1
|
Shi L, Wang Y, Li C, Zhang K, Du Q, Zhao M. AddictGene: An integrated knowledge base for differentially expressed genes associated with addictive substance. Comput Struct Biotechnol J 2021; 19:2416-2422. [PMID: 34025933 PMCID: PMC8113760 DOI: 10.1016/j.csbj.2021.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022] Open
Abstract
Addiction, a disorder of maladaptive brain plasticity, is associated with changes in numerous gene expressions. Nowadays, high-throughput sequencing data on addictive substance-induced gene expression have become widely available. A resource for comprehensive annotation of genes that show differential expression in response to commonly abused substances is necessary. So, we developed AddictGene by integrating gene expression, gene-gene interaction, gene-drug interaction and epigenetic regulatory annotation for over 70,156 items of differentially expressed genes associated with 7 commonly abused substances, including alcohol, nicotine, cocaine, morphine, heroin, methamphetamine, and amphetamine, across three species (human, mouse, rat). We also collected 1,141 addiction-related experimentally validated genes by techniques such as RT-PCR, northern blot and in situ hybridization. The easy-to-use web interface of AddictGene (http://159.226.67.237/sun/addictgedb/) allows users to search and browse multidimensional data on DEGs of their interest: 1) detailed gene-specific information extracted from the original studies; 2) basic information about the specific gene extracted from NCBI; 3) SNP associated with substance dependence and other psychiatry disorders; 4) expression alteration of specific gene in other psychiatric disorders; 5) expression patterns of interested gene across 31 primary and 54 secondary human tissues; 6) functional annotation of interested gene; 7) epigenetic regulators involved in the alteration of specific genes, including histone modifications and DNA methylation; 8) protein-protein interaction for functional linkage with interested gene; 9) drug-gene interaction for potential druggability. AddictGene offers a valuable repository for researchers to study the molecular mechanisms underlying addiction, and might provide valuable insights into potential therapies for drug abuse and relapse.
Collapse
Affiliation(s)
- Leisheng Shi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kunlin Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Quansheng Du
- Department of Life Sciences, National Natural Science Foundation of China, Beijing 100085, China
| | - Mei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
Lai CC, Yuan ZF, Chu LY, Chuang KT, Lin HH. Roles of cocaine- and amphetamine-regulated transcript peptide in the rostral ventrolateral medulla in cardiovascular regulation in rats. Brain Res 2019; 1710:117-124. [PMID: 30610873 DOI: 10.1016/j.brainres.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/22/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CARTp) is present in neurons and varicose fibers in the rostral ventrolateral medulla (RVLM) that is crucial in the control of cardiovascular function. Prior research indicated that intracisternal administration of CARTp evokes hypertension and accumulation of Fos in the RVLM. Despite the interaction among CARTp, cardiovascular effect, and the RVLM, no studies have directly examined whether CARTp participates in cardiovascular regulation in the RVLM. The current study directly examined the modulation of blood pressure and baroreflex sensitivity by CARTp in the RVLM in the different strain of rats. Immunohistochemical study showed that CARTp immunoreactive (CART-IR) cell bodies and varicose CART-IR fibers were observed throughout the RVLM in the SD, WKY, and SHRs. Varicose CART-IR nerve fibers were particularly abundant in the WKY and SHRs. Bilateral microinjection of CARTp (30 pmol) into the RVLM caused a significant increase in mean arterial pressure (MAP) in WKY and SHRs. Bilateral microinjection of CARTp antibody (1:5000) into the RVLM displayed a fall in the basal level of the MAP in SHRs but had no effects in WKY rats. In SD rats, bilateral microinjection of CARTp (6, 30 or 60 pmol) into the RVLM did not change the MAP but attenuated phenylephrine-induced bradycardia in a dose-dependent manner. We propose that CARTp acting in the RVLM may involvement in the cardiovascular regulation either by increases in the blood pressure or by decreases in the baroreflex sensitivity in rats. Moreover, endogenous CARTp in the RVLM is associated with the maintenance of basal blood pressure of SHRs.
Collapse
Affiliation(s)
- Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Zung Fan Yuan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ling-Ying Chu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kai-Tung Chuang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hsun-Hsun Lin
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
3
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
4
|
Romeu DDP, Ribeiro LM, Antunes VR. Central action of CART induces neuronal activation in the paraventricular and dorsomedial hypothalamus of diet-induced obese and lean mice. Neurosci Lett 2018; 686:175-180. [DOI: 10.1016/j.neulet.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
5
|
Moiseev KY, Romanova IV, Masliukov AP, Masliukov PM. Development of nNOS-positive preganglionic sympathetic neurons in the rat thoracic spinal cord. Cell Tissue Res 2018; 375:345-357. [PMID: 30267140 DOI: 10.1007/s00441-018-2925-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022]
Abstract
To gain a better understanding of the neuroplasticity of sympathetic neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in sympathetic preganglionic neurons (SPN) in the spinal cord (Th2 segment) of female Wistar rats at different ages (newborn, 10-, 20-, 30-day-old; 2-, 6-month-old; 3-year-old). In all age groups, the majority of nNOS-immunoreactive (IR) neurons was observed in the nucleus intermediolateralis thoracolumbalis pars principalis. In the first month, the proportion of nNOS-IR neurons decreased significantly from 92 ± 3.4% in newborn to 55 ± 4.6% in 1-month-old, while the number of choline acetyltransferase (ChAT)-IR neurons increased from 74 ± 4.2% to 99 ± 0.3% respectively. Decreasing nNOS expression in the first 10 days of life was also confirmed by western blot analysis. Some nNOS-IR SPN also colocalized calbindin (CB) and cocaine and amphetamine-regulated transcript (CART). The percentage of NOS(+)/CB(-) SPN increased from 23 ± 3.6% in 10-day-old to 36 ± 4.2% in 2-month-old rats. Meanwhile, the proportion of NOS(+)/CART(-) neurons decreased from 82 ± 4.7% in newborn to 53 ± 6.1% in 1-month-old rats. The information provided here will also serve as a basis for future studies investigating the mechanisms of autonomic neuron development.
Collapse
Affiliation(s)
- Konstantin Y Moiseev
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000
| | - Irina V Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Petr M Masliukov
- Department of Normal Physiology and Biophysics, Yaroslavl State Medical University, Revoliucionnaya 5, Yaroslavl, Russia, 150000.
| |
Collapse
|
6
|
Chaar LJ, Coelho A, Silva NM, Festuccia WL, Antunes VR. High-fat diet-induced hypertension and autonomic imbalance are associated with an upregulation of CART in the dorsomedial hypothalamus of mice. Physiol Rep 2016; 4:4/11/e12811. [PMID: 27273815 PMCID: PMC4908489 DOI: 10.14814/phy2.12811] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
We evaluated herein whether diet‐induced obesity alters sympathovagal balance, blood pressure, and neuropeptides levels at the hypothalamus and brainstem of mice. Male C57BL6J mice fed with a high‐fat (HFD) or a high‐fat high‐sucrose (HFHSu), or a regular chow diet (C) for 8 weeks were evaluated for metabolic parameters and blood pressure, the latter being performed in conscious freely moving mice. Spectral analysis from the records of systolic blood pressure (SBP) and cardiac pulse intervals (PI) was performed to analyse the autonomic balance in the cardiovascular system. HFD‐fed mice developed two distinct hemodynamic phenotypes: hypertensive mice (HFD‐H) with high systolic and diastolic BP levels and hypertension‐resistant mice (HFD‐R) whose BP levels were similar to C group. Spectral analysis of SBP and PI variabilities indicate that the low‐frequency (LF)/high‐frequency (HF) ratio, which is an index of sympathovagal balance, is higher in HFD‐H compared to HFD‐R. Along with hypertension and higher LF/HF ratio, HFD‐H mice presented increased hypothalamic mRNA levels of cocaine‐ and amphetamine‐regulated transcript (CART), and increased CART‐positive neurones in the dorsomedial hypothalamus (DMH) by high‐fat diet when compared to C group. Despite developing obesity to similar levels than HFD feeding, intake of a HFHSu was not associated with hypertension in mice neither CART levels increase. Collectively, our main findings indicate that high‐fat diet induced‐hypertension and autonomic imbalance are associated to an upregulation of CART levels in the DMH of mice.
Collapse
Affiliation(s)
- Laiali J Chaar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline Coelho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William L Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
8
|
Kasacka I, Piotrowska Z. Evaluation of density and distribution of CART-immunoreactive structures in gastrointestinal tract of hypertensive rats. Biofactors 2012; 38:407-15. [PMID: 22887004 DOI: 10.1002/biof.1037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/14/2012] [Indexed: 11/10/2022]
Abstract
The prevalence of CART (cocaine- and amphetamine-regulated transcript) throughout the organism, multiplicity of functions fulfilled by that peptide, and the collected evidence confirming CART contribution to blood pressure regulation prompted us to undertake the research aiming to identify, localize, and assess changes in CART-immunopositive structures of the gastrointestinal tract (GI tract) of rats with renovascular hypertension. The two-kidney one-clip model of arterial hypertension was used to evaluate the location and density of CART-containing structures in the stomach (cardia, fundus, and pylorus), duodenum, jejunum, ileum, and colon of hypertensive rats. The study was carried out on the GI tract of 20 rats. Ten rats were subjected to the renal artery clipping procedure and after a 6-week period each of them developed stable hypertension. An immunohistochemical localization of CART was performed on paraffin GI tract sections from all the study animals. CART was detected in the extensive population of neurons, particularly within the myenteric plexuses all along the GI tract, and also in neuroendocrine cells, being especially numerous in the stomach and a few in the small intestine. The hypertension significantly increased the density of CART-positive structures in the rat GI tract. The differences between the hypertensive rats and the control animals concerned not only the density of CART-immunoreactive structures but also the staining intensity. As this study provides novel findings, we are planning further molecular examinations to better understand the impact of hypertension on the functioning and activity of CART in the GI tract.
Collapse
Affiliation(s)
- Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Białystok, Poland.
| | | |
Collapse
|
9
|
Region- and sex-specific changes in CART mRNA in rat hypothalamic nuclei induced by forced swim stress. Brain Res 2012; 1479:62-71. [PMID: 22960117 DOI: 10.1016/j.brainres.2012.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 01/22/2023]
Abstract
Cocaine and amphetamine regulated transcript (CART) mRNA and peptides are highly expressed in the paraventricular (PVN), dorsomedial (DMH) and arcuate (ARC) nuclei of the hypothalamus. It has been suggested that these nuclei regulate the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system activity, and feeding behavior. Our previous studies showed that forced swim stress augmented CART peptide expression significantly in whole hypothalamus of male rats. In another study, forced swim stress increased the number of CART-immunoreactive cells in female PVN, whereas no effect was observed in male PVN or in the ARC nucleus of either sex. In the present study, we evaluated the effect of forced swim stress on CART mRNA expression in PVN, DMH and ARC nuclei in both male and female rats. Twelve male (stressed and controls, n=6 each) and 12 female (stressed and controls, n=6 each) Sprague-Dawley rats were used. Control animals were only handled, whereas forced swim stress procedure was applied to the stressed groups. Brains were dissected and brain sections containing PVN, DMH and ARC nuclei were prepared. CART mRNA levels were determined by in situ hybridization. In male rats, forced swim stress upregulated CART mRNA expression in DMH and downregulated it in the ARC. In female rats, forced swim stress increased CART mRNA expression in PVN and DMH, whereas a decrease was observed in the ARC nucleus. Our results show that forced swim stress elicits region- and sex-specific changes in CART mRNA expression in rat hypothalamus that may help in explaining some of the effects of stress.
Collapse
|
10
|
Gaede AH, Inglott MA, Farnham MMJ, Pilowsky PM. Catestatin has an unexpected effect on the intrathecal actions of PACAP dramatically reducing blood pressure. Am J Physiol Regul Integr Comp Physiol 2012; 303:R719-26. [PMID: 22874427 DOI: 10.1152/ajpregu.00202.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study focuses on presympathetic neurons of the rostral ventrolateral medulla (RVLM) that regulate sympathetic vasomotor tone. Many neurotransmitters are colocalized in RVLM neurons and are released under specific conditions to modulate efferent homeostatic responses. Of particular interest here are two peptides colocalized in catecholaminergic RVLM neurons: catestatin and pituitary adenylate cyclase-activating polypeptide (PACAP). Chromogranin A-derived catestatin is a potent endogenous noncompetitive nicotinic and adrenoreceptor antagonist. Catestatin impairs adenylate cyclase and phospholipase C action: mechanisms engaged by PACAP. Although PACAP and catestatin are likely coreleased, the possible effects of this are unknown. We aimed to determine whether catestatin affects the normal sympathoexcitatory but isotensive responses to intrathecal PACAP. Urethane-anesthetized, vagotomized, ventilated Sprague-Dawley rats (n = 22) were given an intrathecal injection of catestatin at different times prior to intrathecal administration of PACAP-38. Arterial pressure, splanchnic sympathetic nerve activity, heart rate, and reflex responses to baroreceptor and chemoreceptor activation were recorded. The key findings of this study are that pretreatment with catestatin time dependently enhances the PACAP-38 effect on mean arterial pressure and enhances sympathetic barosensitivity and chemosensitivity. The time-scale of the effect of catestatin on the response to PACAP-38 strongly suggests that catestatin is either causing changes in gene expression to exert its effects, or modifying intracellular mechanisms normally engaged by PAC(1) receptors. The ability of catestatin pretreatment to enhance barosensitivity and chemosensitivity after PACAP-38 injection supports the hypothesis that catestatin manipulates the intracellular environment within sympathetic neurons in a way that increases responses to PACAP.
Collapse
Affiliation(s)
- Andrea H Gaede
- The Australian School of Advanced Medicine, Macquarie Univ., Macquarie Park, NSW, Australia
| | | | | | | |
Collapse
|
11
|
Stornetta RL. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 2009; 38:222-30. [PMID: 19665549 PMCID: PMC2760958 DOI: 10.1016/j.jchemneu.2009.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/19/2023]
Abstract
This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
12
|
Gao X, Brailoiu GC, Brailoiu E, Dun SL, Yang J, Chang JK, Dun NJ. Copeptin immunoreactivity and calcium mobilisation in hypothalamic neurones of the rat. J Neuroendocrinol 2008; 20:1242-51. [PMID: 18752653 DOI: 10.1111/j.1365-2826.2008.01782.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copeptin is cleaved from the C-terminus of vasopressin (VP) prohormone. Immunohistochemical studies have revealed intense copeptin-immunoreactivity (irCOPT) in neurones of the rat hypothalamic nuclei, including paraventricular, supraoptic, suprachiasmatic, periventricular, and accessory secretory. Varicose cell processes emanated from irCOPT neurones, some of which projected caudally and traversed the internal layer of the median eminence, and terminated in the posterior pituitary. Double-labelling hypothalamic sections with copeptin antiserum and VP or oxytocin antiserum revealed an extensive overlapping of irCOPT and irVP neurones. The biological activity of human synthetic nonglycosylated copeptin or VP was evaluated in vivo and in vitro. Copeptin (1, 10, and 20 nmol/kg) injected i.v. caused no significant changes in the mean arterial pressure (MAP) and heart rate of urethane-anaesthetised rats. VP (0.1 nmol/kg) increased MAP, which was accompanied by a small decrease of the heart rate. The ratiometric fluorescence method was employed to assess changes in intracellular Ca2+ concentrations [Ca2+](i) which served as an index of the biological activity of peptides. VP (1 microM) markedly increased [Ca2+](i) of rat hypothalamic neurones or vascular smooth muscle cells, whereas copeptin (100 nm to 1 microM) caused a low amplitude, sustained increase of [Ca2+](i) in a population of hypothalamic neurones, but not in any of the vascular smooth muscle cells tested. The results obtained demonstrate that copeptin is expressed in VP neurones and that the peptide in the concentrations tested, although causing little or no detectable changes of blood pressure and heart rate in anaesthetised rats nor changes in [Ca2+](i) of cultured aortic smooth muscle cells, increases [Ca2+](i) in a small population (< 2%) of hypothalamic neurones tested, indicating that copeptin is biologically active in mammalian neurones.
Collapse
Affiliation(s)
- X Gao
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Ivanova IV, Schubert R, Duridanova DB, Bolton TB, Lubomirov LT, Gagov HS. Cocaine- and amphetamine-regulated transcript (CART) peptide as anin vivoregulator of cardiac function inRana ridibundafrog. Exp Physiol 2007; 92:1037-46. [PMID: 17720743 DOI: 10.1113/expphysiol.2007.038935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the effect of CART peptide on cardiac performance and on the physiological signalling pathways involved using Rana ridibunda frog heart preparations in vivo. The CART peptide, when injected into the venous sinus, significantly and reproducibly increased the force of frog heart contractions by up to 33.0 +/- 6.4% during the first 15 min after its application but did not influence the chronotropic activity of the frog heart. The positive inotropic effect was entirely blocked by prazosin, pertussis toxin, R(p)-adenosine 3',5'-cyclic monophosphorothioate, autosauvagine 30 or metyrapone, as well as by extirpation of the pituitary gland, functional elimination of the inter-renal glands and long-lasting starvation, and was not observed on isolated heart preparations. Propranolol and double pithing were without significant effect on this phenomenon. It was concluded that: (i) CART peptide, administered to frogs in vivo, increases the force of heart contractions; (ii) this effect of the peptide is exerted via activation of the hypothalamic-pituitary-inter-renal gland axis through a corticoliberin-sensitive mechanism; (iii) CART augments the pumping function of the heart via a corticosteroid-dependent potentiation of myocardial alpha(1)-adrenoreceptors signalling; and (iv) prolonged food deprivation abolishes the positive inotropic effect of CART, suggesting the participation of endogenous CART in the physiological adaptation of the circulatory system to limitations of energy consumption.
Collapse
Affiliation(s)
- Iliyana V Ivanova
- Faculty of Biology, University of Sofia St Kliment Ohridski, 1164 Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
14
|
Dun SL, Brailoiu E, Hsieh WK, Lai CC, Yang J, Chang JK, Dun NJ. Expression and activity of cocaine- and amphetamine-regulated transcript peptide1–39 in the rat. ACTA ACUST UNITED AC 2007; 140:47-54. [PMID: 17187876 DOI: 10.1016/j.regpep.2006.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 10/24/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide consists of a family of peptides. Expression of the peptide fragment CART(1-39) was explored in the rat using an antiserum directed against CART(1-39) of the short form of the human CART prohormone. CART(1-39)-immunoreactivity, herein referred to as irCART, was detected in the rat central and peripheral nervous tissues with a pattern similar to that labeled with the antiserum CART(55-102) or CART(79-102). For example, irCART cells were detected in the hypothalamus, pons, medulla oblongata, spinal cord, and adrenal medulla. In urethane-anesthetized rats, CART(1-39) (0.05 to 2 nmol) by intrathecal injection did not cause a significant change of blood pressure or heart rate, but potentiated the pressor effects of glutamate injected intrathecally. Lastly, the effect of CART(1-39) on intracellular calcium concentrations [Ca2+]i was assessed and compared to that caused by CART(55-102) in cultured rat cortical neurons using the microfluorimetric method. CART(1-39) (100 nM) induced two types of responses in a population of cortical neurons: 1) a slowly rising increase in [Ca2+]i superimposed with oscillations, and 2) a fast increase followed by a sustained increase of [Ca2+]i. CART(55-102) caused only a slowly rising increase in [Ca2+]i in cortical neurons. Our result shows that the expression pattern of irCART in the rat nervous system and the potentiating action of CART(1-39) on glutamate-induced pressor response is similar to that reported for CART(55-102); but the calcium mobilizing action of CART(1-39) differs from that of CART(55-102), suggesting the possible existence of multiple CART receptors coupled to different calcium signaling pathways.
Collapse
Affiliation(s)
- Siok L Dun
- Department of Pharmacology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Dun SL, Brailoiu GC, Yang J, Chang JK, Dun NJ. Cocaine- and amphetamine-regulated transcript peptide and sympatho-adrenal axis. Peptides 2006; 27:1949-55. [PMID: 16707193 DOI: 10.1016/j.peptides.2005.10.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/15/2005] [Indexed: 11/23/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) is constitutively expressed in discrete regions of the mammalian central and peripheral nervous system. Immunohistochemical studies reveal a well-defined network of CART-immunoreactive (irCART) neurons organized along the sympatho-adrenal axis. Sympathetic preganglionic neurons, but not parasympathetic preganglionic neurons, in the lateral horn area are CART-positive; which in turn innervate postganglionic neurons in the paravertebral and prevertebral sympathetic ganglia as well as the adrenal medulla. A population of chromaffin cells in the adrenal medulla is CART-positive; whereas, postganglionic neurons are not. Sympathetic preganglionic neurons themselves are contacted by irCART cell processes arising from neurons in the arcuate nucleus, the retrochiasmatic nucleus and the rostral ventrolateral medulla. Results from several recent studies suggest CART directly excites neurons along the sympathetic neural axis or indirectly by potentiating the action of glutamate on NMDA receptors, as evidenced by an elevation of blood pressure and heart rate following intracerebroventricular, intracisternal or intrathecal administration of the peptide to anesthetized rats or conscious rabbits.
Collapse
Affiliation(s)
- Siok L Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
16
|
Koylu EO, Balkan B, Kuhar MJ, Pogun S. Cocaine and amphetamine regulated transcript (CART) and the stress response. Peptides 2006; 27:1956-69. [PMID: 16822586 DOI: 10.1016/j.peptides.2006.03.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/25/2006] [Indexed: 01/24/2023]
Abstract
CART is expressed abundantly in the hypothalamic paraventricular nucleus and locus coeruleus, major corticotropin releasing factor (CRF) and noradrenaline sources, respectively. There is a bidirectional relation between CART and hypothalamo-pituitary-adrenal axis activity. CART stimulates CRF, adrenocorticotropic hormone and glucocorticoid secretion, whereas CRF and glucocorticoids increase the transcriptional activity of the CART gene; adrenalectomy declines CART expression in the hypothalamus. Stress exposure modulates CART expression in hypothalamus and amygdala in rat brain in a region and sex specific manner. CART may be a mediator peptide in the interaction between stress, drug abuse, and feeding. The review discusses the established role of CART as it relates to the stress response.
Collapse
Affiliation(s)
- Ersin O Koylu
- Ege University Center for Brain Research, Department of Physiology, Bornova, 35100 Izmir, Turkey.
| | | | | | | |
Collapse
|
17
|
Fenwick NM, Martin CL, Llewellyn-Smith IJ. Immunoreactivity for cocaine- and amphetamine-regulated transcript in rat sympathetic preganglionic neurons projecting to sympathetic ganglia and the adrenal medulla. J Comp Neurol 2006; 495:422-33. [PMID: 16485287 DOI: 10.1002/cne.20870] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) contain cocaine- and amphetamine-regulated transcript (CART), but the function of these CART-immunoreactive (IR) neurons is unknown. To test the possibility that CART might mark SPN involved in cardiovascular regulation, we first established whether all CART neurons in the spinal cord were SPN by double-immunofluorescent labelling for CART and choline acetyltransferase (ChAT). All autonomic subnuclei contained SPN immunoreactive for ChAT plus CART. Occasional ChAT-negative, CART-positive neurons occurred adjacent to the IML, indicating the existence of CART-IR interneurons. We then retrogradely labelled SPN with cholera toxin subunit B (CTB) from a variety of targets and used double immunofluorescence to detect CTB and CART. Among SPN in the IML, 43% projecting to the coeliac ganglion, 34% projecting to the major pelvic ganglion, and about 15% projecting to the superior cervical ganglion or adrenal medulla contained CART. CART also occurred in most SPN projecting to the major pelvic ganglion from either the central autonomic area (63%) or the intercalated nucleus (58%). Finally, we used drug-induced hypotension in conscious rats to evoke Fos immunoreactivity in barosensitive SPN and immunostained to reveal Fos and CART. CART immunoreactivity was present in 41% of the Fos-IR barosensitive neurons, which were concentrated in the IML of segments T5-T13. CART-positive, Fos-negative neurons also occurred in the same segments. These results indicate that CART occurs in barosensitive SPN, nonbarosensitive SPN, and interneurons. Thus, CART is not an exclusive marker for cardiovascular SPN but is likely to influence many autonomic activities.
Collapse
Affiliation(s)
- Natalie M Fenwick
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
18
|
Jobst EE, Enriori PJ, Sinnayah P, Cowley MA. Hypothalamic regulatory pathways and potential obesity treatment targets. Endocrine 2006; 29:33-48. [PMID: 16622291 DOI: 10.1385/endo:29:1:33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 11/30/1999] [Accepted: 11/08/2005] [Indexed: 12/25/2022]
Abstract
With an ever-growing population of obese people as well as comorbidities associated with obesity, finding effective weight loss strategies is more imperative than ever. One of the challenges in curbing the obesity crisis is designing successful strategies for long-term weight loss and weight-loss maintenance. Currently, weight-loss strategies include promotion of therapeutic lifestyle changes (diet and exercise), pharmacological therapy, and bariatric surgery. This review focuses on several pharmacological targets that activate central nervous system pathways that normally limit food intake and body weight. Though it is likely that no single therapy will prove effective for everyone, this review considers several recent pre-clinical targets, and several compounds that have been in human clinical trials.
Collapse
Affiliation(s)
- Erin E Jobst
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|