performed. Differentially expressed proteins were obtained from published proteomic studies and integrated with the transcriptomic results. To validate findings, a HF mouse model was generated and ferroptosis-related proteins were evaluated. Additionally, the effect of suppression of ferroptosis on hypoxia-induced ischemia model in HL-1 cardiomyocytes was assessed by knocking down Acyl-CoA synthetase long-chain family member 4 (ACSL4) using small interfering RNA (siRNA).Cross-analysis of differentially expressed genes (DEGs) in the GSE135055, GSE147236 and GSE161472 datasets revealed 224 up-regulated and 187 down-regulated potential genes which showed high enrichment in immune, inflammatory and metabolic pathways. Notably, four proteins, among them ACSL4, displayed consistent alterations at both the transcriptional and protein levels. In the HF mouse model, ACSL4 exhibited an elevation, whereas negative regulators of ferroptosis witnessed a decrement. Subsequently, knockdown of ACSL4 in a hypoxia-induced ischemic HL-1 cardiomyocyte cell model upregulated the expression of ferroptosis inhibitory protein and decreased the levels of reactive oxygen species (ROS), malondialdehyde (MDA)., and free iron and increased cell viability. Comprehensive multi-omics analysis revealed that the expression of the molecular target ACSL4 was increased in HF. Targeting ACSL4 to inhibit ferroptosis may represent a novel therapeutic strategy for HF treatment.
Collapse
Affiliation(s)
- Jun Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Zhaohai Su
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Bilong Zhang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Jiangyong Yang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Yueting Wang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Ling Huang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Gang Cao
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Hui Xie
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Xiutong Zhong
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Hengqing Zhu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Rengui Jiang
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Zheng Xie
- Department of General Practice, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China.
| | - Weiling Lu
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital), 49 Dagong Road, 341000, Ganzhou, China.
| |
Collapse
|
24
|
Yan X, Ma L, Chen X, Ren J, Zhai Y, Wu T, Song Y, Li X, Guo Y. Ferroptosis promotes valproate-induced liver steatosis in vitro and in vivo. Food Chem Toxicol 2024; 192:114926. [PMID: 39147356 DOI: 10.1016/j.fct.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Valproic acid (VPA), a common antiepileptic drug, can cause liver steatosis after long-term therapy. However, an impact of ferroptosis on VPA-induced liver steatosis has not been investigated. In the study, treatment with VPA promoted ferroptosis in the livers of mice by elevating ferrous iron (Fe2+) levels derived from the increased absorption by transferrin receptor 1 (TFR1) and the decreased storage by ferritin (FTH1 and FTL), disrupting the redox balance via reduced levels of solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPX4), and augmenting acyl-CoA synthetase long-chain family member 4 (ACSL4) -mediated lipid peroxide generation, accompanied by enhanced liver steatosis. All the changes were significantly reversed by co-treatment with an iron-chelating agent, deferoxamine mesylate (DFO) and a ferroptosis inhibitor, ferrostatin-1 (Fer-1). Similarly, the increases in Fe2+, TFR1, and ACSL4 levels, as well as the decreases in GSH, GPX4, and ferroportin (FPN) levels, were detected in VPA-treated HepG2 cells. These changes were also attenuated after co-treatment with Fer-1. It demonstrates that ferroptosis promotes VPA-induced liver steatosis through iron overload, inhibition of the GSH-GPX4 axis, and upregulation of ACSL4. It offers a potential therapy targeting ferroptosis for patients with liver steatosis following VPA treatment.
Collapse
Affiliation(s)
- Xinrui Yan
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Linfeng Ma
- Department of Medicine, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, 264199, China; Department of Clinical Laboratory, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264099, China
| | - Xue Chen
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Jing Ren
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yu Zhai
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Ting Wu
- School of Life Science, Jilin University, Changchun, 130012, China
| | - Yu Song
- Yazhou Bay Innovation Institute, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xiaojiao Li
- Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yingjie Guo
- School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
25
|
Li S, Zhang G, Hu J, Tian Y, Fu X. Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics 2024; 14:5826-5852. [PMID: 39346540 PMCID: PMC11426249 DOI: 10.7150/thno.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, is emerging as a crucial regulator of human physiology and pathology. Increasing evidence showcases a reciprocal relationship between ferroptosis and dysregulated metabolism, propagating a pathogenic vicious cycle that exacerbates pathology and human diseases, particularly metabolic disorders. Consequently, there is a rapidly growing interest in developing ferroptosis-based therapeutics. Therefore, a comprehensive understanding of the intricate interplay between ferroptosis and metabolism could provide an invaluable resource for mechanistic insight and therapeutic development. In this review, we summarize the important metabolic substances and associated pathways in ferroptosis initiation and progression, outline the cascade responses of ferroptosis in disease development, overview the roles and mechanisms of ferroptosis in metabolic diseases, introduce the methods for ferroptosis detection, and discuss the therapeutic perspectives of ferroptosis, which collectively aim to illustrate a comprehensive view of ferroptosis in basic, translational, and clinical science.
Collapse
Affiliation(s)
- Shuangwen Li
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
26
|
Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH, Zhang PP, Long Y, Xu BT, Jiang ZZ. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov 2024; 10:399. [PMID: 39244571 PMCID: PMC11380694 DOI: 10.1038/s41420-024-02168-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a group of chronic liver disease which ranges from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and is characterized by lipid accumulation, inflammation activation, fibrosis, and cell death. To date, a number of preclinical studies or clinical trials associated with therapies targeting fatty acid metabolism, inflammatory factors and liver fibrosis are performed to develop effective drugs for NAFLD/NASH. However, few therapies are cell death signaling-targeted even though the various cell death modes are present throughout the progression of NAFLD/NASH. Here we summarize the four types of cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis in the NAFLD and the underlying molecular mechanisms by which the pathogenic factors such as free fatty acid and LPS induce cell death in the pathogenesis of NAFLD. In addition, we also review the effects of cell death-targeted therapies on NAFLD. In summary, our review provides comprehensive insight into the roles of various cell death modes in the progression of NAFLD, which we hope will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Hui-Li Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Sheng-Rong Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Qi Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yi-Hang Xing
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Chen-Hao Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Ping-Ping Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, Sichuan, PR China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China
| | - Bu-Tuo Xu
- The People's Hospital of Pingyang, Wenzhou, Zhejiang, PR China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, PR China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, PR China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
27
|
Guo X, Xu J, Lu X, Zheng X, Chen X, Sun Z, Shen B, Tang H, Duan Y, Zhou Z, Feng X, Chen Y, Wang J, Pang J, Jiang Q, Huang B, Gu N, Li J. Chenodeoxycholic Acid-Modified Polyethyleneimine Nano-Composites Deliver Low-Density Lipoprotein Receptor Genes for Lipid-Lowering Therapy by Targeting the Liver. Adv Healthc Mater 2024; 13:e2400254. [PMID: 38857027 DOI: 10.1002/adhm.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.
Collapse
Affiliation(s)
- Xiaotang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jiming Xu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaoyan Zheng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
| | - Zhenning Sun
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Beilei Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Hao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Zhengwei Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xu Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Junjie Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Bin Huang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| |
Collapse
|
28
|
Sui Y, Geng X, Wang Z, Zhang J, Yang Y, Meng Z. Targeting the regulation of iron homeostasis as a potential therapeutic strategy for nonalcoholic fatty liver disease. Metabolism 2024; 157:155953. [PMID: 38885833 DOI: 10.1016/j.metabol.2024.155953] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
With aging and the increasing incidence of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. NAFLD mainly includes simple hepatic steatosis, nonalcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma (HCC). An imbalance in hepatic iron homeostasis is usually associated with the progression of NAFLD and induces iron overload, reactive oxygen species (ROS) production, and lipid peroxide accumulation, which leads to ferroptosis. Ferroptosis is a unique type of programmed cell death (PCD) that is characterized by iron dependence, ROS production and lipid peroxidation. The ferroptosis inhibition systems involved in NAFLD include the solute carrier family 7 member 11 (SLC7A11)/glutathione (GSH)/glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10)/nicotinamide adenine dinucleotide phosphate (NADPH) regulatory axes. The main promotion system involved is the acyl-CoA synthetase long-chain family (ACSL4)/arachidonic lipoxygenase 15 (ALOX15) axis. In recent years, an increasing number of studies have focused on the multiple roles of iron homeostasis imbalance and ferroptosis in the progression of NAFLD. This review highlights the latest studies about iron homeostasis imbalance- and ferroptosis-associated NAFLD, mainly including the physiology and pathophysiology of hepatic iron metabolism, hepatic iron homeostasis imbalance during the development of NAFLD, and key regulatory molecules and roles of hepatic ferroptosis in NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Xue Geng
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China
| | - Yanqun Yang
- Shenzhen Hospital, Southern Medical University, Shenzhen 518100, Guangdong, China.
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
29
|
Zha X, Gao Z, Li M, Xia X, Mao Z, Wang S. Insight into the regulatory mechanism of m 6A modification: From MAFLD to hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116966. [PMID: 38906018 DOI: 10.1016/j.biopha.2024.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
In recent years, there has been a significant increase in the incidence of metabolic-associated fatty liver disease (MAFLD), which has been attributed to the increasing prevalence of type 2 diabetes mellitus (T2DM) and obesity. MAFLD affects more than one-third of adults worldwide, making it the most prevalent liver disease globally. Moreover, MAFLD is considered a significant risk factor for hepatocellular carcinoma (HCC), with MAFLD-related HCC cases increasing. Approximately 1 in 6 HCC patients are believed to have MAFLD, and nearly 40 % of these HCC patients do not progress to cirrhosis, indicating direct transformation from MAFLD to HCC. N6-methyladenosine (m6A) is commonly distributed in eukaryotic mRNA and plays a crucial role in normal development and disease progression, particularly in tumors. Numerous studies have highlighted the close association between abnormal m6A modification and cellular metabolic alterations, underscoring its importance in the onset and progression of MAFLD. However, the specific impact of m6A modification on the progression of MAFLD to HCC remains unclear. Can targeting m6A effectively halt the progression of MAFLD-related HCC? In this review, we investigated the pivotal role of abnormal m6A modification in the transition from MAFLD to HCC, explored the potential of m6A modification as a therapeutic target for MAFLD-related HCC, and proposed possible directions for future investigations.
Collapse
Affiliation(s)
- Xuan Zha
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zewei Gao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
30
|
Yu Q, Song L. Unveiling the role of ferroptosis in the progression from NAFLD to NASH: recent advances in mechanistic understanding. Front Endocrinol (Lausanne) 2024; 15:1431652. [PMID: 39036052 PMCID: PMC11260176 DOI: 10.3389/fendo.2024.1431652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent and significant global public health issue. Nonalcoholic steatohepatitis (NASH) represents an advanced stage of NAFLD in terms of pathology. However, the intricate mechanisms underlying the progression from NAFLD to NASH remain elusive. Ferroptosis, characterized by iron-dependent cell death and distinguished from other forms of cell death based on morphological, biochemical, and genetic criteria, has emerged as a potential participant with a pivotal role in driving NAFLD progression. Nevertheless, its precise mechanism remains poorly elucidated. In this review article, we comprehensively summarize the pathogenesis of NAFLD/NASH and ferroptosis while highlighting recent advances in understanding the mechanistic involvement of ferroptosis in NAFLD/NASH.
Collapse
Affiliation(s)
- Qian Yu
- Laboratory Medical Department, Zigong Fourth People’s Hospital, Zigong, China
| | | |
Collapse
|
31
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
32
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|