1
|
Brand C, Newton-Foot M, Grobbelaar M, Whitelaw A. Antibiotic-induced stress responses in Gram-negative bacteria and their role in antibiotic resistance. J Antimicrob Chemother 2025; 80:1165-1184. [PMID: 40053699 PMCID: PMC12046405 DOI: 10.1093/jac/dkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Bacteria adapt to changes in their natural environment through a network of stress responses that enable them to alter their gene expression to survive in the presence of stressors, including antibiotics. These stress responses can be specific to the type of stress and the general stress response can be induced in parallel as a backup mechanism. In Gram-negative bacteria, various envelope stress responses are induced upon exposure to antibiotics that cause damage to the cell envelope or result in accumulation of toxic metabolic by-products, while the heat shock response is induced by antibiotics that cause misfolding or accumulation of protein aggregates. Antibiotics that result in the production of reactive oxygen species (ROS) induce the oxidative stress response and those that cause DNA damage, directly and through ROS production, induce the SOS response. These responses regulate the expression of various proteins that work to repair the damage that has been caused by antibiotic exposure. They can contribute to antibiotic resistance by refolding, degrading or removing misfolded proteins and other toxic metabolic by-products, including removal of the antibiotics themselves, or by mutagenic DNA repair. This review summarizes the stress responses induced by exposure to various antibiotics, highlighting their interconnected nature, as well the roles they play in antibiotic resistance, most commonly through the upregulation of efflux pumps. This can be useful for future investigations targeting these responses to combat antibiotic-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Chanté Brand
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Melanie Grobbelaar
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrew Whitelaw
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
2
|
Wons E, Gucwa K, Lewandowska N, Wisniewska A, Kozlowski L, Mruk I. A transcription factor from the cryptic Escherichia coli Rac prophage controls both phage and host operons. Nucleic Acids Res 2025; 53:gkaf113. [PMID: 40037713 PMCID: PMC11879457 DOI: 10.1093/nar/gkaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Bacterial genomes are shaped by cryptic prophages, which are viral genomes integrated into the bacterial chromosome. Escherichia coli genomes have 10 prophages on average. Though usually inactive, prophage genes can profoundly impact host cell physiology. Among the phage genes in the E. coli chromosome, there are several putative transcription factors (TFs). These prophage TFs are predicted to control only phage promoters; however, their regulatory functions are not well characterized. The cohabitation of prophages and bacteria has led to conditions under which the majority of prophage genes are unexpressed, at least under normal growth conditions. We characterized a Rac prophage TF, YdaT, expression of which is normally inhibited by Rac TFs and, surprisingly, by the host global regulator OxyR. YdaT, when expressed, leads to a toxic phenotype manifested by drastic cell filamentation and cell death. We determined the binding sites and regulatory action for YdaT, finding two sites within the Rac locus, and one upstream of the host rcsA gene, which codes for the global regulator RcsA. The resulting increase in RcsA strongly impacts the bacterial RcsA/B regulon, which includes operons related to motility, capsule biosynthesis, colanic acid production, biofilm formation, and cell division. Our results provide novel insights into the host's genetic network, which appears to integrate YdaT in a complex manner, favoring its maintenance in the silenced state. The fact that the potentially toxic YdaT locus remains unmutated suggests its importance and potential benefits for the host, which may appear under stress conditions that are not yet known.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Natalia Lewandowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
3
|
Hopkins HA, Lopezguerra C, Lau MJ, Raymann K. Making a Pathogen? Evaluating the Impact of Protist Predation on the Evolution of Virulence in Serratia marcescens. Genome Biol Evol 2024; 16:evae149. [PMID: 38961701 PMCID: PMC11332436 DOI: 10.1093/gbe/evae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024] Open
Abstract
Opportunistic pathogens are environmental microbes that are generally harmless and only occasionally cause disease. Unlike obligate pathogens, the growth and survival of opportunistic pathogens do not rely on host infection or transmission. Their versatile lifestyles make it challenging to decipher how and why virulence has evolved in opportunistic pathogens. The coincidental evolution hypothesis postulates that virulence results from exaptation or pleiotropy, i.e. traits evolved for adaptation to living in one environment that have a different function in another. In particular, adaptation to avoid or survive protist predation has been suggested to contribute to the evolution of bacterial virulence (the training ground hypothesis). Here, we used experimental evolution to determine how the selective pressure imposed by a protist predator impacts the virulence and fitness of a ubiquitous environmental opportunistic bacterial pathogen that has acquired multidrug resistance: Serratia marcescens. To this aim, we evolved S. marcescens in the presence or absence of generalist protist predator, Tetrahymena thermophila. After 60 d of evolution, we evaluated genotypic and phenotypic changes by comparing evolved S. marcescens with the ancestral strain. Whole-genome shotgun sequencing of the entire evolved populations and individual isolates revealed numerous cases of parallel evolution, many more than statistically expected by chance, in genes associated with virulence. Our phenotypic assays suggested that evolution in the presence of a predator maintained virulence, whereas evolution in the absence of a predator resulted in attenuated virulence. We also found a significant correlation between virulence, biofilm formation, growth, and grazing resistance. Overall, our results provide evidence that bacterial virulence and virulence-related traits are maintained by selective pressures imposed by protist predation.
Collapse
Affiliation(s)
- Heather A Hopkins
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Christian Lopezguerra
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Meng-Jia Lau
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
4
|
Bian Z, Liu W, Jin J, Hao Y, Jiang L, Xie Y, Zhang H. Rcs phosphorelay affects the sensitivity of Escherichia coli to plantaricin BM-1 by regulating biofilm formation. Front Microbiol 2022; 13:1071351. [PMID: 36504793 PMCID: PMC9729257 DOI: 10.3389/fmicb.2022.1071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Plantaricin BM-1 is a class IIa bacteriocin produced by Lactobacillus plantarum BM-1 that exerts significant antibacterial activity against many foodborne bacteria. Studies have shown that class IIa bacteriocins inhibit Gram-positive bacteria via the mannose phosphotransferase system; however, their mechanism of action against Gram-negative bacteria remains unknown. In this study, we explored the mechanism through which the Rcs phosphorelay affects the sensitivity of Escherichia coli K12 cells to plantaricin BM-1. Methods and Results: The minimum inhibitory concentrations of plantaricin BM-1 against E. coli K12, E. coli JW5917 (rcsC mutant), E. coli JW2204 (rcsD mutant), and E. coli JW2205 (rcsB mutant) were 1.25, 0.59, 1.31, and 1.22 mg/ml, respectively. Growth curves showed that E. coli JW5917 sensitivity to plantaricin BM-1 increased to the same level as that of E. coli K12 after complementation. Meanwhile, scanning electron microscopy and transmission electron microscopy revealed that, under the action of plantaricin BM-1, the appearance of E. coli JW5917 cells did not significantly differ from that of E. coli K12 cells; however, cell contents were significantly reduced and plasmolysis and shrinkage were observed at both ends. Crystal violet staining and laser scanning confocal microscopy showed that biofilm formation was significantly reduced after rcsC mutation, while proteomic analysis identified 382 upregulated and 260 downregulated proteins in E. coli JW5917. In particular, rcsC mutation was found to affect the expression of proteins related to biofilm formation, with growth curve assays showing that the deletion of these proteins increased E. coli sensitivity to plantaricin BM-1. Discussion: Consequently, we speculated that the Rcs phosphorelay may regulate the sensitivity of E. coli to plantaricin BM-1 by affecting biofilm formation. This finding of class IIa bacteriocin against Gram-negative bacteria mechanism provides new insights.
Collapse
Affiliation(s)
- Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yanling Hao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| |
Collapse
|
5
|
Stella NA, Romanowski EG, Brothers KM, Calvario RC, Shanks RMQ. IgaA Protein, GumB, Has a Global Impact on the Transcriptome and Surface Proteome of Serratia marcescens. Infect Immun 2022; 90:e0039922. [PMID: 36317876 PMCID: PMC9671016 DOI: 10.1128/iai.00399-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bacterial stress response signaling systems, like the Rcs system are triggered by membrane and cell wall damaging compounds, including antibiotics and immune system factors. These regulatory systems help bacteria survive envelope stress by altering the transcriptome resulting in protective phenotypic changes that may also influence the virulence of the bacterium. This study investigated the role of the Rcs stress response system using a clinical keratitis isolate of Serratia marcescens with a mutation in the gumB gene. GumB, an IgaA ortholog, inhibits activation of the Rcs system, such that mutants have overactive Rcs signaling. Transcriptomic analysis indicated that approximately 15% of all S. marcescens genes were significantly altered with 2-fold or greater changes in expression in the ΔgumB mutant compared to the wild type, indicating a global transcriptional regulatory role for GumB. We further investigated the phenotypic consequences of two classes of genes with altered expression in the ΔgumB mutant expected to contribute to infections: serralysin metalloproteases PrtS, SlpB, and SlpE, and type I pili coded by fimABCD. Secreted fractions from the ΔgumB mutant had reduced cytotoxicity to a corneal cell line, and could be complemented by induced expression of prtS, but not cytolysin shlBA, phospholipase phlAB, or flagellar master regulator flhDC operons. Proteomic analysis, qRT-PCR, and type I pili-dependent yeast agglutination indicated an inhibitory role for the Rcs system in adhesin production. Together these data demonstrate GumB has a global impact on S. marcescens gene expression that had measurable effects on bacterial cytotoxicity and surface adhesin production.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Eric G. Romanowski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Rachel C. Calvario
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania, USA
| |
Collapse
|
6
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
7
|
Spatial regulation of cell motility and its fitness effect in a surface-attached bacterial community. THE ISME JOURNAL 2022; 16:1004-1011. [PMID: 34759303 PMCID: PMC8940935 DOI: 10.1038/s41396-021-01148-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
On a surface, microorganisms grow into a multi-cellular community. When a community becomes densely populated, cells migrate away to expand the community's territory. How microorganisms regulate surface motility to optimize expansion remains poorly understood. Here, we characterized surface motility of Proteus mirabilis. P. mirabilis is well known for its ability to expand its colony rapidly on a surface. Cursory visual inspection of an expanding colony suggests partial migration, i.e., one fraction of a population migrates while the other is sessile. Quantitative microscopic imaging shows that this migration pattern is determined by spatially inhomogeneous regulation of cell motility. Further analyses reveal that this spatial regulation is mediated by the Rcs system, which represses the expression of the motility regulator (FlhDC) in a nutrient-dependent manner. Alleviating this repression increases the colony expansion speed but results in a rapid drop in the number of viable cells, lowering population fitness. These findings collectively demonstrate how Rcs regulates cell motility dynamically to increase the fitness of an expanding bacterial population, illustrating a fundamental trade-off underlying bacterial colonization of a surface.
Collapse
|
8
|
Alterations in the Transcriptional Landscape Allow Differential Desiccation Tolerance in Clinical Cronobacter sakazakii. Appl Environ Microbiol 2021; 87:e0083021. [PMID: 34644165 DOI: 10.1128/aem.00830-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is a typical example of a xerotolerant bacterium. It is epidemiologically linked to low-moisture foods like powdered infant formula (PIF) and is associated with high fatality rates among neonates. We characterized the xerotolerance in a clinically isolated strain, Cronobacter sakazakii ATCC™29544T, and compared the desiccation tolerance with that of an environmental strain, C. sakazakii SP291, whose desiccation tolerance was previously characterized. We found that, although the clinical strain was desiccation-tolerant, the level of tolerance was compromised when compared with that of the environmental strain. Transcriptome sequencing (RNA-seq)-based deep transcriptomic characterization identified a unique transcriptional profile in the clinical strain compared with what was already known for the environmental strain. As RNA-seq was also carried out under different TSB growth conditions, genes that were expressed specifically under desiccated conditions were identified and denoted as desiccation responsive genes (DRGs). Interestingly, these DRGs included transcriptomic factors like fnr, ramA, and genes associated with inositol metabolism, a phenotype as yet unreported in C. sakazakii. Further, the clinical strain did not express the proP gene, which was previously reported to be very important for desiccation survival and persistence. Interestingly, analysis of the plasmid genes showed that the iron metabolism in desiccated C. sakazakii ATCC™29544T cells specifically involved the siderophore cronobactin, encoded by the iucABCD genes. Confirmatory studies using quantitative reverse transcription-PCR (qRT-PCR) determined that, though the secondary desiccation response genes were upregulated in C. sakazakii ATCC™29544T, the level of upregulation was lower than that in C. sakazakii SP291. All these factors may collectively contribute to the compromised desiccation tolerance in the clinical strain. IMPORTANCE Cronobacter sakazakii has led to outbreaks in the past, particularly associated with foods that are low in moisture content. This species has adapted to survive in low water conditions and can survive in such environments for long periods. These characteristics have enabled the pathogen to contaminate powder infant formula, a food matrix with which the pathogen has been epidemiologically associated. Even though clinically adapted strains can also be isolated, there is no information on how the clinical strains adapt to low moisture environments. Our research assessed the adaptation of a clinically isolated strain to low moisture survival on sterile stainless steel coupons and compared the survival with that of a highly desiccation-tolerant environmental strain. We found that, even though the clinical strain is desiccation-tolerant, the rate of tolerance was compromised compared with that of the environmental strain. A deeper investigation using RNA-seq identified that the clinical strain used pathways different from that of the environmental strain to adapt to low-moisture conditions. This shows that the adaptation to desiccation conditions, at least for C. sakazakii, is strain-specific and that different strains have used different evolutionary strategies for adaptation.
Collapse
|
9
|
Jayashree S, Sivakumar R, Karthikeyan R, Gunasekaran P, Rajendhran J. Genome-wide identification of probiotic Escherichia coli Nissle 1917 (EcN) fitness genes during adhesion to the intestinal epithelial cells Caco-2. Gene 2021; 803:145890. [PMID: 34375634 DOI: 10.1016/j.gene.2021.145890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is an efficient probiotic strain extensively used worldwide because of its several health benefits. Adhesion to the intestinal cells is one of the prerequisites for a probiotic strain. To identify the genes essential for the adhesion of EcN on the intestinal cells, we utilized a quantitative genetic footprinting approach called transposon insertion sequencing (INSeq). A transposon insertion mutant library of EcN comprising of ~17,000 mutants was used to screen the adherence to the intestinal epithelial cells, Caco-2. The transposon insertion sites were identified from the input and output population by employing next-generation sequencing using the Ion torrent platform. Based on the relative abundance of reads in the input and output pools, we identified 113 candidate genes that are essential for the fitness of EcN during the adhesion and colonization on the Caco-2 cells. Functional categorization revealed that these fitness genes are associated with carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis, post-translational modification, stress response, motility and adhesion, and signal transduction. To further validate the genes identified in our INSeq analysis, we constructed individual knock-out mutants in five genes (cyclic di-GMP phosphodiesterase (gmp), hda, uidC, leuO, and hypothetical protein-coding gene). We investigated their ability to adhere to Caco-2 cells. Evaluation of these mutants showed reduced adhesion on Caco-2 cells, confirming their role in adhesion. Understanding the functions of these genes may provide novel insights into molecular regulation during colonization of probiotic bacteria to the intestinal cells, and useful to develop designer probiotic strains.
Collapse
Affiliation(s)
| | - Ramamoorthy Sivakumar
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
10
|
CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio 2021; 12:e0135821. [PMID: 34340543 PMCID: PMC8406273 DOI: 10.1128/mbio.01358-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plague-causing Yersinia pestis is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The Y. pestis diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to in vitro biofilms. HmsT, however, is necessary for in vitro biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses hmsT mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in Y. pestis biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when Y. pestis was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a csrA hfq double mutant strain substantiated that CsrA represses hfq mRNA translation, thereby alleviating Hfq-dependent repression of hmsT mRNA translation. Additionally, a csrA mutant exhibited intermediately reduced biofilm blockage rates, resembling an hmsT mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in Y. pestis as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.
Collapse
|
11
|
The Rcs Stress Response System Regulator GumB Modulates Serratia marcescens-Induced Inflammation and Bacterial Proliferation in a Rabbit Keratitis Model and Cytotoxicity In Vitro. Infect Immun 2021; 89:e0011121. [PMID: 33820815 DOI: 10.1128/iai.00111-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we tested the hypothesis that the conserved bacterial IgaA-family protein, GumB, mediates microbial pathogenesis associated with Serratia marcescens ocular infections through regulation of the Rcs stress response system. The role of the Rcs system and bacterial stress response systems for microbial keratitis is not known, and the role of IgaA proteins in mammalian pathogenesis models has only been tested with partial-function allele variants of Salmonella. Here, we observed that an Rcs-activated gumB mutant had a >50-fold reduction in proliferation compared to the wild type within rabbit corneas at 48 h and demonstrated a notable reduction in inflammation based on inflammatory signs, including the absence of hypopyons, and proinflammatory markers measured at the RNA and protein levels. The gumB mutant phenotypes could be complemented by wild-type gumB on a plasmid. We observed that bacteria with an inactivated Rcs stress response system induced high levels of ocular inflammation and restored corneal virulence to the gumB mutant. The high virulence of the ΔrcsB mutant was dependent upon the ShlA cytolysin transporter ShlB. Similar results were found for testing the cytotoxic effects of wild-type and mutant bacteria on a human corneal epithelial cell line in vitro. Together, these data indicate that GumB regulates virulence factor production through the Rcs system, and this overall stress response system is a key mediator of a bacterium's ability to induce vision-threatening keratitis.
Collapse
|
12
|
Reid AJ, Eade CR, Jones KJ, Jorgenson MA, Troutman JM. Tracking Colanic Acid Repeat Unit Formation from Stepwise Biosynthesis Inactivation in Escherichia coli. Biochemistry 2021; 60:2221-2230. [PMID: 34159784 DOI: 10.1021/acs.biochem.1c00314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colanic acid is a glycopolymer loosely associated with the outer membrane of Escherichia coli that plays a role in pathogen survival. For nearly six decades since its discovery, the functional identities of the enzymes necessary to synthesize colanic acid have yet to be assessed in full. Herein, we developed a method for detecting the lipid-linked intermediates from each step of colanic acid biosynthesis in E. coli. The accumulation of each enzyme product was made possible by inactivating sequential genes involved in colanic acid biosynthesis and upregulating the colanic acid operon by inducing rcsA transcription. LC-MS analysis revealed that these accumulated materials were consistent with the well-documented composition analysis. Recapitulating the native bioassembly of colanic acid enabled us to identify the functional roles of the last two enzymes, WcaL and WcaK, associated with the formation of the lipid-linked oligosaccharide repeating unit of colanic acid. Importantly, biochemical evidence is provided for the formation of the final glycosylation hexasaccharide product formed by WcaL and the addition of a pyruvate moiety to form a pyruvylated hexasaccharide by WcaK. These findings provide insight into the development of methods for the identification of enzyme functions during cell envelope synthesis.
Collapse
Affiliation(s)
| | | | | | - Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, United States
| | | |
Collapse
|
13
|
Recacha E, Fox V, Díaz-Díaz S, García-Duque A, Docobo-Pérez F, Pascual Á, Rodríguez-Martínez JM. Disbalancing Envelope Stress Responses as a Strategy for Sensitization of Escherichia coli to Antimicrobial Agents. Front Microbiol 2021; 12:653479. [PMID: 33897667 PMCID: PMC8058218 DOI: 10.3389/fmicb.2021.653479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023] Open
Abstract
Disbalancing envelope stress responses was investigated as a strategy for sensitization of Escherichia coli to antimicrobial agents. Seventeen isogenic strains were selected from the KEIO collection with deletions in genes corresponding to the σE, Cpx, Rcs, Bae, and Psp responses. Antimicrobial activity against 20 drugs with different targets was evaluated by disk diffusion and gradient strip tests. Growth curves and time-kill curves were also determined for selected mutant-antimicrobial combinations. An increase in susceptibility to ampicillin, ceftazidime, cefepime, aztreonam, ertapenem, and fosfomycin was detected. Growth curves for Psp response mutants showed a decrease in optical density (OD) using sub-MIC concentrations of ceftazidime and aztreonam (ΔpspA and ΔpspB mutants), cefepime (ΔpspB and ΔpspC mutants) and ertapenem (ΔpspB mutant). Time-kill curves were also performed using 1xMIC concentrations of these antimicrobials. For ceftazidime, 2.9 log10 (ΔpspA mutant) and 0.9 log10 (ΔpspB mutant) decreases were observed at 24 and 8 h, respectively. For aztreonam, a decrease of 3.1 log10 (ΔpspA mutant) and 4 log1010 (ΔpspB mutant) was shown after 4–6 h. For cefepime, 4.2 log10 (ΔpspB mutant) and 2.6 log10 (ΔpspC mutant) decreases were observed at 8 and 4 h, respectively. For ertapenem, a decrease of up to 6 log10 (ΔpspB mutant) was observed at 24 h. A deficient Psp envelope stress response increased E. coli susceptibility to beta-lactam agents such as cefepime, ceftazidime, aztreonam and ertapenem. Its role in repairing extensive inner membrane disruptions makes this pathway essential to bacterial survival, so that disbalancing the Psp response could be an appropriate target for sensitization strategies.
Collapse
Affiliation(s)
- Esther Recacha
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Valeria Fox
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Díaz-Díaz
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - Ana García-Duque
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Fernando Docobo-Pérez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - José Manuel Rodríguez-Martínez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
14
|
Peng J, Schachterle JK, Sundin GW. Orchestration of virulence factor expression and modulation of biofilm dispersal in Erwinia amylovora through activation of the Hfq-dependent small RNA RprA. MOLECULAR PLANT PATHOLOGY 2021; 22:255-270. [PMID: 33314618 PMCID: PMC7814967 DOI: 10.1111/mpp.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is the causative agent of the devastating disease fire blight of pome fruit trees. After infection of host plant leaves at apple shoot tips, E. amylovora cells form biofilms in xylem vessels, restrict water flow, and cause wilting symptoms. Although E. amylovora is well known to be able to cause systemic infection, how biofilm cells of E. amylovora transit from the sessile mode of growth in xylem to the planktonic mode of growth in cortical parenchyma remains unknown. Increasing evidence has suggested the important modulatory roles of Hfq-dependent small RNAs (sRNAs) in the pathogenesis of E. amylovora. Here, we demonstrate that the sRNA RprA acts as a positive regulator of amylovoran exopolysaccharide production, the type III secretion system (T3SS), and flagellar-dependent motility, and as a negative regulator of levansucrase activity and cellulose production. We also show that RprA affects the promoter activity of multiple virulence factor genes and regulates hrpS, a critical T3SS regulator, at the posttranscriptional level. We determined that rprA expression can be activated by the Rcs phosphorelay, and that expression is active during T3SS-mediated host infection in an immature pear fruit infection model. We further showed that overexpression of rprA activated the in vitro dispersal of E. amylovora cells from biofilms. Thus, our investigation of the varied role of RprA in affecting E. amylovora virulence provides important insights into the functions of this sRNA in biofilm control and systemic infection.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey K. Schachterle
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Present address:
US National Arboretum – Floral and Nursery Plants Research UnitUSDA‐ARSBeltsvilleMarylandUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
15
|
Dineshkumar K, Aparna V, Wu L, Wan J, Abdelaziz MH, Su Z, Wang S, Xu H. Bacterial bug-out bags: outer membrane vesicles and their proteins and functions. J Microbiol 2020; 58:531-542. [DOI: 10.1007/s12275-020-0026-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
|
16
|
Transcriptomic analysis reveals the role of RcsB in suppressing bacterial chemotaxis, flagellar assembly and infection in Yersinia enterocolitica. Curr Genet 2020; 66:971-988. [PMID: 32488337 DOI: 10.1007/s00294-020-01083-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Defining the Rcs (Regulator of Capsule Synthesis) regulon in Enterobacteriaceae has been the major focus of several recent studies. The overall role of the Rcs system in Yersinia enterocolitica is largely unknown. Our previous study showed that RcsB inhibits motility, biofilm formation and c-di-GMP production by negatively regulating flhDC, hmsHFRS and hmsT expression. To identify other cellular functions regulated by the RcsB, gene expression profiles of the wild type and ΔrcsB mutant were compared by RNA-Seq in this study. A total of 132 differentially expressed genes regulated by the RcsB have been identified, of which 114 were upregulated and 18 were downregulated. Further, the results of RNA sequencing were discussed with a focus on the predictive roles of RcsB in the inhibition of bacterial chemotaxis, flagellar assembly and infection. To confirm these predictions, we experimentally verified that the ΔrcsB mutant activated chemotactic behavior and flagella biosynthesis, and exhibited enhanced adhesion and invasion of Y. enterocolitica to Caco-2 cells. Although RcsB largely inhibits these physiological activities, the presence of RcsB is still of great significance for optimizing the survival of Y. enterocolitica as evidenced by our previous report that RcsB confers some level of resistance to the cationic antimicrobial peptide polymyxin B in Y. enterocolitica. Overall, the information provided in this study complements our understanding of Rcs phosphorelay in the regulation of Y. enterocolitica pathogenicity, and, simultaneously, provides clues to additional roles of the Rcs system in other members of family Enterobacteriaceae.
Collapse
|
17
|
Lee C, Mannaa M, Kim N, Kim J, Choi Y, Kim SH, Jung B, Lee HH, Lee J, Seo YS. Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2019; 35:445-458. [PMID: 31632220 PMCID: PMC6788416 DOI: 10.5423/ppj.oa.04.2019.0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 05/10/2023]
Abstract
The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.
Collapse
Affiliation(s)
- Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Yeounju Choi
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Soo Hyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Corresponding author.: Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail)
| |
Collapse
|
18
|
Pathoadaptive Alteration of Salmonella Biofilm Formation in Response to the Gallbladder Environment. J Bacteriol 2019; 201:JB.00774-18. [PMID: 30962351 DOI: 10.1128/jb.00774-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/26/2019] [Indexed: 02/02/2023] Open
Abstract
Typhoid fever, a human-specific disease, is primarily caused by the pathogen Salmonella enterica serovar Typhi. It is estimated that 3 to 5% of people infected with typhoid fever become chronic carriers. Studies have demonstrated that a mechanism of chronic carriage involves biofilm formation on gallstone surfaces. In the course of a previous study using a chronic carriage mouse model, a Salmonella enterica serovar Typhimurium isolate was recovered from a mouse gallstone that exhibited a 2-fold increase in biofilm formation over the wild type. In order to identify the gene(s) responsible for the phenotype, the genomic sequences of this isolate and others were determined and compared. These sequences identified single nucleotide polymorphisms (SNPs) in 14 genes. Mutations in the most promising candidates, envZ and rcsB, were created, but neither showed increased biofilm-forming ability separately or in combination. The hyperbiofilm isolate did, however, present variations in cellular appendages observable using different techniques and a preferential binding to cholesterol. The isolate was also examined for systemic virulence and the ability to colonize the gallbladder/gallstones in a mouse model of chronic infection, demonstrating a systemic virulence defect and decreased gallbladder/gallstone colonization. Finally, to determine if the appearance of hyperbiofilm isolates could be replicated in vitro and if this was a common event, wild-type Salmonella spp. were grown long term in vitro under gallbladder-mimicking conditions, resulting in a high proportion of isolates that replicated the hyperbiofilm phenotype of the original isolate. Thus, Salmonella spp. acquire random mutations under the gallbladder/gallbladder-simulating conditions that may aid persistence but negatively affect systemic virulence.IMPORTANCE Chronic carriers are the main reservoirs for the spread of typhoid fever in regions of endemicity. Salmonella Typhi forms biofilms on gallstones in order to persist. A strain with enhanced biofilm-forming ability was recovered after a nine-month chronic-carriage mouse study. After sequencing this strain and recreating some of the mutations, we could not duplicate the phenotype. The isolate did show a difference in flagella, a preference to bind to cholesterol, and a systemic virulence defect. Finally, gallbladder conditions were simulated in vitro After 60 days, there was a 4.5-fold increase in hyperbiofilm isolates when a gallstone was present. These results indicate that Salmonella spp. can undergo genetic changes that improve persistence in gallbladder albeit at the cost of decreased virulence.
Collapse
|
19
|
Minnullina L, Pudova D, Shagimardanova E, Shigapova L, Sharipova M, Mardanova A. Comparative Genome Analysis of Uropathogenic Morganella morganii Strains. Front Cell Infect Microbiol 2019; 9:167. [PMID: 31231616 PMCID: PMC6558430 DOI: 10.3389/fcimb.2019.00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/03/2019] [Indexed: 12/02/2022] Open
Abstract
Morganella morganii is an opportunistic bacterial pathogen shown to cause a wide range of clinical and community-acquired infections. This study was aimed at sequencing and comparing the genomes of three M. morganii strains isolated from the urine samples of patients with community-acquired urinary tract infections. Draft genome sequencing was conducted using the Illumina HiSeq platform. The genomes of MM 1, MM 4, and MM 190 strains have a size of 3.82–3.97 Mb and a GC content of 50.9–51%. Protein-coding sequences (CDS) represent 96.1% of the genomes, RNAs are encoded by 2.7% of genes and pseudogenes account for 1.2% of the genomes. The pan-genome containes 4,038 CDS, of which 3,279 represent core genes. Six to ten prophages and 21–33 genomic islands were identified in the genomes of MM 1, MM 4, and MM 190. More than 30 genes encode capsular biosynthesis proteins, an average of 60 genes encode motility and chemotaxis proteins, and about 70 genes are associated with fimbrial biogenesis and adhesion. We determined that all strains contained urease gene cluster ureABCEFGD and had a urease activity. Both MM 4 and MM 190 strains are capable of hemolysis and their activity correlates well with a cytotoxicity level on T-24 bladder carcinoma cells. These activities were associated with expression of RTX toxin gene hlyA, which was introduced into the genomes by a phage similar to Salmonella phage 118970_sal4.
Collapse
Affiliation(s)
- Leyla Minnullina
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Daria Pudova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Leyla Shigapova
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Laboratory of Microbial Biotechnology, Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
20
|
Genome-wide identification of genes regulated by RcsA, RcsB, and RcsAB phosphorelay regulators in Klebsiella pneumoniae NTUH-K2044. Microb Pathog 2018; 123:36-41. [PMID: 29944890 DOI: 10.1016/j.micpath.2018.06.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/04/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Rcs phosphorelay system is a two-component signal transduction system, which can regulate the transcription of capsule polysaccharide and biofilm related genes in Enterobacteriaceae. In this study, microarray technology was used to investigate the overall genes regulated by RcsA, RcsB, and RcsAB and the regulation mechanism in Klebsiella pneumoniae, then COG analysis was performed to explore the functions of the differentially expressed genes. According to the microarray data result, a total of 45, 223 and 217 genes regulated by RcsA, RcsB, and RcsAB were screened. The result of COG analysis suggested that inorganic ion transport and metabolism related genes have a majority in RcsA regulating genes. Most of RcsB regulated genes were showed involved in energy production and conversion process. Besides Carbohydrate transport and metabolism genes were identified as the major components of the RcsAB regulated genes. 15 differentially expressed genes were confirmed by quantitative real-time PCR (RT-qPCR). The RT-qPCR results indicated that 13 genes consistent with microarray data. The results of this study provided important evidence for further research to investigate the influence of RcsA, RcsB, RcsAB regulators and further efforts to address the diseased caused by K.pneumoniae, such as pneumonia, bacteremia, and urinary tract infection.
Collapse
|
21
|
Hussein NA, Cho SH, Laloux G, Siam R, Collet JF. Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments. PLoS Genet 2018; 14:e1007398. [PMID: 29852010 PMCID: PMC5978795 DOI: 10.1371/journal.pgen.1007398] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
In enterobacteria, the Rcs system (Regulator of capsule synthesis) monitors envelope integrity and induces a stress response when damages occur in the outer membrane or in the peptidoglycan layer. Built around a two-component system, Rcs controls gene expression via a cascade of phosphoryl transfer reactions. Being particularly complex, Rcs also involves the outer membrane lipoprotein RcsF and the inner membrane essential protein IgaA (Intracellular growth attenuator). RcsF and IgaA, which are located upstream of the phosphorelay, are required for normal Rcs functioning. Here, we establish the stress-dependent formation of a complex between RcsF and the periplasmic domain of IgaA as the molecular signal triggering Rcs. Moreover, molecular dissection of IgaA reveals that its negative regulatory role on Rcs is mostly carried by its first N-terminal cytoplasmic domain. Altogether, our results support a model in which IgaA regulates Rcs activation by playing a direct role in the transfer of signals from the cell envelope to the cytoplasm. This remarkable feature further distinguishes Rcs from other envelope stress response systems. A thorough understanding of the mechanisms that allow bacteria to thrive in various environments is crucial to the development of new antibiotics, an urgent endeavor to combat antimicrobial resistance. A landmark feature of Gram-negative bacteria is the presence of a multi-layered envelope. Because this structure is essential, its integrity is constantly monitored to detect and respond to potential breaches in a fast and adequate manner. Here, we describe how IgaA, an essential protein present in the cytoplasmic membrane of enterobacteria, participates in the transfer of stress signals from the envelope to the cytoplasm. We provide evidence that IgaA works in concert with RcsF, a lipoprotein that is posted as a sentinel in the outermost envelope layer, to detect envelope stress: under stress conditions, RcsF forms a complex with the C-terminal, periplasmic domain of IgaA. As a result, cells turn on the Rcs response. We also discovered that the N-terminal, cytoplasmic domain of IgaA plays an important role in inhibiting Rcs in the absence of stress. Together, these findings reveal that distinct IgaA domains coordinate stress sensing and Rcs activation across the cytoplasmic membrane. They enhance our understanding of Rcs regulation and open new avenues for the development of new antibacterials.
Collapse
Affiliation(s)
- Nahla A. Hussein
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, Cairo, Egypt
| | - Seung-Hyun Cho
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Géraldine Laloux
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Rania Siam
- Biology Department, Biotechnology Graduate Program and YJ-Science and Technology Research Center, American University in Cairo, Cairo, Egypt
| | - Jean-François Collet
- WELBIO, Brussels, Belgium
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
22
|
Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Salmonella enterica Serovar Typhimurium. mBio 2018; 9:mBio.00736-17. [PMID: 29717015 PMCID: PMC5930307 DOI: 10.1128/mbio.00736-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Flagellum-driven motility of Salmonella enterica serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of Salmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2 with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of rflP and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Salmonella Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24 (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2 via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response. Pathogenic bacteria such as Salmonella Typhimurium sense and adapt to a multitude of changing and stressful environments during host infection. At the initial stage of gastrointestinal colonization, Salmonella uses flagellum-mediated motility to reach preferred sites of infection. However, the flagellum also constitutes a prime target for the host’s immune response. Accordingly, the pathogen needs to determine the spatiotemporal stage of infection and control flagellar biosynthesis in a robust manner. We found that Salmonella uses signals from cell envelope stress-sensing systems to turn off production of flagella. We speculate that downregulation of flagellum synthesis after cell envelope damage in hostile environments aids survival of Salmonella during late stages of infection and provides a means to escape recognition by the immune system.
Collapse
|
23
|
Asmar AT, Ferreira JL, Cohen EJ, Cho SH, Beeby M, Hughes KT, Collet JF. Communication across the bacterial cell envelope depends on the size of the periplasm. PLoS Biol 2017; 15:e2004303. [PMID: 29257832 PMCID: PMC5736177 DOI: 10.1371/journal.pbio.2004303] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
The cell envelope of gram-negative bacteria, a structure comprising an outer (OM) and an inner (IM) membrane, is essential for life. The OM and the IM are separated by the periplasm, a compartment that contains the peptidoglycan. The OM is tethered to the peptidoglycan via the lipoprotein, Lpp. However, the importance of the envelope's multilayered architecture remains unknown. Here, when we removed physical coupling between the OM and the peptidoglycan, cells lost the ability to sense defects in envelope integrity. Further experiments revealed that the critical parameter for the transmission of stress signals from the envelope to the cytoplasm, where cellular behaviour is controlled, is the IM-to-OM distance. Augmenting this distance by increasing the length of the lipoprotein Lpp destroyed signalling, whereas simultaneously increasing the length of the stress-sensing lipoprotein RcsF restored signalling. Our results demonstrate the physiological importance of the size of the periplasm. They also reveal that strict control over the IM-to-OM distance is required for effective envelope surveillance and protection, suggesting that cellular architecture and the structure of transenvelope protein complexes have been evolutionarily co-optimised for correct function. Similar strategies are likely at play in cellular compartments surrounded by 2 concentric membranes, such as chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Abir T. Asmar
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Josie L. Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Eli J. Cohen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Seung-Hyun Cho
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jean-François Collet
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- WELBIO, Université catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
24
|
Guo XP, Sun YC. New Insights into the Non-orthodox Two Component Rcs Phosphorelay System. Front Microbiol 2017; 8:2014. [PMID: 29089936 PMCID: PMC5651002 DOI: 10.3389/fmicb.2017.02014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/29/2017] [Indexed: 01/18/2023] Open
Abstract
The Rcs phosphorelay system, a non-orthodox two-component regulatory system, integrates environmental signals, regulates gene expression, and alters the physiological behavior of members of the Enterobacteriaceae family of Gram-negative bacteria. Recent studies of Rcs system focused on protein interactions, functions, and the evolution of Rcs system components and its auxiliary regulatory proteins. Herein we review the latest advances on the Rcs system proteins, and discuss the roles that the Rcs system plays in the environmental adaptation of various Enterobacteriaceae species.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Involvement of Two-Component Signaling on Bacterial Motility and Biofilm Development. J Bacteriol 2017; 199:JB.00259-17. [PMID: 28533218 DOI: 10.1128/jb.00259-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two-component signaling is a specialized mechanism that bacteria use to respond to changes in their environment. Nonpathogenic strains of Escherichia coli K-12 harbor 30 histidine kinases and 32 response regulators, which form a network of regulation that integrates many other global regulators that do not follow the two-component signaling mechanism, as well as signals from central metabolism. The output of this network is a multitude of phenotypic changes in response to changes in the environment. Among these phenotypic changes, many two-component systems control motility and/or the formation of biofilm, sessile communities of bacteria that form on surfaces. Motility is the first reversible attachment phase of biofilm development, followed by a so-called swim or stick switch toward surface organelles that aid in the subsequent phases. In the mature biofilm, motility heterogeneity is generated by a combination of evolutionary and gene regulatory events.
Collapse
|
26
|
A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies. mBio 2017; 8:mBio.00559-17. [PMID: 28830939 PMCID: PMC5565961 DOI: 10.1128/mbio.00559-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was also recently identified as one major component of the gut microbiome in familial Crohn disease dysbiosis. Type VI secretion systems (T6SSs) stand among the array of survival strategies that Serratia displays. They are contractile multiprotein complexes able to deliver toxic effectors directed to kill bacterial species sharing the same niche and, thus, competing for vital resources. Here, we show that Serratia is able to detect and measure the extent of damage generated through T6SS-delivered toxins from neighboring bacteria and responds by transcriptionally adjusting the expression level of its own T6SS machinery to counterattack the rival. This strategy allows Serratia to finely tune the production of costly T6SS devices to maximize the chances of successfully fighting against enemies and minimize energy investment. The knowledge of this novel mechanism provides insight to better understand bacterial interactions and design alternative treatments for polymicrobial infections.
Collapse
|
27
|
Transcriptional Responses of Escherichia coli to a Small-Molecule Inhibitor of LolCDE, an Essential Component of the Lipoprotein Transport Pathway. J Bacteriol 2016; 198:3162-3175. [PMID: 27645386 PMCID: PMC5105897 DOI: 10.1128/jb.00502-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, a dedicated machinery consisting of LolABCDE components targets lipoproteins to the outer membrane. We used a previously identified small-molecule inhibitor of the LolCDE complex of Escherichia coli to assess the global transcriptional consequences of interference with lipoprotein transport. Exposure of E. coli to the LolCDE inhibitor at concentrations leading to minimal and significant growth inhibition, followed by transcriptome sequencing, identified a small group of genes whose transcript levels were decreased and a larger group whose mRNA levels increased 10- to 100-fold compared to those of untreated cells. The majority of the genes whose mRNA concentrations were reduced were part of the flagellar assembly pathway, which contains an essential lipoprotein component. Most of the genes whose transcript levels were elevated encode proteins involved in selected cell stress pathways. Many of these genes are involved with envelope stress responses induced by the mislocalization of outer membrane lipoproteins. Although several of the genes whose RNAs were induced have previously been shown to be associated with the general perturbation of the cell envelope by antibiotics, a small subset was affected only by LolCDE inhibition. Findings from this work suggest that the efficiency of the Lol system function may be coupled to a specific monitoring system, which could be exploited in the development of reporter constructs suitable for use for screening for additional inhibitors of lipoprotein trafficking. IMPORTANCE Inhibition of the lipoprotein transport pathway leads to E. coli death and subsequent lysis. Early significant changes in the levels of RNA for a subset of genes identified to be associated with some periplasmic and envelope stress responses were observed. Together these findings suggest that disruption of this key pathway can have a severe impact on balanced outer membrane synthesis sufficient to affect viability.
Collapse
|
28
|
Borland S, Prigent-Combaret C, Wisniewski-Dyé F. Bacterial hybrid histidine kinases in plant-bacteria interactions. MICROBIOLOGY-SGM 2016; 162:1715-1734. [PMID: 27609064 DOI: 10.1099/mic.0.000370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.
Collapse
Affiliation(s)
- Stéphanie Borland
- Université de Lyon, Université Lyon 1, Ecologie Microbienne, CNRS UMR5557, INRA UMR1418, Villeurbanne, France
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon 1, Ecologie Microbienne, CNRS UMR5557, INRA UMR1418, Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon 1, Ecologie Microbienne, CNRS UMR5557, INRA UMR1418, Villeurbanne, France
| |
Collapse
|
29
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
30
|
Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF. LPS Remodeling Triggers Formation of Outer Membrane Vesicles in Salmonella. mBio 2016; 7:e00940-16. [PMID: 27406567 PMCID: PMC4958258 DOI: 10.1128/mbio.00940-16] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Outer membrane vesicles (OMV) are proposed to mediate multiple functions during pathogenesis and symbiosis. However, the mechanisms responsible for OMV formation remain poorly understood. It has been shown in eukaryotic membranes that lipids with an inverted-cone shape favor the formation of positive membrane curvatures. Based on these studies, we formulated the hypothesis that lipid A deacylation might impose shape modifications that result in the curvature of the outer membrane (OM) and subsequent OMV formation. We tested the effect of lipid A remodeling on OMV biogenesis employing Salmonella enterica serovar Typhimurium as a model organism. Expression of the lipid A deacylase PagL resulted in increased vesiculation, without inducing an envelope stress response. Mass spectrometry analysis revealed profound differences in the patterns of lipid A in OM and OMV, with accumulation of deacylated lipid A forms exclusively in OMV. OMV biogenesis by intracellular bacteria upon macrophage infection was drastically reduced in a pagL mutant strain. We propose a novel mechanism for OMV biogenesis requiring lipid A deacylation in the context of a multifactorial process that involves the orchestrated remodeling of the outer membrane. IMPORTANCE The role of lipid remodeling in vesiculation is well documented in eukaryotes. Similarly, bacteria produce membrane-derived vesicles; however, the molecular mechanisms underlying their production are yet to be determined. In this work, we investigated the role of outer membrane remodeling in OMV biogenesis in S Typhimurium. We showed that the expression of the lipid A deacylase PagL results in overvesiculation with deacylated lipid A accumulation exclusively in OMV. An S Typhimurium ΔpagL strain showed a significant reduction in intracellular OMV secretion relative to the wild-type strain. Our results suggest a novel mechanism for OMV biogenesis that involves outer membrane remodeling through lipid A modification. Understanding how OMV are produced by bacteria is important to advance our understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ezequiel Valguarnera
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| | - M Florencia Haurat
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mario F Feldman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Kühne C, Singer HM, Grabisch E, Codutti L, Carlomagno T, Scrima A, Erhardt M. RflM mediates target specificity of the RcsCDB phosphorelay system for transcriptional repression of flagellar synthesis in Salmonella enterica. Mol Microbiol 2016; 101:841-55. [PMID: 27206164 DOI: 10.1111/mmi.13427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
The bacterial flagellum enables directed movement of Salmonella enterica towards favorable conditions in liquid environments. Regulation of flagellar synthesis is tightly controlled by various environmental signals at transcriptional and post-transcriptional levels. The flagellar master regulator FlhD4 C2 resides on top of the flagellar transcriptional hierarchy and is under autogenous control by FlhD4 C2 -dependent activation of the repressor rflM. The inhibitory activity of RflM depends on the presence of RcsB, the response regulator of the RcsCDB phosphorelay system. In this study, we elucidated the molecular mechanism of RflM-dependent repression of flhDC. We show that RcsB and RflM form a heterodimer that coordinately represses flhDC transcription independent of RcsB phosphorylation. RcsB-RflM complex binds to a RcsB box downstream the P1 transcriptional start site of the flhDC promoter with increased affinity compared to RcsB in the absence of RflM. We propose that RflM stabilizes binding of unphosphorylated RcsB to the flhDC promoter in absence of environmental cues. Thus, RflM is a novel auxiliary regulatory protein that mediates target specificity of RcsB for flhDC repression. The cooperative action of the RcsB-RflM repressor complex allows Salmonella to fine-tune initiation of flagellar gene expression and adds another level to the complex regulation of flagellar synthesis.
Collapse
Affiliation(s)
- Caroline Kühne
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Hanna M Singer
- Microbiologie, Département de Médecine, Université de Fribourg, 1700, Fribourg, Switzerland.,Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Grabisch
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Luca Codutti
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Germany
| | - Teresa Carlomagno
- Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, 30167, Hannover, Germany.,Group of Structural Chemistry, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Andrea Scrima
- Junior Research Group Structural Biology of Autophagy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Marc Erhardt
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
32
|
Role of the Gram-Negative Envelope Stress Response in the Presence of Antimicrobial Agents. Trends Microbiol 2016; 24:377-390. [PMID: 27068053 DOI: 10.1016/j.tim.2016.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
Bacterial survival necessitates endurance of many types of antimicrobial compound. Many Gram-negative envelope stress responses, which must contend with an outer membrane and a dense periplasm containing the cell wall, have been associated with the status of protein folding, membrane homeostasis, and physiological functions such as efflux and the proton motive force (PMF). In this review, we discuss evidence that indicates an emerging role for Gram-negative envelope stress responses in enduring exposure to diverse antimicrobial substances, focusing on recent studies of the γ-proteobacterial Cpx envelope stress response.
Collapse
|
33
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
34
|
Chang CY, Hu HT, Tsai CH, Wu WF. The degradation of RcsA by ClpYQ(HslUV) protease in Escherichia coli. Microbiol Res 2016; 184:42-50. [PMID: 26856452 DOI: 10.1016/j.micres.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 01/30/2023]
Abstract
In Escherichia coli, RcsA, a positive activator for transcription of cps (capsular polysaccharide synthesis) genes, is degraded by the Lon protease. In lon mutant, the accumulation of RcsA leads to overexpression of capsular polysaccharide. In a previous study, overproduction of ClpYQ(HslUV) protease represses the expression of cpsB∷lacZ, but there has been no direct observation demonstrating that ClpYQ degrades RcsA. By means of a MBP-RcsA fusion protein, we showed that RcsA activated cpsB∷lacZ expression and could be rapidly degraded by Lon protease in SG22622 (lon(+)). Subsequently, the comparative half-life experiments performed in the bacterial strains SG22623 (lon) and AC3112 (lon clpY clpQ) indicated that the RcsA turnover rate in AC3112 was relatively slow and RcsA was stable at 30°C or 41°C. In addition, ClpY could interact with RscA in an in vitro pull-down assay, and the more rapid degradation of RcsA was observed in the presence of ClpYQ protease at 41°C. Thus, we conclude that RcsA is indeed proteolized by ClpYQ protease.
Collapse
Affiliation(s)
- Chun-Yang Chang
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Ting Hu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsuan Tsai
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
35
|
Chen CY, Nguyen LHT, Cottrell BJ, Irwin PL, Uhlich GA. Multiple mechanisms responsible for strong Congo-red-binding variants of Escherichia coli O157:H7 strains. Pathog Dis 2015; 74:ftv123. [PMID: 26702633 DOI: 10.1093/femspd/ftv123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/12/2022] Open
Abstract
High variability in the expression of csgD-dependent, biofilm-forming and adhesive properties is common among Shiga toxin-producing Escherichia coli. Although many strains of serotype O157:H7 form little biofilm, conversion to stronger biofilm phenotypes has been observed. In this study, we screened different strains of serotype O157:H7 for the emergence of strong Congo-red (CR) affinity/biofilm-forming properties and investigated the underlying genetic mechanisms. Two major mechanisms which conferred stronger biofilm phenotypes were identified: mutations (insertion, deletion, single nucleotide change) in rcsB region and stx-prophage excision from the mlrA site. Restoration of the native mlrA gene (due to prophage excision) resulted in strong biofilm properties to all variants. Whereas RcsB mutants showed weaker CR affinity and biofilm properties, it provided more possibilities for phenotypic presentations through heterogenic sequence mutations.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Ly-Huong T Nguyen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Peter L Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Wyndmoor, PA 19038, USA
| |
Collapse
|
36
|
Global Regulator of Virulence A (GrvA) Coordinates Expression of Discrete Pathogenic Mechanisms in Enterohemorrhagic Escherichia coli through Interactions with GadW-GadE. J Bacteriol 2015; 198:394-409. [PMID: 26527649 DOI: 10.1128/jb.00556-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Global regulator of virulence A (GrvA) is a ToxR-family transcriptional regulator that activates locus of enterocyte effacement (LEE)-dependent adherence in enterohemorrhagic Escherichia coli (EHEC). LEE activation by GrvA requires the Rcs phosphorelay response regulator RcsB and is sensitive to physiologically relevant concentrations of bicarbonate, a known stimulant of virulence systems in intestinal pathogens. This study determines the genomic scale of GrvA-dependent regulation and uncovers details of the molecular mechanism underlying GrvA-dependent regulation of pathogenic mechanisms in EHEC. In a grvA-null background of EHEC strain TW14359, RNA sequencing analysis revealed the altered expression of over 700 genes, including the downregulation of LEE- and non-LEE-encoded effectors and the upregulation of genes for glutamate-dependent acid resistance (GDAR). Upregulation of GDAR genes corresponded with a marked increase in acid resistance. GrvA-dependent regulation of GDAR and the LEE required gadE, the central activator of GDAR genes and a direct repressor of the LEE. Control of gadE by GrvA was further determined to occur through downregulation of the gadE activator GadW. This interaction of GrvA with GadW-GadE represses the acid resistance phenotype, while it concomitantly activates the LEE-dependent adherence and secretion of immune subversion effectors. The results of this study significantly broaden the scope of GrvA-dependent regulation and its role in EHEC pathogenesis. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is an intestinal human pathogen causing acute hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For successful transmission and gut colonization, EHEC relies on the glutamate-dependent acid resistance (GDAR) system and a type III secretion apparatus, encoded on the LEE pathogenicity island. This study investigates the mechanism whereby the DNA-binding regulator GrvA coordinates activation of the LEE with repression of GDAR. Investigating how these systems are regulated leads to an understanding of pathogenic behavior and novel strategies aimed at disease prevention and control.
Collapse
|
37
|
Hentchel KL, Escalante-Semerena JC. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Microbiol Mol Biol Rev 2015; 79:321-46. [PMID: 26179745 PMCID: PMC4503791 DOI: 10.1128/mmbr.00020-15] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
38
|
Yoshida M, Ishihama A, Yamamoto K. Cross talk in promoter recognition between six NarL-family response regulators of Escherichia coli two-component system. Genes Cells 2015; 20:601-12. [PMID: 26010043 DOI: 10.1111/gtc.12251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/21/2015] [Indexed: 12/01/2022]
Abstract
Bacterial two-component system (TCS) is composed of the sensor kinase (SK) and the response regulator (RR). After monitoring an environmental signal or condition, SK activates RR through phosphorylation, ultimately leading to the signal-dependent regulation of genome transcription. In Escherichia coli, a total of more than 30 SK-RR pairs exist, each forming a cognate signal transduction system. Cross talk of the signal transduction takes place at three stages: signal recognition by SK (stage 1); RR phosphorylation by SK (stage 2); and target recognition by RR (stage 3). Previously, we analyzed the stage 2 cross talk between the whole set of E. coli SK-RR pairs and found that the cross talk takes place for certain combinations. As an initial attempt to identify the stage 3 cross talk at the step of target promoter recognition by RR, we analyzed in this study the cross-recognition of target promoters by six NarL-family RRs, EvgA, NarL, NarP, RcsB, UhpA, and UvrY. Results of both in vivo and in vitro studies indicated that the stage 3 cross talk takes place for limited combinations, in particular, including a multifactor-regulated ydeP promoter.
Collapse
Affiliation(s)
- Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 185-8584, Japan
| | - Akira Ishihama
- Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 185-8584, Japan.,Research Institute of Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003, Japan
| |
Collapse
|
39
|
Pletzer D, Stahl A, Oja AE, Weingart H. Role of the cell envelope stress regulators BaeR and CpxR in control of RND-type multidrug efflux pumps and transcriptional cross talk with exopolysaccharide synthesis in Erwinia amylovora. Arch Microbiol 2015; 197:761-72. [DOI: 10.1007/s00203-015-1109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/31/2023]
|
40
|
Oropeza R, Salgado-Bravo R, Calva E. Deletion analysis of RcsC reveals a novel signalling pathway controlling poly-N-acetylglucosamine synthesis and biofilm formation in Escherichia coli. MICROBIOLOGY-SGM 2015; 161:903-13. [PMID: 25667010 DOI: 10.1099/mic.0.000050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
Abstract
RcsC is a hybrid histidine kinase that forms part of a phospho-relay signal transduction pathway with RcsD and RcsB. Besides the typical domains of a sensor kinase, i.e. the periplasmic (P), linker (L), dimerization and H-containing (A), and ATP-binding (B) domains, RcsC possesses a receiver domain (D) at the carboxy-terminal domain. To study the role played by each of the RcsC domains, four plasmids containing several of these domains were constructed (PLAB, LAB, AB and ABD) and transformed into Escherichia coli K-12 strain BW25113. Different amounts of biofilm were produced, depending on the RcsC domains expressed: the plasmid expressing the ABD subdomains produced the highest amount of biofilm. This phenotype was also observed when the plasmids were transformed in a ΔrcsCDB strain. Biofilm formation was abolished in the pgaABCD and nhaR backgrounds. The results indicate the existence of a novel signalling pathway that depends on RcsC, yet independent of RcsD and RcsB, that activates the pgaABCD operon and, as a consequence, biofilm formation. This signalling pathway involves the secondary metabolite acetyl phosphate and the response regulator OmpR.
Collapse
Affiliation(s)
- Ricardo Oropeza
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Rosalva Salgado-Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Edmundo Calva
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
41
|
Matamouros S, Miller SI. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3021-5. [PMID: 25644871 DOI: 10.1016/j.bbamem.2015.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Susana Matamouros
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Samuel I Miller
- Departments of Microbiology, University of Washington, Seattle, WA 98195, USA; Departments of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Ancona V, Chatnaparat T, Zhao Y. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol Genet Genomics 2015; 290:1265-76. [PMID: 25577258 DOI: 10.1007/s00438-015-0988-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
43
|
Morgan JK, Ortiz JA, Riordan JT. The role for TolA in enterohemorrhagic Escherichia coli pathogenesis and virulence gene transcription. Microb Pathog 2014; 77:42-52. [DOI: 10.1016/j.micpath.2014.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023]
|
44
|
Bernal V, Castaño-Cerezo S, Gallego-Jara J, Écija-Conesa A, de Diego T, Iborra JL, Cánovas M. Regulation of bacterial physiology by lysine acetylation of proteins. N Biotechnol 2014; 31:586-95. [DOI: 10.1016/j.nbt.2014.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/10/2023]
|
45
|
Li Y, Hu Y, Francis MS, Chen S. RcsB positively regulates the Yersinia Ysc-Yop type III secretion system by activating expression of the master transcriptional regulator LcrF. Environ Microbiol 2014; 17:1219-33. [PMID: 25039908 DOI: 10.1111/1462-2920.12556] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
Abstract
The Rcs phosphorelay is a complex signaling pathway used by the family Enterobacteriaceae to sense, respond and adapt to environmental changes during free-living or host-associated lifestyles. In this study, we show that the Rcs phosphorelay pathway positively regulates the virulence plasmid encoded Ysc-Yop type III secretion system (T3SS) in the enteropathogen Yesinia pseudotuberculosis. Both the overexpression of the wild-type Rcs regulator RcsB or the constitutive active RscB(D56E) variant triggered more abundant Ysc-Yop synthesis and secretion, whereas the non-phosphorylatable mutant RcsB(D56Q) negated this. Congruently, enhanced Yops expression and secretion occurred in an in cis rscB(D56E) mutant but not in an isogenic rscB(D56Q) mutant. Screening for regulatory targets of RcsB identified the virG-lcrF operon that encodes for LcrF, the Ysc-Yop T3SS master regulator. Protein-DNA binding assays confirmed that RcsB directly bound to this operon promoter, which subsequently caused stimulated lcrF transcription. Moreover, active RcsB enhanced the ability of bacteria to deliver Yop effectors into immune cells during cell contact, and this promoted an increase in bacterial viability. Taken together, our study demonstrates the role of the Rcs system in regulating the Ysc-Yop T3SS in Yersinia and reports on RcsB being the first transcriptional activator known to directly control lcrF transcription.
Collapse
Affiliation(s)
- Yunlong Li
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | |
Collapse
|
46
|
Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB. Infect Immun 2014; 82:3542-54. [PMID: 24914224 DOI: 10.1128/iai.01682-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors.
Collapse
|
47
|
A mutation in rcsB, a gene encoding the core component of the Rcs cascade, enhances the virulence of Edwardsiella tarda. Res Microbiol 2014; 165:226-32. [PMID: 24631591 DOI: 10.1016/j.resmic.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Edwardsiella tarda, a Gram-negative bacterium of the family Enterobacteriaceae, is the causative agent of the systemic disease edwardsiellosis, which is a major problem in aquaculture industry worldwide. Many virulence-related genes in E. tarda have been investigated, but the Rcs phosphorelay, a two-component pathway, which regulates several cell-surface-associated structures related to invasion and survival in host cells, has not yet been thoroughly studied. In the present study, an rcsB in-frame deletion mutant ΔrcsB was constructed through double-crossover allelic exchange. To complement the rcsB mutation, the ΔrcsB (pACYC184K-rcsB) mutant was constructed by transformation of a low-copy plasmid carrying the intact rcsB into the ΔrcsB mutant of E. tarda. Several virulence-associated characters of the mutants and wild-type strain were tested. Compared with wild-type strain EIB202, biofilm formation decreased significantly in ΔrcsB, while ΔrcsB (pACYC184K-rcsB) recovered the phenotype to some extent. In addition, the capacity for autoagglutination, the percentage of adherence and internalization to Epithelioma papulosum cyprini cells and lethality toward zebrafish embryos significantly increased in ΔrcsB. All these phenomena displayed by mutant ΔrcsB showed a certain degree of recovery, though incomplete, in strain ΔrcsB (pACYC184K-rcsB). Present results indicate that rcsB is involved in regulating the gene expression of virulence factors in E. tarda, as shown in other members of Enterobacteriaceae.
Collapse
|
48
|
Miskinyte M, Sousa A, Ramiro RS, de Sousa JAM, Kotlinowski J, Caramalho I, Magalhães S, Soares MP, Gordo I. The genetic basis of Escherichia coli pathoadaptation to macrophages. PLoS Pathog 2013; 9:e1003802. [PMID: 24348252 PMCID: PMC3861542 DOI: 10.1371/journal.ppat.1003802] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/14/2013] [Indexed: 12/25/2022] Open
Abstract
Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.
Collapse
Affiliation(s)
| | - Ana Sousa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | - Iris Caramalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Unidade de Imunologia Clínica, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sara Magalhães
- Centro Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
49
|
Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides. Appl Environ Microbiol 2013; 79:7770-9. [PMID: 24096425 DOI: 10.1128/aem.02593-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σ(E) envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.
Collapse
|
50
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 498] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|