1
|
Vörösházi J, Mackei M, Sebők C, Tráj P, Márton RA, Neogrády Z, Mátis G. Protective effects of baicalin against deoxynivalenol-induced oxidative and inflammatory damage in chicken-derived hepatic 3D cell cultures. Sci Rep 2025; 15:11180. [PMID: 40169826 PMCID: PMC11962109 DOI: 10.1038/s41598-025-95868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Deoxynivalenol (DON) is a trichothecene mycotoxin often contaminating grains used in poultry feed production and causing several adverse effects in farm animals. Therefore, it is important to investigate compounds that can be potential candidates to mitigate these effects, such as baicalin. The effects of DON and baicalin were investigated in chicken-derived 3D hepatic cell cultures, and cell viability, LDH activity, oxidative parameters (NRF-2, 8-OHdG) and inflammatory parameters (IL-6, IL-8, IFN-γ) were monitored for 24 and 48 h. Our results suggest that DON reduced cellular metabolic activity but did not prove to be cytotoxic, and baicalin was able to attenuate this adverse effect. The change in extracellular LDH activity suggests that after 48 h the cells have already started to respond to the adverse effects of the toxin and protective mechanisms were induced. Based on the measured oxidative parameters, baicalin showed antioxidant activity, but after longer exposure, our results indicate a prooxidant effect. Baicalin also had an anti-inflammatory effect based on the amount of IL-6 and IL-8, while DON exerted a dose-and time-dependent pleiotropic activity. These results suggest that DON may have an impact on cellular inflammation and oxidative homeostasis, and that baicalin could be able to alleviate these adverse effects.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary.
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, 1078, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, 1078, Hungary
| |
Collapse
|
2
|
Fang L, Kong F, Ou K, Hong L, Wang C, Tong X. Induction of insulin resistance in female mice due to prolonged phenanthrene exposure: Unveiling the low-dose effect and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 260:119597. [PMID: 39002631 DOI: 10.1016/j.envres.2024.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Phenanthrene (Phe) is a commonly occurring polycyclic aromatic hydrocarbon (PAH) found in various food sources and drinking water. Previous studies have shown that long-term exposure to Phe in male mice leads to insulin resistance in a dose-dependent manner. However, the effect of Phe on glucose homeostasis in female mice remains unknown. To address this knowledge gap, female Kunming mice were exposed to Phe through their drinking water at concentrations of 0.05, 0.5, and 5 ng/mL. After 270 d of exposure, we surprisingly discovered a low-dose effect of Phe on insulin resistance in female mice, which differed from the effect observed in male mice and showed sexual dimorphism. Specifically, insulin resistance was only observed in the 0.05 ng/mL treatment, and this low-dose effect was also reflected in the concentration of Phe in white adipose tissue (WAT). Differences in metabolic enzyme activities in the liver may potentially explain this effect. The observed sexual dimorphism in Phe exposure could be attributed to variations in estrogen (E2) level and estrogen receptor beta (ERβ) expression in WAT. These findings highlight the association between environmental factors and the development of insulin resistance, emphasizing the pathogenic effect of even low doses of Phe. Moreover, sex dependent-effect should be given more attention when studying the toxic effects of environmental pollutants.
Collapse
Affiliation(s)
- Lu Fang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Luning Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
3
|
Brander SM, Senathirajah K, Fernandez MO, Weis JS, Kumar E, Jahnke A, Hartmann NB, Alava JJ, Farrelly T, Almroth BC, Groh KJ, Syberg K, Buerkert JS, Abeynayaka A, Booth AM, Cousin X, Herzke D, Monclús L, Morales-Caselles C, Bonisoli-Alquati A, Al-Jaibachi R, Wagner M. The time for ambitious action is now: Science-based recommendations for plastic chemicals to inform an effective global plastic treaty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174881. [PMID: 39047828 DOI: 10.1016/j.scitotenv.2024.174881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The ubiquitous and global ecological footprint arising from the rapidly increasing rates of plastic production, use, and release into the environment is an important modern environmental issue. Of increasing concern are the risks associated with at least 16,000 chemicals present in plastics, some of which are known to be toxic, and which may leach out both during use and once exposed to environmental conditions, leading to environmental and human exposure. In response, the United Nations member states agreed to establish an international legally binding instrument on plastic pollution, the global plastics treaty. The resolution acknowledges that the treaty should prevent plastic pollution and its related impacts, that effective prevention requires consideration of the transboundary nature of plastic production, use and pollution, and that the full life cycle of plastics must be addressed. As a group of scientific experts and members of the Scientists' Coalition for an Effective Plastics Treaty, we concur that there are six essential "pillars" necessary to truly reduce plastic pollution and allow for chemical detoxification across the full life cycle of plastics. These include a plastic chemical reduction and simplification, safe and sustainable design of plastic chemicals, incentives for change, holistic approaches for alternatives, just transition and equitable interventions, and centering human rights. There is a critical need for scientifically informed and globally harmonized information, transparency, and traceability criteria to protect the environment and public health. The right to a clean, healthy, and sustainable environment must be upheld, and thus it is crucial that scientists, industry, and policy makers work in concert to create a future free from hazardous plastic contamination.
Collapse
Affiliation(s)
- Susanne M Brander
- Oregon State University, Dept. Fisheries, Wildlife, Conservation Sciences; Coastal Oregon Marine Experiment Station, Newport, OR, USA.
| | - Kala Senathirajah
- School of Engineering, University of Newcastle, Callaghan, Australia
| | - Marina O Fernandez
- Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Argentina
| | - Judith S Weis
- Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Eva Kumar
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr, Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, Germany
| | - Nanna B Hartmann
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Trisia Farrelly
- School of People, Environment and Planning, Massey University, New Zealand
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Duebendorf, Switzerland
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Johanna Sophie Buerkert
- Centre for Climate Change Law and Governance, Faculty of Law, University of Copenhagen, Denmark
| | - Amila Abeynayaka
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Lyngby, Denmark; Moore Institute for Plastic Pollution Research, Long Beach, CA, USA
| | | | - Xavier Cousin
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Dorte Herzke
- NILU & Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Laura Monclús
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University - Pomona, Pomona, CA, USA
| | - Rana Al-Jaibachi
- Department of Bioscience, University of Sheffield, Sheffield, United Kingdom
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Bobic L, Harbolic A, Warner GR. Reproductive & developmental toxicity of quaternary ammonium compounds†. Biol Reprod 2024; 111:742-756. [PMID: 38959857 PMCID: PMC11473915 DOI: 10.1093/biolre/ioae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Quaternary ammonium compounds are a class of chemicals commonly used as disinfectants in household and healthcare settings. Their usage has significantly increased in recent years due to the COVID-19 pandemic. In addition, quaternary ammonium compounds have replaced the recently banned disinfectants triclosan and triclocarban in consumer products. Quaternary ammonium compounds are found in daily antimicrobial and personal care products such as household disinfectants, mouthwash, and hair care products. Due to the pervasiveness of quaternary ammonium compounds in daily use products, humans are constantly exposed. However, little is known about the health effects of everyday quaternary ammonium compound exposure, particularly effects on human reproduction and development. Studies that investigate the harmful effects of quaternary ammonium compounds on reproduction are largely limited to high-dose studies, which may not be predictive of low-dose, daily exposure, especially as quaternary ammonium compounds may be endocrine-disrupting chemicals. This review analyzes recent studies on quaternary ammonium compound effects on reproductive health, identifies knowledge gaps, and recommends future directions in quaternary ammonium compound-related research. Summary Sentence Quaternary ammonium compounds, a class of disinfecting compounds that have skyrocketed in usage during the COVID-19 pandemic, are emerging as reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Leyla Bobic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Allison Harbolic
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
5
|
Siegel KR, Murray BR, Gearhart J, Kassotis CD. In vitro endocrine and cardiometabolic toxicity associated with artificial turf materials. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104562. [PMID: 39245243 PMCID: PMC11499011 DOI: 10.1016/j.etap.2024.104562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Artificial turf, a consumer product growing in usage in the United States, contains diverse chemicals, some of which are endocrine disruptive. Endocrine effects from turf material extracts have been primarily limited to one component, crumb rubber, of these multi-material products. We present in vitro bioactivities from non-weathered and weathered turf sample extracts, including multiple turf components. All weathered samples were collected from real-world turf fields. Non-weathered versus weathered differentially affected the androgen (AR), estrogen (ER), glucocorticoid (GR), and thyroid receptors (TR) in reporter bioassays. While weathered extracts more efficaciously activated peroxisome proliferator activated receptor γ (PPARγ), this did not translate to greater in vitro adipogenic potential. All turf extracts activated the aryl hydrocarbon receptor (AhR). High AhR-efficacy extracts induced modest rat cardiomyoblast toxicity in an AhR-dependent manner. Our data demonstrate potential endocrine and cardiometabolic effects from artificial turf material extracts, warranting further investigation into potential exposures and human health effects.
Collapse
Affiliation(s)
- Kyle R Siegel
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Brooklynn R Murray
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States
| | - Jeff Gearhart
- Research Director, Ecology Center, Ann Arbor, MI 48104, United States
| | - Christopher D Kassotis
- Department of Pharmacology and Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
6
|
Lagadic L, Coady KK, Körner O, Miller TJ, Mingo V, Salinas ER, Sauer UG, Schopfer CR, Weltje L, Wheeler JR. Endocrine disruption assessment in aquatic vertebrates - Identification of substance-induced thyroid-mediated effect patterns. ENVIRONMENT INTERNATIONAL 2024; 191:108918. [PMID: 39270431 DOI: 10.1016/j.envint.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024]
Abstract
According to the World Health Organisation and European Commission definitions, substances shall be considered as having endocrine disrupting properties if they show adverse effects, have endocrine activity and the adverse effects are a consequence of the endocrine activity (using a weight-of-evidence approach based on biological plausibility), unless the adverse effects are not relevant to humans or non-target organisms at the (sub)population level. To date, there is no decision logic on how to establish endocrine disruption via the thyroid modality in non-mammalian vertebrates. This paper describes an evidence-based decision logic compliant with the integrated approach to testing and assessment (IATA) concept, to identify thyroid-mediated effect patterns in aquatic vertebrates using amphibians as relevant models for thyroid disruption assessment. The decision logic includes existing test guidelines and methods and proposes detailed considerations on how to select relevant assays and interpret the findings. If the mammalian dataset used as the starting point indicates no thyroid concern, the Xenopus Eleutheroembryonic Thyroid Assay allows checking out thyroid-mediated activity in non-mammalian vertebrates, whereas the Amphibian Metamorphosis Assay or its extended, fixed termination stage variant inform on both thyroid-mediated activity and potentially population-relevant adversity. In evaluating findings, the response patterns of all assay endpoints are considered, including the direction of changes. Thyroid-mediated effect patterns identified at the individual level in the amphibian tests are followed by mode-of-action and population relevance assessments. Finally, all data are considered in an overarching weight-of-evidence evaluation. The logic has been designed generically and can be adapted, e.g. to accommodate fish tests once available for thyroid disruption assessments. It also ensures that all scientifically relevant information is considered, and that animal testing is minimised. The proposed decision logic can be included in regulatory assessments to facilitate the conclusion on whether substances meet the endocrine disruptor definition for the thyroid modality in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany.
| | | | - Oliver Körner
- ADAMA Deutschland GmbH, Environmental Safety, Köln, Germany
| | - Tara J Miller
- Syngenta, Jealott's Hill International Research Centre, Jealott's Hill, United Kingdom
| | | | - Edward R Salinas
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany; Georg-August-University Göttingen, Division of Plant Pathology and Plant Protection, Göttingen, Germany
| | | |
Collapse
|
7
|
Maffini MV, Vandenberg LN. Science evolves but outdated testing and static risk management in the US delay protection to human health. FRONTIERS IN TOXICOLOGY 2024; 6:1444024. [PMID: 39193481 PMCID: PMC11347445 DOI: 10.3389/ftox.2024.1444024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
| | - Laura N. Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts – Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Aldeli N, Murphy D, Hanano A. Impact of dioxins on reproductive health in female mammals. FRONTIERS IN TOXICOLOGY 2024; 6:1392257. [PMID: 38774538 PMCID: PMC11106427 DOI: 10.3389/ftox.2024.1392257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Extensive research has been conducted to investigate the toxicological impact of dioxins on mammals, revealing profound effects on the female reproductive system in both humans and animals. Dioxin exposure significantly disrupts the intricate functions of the ovary, a pivotal organ responsible for reproductive and endocrine processes. This disruption manifests as infertility, premature ovarian failure, and disturbances in sex steroid hormone levels. Comprehensive studies, encompassing accidental human exposure and experimental animal data, have raised a wealth of information with consistent yet varied conclusion influenced by experimental factors. This review begins by providing an overarching background on the ovary, emphasizing its fundamental role in reproductive health, particularly in ovarian steroidogenesis and hormone receptor regulation. Subsequently, a detailed examination of the Aryl hydrocarbon Receptor (AhR) and its role in governing ovarian function is presented. The review then outlines the sources and toxicity of dioxins, with a specific focus on AhR involvement in mediating reproductive toxicity in mammals. Within this context, the impact of dioxins, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on Folliculogenesis and Preimplantation embryos is discussed. Furthermore, the review delves into the disruptions of the female hormonal system caused by TCDD and their ramifications in endometriosis. Notably, variations in the effects of TCDD on the female reproductive and hormonal system are highlighted in relation to TCDD dose, animal species, and age. As a forward-looking perspective, questions arise regarding the potential involvement of molecular mechanisms beyond AhR in mediating the female reproductive toxicity of dioxins.
Collapse
Affiliation(s)
- Nour Aldeli
- Department of Animal Biology, Faculty of Science, Al Furat University, Deir-ez-Zor, Syria
| | - Denis Murphy
- School of Applied Sciences, University of South Wales, Cardiff, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
9
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
10
|
Vandenberg LN, Mogus JP, Szabo GK. Effects of a TAML catalyst on mice exposed during pregnancy and lactation. Reprod Toxicol 2024; 125:108557. [PMID: 38360075 DOI: 10.1016/j.reprotox.2024.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/21/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Tetra-amido macrocyclic ligands (TAMLs) are catalysts designed to mimic endogenous peroxidases that can degrade pollutants. Before TAMLs gain widespread use, it is first important to determine if they have endocrine disrupting properties. In this study, we evaluated the effects of the iron TAML, NT7, on hormone-sensitive outcomes in mice exposed during pregnancy and lactation, and on their litters prior to weaning. We administered NT7 at one of three doses to mice via drinking water prior to and then throughout pregnancy and lactation. Two hormonally active pharmaceuticals, ethinyl estradiol (EE2) and flutamide (FLUT), a known estrogen receptor agonist and androgen receptor antagonist, respectively, were also included. In the females, we measured pre- and post-parturition weight, length of pregnancy, organ weights at necropsy, and morphology of the mammary gland at the end of the lactational period. We also quantified maternal behaviors at three stages of lactation. For the offspring, we measured litter size, litter weights, and the achievement of other developmental milestones. We observed only one statistically significant effect of NT7, a decrease in the percentage of pups with ear opening at postnatal day 5. This contrasts with the numerous effects of EE2 on both the mother and the litter, as well as several modest effects of FLUT. The approach taken in this study could provide guidance for future studies that aim to evaluate novel compounds for endocrine disrupting properties.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| |
Collapse
|
11
|
Liu Y, Li S, Liu B, Zhang J, Wang C, Feng L. Maternal urban particulate matter (SRM 1648a) exposure disrupted the cellular immune homeostasis during early life: The potential attribution of altered placental transcriptome profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169432. [PMID: 38135080 DOI: 10.1016/j.scitotenv.2023.169432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Ambient fine particular matter (PM2.5) exposure has been associated with numerous adverse effects including triggering functional disorders of the placenta and inducing immune imbalance in offspring. However, how maternal PM2.5 exposure impacts immune development during early life is not fully understood. In the current study, we exposed mice with low-, middle-, and high-dose PM2.5 during pregnancy to investigate the potential link between the transcriptional changes in the placenta and immune imbalance in mice offspring induced by PM2.5 exposures. Using flow cytometry, we found that the proportions of B cells, CD3+CD4+ T cells, CD3+CD8+ T cells, and macrophage (Mφ) cells were altered in the blood of PM2.5-exposed mice pups but not dendritic cells (DCs) and natural killer cells (NKs). Using bulk RNA sequencing, we found that PM2.5 exposure altered the transcriptional profile which indicated an inhibition of the complement and coagulation cascades in the placenta. Weighted gene co-expression network analysis (WGCNA) revealed the potential crosstalk between the perturbation of placental gene expression and the changes of immune cell subsets in pups on postnatal day 10 (PND10). Specifically, WGCNA identified a cluster of genes including Defb15, Defb20, Defb25, Cst8, Cst12, and Adam7 that might regulate the core immune cell types in PND10 pups. Although the underlying mechanisms of how maternal PM2.5 exposure induces peripheral lymphocyte disturbance in offspring still remain much unknown, our findings here shed light on the potential role of placental dysfunction in these adverse effects.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Shuman Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Bin Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Cuiping Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
12
|
Szabo GK, Mogus JP, Vandenberg LN. Effects of perinatal exposures to a TAML catalyst on the mammary gland and hormone-sensitive outcomes in male mice. Reprod Toxicol 2024; 123:108517. [PMID: 38040386 DOI: 10.1016/j.reprotox.2023.108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Estrogenic chemicals are common pollutants in wastewater and current effluent treatment processes are not typically effective in removing these compounds. Tetra-amido macrocyclic ligands (TAMLs) are catalysts that mimic endogenous peroxidases that may provide a solution to remove environmental pollutants including low concentrations of estrogenic compounds. Yet relatively little is known about the toxicity of TAMLs, and few studies have evaluated whether they may have endocrine disrupting properties. We administered one of three doses of a TAML, NT7, to mice via drinking water throughout pregnancy and lactation. Two pharmacologically active compounds, ethinyl estradiol (EE2) and flutamide were also included to give comparator data for estrogen receptor agonist and androgen receptor antagonist activities. Male pups were evaluated for several outcomes at weaning, puberty, and early adulthood. We found that EE2 exposures during gestation and the perinatal period induced numerous effects that were observed across the three ages including changes to spleen and testis weight and drastic effects on the morphology of the mammary gland. Flutamide had fewer effects but altered anogenital distance at weaning as well as spleen, liver, and kidney weight. In contrast, relatively few effects of NT7 were observed, but included alterations to spleen weight and modest changes to adult testis weight and morphology of the mammary gland at weaning. Collectively, these results provide some of the first evidence suggesting that NT7 may alter some hormone-sensitive outcomes, but that the effects were distinct from either EE2 or flutamide. Additional studies are needed to characterize the biological activity of this and other TAML catalysts.
Collapse
Affiliation(s)
- Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
13
|
Yin Q, Jeong JH, Qin X, Peddada SD, Adibi JJ. Mediation Analysis using Semi-parametric Shape-Restricted Regression with Applications. ARXIV 2023:arXiv:2310.09185v1. [PMID: 38076520 PMCID: PMC10705571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Often linear regression is used to perform mediation analysis. However, in many instances, the underlying relationships may not be linear, as in the case of placentalfetal hormones and fetal development. Although, the exact functional form of the relationship may be unknown, one may hypothesize the general shape of the relationship. For these reasons, we develop a novel shape-restricted inference-based methodology for conducting mediation analysis. This work is motivated by an application in fetal endocrinology where researchers are interested in understanding the effects of pesticide application on birth weight, with human chorionic gonadotropin (hCG) as the mediator. We assume a practically plausible set of nonlinear effects of h C G on the birth weight and a linear relationship between pesticide exposure and hCG, with both exposure-outcome and exposure-mediator models being linear in the confounding factors. Using the proposed methodology on a population-level prenatal screening program data, with hCG as the mediator, we discovered that, while the natural direct effects suggest a positive association between pesticide application and birth weight, the natural indirect effects were negative.
Collapse
Affiliation(s)
- Qing Yin
- Department of Biostatistics, University of Pittsburgh
| | | | - Xu Qin
- Department of Health and Human Development, University of Pittsburgh
| | | | | |
Collapse
|
14
|
Lacouture A, Breton Y, Weidmann C, Goulet SM, Germain L, Pelletier M, Audet-Walsh É. Estrogens and endocrine-disrupting chemicals differentially impact the bioenergetic fluxes of mammary epithelial cells in two- and three-dimensional models. ENVIRONMENT INTERNATIONAL 2023; 179:108132. [PMID: 37657410 DOI: 10.1016/j.envint.2023.108132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Due to its sensitivity to hormonal signaling, the mammary gland is often referred to as a sentinel organ for the study of endocrine-disrupting chemicals (EDCs), environmental pollutants that can interfere with the estrogen signaling pathway and induce mammary developmental defects. If and how EDCs impact mammary epithelial cell metabolism has not yet been documented. Herein, to study how estrogens and EDCs modulate mammary gland metabolism, we performed bioenergetic flux analyses using mouse mammary epithelial organoids compared to cells grown in monolayer culture. Several EDCs were tested, including bisphenol A (BPA), its close derivative BPS, a new BPA replacement copolyester called TritanTM, and the herbicide glyphosate. We report that estrogens reprogrammed mammary epithelial cell metabolism differently when grown in two- and three-dimensional models. Specific EDCs were also demonstrated to alter bioenergetic fluxes, thus identifying a new potential adverse effect of these molecules. Notably, organoids were more sensitive to low EDC concentrations, highlighting them as a key model for screening the impact of various environmental pollutants. Mechanistically, transcriptomic analyses revealed that EDCs interfered with the regulation of estrogen target genes and the expression of metabolic genes in organoids. Furthermore, co-treatment with the anti-estrogen fulvestrant blocked these metabolic impacts of EDCs, suggesting that, at least partially, they act through modulation of the estrogen receptor activity. Finally, we demonstrate that mammary organoids can be used for long-term studies on EDC exposure to study alterations in organogenesis/morphogenesis and that past pregnancies can modulate the sensitivity of mammary epithelial organoids to specific EDCs. Overall, this study demonstrates that estrogens and EDCs modulate mammary epithelial cell metabolism in monolayer and organoid cultures. A better understanding of the metabolic impacts of EDCs will allow a better appreciation of their adverse effects on mammary gland development and function.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada
| | - Yann Breton
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Martin Pelletier
- Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada; Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Québec City, Canada.
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada.
| |
Collapse
|
15
|
Adegoke EO, Rahman MS, Amjad S, Pang WK, Ryu DY, Park YJ, Pang MG. Environmentally relevant doses of endocrine disrupting chemicals affect male fertility by interfering with sertoli cell glucose metabolism in mice. CHEMOSPHERE 2023; 337:139277. [PMID: 37364641 DOI: 10.1016/j.chemosphere.2023.139277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The growing global deterioration in several aspects of human health has been partly attributed to hazardous effects of endocrine-disrupting chemicals (EDCs) exposure. Therefore, experts and government regulatory agencies have consistently advocated for studies on the combined effects of EDCs that model human exposure to multiple environmental chemicals in real life. Here, we investigated how low concentrations of bisphenol A (BPA), and phthalates compounds affect the Sertoli cell glucose uptake/lactate production in the testis and male fertility. An EDC mixture containing a detected amount of each chemical compound in humans, called daily exposure (DE), and DE increased in magnitude by 25 (DE25), 250 (DE250), and 2500 (DE2500), and corn oil (control) were administered for six weeks to male mice. We found that DE activated estrogen receptor beta (Erβ) and glucose-regulated protein 78 (Grp 78) and disrupted the estradiol (E2) balance. In addition, DE25, DE250, and DE2500 doses of the EDC mixture via binding with Sertoli cells' estrogen receptors (ERs) inhibited the glucose uptake and lactate production processes by downregulating glucose transporters (GLUTs) and glycolytic enzymes. As a result, endoplasmic reticulum stress (ERS), marked by unfolded protein response (UPR) activation, was induced. The accompanying upregulation of activating transcription factor 4 (ATF4), inositol requiring enzyme-1 (IRE1), C/EBP homologous protein (CHOP), and mitogen-activated protein kinase (MAPK) signaling promoted antioxidant depletion, testicular cell apoptosis, abnormal regulation of the blood-testis barrier, and decreased sperm count. Therefore, these findings suggest that human and wildlife exposure to multiple environmental chemicals can produce a wide range of reproductive health complications in male mammals.
Collapse
Affiliation(s)
- Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Mung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
16
|
Stiefel C, Stintzing F. Endocrine-active and endocrine-disrupting compounds in food – occurrence, formation and relevance. NFS JOURNAL 2023; 31:57-92. [DOI: 10.1016/j.nfs.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Yao WH, Mo LY, Fang LS, Qin LT. Molecular dynamics simulations on interactions of five antibiotics with luciferase of Vibrio Qinghaiensis sp.-Q67. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114910. [PMID: 37062261 DOI: 10.1016/j.ecoenv.2023.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
A large number of antibiotics have been used in the medical industry, agriculture, and animal husbandry industry in recent years. It may cause pollution to the aquatic environment and ultimately threaten to human health due to their prolonged exposure to the environment. We aim to study the toxicity mechanism of enrofloxacin (ENR), chlortetracycline hydrochloride (CTC), trimethoprim (TMP), chloramphenicol (CMP), and erythromycin (ETM) to luciferase of Vibrio Qinghaiensis sp.-Q67 (Q67) by using toxicity testing combined with molecular docking, molecular dynamics, and binding free energy analysis. The curve categories for ENR were different from the other four antibiotics, with ENR being J-type and the rest being S-type, and the toxicity of these five antibiotics (pEC50) followed the order of ENR (7.281) > ETM (6.814) > CMP (6.672) > CTC (6.400) > TMP (6.123), the order of toxicity value is consistent with the the magnitude of the binding free energy (ENR (-47.759 kcal/mol), ETM (-46.821 kcal/mol), CMP (-42.905 kcal/mol), CTC (-40.946 kcal/mol), TMP (-28.251 kcal/mol)). The van der Waals force provided the most important contribution to the binding free energy of the five antibiotics in the binding system with Q67 luciferase. Therefore, the dominant factor for the binding of antibiotics to luciferase was shape compensation. The face-to-face π-π stacking interaction between the diazohexane structure outside the active pocket region and the indoles structure of Phe194 and Phe250 in the molecular structure was the main reason for the highest toxicity value of antibiotic ENR. The hormesis effect of ENR has a competitive binding relationship with the α and β subunits of luciferase. Homology modeling, molecular docking, molecular dynamics simulations and binding free energy calculations were used to derive the toxicity magnitude of different antibiotics against Q67, and insights at the molecular level. The conclusion of toxicological experiments verified the correctness of the simulation results. This study contributes to the understanding of toxicity mechanisms of five antibiotics and facilitates risk assessment of antibiotic contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Wei-Hao Yao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541006, China; Technology Innovation Center for Mine Geological Environment Restoration Engineering in Southern Shishan Region, Ministry of Natural Resources, Nanning 530028, China.
| | - Liu-Sen Fang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Technology Innovation Center for Mine Geological Environment Restoration Engineering in Southern Shishan Region, Ministry of Natural Resources, Nanning 530028, China.
| |
Collapse
|
18
|
Lu Y, Chen S, Jin H, Tang L, Xia M. Associations of bisphenol F and S, as substitutes for bisphenol A, with cardiovascular disease in American adults. J Appl Toxicol 2023; 43:500-507. [PMID: 36189736 DOI: 10.1002/jat.4401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
Bisphenol A (BPA) exposure may be positively associated with cardiovascular disease (CVD). For more than a past decade, exposure to bisphenol F (BPF) and bisphenol S (BPS), as substitutes for BPA, has gradually increased in the population. Whether BPF and BPS exposure are associated with CVD remains unclear. We used data from the United States National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016. A total of 3,502 participants, including 368 with CVD, were enrolled in the final analysis. Associations of BPA, BPF and BPS with CVD were determined using multivariate logistic regression analysis. The highest level of urinary BPA (≥2.5 ng/ml) was significantly associated with a higher CVD prevalence (odds ratio [OR], 1.58; 95% confidence interval [CI], 1.08-2.3) among all participants in the quartile analysis. In stratified analyses, the highest level of urinary BPA was positively associated with CVD prevalence in males (1.86, 1.1-3.13) and the elderly population (≥60 years old) (1.89, 1.2-2.97). Higher levels of urinary BPF were positively associated with CVD prevalence in females (Q2: 1.81, 1.03-3.18; Q4: 1.73, 1.07-2.79) and in the elderly population (Q3: 1.7, 1.16-2.48). No associations were found between urinary BPS levels and CVD, regardless of whether the participants were stratified by age or sex. In conclusion, exposure to BPA or BPF was positively correlated with CVD prevalence, but an association was not found for exposure to BPS. BPF may not be as safe as assumed for human health.
Collapse
Affiliation(s)
- Yuan Lu
- Division of Cardiac surgery, Zhejiang Hospital, Hangzhou City, China
| | - Shaoxi Chen
- Division of Cardiac surgery, Zhejiang Hospital, Hangzhou City, China
| | - Hongfeng Jin
- Division of Cardiology, Zhejiang Hospital, Hangzhou City, China
| | - Lijiang Tang
- Division of Cardiology, Zhejiang Hospital, Hangzhou City, China
| | - Ming Xia
- Division of Cardiology, Zhejiang Hospital, Hangzhou City, China
| |
Collapse
|
19
|
Ishida K, Furukawa M, Kunitani M, Yamagiwa R, Hiromori Y, Matsumaru D, Hu J, Nagase H, Nakanishi T. Novel, highly sensitive, in vivo screening method detects estrogenic activity at low doses of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130461. [PMID: 36436451 DOI: 10.1016/j.jhazmat.2022.130461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Low doses of bisphenol A (BPA), a typical endocrine-disrupting chemical (EDC), have been reported to exhibit estrogenic action in animals; however, the effects have not been fully clarified because of their non-reproducibility. Here, we developed a novel, short-term screening test for estrogen-like chemicals using in vivo bioluminescence imaging of estrogen-responsive reporter (E-Rep) mice. Comparative studies using 17α-ethinylestradiol and selective estrogen receptor modulators demonstrated that the method provides higher detection sensitivity and requires less time than the uterotrophic bioassay, a well-established, in vivo screening method for estrogen-like chemicals. Our method could detect the estrogenic effects of BPA at doses below tolerable daily intakes, whereas the uterotrophic bioassay could not. Our results indicated that in vivo bioluminescence imaging using E-Rep mice was extremely useful for screening estrogenic chemicals and detecting estrogenic effects at low doses of EDCs, including BPA. Our method should help resolve the controversy about low-dose effects of EDCs.
Collapse
Affiliation(s)
- Keishi Ishida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Motoshi Furukawa
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Masataka Kunitani
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Rai Yamagiwa
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan; Faculty of Pharmaceutical Sciences, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu 501-1196, Japan.
| |
Collapse
|
20
|
Di Pietro G, Forcucci F, Chiarelli F. Endocrine Disruptor Chemicals and Children's Health. Int J Mol Sci 2023; 24:2671. [PMID: 36768991 PMCID: PMC9916521 DOI: 10.3390/ijms24032671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are developing organisms. Considering the developmental origin of well-being and diseases, every adult organism expresses consequences of the environment in which it developed. The molecular mechanisms through which the main EDCs manifest their effects and their potential association with endocrine disorders, such as diabetes, obesity, thyroid disease and alteration of adrenal hormones, will be reviewed here. Despite 40 years having passed since the first study on EDCs, little is yet known about them; therefore, our purpose is to take stock of the situation to establish a starting point for further studies. Since there is plenty of evidence showing that exposure to EDCs may adversely impact the health of adults and children through altered endocrine function-suggesting their link to endocrinopathies-it is essential in this context to bear in mind what is already known about endocrine disruptors and to deepen our knowledge to establish rules of conduct aimed at limiting exposure to EDCs' negative effects. Considering that during the COVID-19 pandemic an increase in endocrine disruptor effects has been reported, it will also be useful to address this new phenomenon for better understanding its basis and limiting its consequences.
Collapse
Affiliation(s)
| | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
21
|
Shi Z, Xia M, Xiao S, Zhang Q. Identification of nonmonotonic concentration-responses in Tox21 high-throughput screening estrogen receptor assays. Toxicol Appl Pharmacol 2022; 452:116206. [PMID: 35988584 PMCID: PMC9452481 DOI: 10.1016/j.taap.2022.116206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) interfere with the metabolism and actions of endogenous hormones. It has been well documented in numerous in vivo and in vitro studies that EDCs can exhibit nonmonotonic dose response (NMDR) behaviors. Not conforming to the conventional linear or linear-no-threshold response paradigm, these NMDR relationships pose practical challenges to the risk assessment of EDCs. In the meantime, the endocrine signaling pathways and biological mechanisms underpinning NMDR remain incompletely understood. The US Tox21 program has conducted in vitro cell-based high-throughput screening assays for estrogen receptors (ER), androgen receptors, and other nuclear receptors, and screened the 10 K-compound library for potential endocrine activities. Using 15 concentrations across several orders of magnitude of concentration range and run in both agonist and antagonist modes, these Tox21 assay datasets contain valuable quantitative information that can be explored to evaluate the nonlinear effects of EDCs and may infer potential mechanisms. In this study we analyzed the concentration-response curves (CRCs) in all 8 Tox21 ERα and ERβ assays by developing clustering and classification algorithms customized to the datasets to identify various shapes of CRCs. After excluding NMDR curves likely caused by cytotoxicity, luciferase inhibition, or autofluorescence, hundreds of compounds were identified to exhibit Bell or U-shaped CRCs. Bell-shaped CRCs are about 7 times more frequent than U-shaped ones in the Tox21 ER assays. Many compounds exhibit NMDR in at least one assay, and some EDCs well-known for their NMDRs in the literature were also identified, suggesting their nonmonotonic effects may originate at cellular levels involving transcriptional ER signaling. The developed computational methods for NMDR identification in ER assays can be adapted and applied to other high-throughput bioassays.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Zahra A, Kerslake R, Kyrou I, Randeva HS, Sisu C, Karteris E. Impact of Environmentally Relevant Concentrations of Bisphenol A (BPA) on the Gene Expression Profile in an In Vitro Model of the Normal Human Ovary. Int J Mol Sci 2022; 23:5334. [PMID: 35628146 PMCID: PMC9141570 DOI: 10.3390/ijms23105334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs), including the xenoestrogen Bisphenol A (BPA), can interfere with hormonal signalling. Despite increasing reports of adverse health effects associated with exposure to EDCs, there are limited data on the effect of BPA in normal human ovaries. In this paper, we present a detailed analysis of the transcriptomic landscape in normal Human Epithelial Ovarian Cells (HOSEpiC) treated with BPA (10 and 100 nM). Gene expression profiles were determined using high-throughput RNA sequencing, followed by functional analyses using bioinformatics tools. In total, 272 and 454 differentially expressed genes (DEGs) were identified in 10 and 100 nM BPA-treated HOSEpiCs, respectively, compared to untreated controls. Biological pathways included mRNA surveillance pathways, oocyte meiosis, cellular senescence, and transcriptional misregulation in cancer. BPA exposure has a considerable impact on 10 genes: ANAPC2, AURKA, CDK1, CCNA2, CCNB1, PLK1, BUB1, KIF22, PDE3B, and CCNB3, which are also associated with progesterone-mediated oocyte maturation pathways. Future studies should further explore the effects of BPA and its metabolites in the ovaries in health and disease, making use of validated in vitro and in vivo models to generate data that will address existing knowledge gaps in basic biology, hazard characterisation, and risk assessment associated with the use of xenoestrogens such as BPA.
Collapse
Affiliation(s)
- Aeman Zahra
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Rachel Kerslake
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (I.K.); (H.S.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Cristina Sisu
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| | - Emmanouil Karteris
- Department of Life Sciences, Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (R.K.)
| |
Collapse
|
23
|
Mortensen ÅK, Verreault J, François A, Houde M, Giraudo M, Dam M, Jenssen BM. Flame retardants and their associations with thyroid hormone-related variables in northern fulmars from the Faroe Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150506. [PMID: 34601176 DOI: 10.1016/j.scitotenv.2021.150506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely reported in tissues of seabirds including birds sampled from remote areas. There is evidence that FRs can disrupt the hypothalamic-pituitary-thyroid (HPT) axis in seabirds, although information is limited on thyroid-related mechanisms and effects. This study investigated the associations between concentrations of polybrominated diphenyl ethers (PBDEs) and other FRs, and changes in the HPT axis in northern fulmars (Fulmarus glacialis) from the Faroe Islands (North Atlantic). Plasma concentrations of thyroid hormones (THs), hepatic deiodinase type 1 (D1) activity, and transcription of selected TH-related genes in liver were used as markers of HPT axis changes. Liver concentrations of a certain PBDE congeners and other FRs including pentabromoethylbenzene (PBEB), dechlorane 602 (Dec-602), and dechlorane plus (DP) were associated with changes in thyroid status. Specifically, liver PBDE, PBEB and Dec-602 concentrations were associated with plasma TH levels (free thyroxine [FT4] and total triiodothyronine [TT3]). Liver DP concentrations were positively correlated with the TT4:FT4 ratios and mRNA levels of UDP-glucuronyltransferase-1, while those of PBEB were negatively associated with TT4:TT3 ratios and D1 activity. D1 activity was also positively associated with the tri-, tetra- and hexa-BDE congeners. Moreover, transcription of ABCC2, a hepatic TH transporter, was associated with certain liver PBDE concentrations. Although PBDEs and other FRs may be potential inhibitors of D1 activity, only a few of the targeted FRs had modest associations with hepatic D1 activity. Regardless, the relationships reported herein indicated that exposure to moderate levels of FRs can be associated with thyroid axis perturbation at the molecular/biochemical levels in this North Atlantic seabird species.
Collapse
Affiliation(s)
- Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Anthony François
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maria Dam
- IVF Evnaskyn, Fjosagoeta 2, FO-100 Torshavn, Faroe Islands
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
24
|
Yang M, Lee Y, Gao L, Chiu K, Meling DD, Flaws JA, Warner GR. Perfluorooctanoic Acid Disrupts Ovarian Steroidogenesis and Folliculogenesis in Adult Mice. Toxicol Sci 2022; 186:260-268. [PMID: 35104888 PMCID: PMC8963314 DOI: 10.1093/toxsci/kfac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic fluorosurfactant used in the manufacturing of fluorotelomers. Although PFOA is no longer produced in the United States, it is environmentally persistent and found in imported food packaging, cookware, and textiles. Previous studies have identified developmental toxicity of PFOA, but little is known about the effects of PFOA on the adult ovary. Thus, this study examined the effects of PFOA on hormone levels, ovarian steroidogenic gene expression, and folliculogenesis in mice in vitro and in vivo. For the in vitro studies, antral follicles from adult female mice were cultured with vehicle control or 1, 10, or 100 μg/ml PFOA for 96 h. For the in vivo studies, adult CD-1 female mice were orally dosed with vehicle control or 1, 5, 10, or 20 mg/kg/day PFOA for 10 days. Gene expression of steroidogenic enzymes, levels of sex steroid hormones, and follicle counts were analyzed. In vitro, PFOA (100 μg/ml) significantly decreased follicle growth, estradiol and estrone levels, and gene expression of StaR, Cyp11a1, and Hsd3b1 compared with controls. In vivo, exposure to PFOA significantly decreased progesterone and pregnenolone levels (5 mg/kg), increased testosterone levels (1 mg/kg), and increased gene expression of Cyp19a1 (1 mg/kg) compared with controls. Exposure to PFOA also significantly altered follicle counts by decreasing primordial follicles and increasing preantral and antral follicles (5 and 10 mg/kg) compared with controls. Collectively, these data show that PFOA disrupts adult ovarian function in a nonmonotonic matter and may pose a risk for premature ovarian failure.
Collapse
Affiliation(s)
- May Yang
- Department of Comparative Bioscience, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Yuna Lee
- Department of Comparative Bioscience, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Liying Gao
- Department of Comparative Bioscience, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Karen Chiu
- Department of Comparative Bioscience, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Daryl D Meling
- Department of Comparative Bioscience, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Jodi A Flaws
- Department of Comparative Bioscience, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Genoa R Warner
- To whom correspondence should be addressed at Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA. E-mail:
| |
Collapse
|
25
|
17α-Ethinylestradiol elimination using synthesized and dense nanocomposite materials: Mechanism and real matrix treatment. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0958-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Marí-Bauset S, Peraita-Costa I, Donat-Vargas C, Llopis-González A, Marí-Sanchis A, Llopis-Morales J, Morales Suárez-Varela M. Systematic review of prenatal exposure to endocrine disrupting chemicals and autism spectrum disorder in offspring. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:6-32. [PMID: 34412519 DOI: 10.1177/13623613211039950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders comprise a complex group with many subtypes of behaviorally defined neurodevelopmental abnormalities in two core areas: deficits in social communication and fixated, restricted, repetitive, or stereotyped behaviors and interests each with potential unique risk factors and characteristics. The underlying mechanisms and the possible causes of autism spectrum disorder remain elusive and while increased prevalence is undoubtable, it is unclear if it is a reflection of diagnostic improvement or emerging risk factors such as endocrine disrupting chemicals. Epidemiological studies, which are used to study the relation between endocrine disrupting chemicals and autism spectrum disorder, can have inherent methodological challenges that limit the quality and strength of their findings. The objective of this work is to systematically review the treatment of these challenges and assess the quality and strength of the findings in the currently available literature. The overall quality and strength were "moderate" and "limited," respectively. Risk of bias due to the exclusion of potential confounding factors and the lack of accuracy of exposure assessment methods were the most prevalent. The omnipresence of endocrine disrupting chemicals and the biological plausibility of the association between prenatal exposure and later development of autism spectrum disorder highlight the need to carry out well-designed epidemiological studies that overcome the methodological challenges observed in the currently available literature in order to be able to inform public policy to prevent exposure to these potentially harmful chemicals and aid in the establishment of predictor variables to facilitate early diagnosis of autism spectrum disorder and improve long-term outcomes.
Collapse
Affiliation(s)
- Salvador Marí-Bauset
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - Isabel Peraita-Costa
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Agustín Llopis-González
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Juan Llopis-Morales
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - María Morales Suárez-Varela
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| |
Collapse
|
27
|
Gudda FO, Ateia M, Waigi MG, Wang J, Gao Y. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113708. [PMID: 34619591 DOI: 10.1016/j.jenvman.2021.113708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17β-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17β-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Liu H, Hu W, Li X, Hu F, Xi Y, Su Z, Huang Y, Liu B, Zhang C. Do perfluoroalkyl substances aggravate the occurrence of obesity-associated glucolipid metabolic disease? ENVIRONMENTAL RESEARCH 2021; 202:111724. [PMID: 34293310 DOI: 10.1016/j.envres.2021.111724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Since 2016, more and more studies have been conducted to explore the combination of obesity and perfluoroalkyl substances (PFASs) exposure, and the results indicate that PFASs may be connected with the occurrence of obesity-associated glucolipid metabolic disease (GLMD). OBJECTIVES This article summarizes the epidemiological studies on PFASs and obesity-related GLMD, as well as relevant experimental evidence. RESULTS (i) Both obesity and PFASs exposure can cause disorder of glucose and lipid metabolism (GLM). (ii) Obesity is a pivotal factor in the high incidence of GLMD induce by PFASs. (iii) PFASs are aggravating the occurrence of obesity-associated GLMD [e.g., diabetes, cardiovascular disease (CVD), and liver disease]. CONCLUSION The paper fills the gaps among environmental chemistry/epidemiology/toxicology area research. More importantly, PFASs should be taken into account to explain the high-prevalence of obesity-related GLMD. FUTURE DIRECTION Three research programs are proposed to explore the synergistic mechanism of PFASs and obesity. In addition, three suggestions are recommended to solve the harm of PFASs pollutants to human beings.
Collapse
Affiliation(s)
- Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenli Hu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Fangwen Hu
- Zhangjiajie College, Jishou University, Zhangjiajie, 427000, China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
29
|
Ghassabian A, Vandenberg L, Kannan K, Trasande L. Endocrine-Disrupting Chemicals and Child Health. Annu Rev Pharmacol Toxicol 2021; 62:573-594. [PMID: 34555290 DOI: 10.1146/annurev-pharmtox-021921-093352] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While definitions vary, endocrine-disrupting chemicals (EDCs) have two fundamental features: their disruption of hormone function and their contribution to disease and disability. The unique vulnerability of children to low-level EDC exposures has eroded the notion that only the dose makes the thing a poison, requiring a paradigm shift in scientific and policy practice. In this review, we discuss the unique vulnerability of children as early as fetal life and provide an overview of epidemiological studies on programming effects of EDCs on neuronal, metabolic, and immune pathways as well as on endocrine, reproductive, and renal systems. Building on this accumulating evidence, we dispel and address existing myths about the health effects of EDCs with examples from child health research. Finally, we provide a list of effective actions to reduce exposure, and subsequent harm that are applicable to individuals, communities, and policy-makers. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akhgar Ghassabian
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Laura Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA; .,Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, USA.,Wagner School of Public Service and College of Global Public Health, New York University, New York, NY 10016, USA
| |
Collapse
|
30
|
Sprinkle RH, Payne-Sturges DC. Mixture toxicity, cumulative risk, and environmental justice in United States federal policy, 1980-2016 : Why, with much known, was little done? Environ Health 2021; 20:104. [PMID: 34535123 PMCID: PMC8449500 DOI: 10.1186/s12940-021-00764-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/24/2021] [Indexed: 05/12/2023]
Abstract
Toxic chemicals - "toxicants" - have been studied and regulated as single entities, and, carcinogens aside, almost all toxicants, single or mixed and however altered, have been thought harmless in very low doses or very weak concentrations. Yet much work in recent decades has shown that toxicants can injure wildlife, laboratory animals, and humans following exposures previously expected to be harmless. Additional work has shown that toxicants can act not only individually and cumulatively but also collectively and even synergistically and that they affect disadvantaged communities inordinately - and therefore, as argued by reformers, unjustly. As late as December 2016, the last full month before the inauguration of a president promising to rescind major environmental regulations, the United States federal environmental-health establishment, as led by the Environmental Protection Agency (EPA), had not developed coherent strategies to mitigate such risks, to alert the public to their plausibility, or to advise leadership in government and industry about their implications. To understand why, we examined archival materials, reviewed online databases, read internal industry communications, and interviewed experts. We confirmed that external constraints, statutory and judicial, had been in place prior to EPA's earliest interest in mixture toxicity, but we found no overt effort, certainly no successful effort, to loosen those constraints. We also found internal constraints: concerns that fully committing to the study of complex mixtures involving numerous toxicants would lead to methodological drift within the toxicological community and that trying to act on insights from such study could lead only to regulatory futility. Interaction of these constraints, external and internal, shielded the EPA by circumscribing its responsibilities and by impeding movement toward paradigmatic adjustment, but it also perpetuated scientifically dubious policies, such as those limiting the evaluation of commercial chemical formulations, including pesticide formulations, to only those ingredients said by their manufacturers to be active. In this context, regulators' disregard of synergism contrasted irreconcilably with biocide manufacturers' understanding that synergism enhanced lethality and patentability. In the end, an effective national response to mixture toxicity, cumulative risk, and environmental injustice did not emerge. In parallel, though, the National Institute of Environmental Health Sciences, which was less constrained, pursued with scientific investigation what the EPA had not pursued with regulatory action.
Collapse
Affiliation(s)
| | - Devon C Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
31
|
De Falco M, Laforgia V. Combined Effects of Different Endocrine-Disrupting Chemicals (EDCs) on Prostate Gland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9772. [PMID: 34574693 PMCID: PMC8471191 DOI: 10.3390/ijerph18189772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) belong to a heterogeneous class of environmental pollutants widely diffused in different aquatic and terrestrial habitats. This implies that humans and animals are continuously exposed to EDCs from different matrices and sources. Moreover, pollution derived from anthropic and industrial activities leads to combined exposure to substances with multiple mechanisms of action on the endocrine system and correlated cell and tissue targets. For this reason, specific organs, such as the prostate gland, which physiologically are under the control of hormones like androgens and estrogens, are particularly sensitive to EDC stimulation. It is now well known that an imbalance in hormonal regulation can cause the onset of various prostate diseases, from benign prostate hyperplasia to prostate cancer. In this review, starting with the description of normal prostate gland anatomy and embryology, we summarize recent studies reporting on how the multiple and simultaneous exposure to estrogenic and anti-androgenic compounds belonging to EDCs are responsible for an increase in prostate disease incidence in the human population.
Collapse
Affiliation(s)
- Maria De Falco
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy;
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy;
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
32
|
Natsch A. Scientific discrepancies in European regulatory proposals on endocrine disruptors-REACH regulation quo vadis? Arch Toxicol 2021; 95:3601-3609. [PMID: 34505931 PMCID: PMC8492591 DOI: 10.1007/s00204-021-03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
The EU chemical strategy for sustainability places a high focus on endocrine-disrupting chemicals (ED), the importance of their identification with increased testing and a ban in consumer products by a generic approach. It is assumed that for ED no threshold and hence no safe dose exists, leading to this generic approach. This view appears to be linked to the claim that for ED ‘low-dose non-monotonic dose response’ (low-dose NMDR) effects are observed. Without this hypothesis, there are no scientific reasons why classical risk assessment cannot be applied to the ED mode-of-action. Thus, whether for ED low-dose NMDR effects are considered a reproducible scientific fact by European authorities is Gretchen’s question in this politicized field. Recent documents by the SCCS, EFSA and ECHA reviewed herein illustrate the diverging views within European scientific bodies on this issue. Furthermore, ED researchers never replicated findings on low-dose NMDR in blinded inter-laboratory experiments and the CLARITY-BPA core studies could not find evidence for reproducible NMDR for BPA. ECHA proposes a battery of in vitro tests to test all chemicals for ED properties. However, these tests were never validated for relevance and their high positivity rate could lead to increased follow-up animal testing. Based on (i) lack of reproducibility data for low-dose NMDR, (ii) diverging views within European authorities on NMDR and (iii) lack of fully validated in vitro test methods it might be premature to fast-track the wide-ranging changes in the regulatory landscape proposed by the authorities ultimately leading to drastically increased animal testing.
Collapse
Affiliation(s)
- Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptpark 50, CH-8310, Kemptthal, Switzerland.
| |
Collapse
|
33
|
Abstract
Regulatory agencies around the world depend on standardized testing approaches to evaluate environmental chemicals for endocrine disrupting properties. The US Environmental Protection Agency (EPA) has developed a two-tiered testing approach within its Endocrine Disruptor Screening Program (EDSP). The eleven Tier 1 and three Tier 2 EDSP assays can be used to identify chemicals that act as agonists or antagonists of estrogen receptor, androgen receptor, or thyroid hormone receptor, or chemicals that interfere with steroidogenesis. Additional assays have been developed in the context of Tox21, and others have been validated by the OECD. In spite of the availability of validated toxicity tests, problems have been identified with the approaches and methods used to identify endocrine disrupting chemicals (EDCs). This chapter will provide an overview of several of these issues including: (1) The way an EDC is defined by an agency impacts whether a specific test can be used to determine if a chemical is an EDC. This is especially important when considering which assays examine outcomes that are considered "adverse effects." (2) Some assumptions about the validated studies used to identify EDCs may not be true (e.g., their reproducibility has been questioned). (3) Many of the validated assays are less sensitive than other methods that have not yet been validated. Ultimately, these and other problems contribute to the current landscape, where testing approaches have failed to protect the public from known EDCs. The chapter concludes with a review of approaches that have been taken to improve current guideline studies.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
34
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
35
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|
36
|
da Silva Moreira S, de Lima Inocêncio LC, Jorge BC, Reis ACC, Hisano H, Arena AC. Effects of benzo(a)pyrene at environmentally relevant doses on embryo-fetal development in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:831-839. [PMID: 33350577 DOI: 10.1002/tox.23085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Studies have demonstrated that Benzo(a)Pyrene (BaP), a polycyclic aromatic hydrocarbon ubiquituous in the environment, can cause teratogenic effects. Since the majority of studies used in vitro models or high doses of BaP, this study evaluated the teratogenicity, reproductive and developmental performance of low doses of BaP through maternal and fetus examination after daily oral administration of BaP (0; 0.1; 1.0 or 10 μg/kg) to pregnant Wistar rats from Gestational day (GD) 6 to GD 15 (the organogenesis period). Pregnant rats did not exhibit clinical signs of toxicity during the exposure period. However, dams exposed to the lowest dose of BaP showed a reduction in the erythrocytes number and in the creatinine levels. The groups exposed to 0.1 and 1.0 μg/kg presented a decrease in placental efficiency, as well as an increase in placental weight. After fetal examination, the treated group with the lowest dose showed a reduced relative anogenital distance, while the curve of normal distribution of weight was changed in the highest dose group. In addition, anomalies evidenced by changes in the renal size and degree of fetal ossification were observed in treated-fetus. In conclusion, treatment with BaP during organogenesis at this dose level is detrimental to the normal development of fetuses.
Collapse
Affiliation(s)
- Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Leonardo Cesar de Lima Inocêncio
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
- Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| |
Collapse
|
37
|
Di Lorenzo M, Mileo A, Laforgia V, De Falco M, Rosati L. Alkyphenol Exposure Alters Steroidogenesis in Male Lizard Podarcis siculus. Animals (Basel) 2021; 11:1003. [PMID: 33918463 PMCID: PMC8065914 DOI: 10.3390/ani11041003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nonylphenol (NP) and Octylphenol (OP) are persistent and non-biodegradable environmental contaminants classified as endocrine disruptor chemicals (EDCs). These compounds are widely used in several industrial applications and present estrogen-like properties, which have extensively been studied in aquatic organisms. The present study aimed to verify the interference of these compounds alone, and in mixture, on the reproductive cycle of the male terrestrial vertebrate Podarcis siculus, focusing mainly on the steroidogenesis process. METHODS Male lizards have been treated with different injections of both NP and OP alone and in mixture, and evaluation has been carried out using a histological approach. RESULTS Results obtained showed that both substances are able to alter both testis histology and localization of key steroidogenic enzymes, such as 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β- hydroxysteroid dehydrogenase (17β-HSD) and P450 aromatase. Moreover, OP exerts a preponderant effect, and the P450 aromatase represents the major target of both chemicals. CONCLUSIONS In conclusion, NP and OP inhibit steroidogenesis, which in turn may reduce the reproductive capacity of the specimens.
Collapse
Affiliation(s)
- Mariana Di Lorenzo
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
| | - Aldo Mileo
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
| | - Vincenza Laforgia
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), 80055 Portici, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy; (M.D.L.); (A.M.); (V.L.); (L.R.)
- Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), 80055 Portici, Italy
| |
Collapse
|
38
|
Huang W, Wang X, Zheng S, Wu R, Liu C, Wu K. Effect of bisphenol A on craniofacial cartilage development in zebrafish (Danio rerio) embryos: A morphological study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111991. [PMID: 33548570 DOI: 10.1016/j.ecoenv.2021.111991] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical, is present in everyday-used consumables and common household products. Although the side effects of BPA have been sufficiently explored, little is known the effects of environmentally relevant low levels of BPA on chondrogenesis in skeletal development. Here we used a morphological approach to investigate whether exposure to BPA (0, 0.0038, 0.05, 0.1, 1.0 μM) could affect craniofacial cartilage development of zebrafish embryo. Furthermore, we sought to determine receptor-mediated BPA induced chondrogenesis toxicity by co-exposing developing embryos to BPA and various inhibitors. Low-dose BPA affected heart rate and induced body and head elongation of larvae. Quantitative morphometric and histopathological analysis revealed that BPA exposure changed the angle and length of craniofacial cartilage elements and disrupted chondrocytes. BPA induced pharyngeal cartilage defects via multiple cellular pathways, including estrogen receptor, androgen receptor, and estrogen-related receptors. Our findings demonstrate that BPA alters the normal development of cartilage and craniofacial structures in zebrafish embryos. Furthermore, in this study we find multiple cellular pathways mediating the effects of BPA-induced craniofacial chondrogenesis toxicity. Further experiments will allow for establishing a connection between BPA and increased risk of congenital malformation of the facial cranium in BPA-exposed populations.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou 515041, Guangdong, China.
| |
Collapse
|
39
|
Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? CHEMOSPHERE 2021; 268:129212. [PMID: 33359838 DOI: 10.1016/j.chemosphere.2020.129212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook.
Collapse
|
40
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
41
|
Hu Y, Wu W, Xu D, Guan X, Wang S. Occurrence, uptake, and health risk assessment of nonylphenol in soil-celery system simulating long-term reclaimed water irrigation. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124773. [PMID: 33321318 DOI: 10.1016/j.jhazmat.2020.124773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Reclaimed water (RW) irrigation provides an effective method to alleviate freshwater resources shortage. However, the residual endocrine disrupting chemicals in RW may cause potential risks to the environment and human body. Pot experiments were conducted to study the occurrence and environmental behavior of nonylphenol (NP) in soil-celery system simulating long-term RW irrigation, and exposure to NP was assessed to identify human health risks. Celery was grown on soil with different initial NP concentrations (0.126-22.9 mg·kg-1) to simulate the different irrigation years. After harvest, the NP concentrations in roots, stems and leaves were 0.26-1.51, 0.21-0.45 and 0.33-0.74 mg·kg-1, respectively. The NP concentrations in soil at depths of 5, 10 and 15 cm were 0.047-1.75, 0.088-1.77 and 0.048-1.07 mg·kg-1, respectively. The results showed a limited NP enrichment capacity of celery and low residual rates of NP in soil-celery system, which were between 6.33% and 26.3%. Both the bioconcentration factors (BCFs) and the residual rates of NP decreased with the initial NP concentrations in soil. The total noncancer hazard quotients (HQs) for human exposure to NP from celery and soil had the order of 10-4-10-3, which was lower than the acceptable risk level of 1 and showed safe conditions under long-term RW irrigation.
Collapse
Affiliation(s)
- Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China.
| | - Di Xu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China.
| | - Xiaoyan Guan
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Shiyu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Anlar H, Bacanli M, Başaran N. Endocrine disrupting mechanisms and effects of pesticides. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pesticides are important agents that are intentionally introduced into the environment to control various pests and disease carriers, often by killing them. Although pesticides have many important objectives, including protection against crop loss and vector-borne diseases, there are significant concerns over the potential toxicity of pesticides on various organisms, including humans. The frequent use of pesticides in agriculture has led to the long-term exposure of humans to different pesticide residues. Exposure to pesticides has been linked to disturbances in the endocrine system of animals and humans. There are increasing data on the relation between lipophilic pesticides with low biodegradability and changes in reproductive functions and parameters of male and female animals. But more epidemiological and detailed information is necessary on the probability and strength of pesticide exposure-outcome relations regarding endocrine-disrupting effects.
Collapse
|
43
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
44
|
Sex-biased impact of endocrine disrupting chemicals on behavioral development and vulnerability to disease: Of mice and children. Neurosci Biobehav Rev 2020; 121:29-46. [PMID: 33248148 DOI: 10.1016/j.neubiorev.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/16/2020] [Accepted: 11/14/2020] [Indexed: 12/14/2022]
Abstract
Sex is a fundamental biological characteristic that influences many aspects of an organism's phenotype, including neurobiological functions and behavior as a result of species-specific evolutionary pressures. Sex differences have strong implications for vulnerability to disease and susceptibility to environmental perturbations. Endocrine disrupting chemicals (EDCs) have the potential to interfere with sex hormones functioning and influence development in a sex specific manner. Here we present an updated descriptive review of findings from animal models and human studies regarding the current evidence for altered sex-differences in behavioral development in response to early exposure to EDCs, with a focus on bisphenol A and phthalates. Overall, we show that animal and human studies have a good degree of consistency and that there is strong evidence demonstrating that EDCs exposure during critical periods of development affect sex differences in emotional and cognitive behaviors. Results are more heterogeneous when social, sexual and parental behaviors are considered. In order to pinpoint sex differences in environmentally-driven disease vulnerabilities, researchers need to consider sex-biased developmental effects of EDCs.
Collapse
|
45
|
Taha M, Marie AM, Ahmed-Farid OA. Combined approaches for evaluation of xenoestrogen neural toxicity and thyroid dysfunction: Screening of oxido-nitrosative markers, DNA fragmentation, and biogenic amine degradation. J Biochem Mol Toxicol 2020; 34:e22521. [PMID: 32492287 DOI: 10.1002/jbt.22521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022]
Abstract
Anthropogenic chemicals such as parabens and triclosan are used in personal care products. Due to their ability to decrease or prevent bacterial contamination and act as preservatives, these chemicals are used in cosmetic manufacturing processes to increase the shelf life of products. In this study, we assessed the side effects of environmental estrogens (such as the xenoestrogen butylparaben and the antimicrobial agent and preservative triclosan) on thyroid function, brain monoamine levels, and DNA aberration. Forty-two male albino rats were divided into seven groups with six members each: the first group served as control; the second and the third groups were treated with butylparaben 10 and 50 mg/kg body weight, respectively; the fourth and fifth groups were treated with triclosan 10 and 50 mg/kg body weight, respectively; and the sixth and seventh groups were treated with butylparaben plus triclosan 10 and 50 mg/kg body weight, respectively. After 60 days, blood samples were collected and brain specimens were divided into striatum, midbrain, cortex, and thalamus. Thyroid function and levels of monoamines and monoamine metabolites were determined for each brain area. Comet assay was used for brain tissue analysis. The results showed that butylparaben and triclosan and their combinations induced hypothyroidism and disrupted monoamine levels, leading to a decrease in catecholamine and serotonin levels, and accelerated production of 5-hydroxyindoleacetic acid. The obtained data indicate that anthropogenic chemicals such as butylparaben and triclosan have harmful effects on thyroid and brain function and accelerate cell destruction and mutation, as evidenced by single-stranded DNA breaks in the comet assay.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abeer M Marie
- Department of Biology, National Organization for Drug Control and Research, Giza, Egypt
| | - Omar A Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
46
|
Zárate LV, Pontillo CA, Español A, Miret NV, Chiappini F, Cocca C, Álvarez L, de Pisarev DK, Sales ME, Randi AS. Angiogenesis signaling in breast cancer models is induced by hexachlorobenzene and chlorpyrifos, pesticide ligands of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol 2020; 401:115093. [PMID: 32526215 DOI: 10.1016/j.taap.2020.115093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Breast cancer incidence is increasing globally and pesticides exposure may impact risk of developing this disease. Hexachlorobenzene (HCB) and chlorpyrifos (CPF) act as endocrine disruptors, inducing proliferation in breast cancer cells. Vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-2 (COX-2) and nitric oxide (NO) are associated with angiogenesis. Our aim was to evaluate HCB and CPF action, both weak aryl hydrocarbon receptor (AhR) ligands, on angiogenesis in breast cancer models. We used: (1) in vivo xenograft model with MCF-7 cells, (2) in vitro breast cancer model with MCF-7, and (3) in vitro neovasculogenesis model with endothelial cells exposed to conditioned medium from MCF-7. Results show that HCB (3 mg/kg) and CPF (0.1 mg/kg) stimulated vascular density in the in vivo model. HCB and CPF low doses enhanced VEGF-A and COX-2 expression, accompanied by increased levels of nitric oxide synthases (NOS), and NO release in MCF-7. HCB and CPF high doses intensified VEGF-A and COX-2 levels but rendered different effects on NOS, however, both pesticides reduced NO production. Moreover, our data indicate that HCB and CPF-induced VEGF-A expression is mediated by estrogen receptor and NO, while the increase in COX-2 is through AhR and NO pathways in MCF-7. In conclusion, we demonstrate that HCB and CPF environmental concentrations stimulate angiogenic switch in vivo. Besides, pesticides induce VEGF-A and COX-2 expression, as well as NO production in MCF-7, promoting tubulogenesis in endothelial cells. These findings show that pesticide exposure could stimulate angiogenesis, a process that has been demonstrated to contribute to breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Alejandro Español
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Laura Álvarez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - María E Sales
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
47
|
Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol 2020; 8:719-730. [PMID: 32707119 PMCID: PMC7437819 DOI: 10.1016/s2213-8587(20)30128-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) substantially cost society as a result of increases in disease and disability but-unlike other toxicant classes such as carcinogens-have yet to be codified into regulations as a hazard category. This Series paper examines economic, regulatory, and policy approaches to limit human EDC exposures and describes potential improvements. In the EU, general principles for EDCs call for minimisation of human exposure, identification as substances of very high concern, and ban on use in pesticides. In the USA, screening and testing programmes are focused on oestrogenic EDCs exclusively, and regulation is strictly risk-based. Minimisation of human exposure is unlikely without a clear overarching definition for EDCs and relevant pre-marketing test requirements. We call for a multifaceted international programme (eg, modelled on the International Agency for Research in Cancer) to address the effects of EDCs on human health-an approach that would proactively identify hazards for subsequent regulation.
Collapse
Affiliation(s)
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Demeneix
- Centre National de la Recherche Scientifique, UMR 7221, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Sorbonne, Paris, France
| | - Miquel Porta
- Hospital del Mar Medical Research Institute, PSMAR, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona, Spain; School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, USA
| | - Remy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, INSERM, U1209, CNRS, UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Leonardo Trasande
- Department of Pediatrics, Environmental Medicine, and Population Health, New York University Grossman School of Medicine, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA.
| |
Collapse
|
48
|
Quirós-Alcalá L, Hansel NN, McCormack M, Calafat AM, Ye X, Peng RD, Matsui EC. Exposure to bisphenols and asthma morbidity among low-income urban children with asthma. J Allergy Clin Immunol 2020; 147:577-586.e7. [PMID: 32736870 DOI: 10.1016/j.jaci.2020.05.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Bisphenol A (BPA) has been linked with pediatric asthma development and allergic airway inflammation in animal models. Whether exposure to BPA or its structural analogs bisphenol S (BPS) and bisphenol F (BPF) is associated with asthma morbidity remains unknown. OBJECTIVE We examined associations between bisphenols and morbidity due to pediatric asthma. METHODS We quantified concentrations of BPA, BPS, and BPF in 660 urine samples from 148 predominantly low-income, African American children (aged 5-17 years) with established asthma. We used biobanked biospecimens and data on symptoms, health care utilization, and pulmonary function and inflammation that were collected every 3 months over the course of a year. We used generalized estimating equations to examine associations between concentrations or detection of urinary bisphenols and morbidity outcomes and assessed heterogeneity of associations by sex. RESULTS We observed consistent positive associations between BPA exposure and measures of asthma morbidity. For example, we observed increased odds of general symptom days (adjusted odds ratio [aOR] = 1.40 [95% C = 1.02-1.92]), maximal symptom days (aOR = 1.36 [95% CI = 1.00-1.83]), and emergency department visits (aOR = 2.12 [95% CI =1.28-3.51]) per 10-fold increase in BPA concentration. We also observed evidence of sexually dimorphic effects; BPA concentrations were associated with increased odds of symptom days and health care utilization only among boys. Findings regarding BPS and BPF did not consistently point to associations with asthma symptoms or health care utilization. CONCLUSION We found evidence to suggest that BPA exposure in a predominantly low-income, minority pediatric cohort is associated with asthma morbidity and that associations may differ by sex. Our findings support additional studies, given the high pediatric asthma burden and widespread exposure to BPA in the United States.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md; Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Md.
| | - Nadia N Hansel
- School of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Antonia M Calafat
- National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, Ga
| | - Xiaoyun Ye
- National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, Ga
| | - Roger D Peng
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Elizabeth C Matsui
- School of Medicine, Johns Hopkins University, Baltimore, Md; Dell Medical School, University of Texas, Austin, Tex
| |
Collapse
|
49
|
Calaf GM, Ponce-Cusi R, Aguayo F, Muñoz JP, Bleak TC. Endocrine disruptors from the environment affecting breast cancer. Oncol Lett 2020; 20:19-32. [PMID: 32565930 PMCID: PMC7286136 DOI: 10.3892/ol.2020.11566] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Evaluation of carcinogenic substances from the environment is a challenge for scientists. Recently, a novel approach based on 10 key characteristics of human carcinogens classified by the International Agency for Research on Cancer (IARC) has emerged. Carcinogenesis depends on different mechanisms and factors, including genetic, infectious (bacteria, viruses) and environmental (chemicals) factors. Endocrine disruptors are exogenous chemicals that can interfere and impair the function of the endocrine system due to their interaction with estrogen receptors or their estrogen signaling pathways inducing adverse effects in the normal mammary development, originating cancer. They are heterogeneous chemicals and include numerous synthetic substances used worldwide in agriculture, industry and consumer products. The most common are plasticizers, such as bisphenol A (BPA), pesticides, such as dichlorodiphenyltrichloroethane, and polychlorinated biphenyls (PCBs). Xenoestrogens appear to serve an important role in the increased incidence of breast cancer in the United States and numerous other countries. Several studies have demonstrated the role of organochlorine xenoestrogens in breast cancer. Therefore, the overall cumulative exposure of women to estrogens results in an increased risk for this type of cancer. Factors like lifestyle and diet also serve a role in the increased incidence of this disease. The aim of the present study was to analyze these chemical compounds based on the key characteristics given by the IARC, with a special focus on breast cancer, to establish whether these compounds are carcinogens, and to create a model for future analysis of other endocrine disruptors.
Collapse
Affiliation(s)
- Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Richard Ponce-Cusi
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Francisco Aguayo
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380000, Chile
| | - Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Tammy C Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
50
|
Vandenberg LN, Prins GS, Patisaul HB, Zoeller RT. The Use and Misuse of Historical Controls in Regulatory Toxicology: Lessons from the CLARITY-BPA Study. Endocrinology 2020; 161:5613539. [PMID: 31690949 PMCID: PMC7182062 DOI: 10.1210/endocr/bqz014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
For many endocrine-disrupting chemicals (EDCs) including Bisphenol A (BPA), animal studies show that environmentally relevant exposures cause harm; human studies are consistent with these findings. Yet, regulatory agencies charged with protecting public health continue to conclude that human exposures to these EDCs pose no risk. One reason for the disconnect between the scientific consensus on EDCs in the endocrinology community and the failure to act in the regulatory community is the dependence of the latter on so-called "guideline studies" to evaluate hazards, and the inability to incorporate independent scientific studies in risk assessment. The Consortium Linking Academic and Regulatory Insights on Toxicity (CLARITY) study was intended to bridge this gap, combining a "guideline" study with independent hypothesis-driven studies designed to be more appropriate to evaluate EDCs. Here we examined an aspect of "guideline" studies, the use of so-called "historical controls," which are essentially control data borrowed from prior studies to aid in the interpretation of current findings. The US Food and Drug Administration authors used historical controls to question the plausibility of statistically significant BPA-related effects in the CLARITY study. We examined the use of historical controls on 5 outcomes in the CLARITY "guideline" study: mammary neoplasms, pituitary neoplasms, kidney nephropathy, prostate inflammation and adenomas, and body weight. Using US Food and Drug Administration-proposed historical control data, our evaluation revealed that endpoints used in "guideline" studies are not as reproducible as previously held. Combined with other data comparing the effects of ethinyl estradiol in 2 "guideline" studies including CLARITY-BPA, we conclude that near-exclusive reliance on "guideline" studies can result in scientifically invalid conclusions.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts
- Correspondence: Laura N. Vandenberg, PhD, Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, 171C Goessmann, 686 North Pleasant Street, Amherst, Massachusetts 01003. E-mail:
| | - Gail S Prins
- Department of Urology, School of Medicine; Division of Epidemiology & Biostatistics, School of Public Health University of Illinois at Chicago, Chicago, Illinois
| | - Heather B Patisaul
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts–Amherst, Amherst, Massachusetts
| |
Collapse
|