1
|
Rapps K, Weller A, Meiri N. Epigenetic regulation is involved in reversal of obesity. Neurosci Biobehav Rev 2024; 167:105906. [PMID: 39343077 DOI: 10.1016/j.neubiorev.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Epigenetic processes play a crucial role in mediating the impact of environmental energetic challenges, from overconsumption to starvation. Over-nutrition of energy-dense foods and sedentary lifestyles contribute to the development of obesity, characterized by excessive fat storage and impaired metabolic signaling, stemming from disrupted brain signaling. Conversely, dieting and physical activity facilitate body weight rebalancing and trigger adaptive neural responses. These adaptations involve the upregulation of neurogenesis, synaptic plasticity and optimized brain function and energy homeostasis, balanced hormone signaling, normal metabolism, and reduced inflammation. The transition of the brain from a maladaptive to an adaptive state is partially guided by epigenetic mechanisms. While epigenetic mechanisms underlying obesity-related brain changes have been described, their role in mediating the reversal of maladaptation/obesity through lifestyle interventions remains less explored. This review focuses on elucidating epigenetic mechanisms involved in hypothalamic adaptations induced by lifestyle interventions. Given that lifestyle interventions are widely prescribed and accessible approaches for weight loss and maintenance, it is our challenge to uncover epigenetic mechanisms moderating these hypothalamic-functional beneficial changes.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel; Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
2
|
M JN, Bharadwaj D. The complex web of obesity: from genetics to precision medicine. Expert Rev Endocrinol Metab 2024; 19:403-418. [PMID: 38869356 DOI: 10.1080/17446651.2024.2365785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Obesity is a growing public health concern affecting both children and adults. Since it involves both genetic and environmental components, the management of obesity requires both, an understanding of the underlying genetics and changes in lifestyle. The knowledge of obesity genetics will enable the possibility of precision medicine in anti-obesity medications. AREAS COVERED Here, we explore health complications and the prevalence of obesity. We discuss disruptions in energy balance as a symptom of obesity, examining evolutionary theories, its multi-factorial origins, and heritability. Additionally, we discuss monogenic and polygenic obesity, the converging biological pathways, potential pharmacogenomics applications, and existing anti-obesity medications - specifically focussing on the leptin-melanocortin and incretin pathways. Comparisons between childhood and adult obesity genetics are made, along with insights into structural variants, epigenetic changes, and environmental influences on epigenetic signatures. EXPERT OPINION With recent advancements in anti-obesity drugs, genetic studies pinpoint new targets and allow for repurposing existing drugs. This creates opportunities for genotype-informed treatment options. Also, lifestyle interventions can help in the prevention and treatment of obesity by altering the epigenetic signatures. The comparison of genetic architecture in adults and children revealed a significant overlap. However, more robust studies with diverse ethnic representation is required in childhood obesity.
Collapse
Affiliation(s)
- Janaki Nair M
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Manglani K, Anika NN, Patel D, Jhaveri S, Avanthika C, Sudan S, Alimohamed Z, Tiwari K. Correlation of Leptin in Patients With Type 2 Diabetes Mellitus. Cureus 2024; 16:e57667. [PMID: 38707092 PMCID: PMC11070180 DOI: 10.7759/cureus.57667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The exponential increase in diabetes mellitus (DM) poses serious public health concerns. In this review, we focus on the role of leptin in type 2 DM. The peripheral actions of leptin consist of upregulating proinflammatory cytokines which play an important role in the pathogenesis of type 2 DM and insulin resistance. Moreover, leptin is known to inhibit insulin secretion and plays a significant role in insulin resistance in obesity and type 2 DM. A literature search was conducted on Medline, Cochrane, Embase, and Google Scholar for relevant articles published until December 2023. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "Leptin," "NPY," and "Biomarker." This article aims to discuss the physiology of leptin in type 2 DM, its glucoregulatory actions, its relationship with appetite, the impact that various lifestyle modifications can have on leptin levels, and, finally, explore leptin as a potential target for various treatment strategies.
Collapse
Affiliation(s)
- Kajol Manglani
- Internal Medicine, MedStar Washington Hospital Center, Washington, USA
| | | | - Dhriti Patel
- Medicine and Surgery, B.J. Medical College and Civil Hospital, Ahmedabad, IND
| | - Sharan Jhaveri
- Medicine and Surgery, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Gujarat University, Ahmedabad, IND
| | - Chaithanya Avanthika
- Pediatrics, Icahn School of Medicine at Mount Sinai, Elmhurst Hospital Center, New York, USA
- Medicine and Surgery, Karnataka Institute of Medical Sciences, Hubballi, IND
| | - Sourav Sudan
- Internal Medicine, Government Medical College, Rajouri, Rajouri, IND
| | - Zainab Alimohamed
- Division of Research & Academic Affairs, Larkin Health System, South Miami, USA
| | - Kripa Tiwari
- Internal Medicine, Maimonides Medical Center, New York, USA
| |
Collapse
|
4
|
Maia RDCA, Lima TC, Barbosa CM, Barbosa MA, de Queiroz KB, Alzamora AC. Intergenerational inheritance induced by a high-fat diet causes hyperphagia and reduced hypothalamic sensitivity to insulin and leptin in the second-generation of rats. Nutrition 2024; 120:112333. [PMID: 38271759 DOI: 10.1016/j.nut.2023.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.
Collapse
Affiliation(s)
- Rosana da Conceição Araújo Maia
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Taynara Carolina Lima
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Claudiane Maria Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Karina Barbosa de Queiroz
- Departamento de Alimentos, Escola de Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Andréia Carvalho Alzamora
- Núcleo de Pesquisa em Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil; Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
5
|
Ricart W, Crujeiras AB, Mateos A, Castells-Nobau A, Fernández-Real JM. Is obesity the next step in evolution through brain changes? NEUROSCIENCE APPLIED 2024; 3:103927. [DOI: 10.1016/j.nsa.2023.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Lee HJ, Jin BY, Park MR, Kim NH, Seo KS, Jeong YT, Wada T, Lee JS, Choi SH, Kim DH. Inhibition of adipose tissue angiogenesis prevents rebound weight gain after caloric restriction in mice fed a high-fat diet. Life Sci 2023; 332:122101. [PMID: 37730110 DOI: 10.1016/j.lfs.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
AIMS We investigated whether modulation of white adipose tissue (WAT) vasculature regulates rebound weight gain (RWG) after caloric restriction (CR) in mice fed a high-fat diet (HFD). MAIN METHODS We compared changes in energy balance, hypothalamic neuropeptide gene expression, and characteristics of WAT by RT-qPCR, ELISA, immunohistochemistry, and adipose-derived stromal vascular fraction spheroid sprouting assay in obese mice fed a HFD ad libitum (HFD-AL), mice under 40 % CR for 3 or 4 weeks, mice fed HFD-AL for 3 days after CR (CRAL), and CRAL mice treated with TNP-470, an angiogenic inhibitor. KEY FINDINGS WAT angiogenic genes were expressed at low levels, but WAT vascular density was maintained in the CR group compared to that in the HFD-AL group. The CRAL group showed RWG, fat regain, and hyperphagia with higher expression of angiogenic genes and reduced pericyte coverage of the endothelium in WAT on day 3 after CR compared to the CR group, indicating rapidly increased angiogenic activity after CR. Administration of TNP-470 suppressed RWG, fat regain, and hyperphagia only after CR compared to the CRAL group. Changes in circulating leptin levels and hypothalamic neuropeptide gene expression were correlated with changes in weight and fat mass, suggesting that TNP-470 suppressed hyperphagia independently of the hypothalamic melanocortin system. Additionally, TNP-470 increased gene expression related to thermogenesis, fuel utilization, and browning in brown adipose tissue (BAT) and WAT, indicating TNP-470-induced increase in thermogenesis. SIGNIFICANCE Modulation of the WAT vasculature attenuates RWG after CR by suppressing hyperphagia and increasing BAT thermogenesis and WAT browning.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Bo-Yeong Jin
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Mi-Rae Park
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kwan Sik Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yong Taek Jeong
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Toyama 930-0194, Japan
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sang-Hyun Choi
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analyses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Furthermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental influences and the related opportunities they present for future interventions in the management of obesity.
Collapse
Affiliation(s)
- Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Diabetes and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
8
|
Vrânceanu M, Hegheş SC, Cozma-Petruţ A, Banc R, Stroia CM, Raischi V, Miere D, Popa DS, Filip L. Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2273. [PMID: 37375898 DOI: 10.3390/plants12122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Obesity is the most prevalent health problem in the Western world, with pathological body weight gain associated with numerous co-morbidities that can be the main cause of death. There are several factors that can contribute to the development of obesity, such as diet, sedentary lifestyle, and genetic make-up. Genetic predispositions play an important role in obesity, but genetic variations alone cannot fully explain the explosion of obesity, which is why studies have turned to epigenetics. The latest scientific evidence suggests that both genetics and environmental factors contribute to the rise in obesity. Certain variables, such as diet and exercise, have the ability to alter gene expression without affecting the DNA sequence, a phenomenon known as epigenetics. Epigenetic changes are reversible, and reversibility makes these changes attractive targets for therapeutic interventions. While anti-obesity drugs have been proposed to this end in recent decades, their numerous side effects make them not very attractive. On the other hand, the use of nutraceuticals for weight loss is increasing, and studies have shown that some of these products, such as resveratrol, curcumin, epigallocatechin-3-gallate, ginger, capsaicin, and caffeine, can alter gene expression, restoring the normal epigenetic profile and aiding weight loss.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Viorica Raischi
- Laboratory of Physiology of Stress, Adaptation and General Sanocreatology, Institute of Physiology and Sanocreatology, 1 Academiei Street, 2028 Chișinău, Moldova
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Rapps K, Kisliouk T, Marco A, Weller A, Meiri N. Dieting reverses histone methylation and hypothalamic AgRP regulation in obese rats. Front Endocrinol (Lausanne) 2023; 14:1121829. [PMID: 36817590 PMCID: PMC9930686 DOI: 10.3389/fendo.2023.1121829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Although dieting is a key factor in improving physiological functions associated with obesity, the role by which histone methylation modulates satiety/hunger regulation of the hypothalamus through weight loss remains largely elusive. Canonically, H3K9me2 is a transcriptional repressive post-translational epigenetic modification that is involved in obesity, however, its role in the hypothalamic arcuate nucleus (ARC) has not been thoroughly explored. Here we explore the role that KDM4D, a specific demethylase of residue H3K9, plays in energy balance by directly modulating the expression of AgRP, a key neuropeptide that regulates hunger response. METHODS We used a rodent model of diet-induced obesity (DIO) to assess whether histone methylation malprogramming impairs energy balance control and how caloric restriction may reverse this phenotype. Using ChIP-qPCR, we assessed the repressive modification of H3K9me2 at the site of AgRP. To elucidate the functional role of KDM4D in reversing obesity via dieting, a pharmacological agent, JIB-04 was used to inhibit the action of KDM4D in vivo. RESULTS In DIO, downregulation of Kdm4d mRNA results in both enrichment of H3K9me2 on the AgRP promoter and transcriptional repression of AgRP. Because epigenetic modifications are dynamic, it is possible for some of these modifications to be reversed when external cues are altered. The reversal phenomenon was observed in calorically restricted rats, in which upregulation of Kdm4d mRNA resulted in demethylation of H3K9 on the AgRP promoter and transcriptional increase of AgRP. In order to verify that KDM4D is necessary to reverse obesity by dieting, we demonstrated that in vivo inhibition of KDM4D activity by pharmacological agent JIB-04 in naïve rats resulted in transcriptional repression of AgRP, decreasing orexigenic signaling, thus inhibiting hunger. DISCUSSION We propose that the action of KDM4D through the demethylation of H3K9 is critical in maintaining a stable epigenetic landscape of the AgRP promoter, and may offer a target to develop new treatments for obesity.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZiyyon, Israel
| |
Collapse
|
10
|
Zahir FR. Epigenomic impacts of meditative practices. Epigenomics 2022; 14:1593-1608. [PMID: 36891912 DOI: 10.2217/epi-2022-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Meditative practices (MPs) are an inherent lifestyle and healing practice employed in Eastern medicine and spirituality. Integrating MPs into world mainstream medicine (WMM) requires effective empirical investigation of psychophysiological impacts. Epigenomic regulation is a probable mechanism of action that is empirically assessable. Recently, WMM-styled studies have screened the epigenomic impacts of MPs with early encouraging results. This article discusses the variety of MPs extant across three major Eastern religio-spiritual-healing traditions and their integration into WMM via the lens of epigenomic modulation. MPs unanimously report positive impacts on stress-reduction pathways, known to be epigenomically sensitive. Early high-resolution assays show MPs are potent in altering the epigenome - dynamically and by inducing long-term changes. This suggests the importance of integrating MPs into WMM.
Collapse
Affiliation(s)
- Farah R Zahir
- Irfa'a Foundation, 5063 North Service Road, Burlington, ON, L7L 5H6 Canada
- Departent of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1 Canada
| |
Collapse
|
11
|
Circadian mechanism disruption is associated with dysregulation of inflammatory and immune responses: a systematic review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe circadian rhythms are regulated by the circadian clock which is under the control of suprachiasmatic nucleus of hypothalamus. The central and peripheral clocks on different tissue together synchronize to form circadian system. Factors disrupt the circadian rhythm, such as irregular eating patterns, sleep/wake time, night shift work and temperature. Due to the misalignment of central clock components, it has been recognized as the pathophysiology of lifestyle-related diseases mediated by the inflammation such as diabetes, obesity, neurological disorder and hormonal imbalance. Also we discuss the therapeutic effect of time-restricted feeding over diabetes and obesity caused by miscommunication between central and peripheral clock. The genetic and epigenetic changes involve due to the deregulation of circadian system. The aim of the present review is to discuss the circadian mechanisms that are involved in the complex interaction between host and external factors and its disruption is associated with deregulation of inflammatory and immune responses. Hence, we need to understand the mechanism of functioning of our biological clocks so that it helps us treat health-related problems such as jet lags, sleep disorders due to night-time shift work, obesity and mental disturbances. We hope minimal cost behavioural and lifestyle changes can improve circadian rhythms and presumably provide a better health.
Collapse
|
12
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
14
|
Demerdash HM. Weight regain after bariatric surgery: Promoters and potential predictors. World J Meta-Anal 2021; 9:438-454. [DOI: 10.13105/wjma.v9.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
|
15
|
Izquierdo AG, Boughanem H, Diaz-Lagares A, Arranz-Salas I, Esteller M, Tinahones FJ, Casanueva FF, Macias-Gonzalez M, Crujeiras AB. DNA methylome in visceral adipose tissue can discriminate patients with and without colorectal cancer. Epigenetics 2021; 17:665-676. [PMID: 34311674 DOI: 10.1080/15592294.2021.1950991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Adipose tissue dysfunction, particularly the visceral (VAT) compartment, has been proposed to play a relevant role in colorectal cancer (CRC) development and progression. Epigenetic mechanisms could be involved in this association. The current study aimed to evaluate if specific epigenetic marks in VAT are associated with colorectal cancer (CRC) to identify epigenetic hallmarks of adipose tissue-related CRC. Epigenome-wide DNA methylation was evaluated in VAT from 25 healthy participants and 29 CRC patients, using the Infinium HumanMethylation450K BeadChip. The epigenome-wide methylation analysis identified 170,184 sites able to perfectly separate the CRC and healthy samples. The differentially methylated CpG sites (DMCpGs) showed a global trend for increased methylated levels in CRC with respect to healthy group. Most of the genes encoded by the DMCpGs belonged to metabolic pathways and cell cycle, insulin resistance, and adipocytokine signalling, as well as tumoural transformation processes. In gene-specific analyses, involved genes biologically relevant for the development of CRC include PTPRN2, MAD1L1, TNXB, DIP2C, INPP5A, HDCA4, PRDM16, RPTOR, ATP11A, TBCD, PABPC3, and IER2. The methylation level of some of them showed a discriminatory capacity for detecting CRC higher than 90%, showing IER2 to have the highest capacity. This study reveals that a specific methylation pattern of VAT is associated with CRC. Some of the epigenetic marks identified could provide useful tools for the prediction and personalized treatment of CRC connected to excess adiposity.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| | - Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenetics, Translational Medical Oncology (Oncomet), Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Oncología (CIBERONC), Spain
| | - Isabel Arranz-Salas
- Unit of Anatomical Pathology, Virgen de la Victoria University Hospital, Málaga, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro De Investigacion Biomedica En Red Oncologia (CIBERONC), Madrid, Spain; Institucio Catalana De Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS), Santiago De Compostela University (USC) and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen De La Victoria University Hospital, University of Malaga (IBIMA), Spain and Centro De Investigacion Biomedica En Red Physiopathology of Obesity and Nutrition (Ciberobn), Málaga, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto De Investigacion Sanitaria De Santiago De Compostela (IDIS), Complejo Hospitalario Universitario De Santiago De Compostela (CHUS/SERGAS), and Centro De Investigacion Biomedica En Red Fisiopatologia De La Obesidad Y Nutricion (Ciberobn), Spain
| |
Collapse
|
16
|
Crujeiras AB, Izquierdo AG, Primo D, Milagro FI, Sajoux I, Jácome A, Fernandez-Quintela A, Portillo MP, Martínez JA, Martinez-Olmos MA, de Luis D, Casanueva FF. Epigenetic landscape in blood leukocytes following ketosis and weight loss induced by a very low calorie ketogenic diet (VLCKD) in patients with obesity. Clin Nutr 2021; 40:3959-3972. [PMID: 34139469 DOI: 10.1016/j.clnu.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the potential health benefits of a ketogenic diet are unknown and could be mediated by epigenetic mechanisms. OBJECTIVE To identify the changes in the obesity-related methylome that are mediated by the induced weight loss or are dependent on ketosis in subjects with obesity underwent a very-low calorie ketogenic diet (VLCKD). METHODS Twenty-one patients with obesity (n = 12 women, 47.9 ± 1.02 yr, 33.0 ± 0.2 kg/m2) after 6 months on a VLCKD and 12 normal weight volunteers (n = 6 women, 50.3 ± 6.2 yrs, 22.7 ± 1.5 kg/m2) were studied. Data from the Infinium MethylationEPIC BeadChip methylomes of blood leukocytes were obtained at time points of ketotic phases (basal, maximum ketosis, and out of ketosis) during VLCKD (n = 10) and at baseline in volunteers (n = 12). Results were further validated by pyrosequencing in representative cohort of patients on a VLCKD (n = 18) and correlated with gene expression. RESULTS After weight reduction by VLCKD, differences were found at 988 CpG sites (786 unique genes). The VLCKD altered methylation levels in patients with obesity had high resemblance with those from normal weight volunteers and was concomitant with a downregulation of DNA methyltransferases (DNMT)1, 3a and 3b. Most of the encoded genes were involved in metabolic processes, protein metabolism, and muscle, organ, and skeletal system development. Novel genes representing the top scoring associated events were identified, including ZNF331, FGFRL1 (VLCKD-induced weight loss) and CBFA2T3, C3orf38, JSRP1, and LRFN4 (VLCKD-induced ketosis). Interestingly, ZNF331 and FGFRL1 were validated in an independent cohort and inversely correlated with gene expression. CONCLUSIONS The beneficial effects of VLCKD therapy on obesity involve a methylome more suggestive of normal weight that could be mainly mediated by the VLCKD-induced ketosis rather than weight loss.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain.
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - David Primo
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Ignacio Sajoux
- Medical Department Pronokal Group, PronokalGroup, Barcelona, Spain
| | - Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Universidade da Coruña, Faculty of Science, A Coruña, Spain
| | - Alfredo Fernandez-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Daniel de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| |
Collapse
|
17
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
18
|
Aronne LJ, Hall KD, Jakicic JM, Leibel RL, Lowe MR, Rosenbaum M, Klein S. Describing the Weight-Reduced State: Physiology, Behavior, and Interventions. Obesity (Silver Spring) 2021; 29 Suppl 1:S9-S24. [PMID: 33759395 PMCID: PMC9022199 DOI: 10.1002/oby.23086] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Although many persons with obesity can lose weight by lifestyle (diet and physical activity) therapy, successful long-term weight loss is difficult to achieve, and most people who lose weight regain their lost weight over time. The neurohormonal, physiological, and behavioral factors that promote weight recidivism are unclear and complex. The National Institute of Diabetes and Digestive and Kidney Diseases convened a workshop in June 2019, titled "The Physiology of the Weight-Reduced State," to explore the mechanisms and integrative physiology of adaptations in appetite, energy expenditure, and thermogenesis that occur in the weight-reduced state and that may oppose weight-loss maintenance. The proceedings from the first session of this workshop are presented here. Drs. Michael Rosenbaum, Kevin Hall, and Rudolph Leibel discussed the physiological factors that contribute to weight regain; Dr. Michael Lowe discussed the biobehavioral issues involved in weight-loss maintenance; Dr. John Jakicic discussed the influence of physical activity on long-term weight-loss maintenance; and Dr. Louis Aronne discussed the ability of drug therapy to maintain weight loss.
Collapse
Affiliation(s)
- Louis J. Aronne
- Weill Cornell Medicine Comprehensive Weight Control Center, New York, New York, USA
| | - Kevin D. Hall
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John M. Jakicic
- Healthy Lifestyle Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rudolph L. Leibel
- Departments of Pediatrics and Medicine, Division of Molecular Genetics, Columbia University, New York, New York, USA
| | - Michael R. Lowe
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael Rosenbaum
- Departments of Pediatrics and Medicine, Division of Molecular Genetics, Columbia University, New York, New York, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Abstract
The pathophysiology of obesity is complex and includes changes in eating behavior, genetic, epigenetic, environmental factors, and much more. To date, ~40 genetic polymorphisms are associated with obesity and fat distribution. However, since these options do not fully explain the inheritance of obesity, other options, such as epigenetic changes, need to be considered. Epigenetic modifications affect gene expression without changing the deoxyribonucleic acid sequence. In addition, environmental exposure during critical periods of development can affect the epigenetic tags and lead to obesity. A deeper understanding of the epigenetic mechanisms underlying obesity can aid in prevention based on lifestyle changes. This review focuses on the role of epigenetic modifications in the development of obesity and related conditions.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Research Center for Therapy and Preventive Medicine
| | - O. T. Kim
- National Research Center for Therapy and Preventive Medicine
| |
Collapse
|
20
|
Werdermann M, Berger I, Scriba LD, Santambrogio A, Schlinkert P, Brendel H, Morawietz H, Schedl A, Peitzsch M, King AJF, Andoniadou CL, Bornstein SR, Steenblock C. Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state. Mol Metab 2020; 43:101112. [PMID: 33157254 PMCID: PMC7691554 DOI: 10.1016/j.molmet.2020.101112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis. Methods In vitro, we applied insulin and leptin to murine progenitor cells isolated from the pituitary and adrenal cortex and examined the role of these hormones on proliferation and differentiation. In vivo, we investigated two different mouse models of metabolic disease, obesity in leptin-deficient ob/ob mice and obesity achieved via feeding with a high-fat diet. Results Insulin was shown to lead to enhanced proliferation and differentiation of both pituitary and adrenocortical progenitors. No alterations in the progenitors were noted in our chronic metabolic stress models. However, hyperactivation of the hypothalamic-pituitary-adrenal axis was observed and the expression of the appetite-regulating genes Npy and Agrp changed in both the hypothalamus and adrenal. Conclusions It is well-known that chronic stress and stress hormones such as glucocorticoids can induce metabolic changes including obesity and diabetes. In this article, we show for the first time that this might be based on an early sensitization of stem cells of the hypothalamic-pituitary-adrenal axis. Thus, pituitary and adrenal progenitor cells exposed to high levels of insulin are metabolically primed to a hyper-functional state leading to enhanced hormone production. Likewise, obese animals exhibit a hyperactive hypothalamic-pituitary-adrenal axis leading to adrenal hyperplasia. This might explain how stress in early life can increase the risk for developing metabolic syndrome in adulthood. Insulin enhances proliferation and differentiation of adrenocortical and pituitary progenitors. Obesity leads to hyperactivation and priming of the HPA axis. Obesity leads to overexpression of appetite-regulating genes in the hypothalamus. Obesity leads to a decrease in the expression of appetite-regulating genes in the adrenal gland.
Collapse
Affiliation(s)
- Martin Werdermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Ilona Berger
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Laura D Scriba
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Alice Santambrogio
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Pia Schlinkert
- Department of Pharmacology and Toxicology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Andreas Schedl
- University of Côte d'Azur, INSERM, CNRS, iBV, Parc Valrose, Nice, 06108, France.
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, King's College London, Great Maze Pond, London, SE1 9RT, UK.
| | - Cynthia L Andoniadou
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany; Diabetes and Nutritional Sciences Division, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| |
Collapse
|
21
|
Abstract
Obesity is associated with an increased risk of various diseases and mortality. Although nearly 50 % of adults have been reported trying to lose weight, the prevalence of obesity has increased. One factor that hinders weight loss-induced decrease in obesity prevalence is weight regain. Although behavioural, psychological and physiological factors associated with weight regain have been reviewed, the information regarding the relationship between weight regain and genetics has not been previously summarised. In this paper, we comprehensively review the association between genetic polymorphisms and weight regain in adults and children with obesity after weight loss. Based on this information, identification of genetic polymorphism in patients who undergo weight loss intervention might be used to estimate their risks of weight regain. Additionally, the genetic-based risk estimation may be used as a guide for physicians and dietitians to provide each of their patients with the most appropriate strategies for weight loss and weight maintenance.
Collapse
|
22
|
Long-term effects of pro-opiomelanocortin methylation induced in food-restricted dams on metabolic phenotypes in male rat offspring. Obstet Gynecol Sci 2020; 63:239-250. [PMID: 32489968 PMCID: PMC7231940 DOI: 10.5468/ogs.2020.63.3.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Objective Maternal malnutrition affects the growth and metabolic health of the offspring. Little is known about the long-term effect on metabolic indices of epigenetic changes in the brain caused by maternal diet. Thus, we explored the effect of maternal food restriction during pregnancy on metabolic profiles of the offspring, by evaluating the DNA methylation of hypothalamic appetite regulators at 3 weeks of age. Methods Sprague-Dawley rats were divided into 2 groups: a control group and a group with a 50% food-restricted (FR) diet during pregnancy. Methylation and expression of appetite regulator genes were measured in 3-week-old offspring using pyrosequencing, real-time polymerase chain reaction, and western blotting analyses. We analyzed the relationship between DNA methylation and metabolic profiles by Pearson's correlation analysis. Results The expression of pro-opiomelanocortin (POMC) decreased, whereas DNA methylation significantly increased in male offspring of the FR dams, compared to the male offspring of control dams. Hypermethylation of POMC was positively correlated with the levels of high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol in 3-week-old male offspring. In addition, there were significant positive correlations between hypermethylation of POMC and the levels of triglycerides, HDL-C, and leptin in 6-month-old male offspring. Conclusion Our findings suggest that maternal food restriction during pregnancy influences the expression of hypothalamic appetite regulators via epigenetic changes, leading to the development of metabolic disorders in the offspring.
Collapse
|
23
|
Cruz-Carrillo G, Montalvo-Martínez L, Cárdenas-Tueme M, Bernal-Vega S, Maldonado-Ruiz R, Reséndez-Pérez D, Rodríguez-Ríos D, Lund G, Garza-Ocañas L, Camacho-Morales A. Fetal Programming by Methyl Donors Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. Front Neurosci 2020; 14:452. [PMID: 32581665 PMCID: PMC7283929 DOI: 10.3389/fnins.2020.00452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/16/2022] Open
Abstract
Fetal programming by hypercaloric intake leads to food addiction-like behavior and brain pro-inflammatory gene expression in offspring. The role of methylome modulation during programming on central immune activation and addiction-like behavior has not been characterized. We employed a nutritional programming model exposing female Wistar rats to chow diet, cafeteria (CAF), or CAF-methyl donor’s diet from pre-pregnancy to weaning. Addiction-like behavior in offspring was characterized by the operant training response using Skinner boxes. Food intake in offspring was determined after fasting–refeeding schedule and subcutaneous injection of ghrelin. Genome-wide DNA methylation in the nucleus accumbens (NAc) shell was performed by fluorescence polarization, and brain immune activation was evaluated using real-time PCR for pro-inflammatory cytokines (IL-1β, TNF-1α, and IL-6). Molecular effects of methyl modulators [S-adenosylmethionine (SAM) or 5-azatidine (5-AZA)] on pro-inflammatory cytokine expression and phagocytosis were identified in the cultures of immortalized SIM-A9 microglia cells following palmitic acid (100 μM) or LPS (100 nM) stimulation for 6 or 24 h. Our results show that fetal programming by CAF exposure increases the number of offspring subjects and reinforcers under the operant training response schedule, which correlates with an increase in the NAc shell global methylation. Notably, methyl donor’s diet selectively decreases lever-pressing responses for reinforcers and unexpectedly decreases the NAc shell global methylation. Also, programmed offspring by CAF diet shows a selective IL-6 gene expression in the NAc shell, which is reverted to control values by methyl diet exposure. In vitro analysis identified that LPS and palmitic acid activate IL-1β, TNF-1α, and IL-6 gene expression, which is repressed by the methyl donor SAM. Finally, methylation actively represses phagocytosis activity of SIM-A9 microglia cells induced by LPS and palmitic acid stimulation. Our in vivo and in vitro data suggest that fetal programming by methyl donors actively decreases addiction-like behavior to palatable food in the offspring, which correlates with a decrease in NAc shell methylome, expression of pro-inflammatory cytokine genes, and activity of phagocytic microglia. These results support the role of fetal programming in brain methylome on immune activation and food addiction-like behavior in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Larisa Montalvo-Martínez
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Marcela Cárdenas-Tueme
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Sofia Bernal-Vega
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Roger Maldonado-Ruiz
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Diana Reséndez-Pérez
- Department of Cell Biology and Genetics, College of Biological Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Gertrud Lund
- Department of Genetic Engineering, CINVESTAV Irapuato Unit, Irapuato, Mexico
| | - Lourdes Garza-Ocañas
- Department of Pharmacology and Toxicology, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| |
Collapse
|
24
|
Assem S, Abdelbaki TN, Mohy-El Dine SH, Ketat AF, Abdelmonsif DA. SERPINE-1 Gene Methylation and Protein as Molecular Predictors of Laparoscopic Sleeve Gastrectomy Outcome. Obes Surg 2020; 30:2620-2630. [PMID: 32170551 DOI: 10.1007/s11695-020-04533-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Body weight is subjected to genetic and epigenetic modifiers that might affect the success of weight loss interventions. Because of its possible complications and disparity in patients' response, identification of predictors to the outcome of bariatric surgery is indispensable. OBJECTIVES This prospective study aims to investigate serpin peptidase inhibitor type 1 (SERPINE-1) protein and gene methylation as molecular predictors to the outcome of bariatric surgery. PATIENTS AND METHODS One hundred participants were enrolled and divided to control group (n = 50) and obese patients who underwent laparoscopic sleeve gastrectomy (LSG) (n = 50). Anthropometric measurements were assessed and blood samples were collected preoperatively and 6 months postoperatively for assessment of SERPINE-1 protein and gene methylation, C-reactive protein (CRP), and homeostatic model assessment of insulin resistance (HOMA-IR). Moreover, subjects were followed for 2 years for weight loss parameters. RESULTS Patients with obesity showed high baseline SERPINE-1 protein and gene hypermethylation where LSG was followed by a drop in SERPINE-1 protein level but not gene hypermethylation. Baseline SERPINE-1 gene methylation was negatively related to postoperative weight loss and was the independent predictor to weight loss after LSG. Likewise, postoperative SERPINE-1 protein was negatively related to weight loss with independent expression from its gene methylation state. Furthermore, postoperative SERPINE-1 gene methylation correlated to CRP and HOMA-IR. CONCLUSION Baseline SERPINE-1 gene methylation might be a predictor of weight loss after LSG. Meanwhile, postoperative SERPINE-1 protein could be a predictor to weight loss maintenance after LSG. Lastly, postoperative SERPINE-1 gene methylation might serve as an index to postoperative changes in obesity-related comorbidities.
Collapse
Affiliation(s)
- Sara Assem
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tamer N Abdelbaki
- Department of Surgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Safaa H Mohy-El Dine
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Amel F Ketat
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt. .,Molecular Biology Lab. and Nanomedicine Lab., Center of Excellence for Research in Regenerative Medicine and Applications, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
25
|
Nicoletti CF, Pinhel MS, Noronha NY, Jácome A, Crujeiras AB, Nonino CB. Association of MFSD3 promoter methylation level and weight regain after gastric bypass: Assessment for 3 y after surgery. Nutrition 2020; 70:110499. [DOI: 10.1016/j.nut.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
|
26
|
Lorenzo PM, Izquierdo AG, Diaz-Lagares A, Carreira MC, Macias-Gonzalez M, Sandoval J, Cueva J, Lopez-Lopez R, Casanueva FF, Crujeiras AB. ZNF577 Methylation Levels in Leukocytes From Women With Breast Cancer Is Modulated by Adiposity, Menopausal State, and the Mediterranean Diet. Front Endocrinol (Lausanne) 2020; 11:245. [PMID: 32390948 PMCID: PMC7191069 DOI: 10.3389/fendo.2020.00245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
The methylation levels of ZNF577 in breast tumors has been previously identified as a possible epigenetic mark of breast cancer associated with obesity. The aim of the current study was to investigate differences in methylation levels of ZNF577 depending on obesity, menopausal state and dietary pattern in blood leukocytes, a non-invasive sample. The methylation levels of ZNF577 of two CpG sites (CpGs) located in promoter and island previously identified as differentially methylated according to adiposity and menopausal state by 450 k array (cg10635122, cg03562414) were evaluated by pyrosequencing in DNA from the blood leukocytes of breast cancer patients [n = 90; n = 64 (71.1%) overweight/obesity and n = 26 (28.9%) normal-weight] and paired tumor tissue biopsies (n = 8 breast cancer patients with obesity; n = 3/5 premenopausal/postmenopausal women). Differences in methylation levels were evaluated at each CpGs individually and at the mean of the two evaluated CpGs. Adherence to the Mediterranean diet was evaluated using the MEDAS-validated questionnaire, and the consumption of food groups of interest was also evaluated using the recommended intakes of the Sociedad Española de Nutricion Comunitaria. The methylation levels of ZNF577 were correlated between paired leukocytes and breast tumor biopsies (r = 0.62; p = 0.001). Moreover, higher methylation was found in leukocytes from patients with obesity (p = 0.002) and postmenopausal patients (p = 0.022) than patients with normal-weight or premenopausal, respectively. After adjusting for the body mass index and age, higher levels of ZNF577 methylation were also found in women with greater adherence to the Mediterranean diet (p = 0.017) or specific foods. Relevantly, the methylation levels of ZNF577 showed a good ability for fish consumption detection [area under the ROC curve (AUC) = 0.72; p = 0.016]. In conclusion, the association between methylation of ZNF577 and adiposity, menopausal state, and adherence to the Mediterranean diet can be detected in the blood leukocytes. The results guarantee the need of performing further studies in longer longitudinal cohorts in order to elucidate the role of ZNF577 methylation in the association between breast cancer, adiposity and dietary patterns.
Collapse
Affiliation(s)
- Paula M. Lorenzo
- Laboratory of Epigenomics in Endocrinology and Nutrition (EpiEndoNut), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Andrea G. Izquierdo
- Laboratory of Epigenomics in Endocrinology and Nutrition (EpiEndoNut), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenetics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER de Oncologia (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos C. Carreira
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Manuel Macias-Gonzalez
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA) and CIBEROBN, Málaga, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit and Epigenomics Core Facility, Health Research Institute La Fe, Valencia, Spain
| | - Juan Cueva
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael Lopez-Lopez
- CIBER de Oncologia (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Felipe F. Casanueva
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Ana B. Crujeiras
- Laboratory of Epigenomics in Endocrinology and Nutrition (EpiEndoNut), Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER de Fisiopatologia de la Obesidad y Nutricion (CIBEOBN), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Ana B. Crujeiras
| |
Collapse
|
27
|
Edillor CR, Parks BW, Mehrabian M, Lusis AJ, Pellegrini M. DNA Methylation Changes More Slowly Than Physiological States in Response to Weight Loss in Genetically Diverse Mouse Strains. Front Endocrinol (Lausanne) 2019; 10:882. [PMID: 31920990 PMCID: PMC6933503 DOI: 10.3389/fendo.2019.00882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022] Open
Abstract
Responses to a high fat, high sucrose (HFHS) diet vary greatly among inbred strains of mice. We sought to examine the epigenetic (DNA methylation) changes underlying these differences as well as variation in weight loss when switched to a low-fat chow diet. We surveyed DNA methylation from livers of 45 inbred mouse strains fed a HFHS diet for 8 weeks using reduced-representation bisulfite sequencing (RRBS). We observed a total of 1,045,665 CpGs of which 83 candidate sites were significantly associated with HFHS diet. Many of these CpGs correlated strongly with gene expression or clinical traits such as body fat percentage and plasma glucose. Five inbred strains were then studied in the context of weight loss to test for evidence of epigenetic "memory." The mice were first fed a HFHS diet for 6 weeks followed by a low-fat chow diet for 4 weeks. Four of the five strains returned to initial levels of body fat while one strain, A/J, retained almost 50% of the fat gained. A total of 36 of the HFHS diet responsive CpGs exhibited evidence of persistent epigenetic modifications following weight normalization, including CpGs near the genes Scd1 and Cdk1. Our study identifies DNA methylation changes in response to a HFHS diet challenge that revert more slowly than overall body fat percentage in weight loss and provides evidence for epigenetic mediated "memory."
Collapse
Affiliation(s)
- Chantle R. Edillor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brian W. Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Margarete Mehrabian
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Nicolazzo C, Belardinilli F, Caponnetto S, Gradilone A, Cortesi E, Giannini G, Gazzaniga P. Why the Therapeutic Impact of RAS Mutation Clearance in Plasma ctDNA Deserves to Be Further Explored in Metastatic Colorectal Cancer. Front Oncol 2019; 9:1414. [PMID: 31921671 PMCID: PMC6933952 DOI: 10.3389/fonc.2019.01414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Affiliation(s)
- Chiara Nicolazzo
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Salvatore Caponnetto
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela Gradilone
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Institute Pasteur-Cenci Bolognetti Foundation, Rome, Italy
| | - Paola Gazzaniga
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Lazzarino GP, Acutain MF, Canesini G, Andreoli MF, Ramos JG. Cafeteria diet induces progressive changes in hypothalamic mechanisms involved in food intake control at different feeding periods in female rats. Mol Cell Endocrinol 2019; 498:110542. [PMID: 31430504 DOI: 10.1016/j.mce.2019.110542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
We studied the effects of cafeteria diet (CAF) intake from weaning on mRNA levels and DNA methylation state of feeding-related neuropeptides and hormone receptors in individual hypothalamic nuclei at different feeding periods. Four weeks of CAF (short-term) increased energy intake and adiposity, without affecting neuropeptides' expression. Eleven weeks of CAF (medium-term) increased energy intake, adiposity, leptinemia, and body weight, with an orexigenic response of the lateral hypothalamus, paraventricular and ventromedial nuclei, given by upregulation of Orexins, AgRP, and NPY opposed by an anorectic signal of the arcuate nucleus, which displayed a higher POMC expression. The changes in neuropeptidic mRNA levels were related to epigenetic modifications in their promoter regions. Metabolic and molecular changes were intensified after 20 weeks of diet (long-term). The alterations in these hypothalamic brain nuclei could add information about their differential role in food intake control, and how their action is disrupted during the development of obesity.
Collapse
Affiliation(s)
- Gisela Paola Lazzarino
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - María Florencia Acutain
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - Guillermina Canesini
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional Del Litoral (UNL), Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina; Instituto de Salud y Ambiente Del Litoral (ISAL), Universidad Nacional Del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Ciudad Universitaria, Paraje El Pozo S/N, S3000, Santa Fe, Argentina.
| |
Collapse
|
30
|
Gowda S, Seibert T, Uli N, Farrell R. Pediatric Obesity: Endocrinologic and Genetic Etiologies and Management. CURRENT CARDIOVASCULAR RISK REPORTS 2019. [DOI: 10.1007/s12170-019-0632-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 2019; 54:100773. [PMID: 31344387 DOI: 10.1016/j.yfrne.2019.100773] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/07/2023]
Abstract
Proopiomelanocortin (POMC) is a key mediator of satiety. Epigenetic marks such as DNA methylation may modulate POMC expression and provide a biological link between early life exposures and later phenotype. Animal studies suggest epigenetic marks at POMC are influenced by maternal energy excess and restriction, prenatal stress and Triclosan exposure. Postnatal factors including energy excess, folate, vitamin A, conjugated linoleic acid and leptin may also affect POMC methylation. Recent human studies suggest POMC DNA methylation is influenced by maternal nutrition in early pregnancy and associated with childhood and adult obesity. Studies in children propose a link between POMC DNA methylation and elevated lipids and insulin, independent of body habitus. This review brings together evidence from animal and human studies and suggests that POMC is sensitive to nutritional programming and is associated with a wide range of weight-related and metabolic outcomes.
Collapse
|
32
|
Nicoletti CF, Pinhel MAS, Diaz-Lagares A, Casanueva FF, Jácome A, Pinhanelli VC, de Oliveira BAP, Crujeiras AB, Nonino CB. DNA methylation screening after roux-en Y gastric bypass reveals the epigenetic signature stems from genes related to the surgery per se. BMC Med Genomics 2019; 12:72. [PMID: 31133015 PMCID: PMC6537208 DOI: 10.1186/s12920-019-0522-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background/objectives Obesity has been associated with gene methylation regulation. Recent studies have shown that epigenetic signature plays a role in metabolic homeostasis after Roux-en Y gastric bypass (RYGB). To conduct a genome-wide epigenetic analysis in peripheral blood to investigate whether epigenetic changes following RYGB stem from weight loss or the surgical procedure per se. Subjects/methods By means of the Infinium Human Methylation 450 BeadChip array, global methylation was analyzed in blood of 24 severely obese women before and 6 months after RYGB and in 24 normal-weight women (controls). Results In blood cells, nine DMCpG sites showed low methylation levels before surgery, methylation levels increased after RYGB and neared the levels measured in the controls. Additionally, 44 CpG sites associated with the Wnt and p53 signaling pathways were always differently methylated in the severely obese patients as compared to the controls and were not influenced by RYGB. Finally, 1638 CpG sites related to inflammation, angiogenesis, and apoptosis presented distinct methylation in the post-surgery patients as compared to the controls. Conclusion Bariatric surgery per se acts on CpGs related to inflammation, angiogenesis, and endothelin-signaling. However, the gene cluster associated with obesity remains unchanged, suggesting that weight loss 6 months after RYGB surgery cannot promote this effect. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12920-019-0522-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - M A S Pinhel
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - A Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - F F Casanueva
- Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - A Jácome
- Department of Mathematics, MODES group, CITIC, Universidade da Coruña, Faculty of Science, A Coruña, Spain
| | - V C Pinhanelli
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - B A P de Oliveira
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - A B Crujeiras
- Epigenomics in Endocrinology and Nutrition, Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain. .,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| | - C B Nonino
- Laboratory of Nutrigenomics Studies, Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
33
|
FTO and IRX3 Genes are Not Promising Markers for Obesity in Labrador Retriever Dogs. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Obesity is a serious problem in numerous dog breeds, but knowledge of its hereditary background is scarce. On the contrary, numerous DNA polymorphisms associated with human obesity have been identified, with the strongest effect being demonstrated for FTO gene. We used targeted next-generation sequencing (tNGS) to search for polymorphisms in the region harboring FTO and IRX3 in 32 Labrador dogs. Moreover, we investigated the selected regions of FTO and IRX3, orthologous to the human regions associated with obesity, in 165 Labradors. For all dogs, the following information was available: age, sex, gonadal status, body weight, and body conformation score (BCS). The use of tNGS revealed 12,217 polymorphisms, but none of these obtained significance when lean and obese dogs were compared. Study of two SNPs in the 5’-flanking region of FTO in 165 dogs – creating two upstream reading frames (uORFs) – also showed no association with body weight and BCS but suggested the need for improvement in FTO annotation. No polymorphism was found in the 5’UTR of IRX3. Additionally, no differences of CpG islands methylation status between lean and obese dogs were found. Our study suggests that FTO and IRX3 are not useful markers of obesity in Labrador dogs.
Collapse
|
34
|
Abstract
One of the biggest challenges in the management of obesity is the prevention of weight regain after successful weight loss. Weight regain after weight loss has large interindividual variation. Although many factors probably contribute to this variation, we hypothesize that variability in biological responses associated with weight loss-induced shrinking of subcutaneous adipocytes has an important role. In this Review, we show that weight loss-induced variations in cellular stress, extracellular matrix remodelling, inflammatory responses, adipokine secretion and lipolysis seem to be associated with the amount of weight that is regained after successful weight loss. Weight regain could therefore, at least in part, depend on a combination of these factors. Further research on the causality of these associations could aid the development of effective strategies to prevent weight regain after successful weight loss.
Collapse
Affiliation(s)
- Marleen A van Baak
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands.
| | - Edwin C M Mariman
- NUTRIM School for Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
35
|
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019; 14:421-444. [PMID: 30915894 DOI: 10.1080/15592294.2019.1595297] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fact that not all individuals exposed to the same environmental risk factors develop obesity supports the hypothesis of the existence of underlying genetic and epigenetic elements. There is suggestive evidence that environmental stimuli, such as dietary pattern, particularly during pregnancy and early life, but also in adult life, can induce changes in DNA methylation predisposing to obesity and related comorbidities. In this context, the DNA methylation marks of each individual have emerged not only as a promising tool for the prediction, screening, diagnosis, and prognosis of obesity and metabolic syndrome features, but also for the improvement of weight loss therapies in the context of precision nutrition. The main objectives in this field are to understand the mechanisms involved in transgenerational epigenetic inheritance, and featuring the nutritional and lifestyle factors implicated in the epigenetic modifications. Likewise, DNA methylation modulation caused by diet and environment may be a target for newer therapeutic strategies concerning the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Mirian Samblas
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermín I Milagro
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alfredo Martínez
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,d IMDEA, Research Institute on Food & Health Sciences , Madrid , Spain
| |
Collapse
|
36
|
Lopes LL, Bressan J, Peluzio MDCG, Hermsdorff HHM. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J Am Coll Nutr 2019; 38:478-484. [PMID: 30862304 DOI: 10.1080/07315724.2018.1553116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases, by activating or silencing the related-genes. Scientific evidence has suggested that LINE-1 methylation is associated with body composition and obesity-related diseases, including insulin resistance, type 2 diabetes mellitus, and cardiovascular disease (CVD). It also has been evaluated as predictor of weight loss. The studies' results are still conflicting, and positive and negative associations have been found to LINE-1 methylation regarding adiposity and cardiometabolic markers. Overall, this review presents observational (cross-sectional and longitudinal) studies and interventions (diet, exercises, and bariatric surgery) that evaluated the relationship of the LINE-1 methylation with obesity, weight loss, dyslipidemias, hypertension, insulin resistance, CVD, and metabolic syndrome. TEACHING POINTS Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases. Many studies have related methylation of LINE-1 with cardiometabolic diseases; however, the results are still controversial. The relationship between the etiology of chronic diseases and the methylation of LINE-1 is not fully elucidated. With advances in epigenetic studies, related mechanisms may be early biomarkers in weight change and cardiometabolic risk.
Collapse
Affiliation(s)
- Lílian L Lopes
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Josefina Bressan
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Maria do Carmo G Peluzio
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Helen Hermana M Hermsdorff
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| |
Collapse
|
37
|
Abstract
The prevalence of insulin resistance (IR) is increasing rapidly worldwide and it is a relevant health problem because it is associated with several diseases, such as type 2 diabetes, cardiovascular disorders and cancer. Understanding the mechanisms involved in IR onset and progression will open new avenues for identifying biomarkers for preventing and treating IR and its co-diseases. Epigenetic mechanisms such as DNA methylation are important factors that mediate the environmental effect in the genome by regulating gene expression and consequently its effect on the phenotype and the development of disease. Taking into account that IR results from a complex interplay between genes and the environment and that epigenetic marks are reversible, disentangling the relationship between IR and epigenetics will provide new tools to improve the management and prevention of IR. Here, we review the current scientific evidence regarding the association between IR and epigenetic markers as mechanisms involved in IR development and potential management.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), C/ Choupana, s/n, 15706, Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.
| |
Collapse
|
38
|
Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism 2019; 92:37-50. [PMID: 30399374 DOI: 10.1016/j.metabol.2018.10.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Obesity is among the most threatening health burdens worldwide and its prevalence has markedly increased over the last decades. Obesity maybe considered a heritable trait. Identifications of rare cases of monogenic obesity unveiled that hypothalamic circuits and the brain-adipose axis play an important role in the regulation of energy homeostasis, appetite, hunger and satiety. For example, mutations in the leptin gene cause obesity through almost unsuppressed overeating. Common (multifactorial) obesity, most likely resulting from a concerted interplay of genetic, epigenetic and environmental factors, is clearly linked to genetic predisposition by multiple risk variants, which, however only account for a minor part of the general BMI variability. Although GWAS opened new avenues in elucidating the complex genetics behind common obesity, understanding the biological mechanisms relative to the specific risk contributing to obesity remains poorly understood. Non-genetic factors such as eating behavior or physical activity strongly modulate the individual risk for developing obesity. These factors may interact with genetic predisposition for obesity through epigenetic mechanisms. Thus, here, we review the current knowledge about monogenic and common (multifactorial) obesity highlighting the important recent advances in our knowledge on how epigenetic regulation is involved in the etiology of obesity.
Collapse
Affiliation(s)
- Kerstin Rohde
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany; University of Oslo, Institute of Clinical Medicine, Oslo 0316, Norway.
| | - Maria Keller
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany.
| | - Lars la Cour Poulsen
- Akershus University Hospital, Department of Clinical Molecular Biology, Medical Division, Lørenskog 1478, Norway.
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany.
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany.
| | - Yvonne Böttcher
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany; University of Oslo, Institute of Clinical Medicine, Oslo 0316, Norway; Akershus University Hospital, Department of Clinical Molecular Biology, Medical Division, Lørenskog 1478, Norway.
| |
Collapse
|
39
|
Coppedè F, Seghieri M, Stoccoro A, Santini E, Giannini L, Rossi C, Migliore L, Solini A. DNA methylation of genes regulating appetite and prediction of weight loss after bariatric surgery in obese individuals. J Endocrinol Invest 2019; 42:37-44. [PMID: 29603098 DOI: 10.1007/s40618-018-0881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/25/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Epigenetic traits are influenced by clinical variables; interaction between DNA methylation (DNAmeth) and bariatric surgery-induced weight loss has been scarcely explored. We investigated whether DNAmeth of genes encoding for molecules/hormones regulating appetite, food intake or obesity could predict successful weight outcome following Roux-en-Y gastric bypass (RYGB). METHODS Forty-five obese individuals with no known comorbidities were stratified accordingly to weight decrease one-year after RYGB (excess weight loss, EWL ≥ 50%: good responders, GR; EWL < 50%: worse responders, WR). DNAmeth of leptin (LEP), ghrelin (GHRL), ghrelin receptor (GHSR) and insulin-growth factor-2 (IGF2) was assessed before intervention. Single nucleotide polymorphisms of genes affecting DNAmeth, DNMT3A and DNMT3B, were also determined. RESULTS At baseline, type 2 diabetes was diagnosed by OGTT in 13 patients. Post-operatively, GR (n = 23) and WR (n = 22) achieved an EWL of 67.7 ± 9.6 vs 38.2 ± 9.0%, respectively. Baseline DNAmeth did not differ between GR and WR for any tested genes, even when the analysis was restricted to subjects with no diabetes. A relationship between GHRL and LEP methylation profiles emerged (r = 0.47, p = 0.001). Searching for correlation between DNAmeth of the studied genes with demographic characteristics and baseline biochemical parameters of the studied population, we observed a correlation between IGF2 methylation and folate (r = 0.44, p = 0.003). Rs11683424 for DNMT3A and rs2424913 for DNMT3B did not correlate with DNAmeth of the studied genes. CONCLUSIONS In severely obese subjects, the degree of DNAmeth of some genes affecting obesity and related conditions does not work as predictor of successful response to RYGB.
Collapse
Affiliation(s)
- F Coppedè
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - M Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Stoccoro
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Migliore
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - A Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| |
Collapse
|
40
|
Izquierdo AG, Crujeiras AB. Obesity-Related Epigenetic Changes After Bariatric Surgery. Front Endocrinol (Lausanne) 2019; 10:232. [PMID: 31040824 PMCID: PMC6476922 DOI: 10.3389/fendo.2019.00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: In recent years, an increasing number of studies have begun focusing on epigenetics as a link between environmental factors and a greater predisposition to the development of obesity and its comorbidities. An important challenge in this field is the evaluation of the possibility of the reversal of obesity-related epigenetic marks by means of therapy to induce weight loss and if the beneficial effects of therapy in reducing obesity are mediated by epigenetic mechanisms. We aimed to offer an outline of the current results regarding to the impact of bariatric surgery on epigenetic regulation, as well as to show if the beneficial effect of this intervention could be mediated by epigenetic mechanisms. Methods: A review of the scientific publications in PubMed was performed by using key words related to obesity, epigenetics and bariatric surgery to provide an update of recent findings in this area of research. The most relevant and recently published articles and abstracts were selected to frame this review. Results: Previous studies have demonstrated the presence of differential DNA methylation after bariatric surgery and the differential expression of non-coding RNAs. Therefore, epigenetic regulation could mediate the benefit of bariatric surgery on body weight and the metabolic disturbances associated with excess body weight, such as insulin resistance, hypertension, and cardiovascular disease. This evidence is relatively new as epigenetic regulation was first evaluated in the obesity field only a few years ago. However, there is an urgent need to perform longitudinal studies to evaluate the capacity of epigenetic marks in the prediction of bariatric surgery response. Conclusions: Bariatric surgery appears to be capable of partially reversing the obesity-related epigenome. The identification of potential epigenetic biomarkers predictive for the success of bariatric surgery may open new doors to personalized therapy for severe obesity.
Collapse
Affiliation(s)
- Andrea G. Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Ana B. Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
- *Correspondence: Ana B. Crujeiras
| |
Collapse
|
41
|
Hohos NM, Smith AK, Kilaru V, Park HJ, Hausman DB, Bailey LB, Lewis RD, Phillips BG, Meagher RB. CD4 + and CD8 + T-Cell-Specific DNA Cytosine Methylation Differences Associated With Obesity. Obesity (Silver Spring) 2018; 26:1312-1321. [PMID: 29956501 PMCID: PMC6107382 DOI: 10.1002/oby.22225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lifestyle factors associated with obesity may alter epigenome-regulated gene expression. Most studies examining epigenetic changes in obesity have analyzed DNA 5´-methylcytosine (5mC) in whole blood, representing a weighted average of several distantly related and regulated leukocyte classes. To examine leukocyte-specific differences associated with obesity, a pilot study examining 5mC in three distinct leukocyte types isolated from peripheral blood of women with normal weight and obesity was conducted. METHODS CD4+ T cells, CD8+ T cells, and CD16+ neutrophils were reiteratively isolated from blood, and 5mC levels were measured across >450,000 CG sites. RESULTS Nineteen CG sites were differentially methylated between women with obesity and with normal weight in CD4+ cells, 16 CG sites in CD8+ cells, and 0 CG sites in CD16+ neutrophils (q < 0.05). There were no common differentially methylated sites between the T-cell types. The amount of visceral adipose tissue was strongly associated with the methylation level of 79 CG sites in CD4+ cells, including 4 CG sites in CLSTN1's promoter, which, this study shows, may regulate its expression. CONCLUSIONS The methylomes of various leukocytes respond differently to obesity and levels of visceral adipose tissue. Highly significant differentially methylated sites in CD4+ and CD8+ cells in women with obesity that have apparent biological relevance to obesity were identified.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
- Corresponding Author: 120 Green Street, University of Georgia, Athens, GA 30602-7223
| | - Alicia K Smith
- Physciatry and Behavioral Sciences, University of Emory School of Medicine, Atlanta, GA, USA
| | - Varun Kilaru
- Physciatry and Behavioral Sciences, University of Emory School of Medicine, Atlanta, GA, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Richard D Lewis
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
42
|
Kwon EJ, You YA, Park B, Ha EH, Kim HS, Park H, Kim YJ. Association between the DNA methylations of POMC, MC4R, and HNF4A and metabolic profiles in the blood of children aged 7-9 years. BMC Pediatr 2018; 18:121. [PMID: 29598821 PMCID: PMC5877386 DOI: 10.1186/s12887-018-1104-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R), and hepatocyte nuclear factor 4 alpha (HNF4A) are closely associated with weight gain and metabolic traits. In a previous study, we demonstrated associations between the methylations of POMC, MC4R, and HNF4A and metabolic profiles at birth. However, little is known about these associations in obese children. To evaluate the clinical utility of epigenetic biomarkers, we investigated to determine whether an association exists between the methylations of POMC, MC4R, and HNF4A and metabolic profiles in blood of normal weight and overweight and obese children. Methods We selected 79 normal weight children and 41 overweight and obese children aged 7–9 years in the Ewha Birth and Growth Cohort study. POMC methylation levels at exon 3, and MC4R and HNF4A methylation levels in promoter regions were measured by pyrosequencing. Serum glucose, total cholesterol (TC), triglyceride, high-density lipoprotein cholesterol (HDL–c), and insulin levels were analyzed using a biochemical analyzer and an immunoradiometric assay. Partial correlation and multiple regression analysis were used to assess relationships between POMC, MC4R, and HNF4A methylation levels and metabolic profiles. Results Significant correlations were found between POMC methylation and HDL–c levels, and between HNF4A methylation and both TC and HDL–c levels. Interestingly, associations were found between POMC methylation status and HDL–c levels, and between HNF4A methylation status and TC levels independent of body mass index. Conclusions These findings show that POMC, MC4R, and HNF4A methylation status in the blood of children are associated with metabolic profiles. Therefore, we suggest that the DNA methylation status might serve as a potential epigenetic biomarkers of metabolic syndrome.
Collapse
Affiliation(s)
- Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul, 07985, South Korea.,Department of Occupational and Environmental Medicine, Ewha Womans University Medical School, Seoul, 07985, South Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul, 07985, South Korea
| | - Bohyun Park
- Department of Preventive Medicine, Ewha Womans University Medical School, Seoul, 07985, South Korea
| | - Eun Hee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University Medical School, Seoul, 07985, South Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Womans University Medical School, Seoul, 07985, South Korea
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Womans University Medical School, Seoul, 07985, South Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University Medical School, Seoul, 07985, South Korea.
| |
Collapse
|
43
|
Bruggeman EC, Garretson JT, Wu R, Shi H, Xue B. Neuronal Dnmt1 Deficiency Attenuates Diet-Induced Obesity in Mice. Endocrinology 2018; 159:145-162. [PMID: 29145563 PMCID: PMC5761599 DOI: 10.1210/en.2017-00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 11/09/2017] [Indexed: 12/22/2022]
Abstract
Aberrant neuronal DNA methylation patterns have been implicated in the promotion of obesity development; however, the role of neuronal DNA methyltransferases (Dnmts), enzymes that catalyze DNA methylation, in energy balance remains poorly understood. We investigated whether neuronal Dnmt1 regulates normal energy homeostasis and obesity development using a neuronal Dnmt1 knockout (ND1KO) mouse model, Dnmt1fl/fl Synapsin1Cre, which specifically deletes Dnmt1 in neurons. Neuronal Dnmt1 deficiency reduced adiposity in chow-fed mice and attenuated obesity in high-fat diet (HFD)-fed male mice. ND1KO male mice had reduced food intake and increased energy expenditure with the HFD. Furthermore, these mice had improved insulin sensitivity, as measured using an insulin tolerance test. The HFD-fed ND1KO mice had smaller fat pads and upregulation of thermogenic genes in brown adipose tissue. These data suggest that neuronal Dnmt1 plays an important role in regulating energy homeostasis. Notably, ND1KO male mice had elevated estrogen receptor-α (ERα) gene expression in the medial hypothalamus, which previously has been shown to control body weight. Immunohistochemistry experiments revealed that ERα protein expression was upregulated specifically in the dorsomedial region of the ventromedial hypothalamus, a region that might mediate the central effect of leptin. We conclude that neuronal Dnmt1 regulates energy homeostasis through pathways controlling food intake and energy expenditure. In addition, ERα expression in the dorsomedial region of the ventromedial hypothalamus might mediate these effects.
Collapse
MESH Headings
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adiposity
- Animals
- Crosses, Genetic
- DNA (Cytosine-5-)-Methyltransferase 1/deficiency
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- Diet, High-Fat/adverse effects
- Energy Intake
- Energy Metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation
- Hypothalamus, Middle/enzymology
- Hypothalamus, Middle/metabolism
- Hypothalamus, Middle/pathology
- Insulin Resistance
- Male
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/enzymology
- Neurons/metabolism
- Neurons/pathology
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Obesity/prevention & control
- Promoter Regions, Genetic
- Sex Characteristics
Collapse
Affiliation(s)
- Emily C. Bruggeman
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
| | - John T. Garretson
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
| | - Rui Wu
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
- Department of Biology, Georgia State University, Atlanta,
Georgia 30302
| | - Hang Shi
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
- Department of Biology, Georgia State University, Atlanta,
Georgia 30302
| | - Bingzhong Xue
- Neuroscience Institute, Georgia State University,
Atlanta, Georgia 30302
- Center for Obesity Reversal, Georgia State University,
Atlanta, Georgia 30302
- Department of Biology, Georgia State University, Atlanta,
Georgia 30302
| |
Collapse
|
44
|
Nicoletti CF, Cortes-Oliveira C, Pinhel MAS, Nonino CB. Bariatric Surgery and Precision Nutrition. Nutrients 2017; 9:E974. [PMID: 28878180 PMCID: PMC5622734 DOI: 10.3390/nu9090974] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
This review provides a literature overview of new findings relating nutritional genomics and bariatric surgery. It also describes the importance of nutritional genomics concepts in personalized bariatric management. It includes a discussion of the potential role bariatric surgery plays in altering the three pillars of nutritional genomics: nutrigenetics, nutrigenomics, and epigenetics. We present studies that show the effect of each patient's genetic and epigenetic variables on the response to surgical weight loss treatment. We include investigations that demonstrate the association of single nucleotide polymorphisms with obesity phenotypes and their influence on weight loss after bariatric surgery. We also present reports on how significant weight loss induced by bariatric surgery impacts telomere length, and we discuss studies on the existence of an epigenetic signature associated with surgery outcomes and specific gene methylation profile, which may help to predict weight loss after a surgical procedure. Finally, we show articles which evidence that bariatric surgery may affect expression of numerous genes involved in different metabolic pathways and consequently induce functional and taxonomic changes in gut microbial communities. The role nutritional genomics plays in responses to weight loss after bariatric surgery is evident. Better understanding of the molecular pathways involved in this process is necessary for successful weight management and maintenance.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Cristiana Cortes-Oliveira
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Marcela A S Pinhel
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
- Molecular Biology Department, São Jose do Rio Preto Medical School, São José do Rio Preto, São Paulo 15090-000, Brazil.
| | - Carla B Nonino
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
45
|
Polymorphism and methylation of the MC4R gene in obese and non-obese dogs. Mol Biol Rep 2017; 44:333-339. [PMID: 28755272 PMCID: PMC5579139 DOI: 10.1007/s11033-017-4114-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/19/2017] [Indexed: 11/26/2022]
Abstract
The dog is considered to be a useful biomedical model for human diseases and disorders, including obesity. One of the numerous genes associated with human polygenic obesity is MC4R, encoding the melanocortin 4 receptor. The aim of our study was to analyze polymorphisms and methylation of the canine MC4R in relation to adiposity. Altogether 270 dogs representing four breeds predisposed to obesity: Labrador Retriever (n = 187), Golden Retriever (n = 38), Beagle (n = 28) and Cocker Spaniel (n = 17), were studied. The dogs were classified into three groups: lean, overweight and obese, according to the 5-point Body Condition Score (BCS) scale. In the cohort of Labradors a complete phenotypic data (age, sex, neutering status, body weight and BCS) were collected for 127 dogs. The entire coding sequence as well as 5′ and 3′-flanking regions of the studied gene were sequenced and six polymorphic sites were reported. Genotype frequencies differed considerably between breeds and Labrador Retrievers appeared to be the less polymorphic. Moreover, distribution of some polymorphic variants differed significantly (P < 0.05) between small cohorts with diverse BCS in Golden Retrievers (c.777T>C, c.868C>T and c.*33C>G) and Beagles (c.-435T>C and c.637G>T). On the contrary, in Labradors no association between the studied polymorphisms and BCS or body weight was observed. Methylation analysis, using bisulfite DNA conversion followed by Sanger sequencing, was carried out for 12 dogs with BCS = 3 and 12 dogs with BCS = 5. Two intragenic CpG islands, containing 19 cytosines, were analyzed and the methylation profile did not differ significantly between lean and obese animals. We conclude that an association of the MC4R gene polymorphism with dog obesity or body weight is unlikely, in spite of the fact that some associations were found in small cohorts of Beagles and Golden Retrievers. Also methylation level of this gene is not related with dog adiposity.
Collapse
|
46
|
Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi MS, Curi R, De Caterina R, Ferguson LR, Goni L, Kang JX, Kohlmeier M, Marti A, Moreno LA, Pérusse L, Prasad C, Qi L, Reifen R, Riezu-Boj JI, San-Cristobal R, Santos JL, Martínez JA. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 10:43-62. [PMID: 28689206 DOI: 10.1159/000477729] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic diseases, including obesity, are major causes of morbidity and mortality in most countries. The adverse impacts of obesity and associated comorbidities on health remain a major concern due to the lack of effective interventions for prevention and management. Precision nutrition is an emerging therapeutic approach that takes into account an individual's genetic and epigenetic information, as well as age, gender, or particular physiopathological status. Advances in genomic sciences are contributing to a better understanding of the role of genetic variants and epigenetic signatures as well as gene expression patterns in the development of diverse chronic conditions, and how they may modify therapeutic responses. This knowledge has led to the search for genetic and epigenetic biomarkers to predict the risk of developing chronic diseases and personalizing their prevention and treatment. Additionally, original nutritional interventions based on nutrients and bioactive dietary compounds that can modify epigenetic marks and gene expression have been implemented. Although caution must be exercised, these scientific insights are paving the way for the design of innovative strategies for the control of chronic diseases accompanying obesity. This document provides a number of examples of the huge potential of understanding nutrigenetic, nutrigenomic, and nutriepigenetic roles in precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara "Fray Antonio Alcalde" and Health Sciences University Center, University of Guadalajara, Guadalajara, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Role of DNA methylation in the dietary restriction mediated cellular memory. GeroScience 2017; 39:331-345. [PMID: 28477138 PMCID: PMC5505897 DOI: 10.1007/s11357-017-9976-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
An important facet of dietary restriction (DR) that has been largely overlooked is that DR can have early effects that create a cellular memory, which persists even when DR is discontinued. The goal of this study was to determine if DNA methylation played a role in the cellular memory of DR by examining the effect of short-term DR on gene expression and DNA methylation and determining if the changes in expression and DNA methylation persist when DR is discontinued and mice returned to ad libitum (AL) feeding. We show that DR can induce substantial changes in gene expression within 1 month of its implementation in various tissues, and more interestingly, ~19–50% of these changes in gene expression persist across the tissues even when DR is discontinued. We then determined whether DR induced changes in DNA methylation in the promoter of three candidate genes identified from our gene expression analysis (Pomc, Hsph1, and Nts1) that correlated with the changes in the expression of these genes. Decreased methylation at three specific CG sites in the promoter of the Nts1 gene encompassing the distal consensus AP-1 site was correlated with increased Nts1 expression. Both the promoter hypomethylation and increased Nts1 expression persisted even after DR was discontinued and mice fed AL, supporting our hypothesis that DNA methylation could play a role in the memory effect of DR. The changes in DNA methylation in the Nts1 gene are likely to occur in intestinal stem cells and could play a role in preserving the intestinal stem cell pool in DR mice.
Collapse
|
48
|
Aronica L, Levine AJ, Brennan K, Mi J, Gardner C, Haile RW, Hitchins MP. A systematic review of studies of DNA methylation in the context of a weight loss intervention. Epigenomics 2017; 9:769-787. [PMID: 28517981 DOI: 10.2217/epi-2016-0182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
AIM Obesity results from the interaction of genetic and environmental factors, which may involve epigenetic mechanisms such as DNA methylation (DNAm). MATERIALS & METHODS We have followed the PRISMA protocol to select studies that analyzed DNAm at baseline and end point of a weight loss intervention using either candidate-locus or genome-wide approaches. RESULTS Six genes displayed weight loss associated DNAm across four out of nine genome-wide studies. Weight loss is associated with significant but small changes in DNAm across the genome, and weight loss outcome is associated with individual differences in baseline DNAm at several genomic locations. CONCLUSION The identified weight loss associated DNAm markers, especially those showing reproducibility across different studies, warrant validation by further studies with robust design and adequate power.
Collapse
Affiliation(s)
- Lucia Aronica
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - A Joan Levine
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin Brennan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey Mi
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Christopher Gardner
- Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, CA 94305, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Megan P Hitchins
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
49
|
Argentieri MA, Nagarajan S, Seddighzadeh B, Baccarelli AA, Shields AE. Epigenetic Pathways in Human Disease: The Impact of DNA Methylation on Stress-Related Pathogenesis and Current Challenges in Biomarker Development. EBioMedicine 2017; 18:327-350. [PMID: 28434943 PMCID: PMC5405197 DOI: 10.1016/j.ebiom.2017.03.044] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 01/30/2023] Open
Abstract
HPA axis genes implicated in glucocorticoid regulation play an important role in regulating the physiological impact of social and environmental stress, and have become a focal point for investigating the role of glucocorticoid regulation in the etiology of disease. We conducted a systematic review to critically assess the full range of clinical associations that have been reported in relation to DNA methylation of CRH, CRH-R1/2, CRH-BP, AVP, POMC, ACTH, ACTH-R, NR3C1, FKBP5, and HSD11β1/2 genes in adults. A total of 32 studies were identified. There is prospective evidence for an association between HSD11β2 methylation and hypertension, and functional evidence of an association between NR3C1 methylation and both small cell lung cancer (SCLC) and breast cancer. Strong associations have been reported between FKBP5 and NR3C1 methylation and PTSD, and biologically-plausible associations have been reported between FKBP5 methylation and Alzheimer's Disease. Mixed associations between NR3C1 methylation and mental health outcomes have been reported according to different social and environmental exposures, and according to varying gene regions investigated. We conclude by highlighting key challenges and future research directions that will need to be addressed in order to develop both clinically meaningful prognostic biomarkers and an evidence base that can inform public policy practice.
Collapse
Affiliation(s)
- M Austin Argentieri
- Harvard/MGH Center on Genomics, Vulnerable Populations, and Health Disparities, Department of Medicine, Massachusetts General Hospital, 50 Staniford St., Suite 901, Boston, MA 02114, USA
| | - Sairaman Nagarajan
- Department of Pediatrics, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11218, USA
| | - Bobak Seddighzadeh
- Harvard/MGH Center on Genomics, Vulnerable Populations, and Health Disparities, Department of Medicine, Massachusetts General Hospital, 50 Staniford St., Suite 901, Boston, MA 02114, USA
| | - Andrea A Baccarelli
- Harvard/MGH Center on Genomics, Vulnerable Populations, and Health Disparities, Department of Medicine, Massachusetts General Hospital, 50 Staniford St., Suite 901, Boston, MA 02114, USA; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W. 168th St., 11th Floor, New York, NY 10032, USA
| | - Alexandra E Shields
- Harvard/MGH Center on Genomics, Vulnerable Populations, and Health Disparities, Department of Medicine, Massachusetts General Hospital, 50 Staniford St., Suite 901, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, Nilsson E, Risérus U, Ling C. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 2017; 105:991-1000. [PMID: 28275132 DOI: 10.3945/ajcn.116.143164] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses.Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial.Design: We studied the effects of 7 wk of excessive SFA (n = 17) or PUFA (n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue.Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase (FTO), interleukin 6 (IL6), insulin receptor (INSR), neuronal growth regulator 1 (NEGR1), and proopiomelanocortin (POMC)] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing (ADIPOQ)] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 (ACOX1) and FAT atypical cadherin 1 (FAT1)], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 (FABP1), fatty acid binding protein 2 (FABP2), melanocortin 2 receptor (MC2R), MC3R, PPARG coactivator 1 α (PPARGC1A), and tumor necrosis factor (TNF), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 (MAPK7), melanin concentrating hormone receptor 1 (MCHR1), and splicing factor SWAP homolog (SFRS8)] was associated with the degree of weight increase in response to extra energy intake.Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140.
Collapse
Affiliation(s)
- Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Clinical Research Center, Malmö, Sweden
| | - Ingrid Dahlman
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Linn Gillberg
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark; and
| | - Fredrik Rosqvist
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - David Iggman
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Clinical Research Center, Malmö, Sweden
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Clinical Research Center, Malmö, Sweden
| | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center, Lund University, Clinical Research Center, Malmö, Sweden;
| |
Collapse
|