1
|
Harris HA, Friedman C, Starling AP, Dabelea D, Johnson SL, Fuemmeler BF, Jima D, Murphy SK, Hoyo C, Jansen PW, Felix JF, Mulder RH. An epigenome-wide association study of child appetitive traits and DNA methylation. Appetite 2023; 191:107086. [PMID: 37844693 PMCID: PMC11156223 DOI: 10.1016/j.appet.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The etiology of childhood appetitive traits is poorly understood. Early-life epigenetic processes may be involved in the developmental programming of appetite regulation in childhood. One such process is DNA methylation (DNAm), whereby a methyl group is added to a specific part of DNA, where a cytosine base is next to a guanine base, a CpG site. We meta-analyzed epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood appetitive traits. Data were from two independent cohorts: the Generation R Study (n = 1,086, Rotterdam, the Netherlands) and the Healthy Start study (n = 236, Colorado, USA). DNAm at autosomal methylation sites in cord blood was measured using the Illumina Infinium HumanMethylation450 BeadChip. Parents reported on their child's food responsiveness, emotional undereating, satiety responsiveness and food fussiness using the Children's Eating Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to adjust for multiple testing. There were no associations of DNAm and any appetitive trait when examining individual CpG-sites. However, when examining multiple CpGs jointly in so-called differentially methylated regions, we identified 45 associations of DNAm with food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in early childhood and provides preliminary support for early programming of child appetitive traits through DNAm. Investigating differential DNAm associated with appetitive traits could be an important first step in identifying biological pathways underlying the development of these behaviors.
Collapse
Affiliation(s)
- Holly A Harris
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands.
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Susan L Johnson
- Department of Pediatrics, Section of Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Bernard F Fuemmeler
- Virginia Commonwealth University, Massey Comprehensive Cancer Center, Richmond, VA, USA.
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| | - Susan K Murphy
- Duke University Medical Center, Department of Obstetrics and Gynecology, Reproductive Sciences, Durham, NC, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| | - Pauline W Jansen
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Rosa H Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Harris HA, Friedman C, Starling AP, Dabelea D, Johnson SL, Fuemmeler BF, Jima D, Murphy SK, Hoyo C, Jansen PW, Felix JF, Mulder R. An epigenome-wide association study of child appetitive traits and DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549289. [PMID: 37503194 PMCID: PMC10370073 DOI: 10.1101/2023.07.17.549289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Childhood appetitive traits are consistently associated with obesity risk, and yet their etiology is poorly understood. Appetitive traits are complex phenotypes which are hypothesized to be influenced by both genetic and environmental factors, as well as their interactions. Early-life epigenetic processes, such as DNA methylation (DNAm), may be involved in the developmental programming of appetite regulation in childhood. In the current study, we meta-analyzed epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood appetitive traits. Data were from two independent cohorts: the Generation R Study (n=1,086, Rotterdam, the Netherlands) and the Healthy Start study (n=236, Colorado, USA). DNAm at autosomal methylation sites in cord blood was measured using the Illumina Infinium HumanMethylation450 BeadChip. Parents reported on their child's food responsiveness, emotional undereating, satiety responsiveness and food fussiness using the Children's Eating Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to adjust for multiple testing. There were no associations of DNAm and any appetitive trait at the individual site-level. However, at the regional level, we identified 45 associations of DNAm with food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in early childhood and provides preliminary support for early programming of child appetitive traits through DNAm. Investigating differential DNAm associated with appetitive traits could be an important first step in identifying biological pathways underlying the development of these behaviors.
Collapse
Affiliation(s)
- Holly A. Harris
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan L. Johnson
- Department of Pediatrics, Section of Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bernard F. Fuemmeler
- Virginia Commonwealth University, Mase Comprehensive Cancer Center, Richmond, VA, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Susan K. Murphy
- Duke University Medical Center, Department of Obstetrics and Gynecology, Reproductive Sciences, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Pauline W. Jansen
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rosa Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Liu M, Bu G, Wan Y, Zhang J, Mo C, Li J, Wang Y. Evidence for Neuropeptide W Acting as a Physiological Corticotropin-releasing Inhibitory Factor in Male Chickens. Endocrinology 2022; 163:6588001. [PMID: 35583189 PMCID: PMC9170129 DOI: 10.1210/endocr/bqac073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/19/2022]
Abstract
In vertebrates, adrenocorticotropin (ACTH), released by the pituitary gland, is a critical part of the stress axis and stress response. Generally, the biosynthesis and secretion of ACTH are controlled by both hypothalamic stimulatory factors and inhibitory factors [eg, ACTH-releasing inhibitory factor (CRIF)], but the identity of this CRIF remains unrevealed. We characterized the neuropeptide B (NPB)/neuropeptide W (NPW) system in chickens and found that NPW could directly target the pituitary to inhibit growth hormone (GH) and prolactin (PRL) secretion via neuropeptide B/W receptor 2 (NPBWR2), which is completely different from the mechanism in mammals. The present study first carried out a series of assays to investigate the possibility that NPW acts as a physiological CRIF in chickens. The results showed that (1) NPW could inhibit ACTH synthesis and secretion by inhibiting the 3',5'-cyclic adenosine 5'-monophosphate/protein kinase A signaling cascade in vitro and in vivo; (2) NPBWR2 was expressed abundantly in corticotrophs (ACTH-producing cells), which are located mainly in cephalic lobe of chicken pituitary, as demonstrated by single-cell RNA-sequencing, immunofluorescent staining, and fluorescence in situ hybridization; (3) dexamethasone could stimulate pituitary NPBWR2 and hypothalamic NPW expression in chicks, which was accompanied by the decease of POMC messenger RNA levels, as revealed by in vitro and subcutaneous injection assays; and (4) the temporal expression profiles of NPW-NPBWR2 pair in hypothalamus-pituitary axis and POMC in pituitary were almost unanimous in chicken. Collectively, these findings provide comprehensive evidence for the first time that NPW is a potent physiological CRIF in chickens that plays a core role in suppressing the activity of the stress axis.
Collapse
Affiliation(s)
| | | | - Yiping Wan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Correspondence: Yajun Wang, PhD, School of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
4
|
Physical and nutrient stimuli differentially modulate gut motility patterns, gut transit rate, and transcriptome in an agastric fish, the ballan wrasse. PLoS One 2021; 16:e0247076. [PMID: 33571240 PMCID: PMC7877642 DOI: 10.1371/journal.pone.0247076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of nutrient and mechanical sensing on gut motility and intestinal metabolism in lower vertebrates remains largely unknown. Here we present the transcriptome response to luminal stimulation by nutrients and an inert bolus on nutrient response pathways and also the response on gut motility in a stomachless fish with a short digestive tract; the ballan wrasse (Labrus berggylta). Using an in vitro model, we differentiate how signals initiated by physical stretch (cellulose and plastic beads) and nutrients (lipid and protein) modulate the gut evacuation rate, motility patterns and the transcriptome. Intestinal stretch generated by inert cellulose initiated a faster evacuation of digesta out of the anterior intestine compared to digestible protein and lipid. Stretch on the intestine upregulated genes associated with increased muscle activity, whereas nutrients stimulated increased expression of several neuropeptides and receptors which are directly involved in gut motility regulation. Although administration of protein and lipid resulted in similar bulbous evacuation times, differences in intestinal motility, transit between the segments and gene expression between the two were observed. Lipid induced increased frequency of ripples and standing contraction in the middle section of the intestine compared to the protein group. We suggest that this difference in motility was modulated by factors [prepronociceptin (pnoca), prodynorphin (pdyn) and neuromedin U (nmu), opioid neurotransmitters and peptides] that are known to inhibit gastrointestinal motility and were upregulated by protein and not lipid. Our findings show that physical pressure in the intestine initiate contractions propelling the bolus distally, directly towards the exit, whereas the stimuli from nutrients modulates the motility to prolong the residence time of digesta in the digestive tract for optimal digestion.
Collapse
|
5
|
Matsunami M, Miura T, Kishida O, Michimae H, Nishimura K. Expression of Genes Involved in Offensive and Defensive Phenotype Induction in the Pituitary Gland of the Hokkaido Salamander (Hynobius retardatus). Zoolog Sci 2020; 37:563-574. [DOI: 10.2108/zs190140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Masatoshi Matsunami
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Toru Miura
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Tomakomai, Hokkaido 053-0035, Japan
| | - Hirofumi Michimae
- School of Pharmacy, Department of Clinical Medicine (Biostatistics), Kitasato University, Tokyo 108-8641, Japan
| | - Kinya Nishimura
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
6
|
Billert M, Sassek M, Wojciechowicz T, Jasaszwili M, Strowski MZ, Nowak KW, Skrzypski M. Neuropeptide B stimulates insulin secretion and expression but not proliferation in rat insulin‑producing INS‑1E cells. Mol Med Rep 2019; 20:2030-2038. [PMID: 31257494 DOI: 10.3892/mmr.2019.10415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropeptide B (NPB) regulates food intake, body weight and energy homeostasis by interacting with NPBW1/NPBW2 in humans and NPBW1 in rodents. NPB and NPBW1 are widely expressed in the central nervous system and peripheral tissues including pancreatic islets. Although previous studies have demonstrated a prominent role for NPB and NPBW1 in controlling glucose and energy homeostasis, it remains unknown as to whether NPB modulates pancreatic β‑cell functions. Therefore, the aim of the present study was to investigate the effects of NPB on insulin expression and secretion in vitro. Furthermore, the role of NPB in the modulation of INS‑1E cell growth, viability and death was examined. Gene expression was assessed by reverse transcription‑quantitative PCR. Cell proliferation and viability were determined by BrdU or MTT tests, respectively. Apoptotic cell death was evaluated by relative quantification histone‑complexed DNA fragments (mono‑and oligonucleosomes). Insulin secretion was studied using an ELISA test. Protein phosphorylation was assessed by western blot analysis. NPB and NPBW1 mRNA was expressed in INS‑1E cells and rat pancreatic islets. In INS‑1E cells, NPB enhanced insulin 1 mRNA expression via an ERK1/2‑dependent mechanism. Furthermore, NPB stimulated insulin secretion from INS‑1E cells and rat pancreatic islets. By contrast, NPB failed to affect INS‑1E cell growth or death. We conclude that NPB may regulate insulin secretion and expression in INS‑1E cells and insulin secretion in rat pancreatic islets.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Maciej Sassek
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Tatiana Wojciechowicz
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Mariami Jasaszwili
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Mathias Z Strowski
- Department of Hepatology and Gastroenterology, Charité‑University Medicine Berlin, D‑13353 Berlin, Germany
| | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60‑637 Poznań, Poland
| |
Collapse
|
7
|
Takenoya F, Wang L, Kageyama H, Hirako S, Wada N, Hashimoto H, Ueta Y, Sakagami J, Nonaka N, Shioda S. Neuropeptide W-Induced Hypophagia is Mediated Through Corticotropin-Releasing Hormone-Containing Neurons. J Mol Neurosci 2015; 56:789-798. [PMID: 25691152 DOI: 10.1007/s12031-015-0501-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 11/27/2022]
Abstract
Neuropeptide W (NPW), which was originally isolated from the porcine hypothalamus, has been identified as the endogenous ligand for both the NPBWR1 (GPR7) and NPBWR2 (GPR8) receptors. These receptors, which belong to the orphan G protein-coupled receptor (GPCR) family, share a high sequence homology with the opioid and somatostatin receptor families. NPW and NPBWR1 are widely distributed in the rat central nervous system (CNS). While the intracerebroventricular (i.c.v.) injection of NPW elevates plasma corticosterone levels, the intravenous administration of NPW in conjunction with a corticotropin-releasing hormone (CRH) antagonist blocks NPW-induced corticosterone secretion. It has been reported that NPW is involved in regulating the hypothalamus-pituitary-adrenal cortex (HPA) axis and that i.c.v. administration of NPW decreases feeding behavior. The aim of the present study was to ascertain if NPW's role in feeding regulation is mediated (or not) through corticotropin-releasing hormone (CRH)-containing neurons. We found that NPW-containing axon terminals make synapses with CRH-immunoreactive cell bodies and dendritic processes in the hypothalamic paraventricular nucleus (PVN). The central infusion of NPW significantly induced c-Fos expression in CRH-immunoreactive neurons in the mouse PVN, but not in vasopressin- or oxytocin-immunoreactive neurons. To determine if NPW regulates feeding behavior through CRH neurons, the feeding behavior of mice was studied following the i.c.v. administration NPW in the presence or absence of pretreatment with a CRH antagonist. While NPW administration decreased feeding activity, the CRH antagonist inhibited this effect. These results strongly suggest that NPW regulates feeding behavior through CRH neurons in the mouse brain.
Collapse
Affiliation(s)
- Fumiko Takenoya
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
- Department of Exercise and Sports Physiology, Hoshi University School of Pharmacy and Pharmaceutical Science, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Lihua Wang
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
- Department of Nutrition, Faculty of Health Care, Kiryu University, Gunma, Japan
| | - Satoshi Hirako
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junichi Sakagami
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Naoko Nonaka
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 2013; 31:1676-94. [DOI: 10.1016/j.biotechadv.2013.08.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/23/2022]
|
9
|
Vivas Y, Azpeleta C, Feliciano A, Velarde E, Isorna E, Delgado MJ, De Pedro N. Time-dependent effects of leptin on food intake and locomotor activity in goldfish. Peptides 2011; 32:989-95. [PMID: 21291931 DOI: 10.1016/j.peptides.2011.01.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 01/21/2023]
Abstract
The present study investigates the possible circadian dependence of leptin effects on food intake, locomotor activity, glycemia and plasma cortisol levels in goldfish (Carassius auratus). Fish were maintained under 12L:12D photoperiod and subjected to two different feeding schedules, one group fed during photophase (10:00) and the other one during scotophase (22:00). Leptin or saline were intraperitoneally injected at two different times (10:00 or 22:00), coincident or not with the meal time. To eliminate the entraining effect of the light/dark cycle, goldfish maintained under 24h light (LL) were fed and leptin-injected at 10:00. A reduction in food intake and locomotor activity and an increase in glycemia were found in goldfish fed and leptin-injected at 10:00. No significant changes in circulating cortisol were observed. Those effects were not observed when leptin was administered during the scotophase, regardless the feeding schedule; neither in fish maintained under LL, suggesting that a day/night cycle would be necessary to observe the actions of leptin administered during the photophase. Changes in locomotor activity and glycemia were only observed in goldfish when leptin was injected at daytime, coincident with the feeding schedule, suggesting that these leptin actions could be dependent on the feeding time as zeitgeber. In view of these results it appears that the circadian dependence of leptin actions in goldfish can be determined by the combination of both zeitgebers, light/dark cycle and food. Our results point out the relevance of the administration time when investigating regulatory functions of hormones.
Collapse
Affiliation(s)
- Y Vivas
- Dpto Fisiología, Fisiología Animal II, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Delfino KR, Southey BR, Sweedler JV, Rodriguez-Zas SL. Genome-wide census and expression profiling of chicken neuropeptide and prohormone convertase genes. Neuropeptides 2010; 44:31-44. [PMID: 20006904 PMCID: PMC2814002 DOI: 10.1016/j.npep.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/10/2023]
Abstract
Neuropeptides regulate cell-cell signaling and influence many biological processes in vertebrates, including development, growth, and reproduction. The complex processing of neuropeptides from prohormone proteins by prohormone convertases, combined with the evolutionary distance between the chicken and mammalian species that have experienced extensive neuropeptide research, has led to the empirical confirmation of only 18 chicken prohormone proteins. To expand our knowledge of the neuropeptide and prohormone convertase gene complement, we performed an exhaustive survey of the chicken genomic, EST, and proteomic databases using a list of 95 neuropeptide and 7 prohormone convertase genes known in other species. Analysis of the EST resources and 22 microarray studies offered a comprehensive portrait of gene expression across multiple conditions. Five neuropeptide genes (apelin, cocaine-and amphetamine-regulated transcript protein, insulin-like 5, neuropeptide S, and neuropeptide B) previously unknown in chicken were identified and 62 genes were confirmed. Although most neuropeptide gene families known in human are present in chicken, there are several gene not present in the chicken. Conversely, several chicken neuropeptide genes are absent from mammalian species, including C-RF amide, c-type natriuretic peptide 1 precursor, and renal natriuretic peptide. The prohormone convertases, with one exception, were found in the chicken genome. Bioinformatic models used to predict prohormone cleavages confirm that the processing of prohormone proteins into neuropeptides is similar between species. Neuropeptide genes are most frequently expressed in the brain and head, followed by the ovary and small intestine. Microarray analyses revealed that the expression of adrenomedullin, chromogranin-A, augurin, neuromedin-U, platelet-derived growth factor A and D, proenkephalin, relaxin-3, prepronociceptin, and insulin-like growth factor I was most susceptible (P-value<0.005) to changes in developmental stage, gender, and genetic line among other conditions studied. Our complete survey and characterization facilitates understanding of neuropeptides genes in the chicken, an animal of importance to biomedical and agricultural research.
Collapse
Affiliation(s)
- K. R. Delfino
- Department of Chemistry, University of Illinois, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - B. R. Southey
- Department of Chemistry, University of Illinois, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - J. V. Sweedler
- Department of Chemistry, University of Illinois, Urbana IL, USA
| | - S. L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
- Corresponding author: , 1207 W Gregory Dr, Urbana, IL 61801, Phone 217-333-8810 Fax: 217-333-8286
| |
Collapse
|