1
|
Zhang Q, Du Y, Xu D, Zhang H, Li Y, Li L, Liu J, Jin X, Guo J, Wen J. Sonic hedgehog promotes Schwann cell proliferation through PI3K/AKT/cyclin E1 pathway. Tissue Cell 2025; 95:102858. [PMID: 40106859 DOI: 10.1016/j.tice.2025.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The proliferation of Schwann cells (SCs) is essential for both the development and regeneration of peripheral nervous system (PNS). Sonic hedgehog (Shh), a multifunctional signaling protein, plays pivotal roles in pattern formation, cell proliferation and cell survival during embryogenesis and tissue repair. While up-regulation of Shh in neurons and SCs following peripheral nerve injury has been associated with enhanced nerve regeneration its specific regulatory effects on SC proliferation remain poorly defined. In this study, we demonstrate dual expression patterns of Shh: significant up regulation in repair SCs post-injury and sustained high expression in immature SCs during developmental stages. Through lentivirus-mediated Shh knockdown in cultured SCs, we revealed that Shh silencing markedly suppresses SC proliferation by inducing G2/M-phase arrest. Transcriptomic profiling identified cell cycle dysregulation upon Shh depletion, characterized by diminished cyclin E1 expression. In mechanism, Shh maintains proliferative capacity through PI3K/AKT signaling activation, as evidenced by pathway inhibition following Shh silencing and subsequent rescue of proliferation deficits with PI3K/AKT agonists. These findings establish the PI3K/AKT/cyclin E1 axis as a central mechanism underlying Shh-mediated SC proliferation control. Our work elucidates the dual regulatory role of Shh in developmental and regenerative contexts while highlighting its potential as a therapeutic target for inherited peripheral neuropathies and peripheral nerve repair.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yunjing Du
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Danyang Xu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Huimei Zhang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yanyi Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Lixia Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China
| | - Jinkun Wen
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Liu Y, Li K, Deng Y, Li M, Gu X, Chen Y, Liu Z, Lin L, Cai L. Association of early life co-exposure to ambient PM 2.5 and O 3 with the offspring's growth within two years of age: A birth cohort study. Int J Hyg Environ Health 2025; 264:114520. [PMID: 39805190 DOI: 10.1016/j.ijheh.2025.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Previous studies indicated that early life exposure to particulate matter of 2.5 μm or less (PM2.5) could impair children's growth. However, the adverse effects of maternal ozone (O3) and its interplay with PM2.5 on offspring's growth are unclear. OBJECT We aimed to investigate the independent and combined association of early-life exposure to PM2.5 and O3 with offspring growth in early childhood. METHODS This study included 632 Chinese mother-child pairs. Residential PM2.5 and O3 exposure concentrations in pregnancy and postanal 2 years were estimated by an established spatiotemporal model. During each exposure period, we also calculated the exceedance rate, the accumulative proportion of over-standard days (Exceedance standard: PM2.5>35 μg/m3, O3 > 100 μg/m3). We repeatedly measured the offspring's weight and length from birth to 2 years old and calculated the age-standardized Z-score of weight for height (WFL), body mass index (BMI), and overweight risk (BMI Z-score >85th percentile). RESULTS The adjusted generalized estimating equations showed that the concentration (an IQR increase) and exceedance rate (per 10% increase) of PM2.5 in prenatal (especially the second trimesters) and postnatal periods were associated with increased WFL, BMI Z-score, and overweight risk (βs/ORs ranging from 0.10 to 0.41/1.23 to 1.62, P < 0.05) in children within age 2 years. Although early-life exposure to O3 was not associated with growth outcomes, it showed multiplicative and additive interactions with PM2.5 on offspring growth, particularly in the 2nd trimester and early life 1000 days. The associations with WFL and BMI Z-score were greatest in the higher exceedance rates group of PM2.5 and O3 (βs ranging from 0.21 to 0.37, Pforinteraction<0.01). CONCLUSION This study demonstrated that early-life PM2.5 exposure, especially exceedance rate, was associated with increased offspring growth within 2 years of age. Furthermore, we discovered that O3 may strengthen the adverse effect of PM2.5 exposure on children's growth.
Collapse
Affiliation(s)
- Yu Liu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kunying Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuchuan Deng
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengfan Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Gu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujing Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, HKSAR, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, 74 Zhong Shan Road 2, Guangzhou, 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Cai
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Chaiwangyen W, Khantamat O, Pintha K, Kangwan N, Onsa-Ard A, Nuntaboon P, Songkrao A, Thippraphan P, Chaiyasit D, de Sousa FLP. Cleistocalyx nervosum var. paniala mitigates oxidative stress and inflammation induced by PM 10 soluble extract in trophoblast cells via miR-146a-5p. Sci Rep 2024; 14:24265. [PMID: 39414845 PMCID: PMC11484928 DOI: 10.1038/s41598-024-73000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Air pollution poses a significant global concern, notably impacting pregnancy outcomes through mechanisms such as DNA damage, oxidative stress, inflammation, and altered miRNA expression, all of which can adversely affect trophoblast functions. Cleistocalyx nervosum var. paniala, known for its abundance of anthocyanins with diverse biological activities including anti-mutagenic, antioxidant, and anti-inflammatory properties, is the focus of this study examining its effect on Particulate Matter 10 (PM10) soluble extract-induced trophoblast cell dysfunction via miRNA expression. The study involved the extraction of C. nervosum fruit using 70% ethanol, followed by fractionation with hexane, dichloromethane, and ethyl acetate. Subsequent testing for total phenolics, flavonoids, anthocyanins, and antioxidant activity revealed the ethyl acetate fraction (CN-EtOAcF) as possessing the highest phenolic and anthocyanin content along with potent antioxidant activity, prompting its selection for further investigation. In vitro studies on HTR-8/SVneo cells demonstrated that 5-10 µg/mL PM10 soluble extract exposure inhibited cell proliferation, migration, invasion, and induced apoptosis. However, pretreatment with 20-80 µg/mL CN-EtOAcF followed by 5 µg/mL PM10 soluble extract exposure exhibited protective effects against PM10 soluble extract-induced damage, including inflammation inhibition and intracellular ROS suppression. Notably, CN-EtOAcF down-regulated PM10-induced miR-146a-5p expression, with SOX5 identified as a potential target. Overall, CN-EtOAcF demonstrated the potential to protect against PM10-induced harm in trophoblast cells, suggesting its possible application in future therapeutic approaches.
Collapse
Affiliation(s)
- Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Amnart Onsa-Ard
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Angkana Songkrao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dana Chaiyasit
- Clinical Chemistry Laboratory, Chiang Rai Prachanukroh Hospital, Chiang Rai, 57000, Thailand
| | | |
Collapse
|
4
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
5
|
Villarroel F, Ponce N, Gómez FA, Muñoz C, Ramírez E, Nualart F, Salinas P. Exposure to fine particulate matter 2.5 from wood combustion smoke causes vascular changes in placenta and reduce fetal size. Reprod Toxicol 2024; 127:108610. [PMID: 38750704 DOI: 10.1016/j.reprotox.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
During gestation, maternal blood flow to the umbilical cord and placenta increases, facilitating efficient nutrient absorption, waste elimination, and effective gas exchange for the developing fetus. However, the effects of exposure to wood smoke during this period on these processes are unknown. We hypothesize that exposure to PM2.5, primarily sourced from wood combustion for home heating, affects placental vascular morphophysiology and fetal size. We used exposure chambers that received either filtered or unfiltered air. Female rats were exposed to PM2.5 during pre-gestational and/or gestational stages. Twenty-one days post-fertilization, placentas were collected via cesarean section. In these placentas, oxygen diffusion capacity was measured, and the expression of angiogenic factors was analyzed using qPCR and immunohistochemistry. In groups exposed to PM2.5 during pre-gestational and/or gestational stages, a decrease in fetal weight, crown-rump length, theoretical and specific diffusion capacity, and an increase in HIF-1α expression were observed. In groups exposed exclusively to PM2.5 during the pre-gestational stage, there was an increase in the expression of placental genes Flt-1, Kdr, and PIGF. Additionally, in the placental labyrinth region, the expression of angiogenic factors was elevated. Changes in angiogenesis and angiogenic factors reflect adaptations to hypoxia, impacting fetal growth and oxygen supply. In conclusion, this study demonstrates that exposure to PM2.5, emitted from wood smoke, in both pre-gestational and gestational stages, affects fetal development and placental health. This underscores the importance of addressing air pollution in areas with high levels of wood smoke, which poses a significant health risk to pregnant women and their fetuses.
Collapse
Affiliation(s)
- Francisca Villarroel
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; MSc. Program in Biological Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nikol Ponce
- PhD Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Surgical and Morphological Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Fernando A Gómez
- Laboratory of Genetics and Molecular Immunology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristián Muñoz
- Laboratory of Genetics and Molecular Immunology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion, Chile; Center for Advanced Microscopy CMA BIO-BIO, Universidad de Concepcion, Concepcion, Chile
| | - Paulo Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
6
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
7
|
Adams S, Stapleton PA. Nanoparticles at the maternal-fetal interface. Mol Cell Endocrinol 2023; 578:112067. [PMID: 37689342 PMCID: PMC10591848 DOI: 10.1016/j.mce.2023.112067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The increasing production of intentional and unintentional nanoparticles (NPs) has led to their accumulation in the environment as air and ground pollution. The heterogeneity of these particles primarily relies on the NP physicochemical properties (i.e., chemical composition, size, shape, surface chemistry, etc.). Pregnancy represents a vulnerable life stage for both the woman and the developing fetus. The ubiquitous nature of these NPs creates a concern for developmental fetal exposures. At the maternal-fetal interface lies the placenta, a temporary endocrine organ that facilitates nutrient and waste exchange as well as communication between maternal and fetal tissues. Recent evidence in human and animal models identifies that gestational exposure to NPs results in placental translocation leading to local effects and endocrine disruption. Currently, the mechanisms underlying placental translocation and cellular uptake of NPs in the placenta are poorly understood. The purpose of this review is to assess the current understanding of the physiochemical factors influencing NP translocation, cellular uptake, and endocrine disruption at the maternal-fetal interface within the available literature.
Collapse
Affiliation(s)
- S Adams
- Department of Pharmacology and Toxicology, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, USA; Environmental Occupational and Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Liang X, Tang S, Song Y, Li D, Zhang L, Wang S, Duan Y, Du H. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on migration and invasion of HTR-8/SVneo trophoblast cells. J Reprod Immunol 2023; 159:104123. [PMID: 37487312 DOI: 10.1016/j.jri.2023.104123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The proper invasion of trophoblasts is crucial for embryo implantation and placental development, which is helpful to establish a correct maternal-fetal relationship. Trophoblasts can produce a large amount of lactate through aerobic glycolysis during early pregnancy. Lactate creates a low pH microenvironment around the embryo to help uterine tissue decompose and promote the invasion of trophoblasts. The purpose of this study is to reveal the the potential mechanism of aerobic glycolysis regulating the invasiveness of trophoblasts by investigating the effect of 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, on the biological function of HTR-8/SVneo trophoblast cells, the expressions of epithelial mesenchymal transformation (EMT) markers and invasion-related factors. 2-DG could inhibit the aerobic glycolysis of trophoblasts and decrease the activity of trophoblasts in a dose-dependent manner. Moreover, 2-DG inhibited the EMT of HTR-8/SVneo cells, down-regulated the expression of invasion-related factors matrix metalloproteinase 2/9 (MMP2/9) and up-regulated the expression of tissue inhibitor of matrix metalloproteinases 1/2 (TIMP1/2), thus inhibiting cell migration and invasion. This paper provides a foundation in the significance of aerobic glycolysis of trophoblasts in the process of invasion, and also provides ideas and insights for the promotion of embryo implantation.
Collapse
Affiliation(s)
- Xiao Liang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Siling Tang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yajing Song
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Shuhui Wang
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yancang Duan
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, China
| | - Huilan Du
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Collaborative Innovation Center of Integrated Chinese and Western Medicine on Reproductive Disease, Shijiazhuang, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang, China.
| |
Collapse
|
9
|
Yildiz A, Ozhan O, Ulu A, Dogan T, Bakar B, Ugur Y, Taslidere E, Gokbulut I, Polat S, Parlakpinar H, Ates B, Vardi N. Effects of the apricot diets containing sulfur dioxide at different concentrations on rat testicles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27692-w. [PMID: 37204578 DOI: 10.1007/s11356-023-27692-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Due to its antioxidant and antimicrobial properties, sulfur dioxide (SO2) is widely used in foods and beverages to prevent the growth of microorganisms and to preserve the color and flavor of fruits. However, the amount of SO2 used in fruit preservation should be limited due to its possible adverse effects on human health. The present study was designed to investigate the effects of different SO2 concentrations in apricot diets on rat testes. Animals were randomly divided into six groups. The control group was fed a standard diet, and the other groups were fed apricot diet pellets prepared with (w/w) 10% dried apricots containing SO2 at different concentrations (1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, and 3500 ppm/kg) for 24 weeks. After sacrification, testicles were evaluated biochemically, histopathologically, and immunohistopathologically. Our results showed that an apricot diet containing 1500 ppm and 2000 ppm SO2 did not cause significant changes in testis. However, it was determined that tissue testosterone levels decreased as the amount of SO2 (2500 ppm and above) increased. Apricot diet containing 3500 ppm SO2 caused a significant increase in spermatogenic cell apoptosis, oxidative damage, and histopathological changes. In addition, a decrease in the expression of connexin-43, vimentin, and 3β-hydroxysteroid dehydrogenase (3β-HSD) was observed in the same group. In summary, the results show that sulfurization of apricot at high concentrations such as 3500 ppm may lead to male fertility problems in the long term through mechanisms such as oxidative stress, spermatogenic cell apoptosis, and inhibition of steroidogenesis.
Collapse
Affiliation(s)
- Azibe Yildiz
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey.
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Tugba Dogan
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Busra Bakar
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Yilmaz Ugur
- Vocational School of Health Service, Inonu University, Malatya, Turkey
| | - Elif Taslidere
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Incilay Gokbulut
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280, Malatya, Turkey
| | - Seyhan Polat
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University, 44280, Malatya, Turkey
| | - Nigar Vardi
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
10
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
11
|
Valdivia AO, He Y, Ren X, Wen D, Dong L, Nazari H, Li X. Probable Treatment Targets for Diabetic Retinopathy Based on an Integrated Proteomic and Genomic Analysis. Transl Vis Sci Technol 2023; 12:8. [PMID: 36745438 PMCID: PMC9910385 DOI: 10.1167/tvst.12.2.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Using previously approved medications for new indications can expedite the lengthy and expensive drug development process. We describe a bioinformatics pipeline that integrates genomics and proteomics platforms to identify already-approved drugs that might be useful to treat diabetic retinopathy (DR). Methods Proteomics analysis of vitreous humor samples from 12 patients undergoing pars plana vitrectomy for DR and a whole genome dataset (UKBiobank TOPMed-imputed) from 1330 individuals with DR and 395,155 controls were analyzed independently to identify biological pathways associated with DR. Common biological pathways shared between both datasets were further analyzed (STRING and REACTOME analyses) to identify target proteins for probable drug modulation. Curated target proteins were subsequently analyzed by the BindingDB database to identify chemical compounds they interact with. Identified chemical compounds were further curated through the Expasy SwissSimilarity database for already-approved drugs that interact with target proteins. Results The pathways in each dataset (proteomics and genomics) converged in the upregulation of a previously unknown pathway involved in DR (RUNX2 signaling; constituents MMP-13 and LGALS3), with an emphasis on its role in angiogenesis and blood-retina barrier. Bioinformatics analysis identified U.S. Food and Drug Administration (FDA)-approved medications (raltitrexed, pemetrexed, glyburide, probenecid, clindamycin hydrochloride, and ticagrelor) that, in theory, may modulate this pathway. Conclusions The bioinformatics pipeline described here identifies FDA-approved drugs that can be used for new alternative indications. These theoretical candidate drugs should be validated with experimental studies. Translational Relevance Our study suggests possible drugs for DR treatment based on an integrated proteomics and genomics pipeline. This approach can potentially expedite the drug discovery process by identifying already-approved drugs that might be used for new indications.
Collapse
Affiliation(s)
- Anddre Osmar Valdivia
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ye He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xinjun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Dejia Wen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hossein Nazari
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
12
|
Wen D, Ren X, Li H, He Y, Hong Y, Cao J, Zheng C, Dong L, Li X. Low expression of RBP4 in the vitreous humour of patients with proliferative diabetic retinopathy who underwent Conbercept intravitreal injection. Exp Eye Res 2022; 225:109197. [PMID: 35932904 DOI: 10.1016/j.exer.2022.109197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 12/29/2022]
Abstract
Intravitreal injection of anti-VEGF antibodies has been widely used in the treatment of proliferative diabetic retinopathy (PDR). However, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment. To explore proteins closely related to fibrosis, we conducted proteomic analysis of human vitreous humour collected from PDR patients who have or have not intravitreal Conbercept (IVC) injection. Sixteen vitreous humour samples from PDR patients with preoperative IVC and 20 samples from those without preoperative IVC were examined. An immunodepletion kit was used to remove high-abundance vitreous proteins. Conbercept-induced changes were determined using a tandem mass tag-based quantitative proteomic strategy. Enzyme-linked immunosorbent assays were performed to confirm the concentrations of selected proteins and validate the proteomic results. Based on a false discovery rate between 0.05% and -0.05% and a fold-change > 1.5, 97 proteins were altered (49 higher levels and 48 lower levels) in response to IVC. Differentially expressed proteins were found in the extracellular and intracellular regions and were found to be involved in VEGF binding and VEGF-activated receptor activity. Protein-protein interactions indicated associations with fibrosis, neovascularisation and inflammatory signalling pathways. We found the low levels of RBP4 in the vitreous humour of PDR patients with IVC injection, as revealed by ELISA and proteomic profiling. Moreover, RBP4 significantly restored the mitochondrial function of HRMECs induced by AGEs and down regulated the level of glycolysis. Our study is the first to report that RBP4 decreases in the vitreous humour of PDR patients who underwent Conbercept treatment, thereby verifying the role of RBP4 in glucose metabolism. Results provide evidence for the potential mechanism underlying Conbercept-related fibrosis.
Collapse
Affiliation(s)
- Dejia Wen
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Xinjun Ren
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Hui Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Ye He
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Yaru Hong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Jingjing Cao
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Chuanzhen Zheng
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China
| | - Lijie Dong
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| | - Xiaorong Li
- Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, 300384, Tianjin, China.
| |
Collapse
|
13
|
Lee E, Ahn H, Park S, Kim G, Kim H, Noh MG, Kim Y, Yeon JS, Park H. Staphylococcus epidermidis WF2R11 Suppresses PM 2.5-Mediated Activation of the Aryl Hydrocarbon Receptor in HaCaT Keratinocytes. Probiotics Antimicrob Proteins 2022; 14:915-933. [PMID: 35727505 PMCID: PMC9474527 DOI: 10.1007/s12602-022-09922-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The skin supports a diverse microbiome whose imbalance is related to skin inflammation and diseases. Exposure to fine particulate matter (PM2.5), a major air pollutant, can adversely affect the skin microbiota equilibrium. In this study, the effect and mechanism of PM2.5 exposure in HaCaT keratinocytes were investigated. PM2.5 stimulated the aryl hydrocarbon receptor (AhR) to produce reactive oxygen species (ROS) in HaCaT cells, leading to mitochondrial dysfunction and intrinsic mitochondrial apoptosis. We observed that the culture medium derived from a particular skin microbe, Staphylococcus epidermidis WF2R11, remarkably reduced oxidative stress in HaCaT cells caused by PM2.5-mediated activation of the AhR pathway. Staphylococcus epidermidis WF2R11 also exhibited inhibition of ROS-induced inflammatory cytokine secretion. Herein, we demonstrated that S. epidermidis WF2R11 could act as a suppressor of AhRs, affect cell proliferation, and inhibit apoptosis. Our results highlight the importance of the clinical application of skin microbiome interventions in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Shinyoung Park
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Myung-Giun Noh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae-Sung Yeon
- Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea. .,Genome and Company, Pangyo-ro 253, Bundang-gu, Seoungnam-si, Gyeonggi-do, 13486, Republic of Korea.
| |
Collapse
|
14
|
Accumulated oxidative stress risk in HUVECs by chronic exposure to non-observable acute effect levels of PM 2.5. Toxicol In Vitro 2022; 82:105376. [PMID: 35550414 DOI: 10.1016/j.tiv.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
Few studies have reported the accumulation of non-observable acute effect (NOAE) of PM2.5, especially exposure to the NOAE doses (NOAEDs) of PM2.5 in chronic way. To address this issue, HUVECs were cultured from the 1st to 30th generations (G1 to G30) and treated by the NOAED PM2.5 once every three passages. The generational changes of oxidative damage markers, inflammatory factors, and cell adhesion molecules (CAMs) were monitored in HUVECs at G6, G12, G18, G24, and G30, and proteomes at G18 and G30, respectively. The oxidative damages monotonically accumulated with exposure time elongation and PM2.5 dose increases. Similar to the oxidative trends, VCAM1 and ICAM1 significantly and dose-dependently increased at G30. However, many inflammatory factors altered with complex patterns to respond the NOAEDs' PM2.5. Proteomic results demonstrated most proteins expressed stably, and the generational proteome alterations were more apparent than the NOAEDs' PM2.5 induced ones. The PM2.5-related proteins varied much, but only few can cross the doses and generations. These observations suggested that the proteins changed holistically rather than individually. In summary, SOD1, SUMO2, and H3F3A may initiate HUVESs responses to PM2.5, and then broadcast and accumulate the NOAE via DNA repair, immune response, and glycolysis.
Collapse
|
15
|
Song X, Liu J, Geng N, Shan Y, Zhang B, Zhao B, Ni Y, Liang Z, Chen J, Zhang L, Zhang Y. Multi-omics analysis to reveal disorders of cell metabolism and integrin signaling pathways induced by PM 2.5. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127573. [PMID: 34753055 DOI: 10.1016/j.jhazmat.2021.127573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric fine particle pollution is known to cause many adverse health effects. However, the potential mechanisms of PM2.5-induced cytotoxicity still needs further understanding. Herein, we integrated cytotoxicity, component profiling, metabolomics and proteomics data to deeply explain the biological responses of human bronchial epithelial cells exposed to PM2.5. We observed that PM2.5 caused cell cycle arrest, calcium influx, cell damage and further induced cell apoptosis. The contents of heavy metals and 4-6 rings PAHs in PM2.5 were positively correlated with intracellular ROS, indicating that they might be the important components to induce the above cytotoxicity. Integrated metabolomics and proteomics analysis revealed the significant alterations of many metabolic processes, such as glycolysis, the citric acid cycle, amino acid metabolism and lipid metabolism. Notably, we found that PM2.5 inhibited the integrin signaling pathway, including down-regulating the protein expression of integrins and the phosphorylation of downstream signaling kinases, which might ultimately affect cell cycle progression, cell metabolism and apoptosis. This study provided a comprehensive data resource for the deep understanding of biological toxicity mechanisms caused by atmospheric fine particles in human lung-bronchial epithelium cells.
Collapse
Affiliation(s)
- Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jianhui Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yichu Shan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yuwen Ni
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
16
|
PM10 Alters Trophoblast Cell Function and Modulates miR-125b-5p Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3697944. [PMID: 35036432 PMCID: PMC8759905 DOI: 10.1155/2022/3697944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Air pollution is one of the largest global environmental health hazards that threaten premature mortality or morbidity. Particulate matter 10 (PM10) has been demonstrated to contribute to several human diseases via dysregulated miRNA expression. Trophoblast cells play a key role in implantation and placentation for a successful pregnancy. Nonetheless, the PM10 associated trophoblast cell functions during pregnancy and miRNA expression are still unknown. Our study showed that PM10 affected HTR-8/SVneo cell viability and also decreased cell proliferation, migration, and invasion. A high concentration of PM10 caused an increase in HTR-8/SVneo cell apoptosis. Treatment with PM10 induced inflammation through the upregulated IL-1β, IL-6, and TNF-α expression in trophoblast cells. In PM10-treated HTR-8/SVneo cells, miR-125b-5p expression was considerably increased and TXNRD1 was found to be negatively related to miR-125b-5p. Collectively, our findings revealed that PM10 could alter miR-125b-5p expression by targeting TXNRD1 and suppressing trophoblast cell functions. Additional investigations relating to the function of miR-125b-5p and its target on particulate pollution exposure in trophoblast are warranted for future biomarker or effective therapeutic approaches.
Collapse
|
17
|
Meakin C, Barrett ES, Aleksunes LM. Extravillous trophoblast migration and invasion: Impact of environmental chemicals and pharmaceuticals. Reprod Toxicol 2022; 107:60-68. [PMID: 34838982 PMCID: PMC8760155 DOI: 10.1016/j.reprotox.2021.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023]
Abstract
During pregnancy, the migration and invasion of extravillous trophoblasts (EVTs) into the maternal uterus is essential for proper development of the placenta and fetus. During the first trimester, EVTs engraft and remodel maternal spiral arteries allowing for efficient blood flow and the transfer of essential nutrients and oxygen to the fetus. Aberrant migration of EVTs leading to either shallow or deep invasion into the uterus has been implicated in a number of gestational pathologies including preeclampsia, fetal growth restriction, and placenta accreta spectrum. The migration and invasion of EVTs is well-coordinated to ensure proper placentation. However, recent data point to the ability of xenobiotics to disrupt EVT migration. These xenobiotics include heavy metals, endocrine disrupting chemicals, and organic contaminants and have often been associated with adverse pregnancy outcomes. In most instances, xenobiotics appear to reduce EVT migration; however, there are select examples of enhanced motility after chemical exposure. In this review, we provide an overview of the 1) current experimental approaches used to evaluate EVT migration and invasion in vitro, 2) ability of environmental chemicals and pharmaceuticals to enhance or retard EVT motility, and 3) signaling pathways responsible for altered EVT migration that are sensitive to disruption by xenobiotics.
Collapse
Affiliation(s)
- Cassandra Meakin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ
| | - Emily S. Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ,Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ,Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ
| |
Collapse
|
18
|
Yang Z, Liu Q, Liu Y, Qi X, Wang X. Cell cycle arrest of human bronchial epithelial cells modulated by differences in chemical components of particulate matter. RSC Adv 2021; 11:10582-10591. [PMID: 35423563 PMCID: PMC8695810 DOI: 10.1039/d0ra10563e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
There is increasing interest in understanding the role of airborne chemical components in modulating the cell cycle of human bronchial epithelial (HBE) cells that is associated with burden of cardiopulmonary disease. To address this need, our study collected ambient PM10 (particles with aerodynamic diameter less than or equal to 10 μm) and PM2.5 (particles with aerodynamic diameter less than or equal to 2.5 μm) across four sampling sites in Beijing during the year of 2015. Chemical components including organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), metals and water soluble ions were determined. Spearman's rank-order correlation was performed to examine the associations between chemical components in ambient particles and cell cycle distributions with p-values adjusted by Bonferroni methodology. Our results demonstrated the significant associations between certain chemical compositions (i.e., PAHs, EC, As and Ni) and percentages of HBE cells in G0/G1 and G1/G2 phases, respectively. Our results highlighted the need to reduce the specific toxins (e.g., PAHs, EC, As and Ni) from ambient particles to protect cardiopulmonary health associated with air pollution. Future study may focus on illustrating the mechanism of certain chemical compositions in altering the cell cycle in HBE cells.
Collapse
Affiliation(s)
- Zheng Yang
- Beijing Milu Ecological Research Center Beijing 100076 China
| | - Qingyang Liu
- College of Biology and the Environment, Nanjing Forestry University Nanjing Jiangsu Province 210037 China
| | - Yanju Liu
- Beijing Milu Ecological Research Center Beijing 100076 China .,Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Xuekui Qi
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Xinxin Wang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| |
Collapse
|
19
|
Hu L, Huang B, Bai S, Tan J, Liu Y, Chen H, Liu Y, Zhu L, Zhang J, Chen H. SO 2 derivatives induce dysfunction in human trophoblasts via inhibiting ROS/IL-6/STAT3 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111872. [PMID: 33388592 DOI: 10.1016/j.ecoenv.2020.111872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Epidemiological studies have revealed that sulfur dioxides (SO2) can increase the risk of pregnancy complications such as missed abortion in the first trimester, stillbirth, preterm birth, small for gestational age, gestational diabetes mellitus and preeclampsia, but the mechanisms underlying these findings remains unknown. What is known, however, is that trophoblasts, a type of fetal cell exerting vital immunologic functions to maintain a successful pregnancy, are usually involved in the pathogenic mechanism of pregnancy complications. OBJECTIVE To study the effect of SO2 derivatives (bisulfite and sulfite, 1:3 M/M) on the function of trophoblasts. METHODS Swan.71 trophoblast cells were treated with various concentrations of SO2 derivatives to determine the effect of SO2 derivatives on cellular viability by CKK8. Flow cytometry was performed to analyze the effect of SO2 derivatives on apoptosis, cell cycle and intracellular ROS. Wound healing assay and transwell assay were conducted to examine the migration and invasion of Swan.71 cells. Inflammation-related cytokines in the supernatant (IL-1β, IL-6, IL-8, IL-10 and TNF-α) were measured by IMMULITE®1000 Systems (SIEMENS). The expression level of NLRP3, Caspase1, MMP9, MMP2, STAT3, and p-STAT3 were evaluated by Western Blotting. RESULTS Exposure to SO2 derivatives significantly decreased cellular viability, arrested cell cycle at S/G2/M phase and induced cell apoptosis of Swan.71 trophoblasts. In addition, the migration and invasion of Swan.71 cell were significantly inhibited. SO2 derivatives also significantly increased IL-1β secretion while it is NLRP3/Caspase1 independent. IL-6 secretion was significant inhibited accompanied by decreased STAT3 phosphorylation and expression of MMP2 and MMP9. The intracellular ROS level was significantly suppressed by SO2 derivatives. CONCLUSION SO2 derivatives exert toxic effects on trophoblasts which results in: suppressing cellular viability and intracellular ROS level, interfering with cell proliferation through arresting cell cycle, inducing cell apoptosis, disturbing inflammation-related cytokines secretion and inhibiting motility. Decreased ROS/IL-6/STAT3 levels play a role in inhibited cell viability, cell cycle arrest, apoptosis and defective motility.
Collapse
Affiliation(s)
- Lihao Hu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingqian Huang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shiyu Bai
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Tan
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yukun Liu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hailie Chen
- Hematologic Lab of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Liu
- Hematologic Lab of Pediatrics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liqiong Zhu
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Zhang
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hui Chen
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Bearblock E, Aiken CE, Burton GJ. Air pollution and pre-eclampsia; associations and potential mechanisms. Placenta 2020; 104:188-194. [PMID: 33360680 DOI: 10.1016/j.placenta.2020.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Air pollution has significant negative health impacts, particularly on the cardiovascular system. The aims of this narrative review were to identify whether there is an association between air pollution and the incidence of pre-eclampsia, and the potential mechanisms by which any effects may be mediated. METHODS We undertook a literature search using Google Scholar, PubMed, the Cochrane Library and NICE Evidence. The primary eligibility criterion was articles correlating exposure to air pollution with incidence of pre-eclampsia. RESULTS Meta-analyses currently show a positive association between pre-eclampsia and exposure to both particulate matter PM2.5 and nitrogen dioxide, but no significant associations with ambient ozone or carbon monoxide exposure. No meta-analysis has been performed for exposure to sulfur dioxide. Variability in terms of quantification of exposure, the exposure period and co-founders among the studies makes comparisons complex. Adverse effects on trophoblast invasion and placental vascularisation, and increases in oxidative stress and anti-angiogenic factors, such as sFlt-1, in response to air pollution provide pathways by which exposure may contribute to the pathophysiology of pre-eclampsia. So far, studies have not discriminated between the early- and late-onset forms of the syndrome. DISCUSSION Future prospective studies using personal air pollution monitors and blood biomarkers of pre-eclampsia would strengthen the associations. Interactions between pollutants are poorly documented, and at present there is minimal informed advice available to women on the need to avoid exposure to air pollutants during pregnancy.
Collapse
Affiliation(s)
- Elizabeth Bearblock
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Catherine E Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Urban-Related Environmental Exposures during Pregnancy and Placental Development and Preeclampsia: a Review. Curr Hypertens Rep 2020; 22:81. [PMID: 32880755 DOI: 10.1007/s11906-020-01088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW To summarize the current knowledge of the pathophysiological implications and the clinical role of urban-related environmental exposures in pregnancy. RECENT FINDINGS The ongoing urbanization worldwide is leading to an increasing number of pregnant women being exposed to higher levels of urban-related environmental hazards such as air pollution and noise and, at the same time, having less contact with natural environments. Pregnancy represents a particular and vulnerable life period both for women and their children. Extensive physiological and metabolic changes, as well as changes to the cardiovascular and respiratory systems during pregnancy, could result in increased sensitivity to damage by environmental factors. Exposure to air pollution and noise is associated with placental dysfunction and damage, which, in turn, could lead to maternal complications such as preeclampsia. In contrast, more contact with greenspace during pregnancy seems to mitigate these adverse impacts. These findings open up new challenges for our understanding of the potential effect of urban living on placental function and preeclampsia, and offer new clinical and research opportunities.
Collapse
|
22
|
Erlandsson L, Lindgren R, Nääv Å, Krais AM, Strandberg B, Lundh T, Boman C, Isaxon C, Hansson SR, Malmqvist E. Exposure to wood smoke particles leads to inflammation, disrupted proliferation and damage to cellular structures in a human first trimester trophoblast cell line. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114790. [PMID: 32417587 DOI: 10.1016/j.envpol.2020.114790] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The ongoing transition to renewable fuel sources has led to increased use of wood and other biomass fuels. The physiochemical characteristics of biomass combustion derived aerosols depends on appliances, fuel and operation procedures, and particles generated during incomplete combustion are linked to toxicity. Frequent indoor wood burning is related to severe health problems such as negative effects on airways and inflammation, as well as chronic hypoxia and pathological changes in placentas, adverse pregnancy outcome, preterm delivery and increased risk of preeclampsia. The presence of combustion-derived black carbon particles at both the maternal and fetal side of placentas suggests that particles can reach the fetus. Air pollution particles have also been shown to inhibit trophoblast migration and invasion, which are vital functions for the development of the placenta during the first trimester. In this study we exposed a placental first trimester trophoblast cell line to wood smoke particles emitted under Nominal Burn rate (NB) or High Burn rate (HB). The particles were visible inside exposed cells and localized to the mitochondria, causing ultrastructural changes in mitochondria and endoplasmic reticulum. Exposed cells showed decreased secretion of the pregnancy marker human chorionic gonadotropin, increased secretion of IL-6, disrupted membrane integrity, disrupted proliferation and contained specific polycyclic aromatic hydrocarbons (PAHs) from the particles. Taken together, these results suggest that wood smoke particles can enter trophoblasts and have detrimental effects early in pregnancy by disrupting critical trophoblast functions needed for normal placenta development and function. This could contribute to the underlying mechanisms leading to pregnancy complications such as miscarriage, premature birth, preeclampsia and/or fetal growth restriction. This study support the general recommendation that more efficient combustion technologies and burning practices should be adopted to reduce some of the toxicity generated during wood burning.
Collapse
Affiliation(s)
- Lena Erlandsson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Robert Lindgren
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
| | - Åsa Nääv
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Bo Strandberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Christoffer Boman
- Thermochemical Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden.
| | - Christina Isaxon
- Department of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden.
| | - Stefan R Hansson
- Division of Obstetrics and Gynecology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Bi S, Tang J, Zhang L, Huang L, Chen J, Wang Z, Chen D, Du L. Fine particulate matter reduces the pluripotency and proliferation of human embryonic stem cells through ROS induced AKT and ERK signaling pathway. Reprod Toxicol 2020; 96:231-240. [PMID: 32745510 DOI: 10.1016/j.reprotox.2020.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological investigations have found that air fine particulate matter (PM) exposure not only causes respiratory and cardiovascular diseases in adults and children, but also affects embryonic development during pregnancy, leading to poor pregnancy outcomes. However, its exact molecular mechanism is still unclear. In this study, human embryonic stem cells (hESCs) were treated with PM at different concentrations then the morphology and proliferation capacity were measured. The mRNA and protein expression of NANOG and OCT4 were detected using quantitative PCR, immunofluorescence, western blotting, and flow cytometry. Reactive oxygen species (ROS) generation and AKT/ERK activation were also measured. Meanwhile, changes in ROS, the expression of NANOG, OCT4, and the AKT/ERK pathways were measured in the hESCs with or without pretreatment of ROS scavenger N-acetylcysteine (NAC) prior to PM exposure. After PM exposure, the proliferation capacity and expression of OCT4 and NANOG at the mRNA and protein levels were downregulated. The ROS level in the hESCs increased after PM exposure, but this increase in ROS was attenuated by pretreatment with NAC. Further analysis showed that the levels of phosphorylated AKT and ERK increased after PM exposure. After pretreatment with NAC, the phosphorylation levels of AKT and ERK, which are crucial for regulating the proliferation, pluripotency, and differentiation of hESC, were significantly attenuated compared with the non-NAC pretreated exposure group. These results suggest that PM exposure may reduce the proliferation and pluripotency of hESC through ROS-mediated AKT/ERK pathways, thereby affecting the long-term development of embryos.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingman Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China; Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, PR China; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, PR China.
| |
Collapse
|
24
|
Wang B, Xu S, Lu X, Ma L, Gao L, Zhang SY, Li R, Fu L, Wang H, Sun GP, Xu DX. Reactive oxygen species-mediated cellular genotoxic stress is involved in 1-nitropyrene-induced trophoblast cycle arrest and fetal growth restriction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113984. [PMID: 32041019 DOI: 10.1016/j.envpol.2020.113984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
1-nitropyrene (1-NP) is a key component of diesel exhaust-sourced fine particulate matter (PM2.5). Our recent study demonstrated that gestational 1-NP exposure caused placental proliferation inhibition and fetal intrauterine growth restriction (IUGR). This study aimed to investigate the role of genotoxic stress on 1-NP-induced placental proliferation inhibition and fetal IUGR. Human trophoblasts were exposed to 1-NP (10 μM). Growth index was reduced and PCNA was downregulated in 1-NP-exposed placental trophoblasts. More than 90% of 1-NP-exposed trophoblasts were arrested in either G0/G1 or G2/M phases. CDK1 and cyclin B, two G2/M cycle-related proteins, and CDK2, a G0/G1 cycle-related protein, were reduced in 1-NP-exposed trophoblasts. Phosphorylated Rb, a downstream molecule of CDK2, was inhibited in 1-NP-exposed trophoblasts. Moreover, DNA double-strand break was observed and γ-H2AX, another indicator of DNA double-strand break, was upregulated in 1-NP-exposed trophoblasts. Phosphorylated ATM, a key molecule of genotoxic stress, and its downstream molecule Chk2 were elevated. By contrast, Cdc25A, a downstream target of Chk2, was reduced in 1-NP-exposed trophoblasts. Phenyl-N-t-butylnitrone (PBN), a free radical scavenger, inhibited 1-NP-induced genotoxic stress and trophoblast cycle arrest. Animal experiment showed that N-acetylcysteine (NAC), an antioxidant, rescued 1-NP-induced placental proliferation inhibition and fetal IUGR in mice. These results provide evidence that reactive oxygen species (ROS)-mediated cellular genotoxic stress partially contributes to 1-NP-induced placental proliferation inhibition and fetal IUGR.
Collapse
Affiliation(s)
- Bo Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Shen Xu
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Xue Lu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Li Ma
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Shan-Yu Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ran Li
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Guo-Ping Sun
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Miller CN, Stewart EJ, Snow SJ, Williams WC, Richards JH, Thompson LC, Schladweiler MC, Farraj AK, Kodavanti UP, Dye JA. Ozone Exposure During Implantation Increases Serum Bioactivity in HTR-8/SVneo Trophoblasts. Toxicol Sci 2020; 168:535-550. [PMID: 30649513 DOI: 10.1093/toxsci/kfz003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Implantation is a sensitive window in reproductive development during which disruptions may increase the risk of adverse pregnancy outcomes including intrauterine growth restriction. Ozone exposure during implantation in rats reduces fetal weight near the end of gestation, potentially though impaired trophoblast migration and invasion and altered implantation. The current study characterized changes in ventilation, pulmonary injury, and circulating factors including hormonal, inflammatory, and metabolic markers related to exposure to ozone (0.4-1.2 ppm) for 4-h on gestation days 5 and 6 (window of implantation) in Long-Evans dams. To determine the effects of this exposure on trophoblast function, placental-derived, first trimester, HTR-8/SVneo cells were exposed to serum from air- or ozone (0.8 ppm×4 h)-exposed dams and examined for impacts on metabolic capacity, wound-closure, and invasion. Peri-implantation exposure to ozone induced ventilatory dysfunction and lung vascular leakage in pregnant rats, with little effect on most of the circulating markers measured. However, ozone inhalation induced a significant reduction in several serum cytokines (interferon-γ, interleukin-6, and interleukin-13). Treatment of HTR-8/SVneo trophoblasts with serum from ozone-exposed dams for 16-h downregulated metabolic capacity, wound-closure, and invasion through a Matrigel membrane compared with both air-serum and fetal bovine serum-treated cells. Ozone-serum treated cells increased the release of a critical inhibitor of invasion and angiogenesis (soluble fms-like receptor 1; sFlt1) compared with air-serum treatment. Together, our data suggest that circulating factors in the serum of pregnant rats exposed to ozone during implantation receptivity can hinder critical processes of implantation (eg, invasion and migration) and impair trophoblast metabolic capacity.
Collapse
Affiliation(s)
- Colette N Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Erica J Stewart
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina 27711
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Wanda C Williams
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy H Richards
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Leslie C Thompson
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Janice A Dye
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
26
|
de Paula Ribeiro J, Kalb AC, de Bastos Maya S, Gioda A, Martinez PE, Monserrat JM, Jiménez-Vélez BD, Gioda CR. The impact of polar fraction of the fine particulate matter on redox responses in different rat tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32476-32487. [PMID: 31617135 DOI: 10.1007/s11356-019-06452-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) contains different chemical substances that have been associated with health effects and an increased risk of mortality due to their toxicity. In this study, fine particulate matter (PM2.5) samples were collected in a region with rural characteristics (Seropédica (Se)) and another with some industries (Duque de Caxias (DC)) (Brazil, RJ). Rats were exposed to PM2.5 extracts daily for 25 days at different dilutions: 10×, 5×, and a concentrated solution (CS). Biochemical analyses were investigated for total antioxidant capacity (ACAP), lipid peroxidation (LPO) levels, reduced glutathione (GSH) concentration, activity of glutamate cysteine ligase (GCL), and activity of glutathione S-transferase (GST). The liver showed a significant increase in GCL (DC-5×, DC-CS and Se-CS) and GST activities (DC-CS and Se-CS) in both regions when compared to the control group. In the renal cortex, GCL activity decreased in most of the tested groups while GST activity increased only in the 5× groups of both regions (DC and Se). In the renal medulla, GCL activity decreased for Se-10× and DC-CS but increased for Se-5×, and GST activity increased in the Se-10×, DC-5×, and DC-CS groups. Lung GCL increased in all groups for both regions. Moreover, this organ also showed an increase in GST activity when higher metal concentrations were present (5× and CS). TBARS levels were increased for all tissues in most tested concentrations. These data indicate that soluble compounds (e.g., metals) from PM2.5 sampled in areas with different pollution indexes can change the redox status and cause damage to different tissues.
Collapse
Affiliation(s)
- Joaquim de Paula Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Ana Cristina Kalb
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Sabrina de Bastos Maya
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marques de São Vicente 225, Gávea, Rio de Janeiro, RJ, 22451-900, Brazil.
| | - Pablo Elias Martinez
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - José Maria Monserrat
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| | - Braulio D Jiménez-Vélez
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Carolina Rosa Gioda
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG, Rio Grande, RS, Brazil
- Programa de Pós Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
27
|
Exposure of trophoblast cells to fine particulate matter air pollution leads to growth inhibition, inflammation and ER stress. PLoS One 2019; 14:e0218799. [PMID: 31318865 PMCID: PMC6638881 DOI: 10.1371/journal.pone.0218799] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Ambient air pollution is considered a major environmental health threat to pregnant women. Our previous work has shown an association between exposure to airborne particulate matter (PM) and an increased risk of developing pre-eclamspia. It is now recognized that many pregnancy complications are due to underlying placental dysfunction, and this tissue plays a pivotal role in pre-eclamspia. Recent studies have shown that PM can enter the circulation and reach the human placenta but the effects of PM on human placental function are still largely unknown. In this work we investigated the effects of airborne PM on trophoblast cells. Human, first trimester trophoblast cells (HTR-8/SV) were exposed to urban pollution particles (Malmö PM2.5; Prague PM10) for up to seven days in vitro and were analysed for uptake, levels of hCGβ and IL-6 secretion and proteomic analysis. HTR-8/SVneo cells rapidly endocytose PM within 30 min of exposure and particles accumulate in the cell in perinuclear vesicles. High doses of Prague and Malmö PM (500-5000 ng/ml) significantly decreased hCGβ secretion and increased IL-6 secretion after 48 h exposure. Exposure to PM (50 ng/ml) for 48h or seven days led to reduced cellular growth and altered protein expression. The differentially expressed proteins are involved in networks that regulate cellular processes such as inflammation, endoplasmic reticulum stress, cellular survival and molecular transport pathways. Our studies suggest that trophoblast cells exposed to low levels of urban PM respond with reduced growth, oxidative stress, inflammation and endoplasmic reticulum stress after taking up the particles by endocytosis. Many of the dysfunctional cellular processes ascribed to the differentially expressed proteins in this study, are similar to those described in PE, suggesting that low levels of urban PM may disrupt cellular processes in trophoblast cells. Many of the differentially expressed proteins identified in this study are involved in inflammation and may be potential biomarkers for PE.
Collapse
|
28
|
Zhang Y, Wang J, Chen L, Yang H, Zhang B, Wang Q, Hu L, Zhang N, Vedal S, Xue F, Bai Z. Ambient PM 2.5 and clinically recognized early pregnancy loss: A case-control study with spatiotemporal exposure predictions. ENVIRONMENT INTERNATIONAL 2019; 126:422-429. [PMID: 30836309 DOI: 10.1016/j.envint.2019.02.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Experimental research suggests that fine particulate matter (PM2.5) exposure might affect embryonic development. However, only few population-based studies have investigated the impact of maternal exposure to PM2.5 on the early pregnancy loss. OBJECTIVES To estimate associations between clinically recognized early pregnancy loss (CREPL) and exposure to ambient PM2.5 at individual residences during peri-conception periods, with the aim to identify susceptible exposure time windows. METHODS CREPL cases and normal early pregnancy controls (of similar age and gravidity presenting within one week, a total of 364 pairs) were recruited between July 2017 and July 2018 among women residing in Tianjin, China. Average ambient PM2.5 concentrations of ten exposure windows (4 weeks, 2 weeks and 1 week before conception; the first, second, third and fourth single week, the first and second 2-week periods, and the entire 4-week period after conception) at the women's residential addresses were estimated using temporally-adjusted land use regression models. Associations between PM2.5 exposures at specific peri-conception time windows and CREPL were examined using conditional logistic regression models, adjusted for covariates. RESULTS Based on adjusted models, CREPL was significantly associated with a 10 μg/m3 increase in PM2.5 exposure during the second week after conception (OR = 1.15; 95% CI: 1.04, 1.27; p = 0.005), independent of effects at other time windows. There was also an association of CREPL with PM2.5 during the entire 4-week period after conception (OR = 1.22; 95% CI: 1.02, 1.46; p = 0.027). There was little evidence for associations with exposure during pre-conception exposure windows. CONCLUSIONS Maternal exposures to ambient PM2.5 during a critical time window following conception are associated with CREPL, with the second week after conception possibly being the exposure window of most vulnerability. Future studies should focus on replicating these findings and on pathogenic mechanisms.
Collapse
Affiliation(s)
- Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Li Chen
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Hua Yang
- Department of Family Planning, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Bumei Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qina Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liyuan Hu
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin, China
| | - Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Sverre Vedal
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
29
|
Li Z, Tang Y, Song X, Lazar L, Li Z, Zhao J. Impact of ambient PM 2.5 on adverse birth outcome and potential molecular mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:248-254. [PMID: 30453172 DOI: 10.1016/j.ecoenv.2018.10.109] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 05/20/2023]
Abstract
PM2.5 (particulate matter ≤2.5 µm in aerodynamic diameter) refers to atmospheric particulate matter (PM) with an aerodynamic diameter of equal and less than 2.5 µm that tends to be suspended for long periods of time and travel over long distances in both outdoor and indoor atmospheres. PM2.5, along with the toxic compounds attached on it, may cause a wide range of disorders. The fetus is considered to be highly susceptible to a variety of toxicants including atmospheric pollutants such as PM2.5 through prenatal exposure. To better understand the relationship between maternal exposure to PM2.5 and adverse birth outcomes for reproduction and fetus development, we studied the published data on this issue including case-control studies, cohort studies and meta-analyses studies, and summarized the basic impact of ambient particulate matter on adverse birth outcomes. Research evidence indicates that PM2.5 has a potential to induce low birth weight (LBW), preterm birth (PTB), and stillbirth. A further in-depth analysis shows that oxidative stress, DNA methylation, mitochondrial DNA (mtDNA) content alteration, and endocrine disruptions may all play an important role in PM2.5 induced adverse effects to pregnant women and fetuses. In addition, PM2.5 exposure can cause male reproductive toxicity, leading to associated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Lissy Lazar
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China.
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, People's Republic of China.
| |
Collapse
|
30
|
Xu Z, Jin X, Cai W, Zhou M, Shao P, Yang Z, Fu R, Cao J, Liu Y, Yu F, Fan R, Zhang Y, Zou S, Zhou X, Yang N, Chen X, Li Y. Proteomics Analysis Reveals Abnormal Electron Transport and Excessive Oxidative Stress Cause Mitochondrial Dysfunction in Placental Tissues of Early-Onset Preeclampsia. Proteomics Clin Appl 2018; 12:e1700165. [PMID: 29676857 DOI: 10.1002/prca.201700165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/06/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Early-onset preeclampsia (EOS-PE) refers to preeclampsia that occurred before 34 gestation weeks. This study is conducted to explore the relationship between mitochondrial dysfunction and the pathogenesis of EOS-PE using proteomic strategy. EXPERIMENTAL DESIGN To identify altering expressed mitochondrial proteins between severe EOS-PE and healthy pregnancies, enrichment of mitochondria coupled with iTRAQ-based quantitative proteomic method is performed. Immunohistochemistry (IHC) and western blot are performed to detect the alteration of changing expression proteins, and confirmed the accuracy of proteomic results. RESULTS A total of 1372 proteins were quantified and 132 altering expressed proteins were screened, including 86 downregulated expression proteins and 46 upregulated expression proteins (p < 0.05). Bioinformatics analysis showed that differentially expressed proteins participated in numerous biological processes, including oxidation-reduction process, respiratory electron transport chain, and oxidative phosphorylation. Especially, mitochondria-related molecules, PRDX2, PARK7, BNIP3, BCL2, PDHA1, SUCLG1, ACADM, and NDUFV1, are involved in energy-production process in the matrix and membrane of mitochondria. CONCLUSIONS AND CLINICAL RELEVANCE Results of the experiment show that abnormal electron transport, excessive oxidative stress, and mitochondrion disassembly might be the main cause of mitochondrial dysfunction, and is related to the pathogenesis of EOS-PE.
Collapse
Affiliation(s)
- Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China.,Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, 300162, China
| | - Xiaohan Jin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China.,Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, 300162, China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, 300162, China
| | - Maobin Zhou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Ping Shao
- Women and Children Health Care Center, Tianjin, 300070, China
| | - Zhen Yang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Rong Fu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Jin Cao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yan Liu
- Tianjin First Center Hospital, Tianjin, 300192, China
| | - Fang Yu
- Obstetrics and Gynecology Department, Pingjin Hospital, Tianjin, 300162, China
| | - Rong Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, 300162, China
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, 300162, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, 300162, China
| |
Collapse
|