1
|
Dobreva E, Donchev D, Stoikov I, Teneva D, Hristova R, Murdjeva M, Vatcheva-Dobrevska R, Ivanov IN. Whole genome sequencing characterization of Clostridioides difficile from Bulgaria during the COVID-19 pandemic. Diagn Microbiol Infect Dis 2025; 111:116703. [PMID: 39862551 DOI: 10.1016/j.diagmicrobio.2025.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Increased incidence of Clostridioides difficile infections were documented in Bulgarian hospitals during COVID-19. WGS was performed on 39 isolates from seven hospitals during 2015-2022. Antimicrobial resistance and toxin genes were inferred from genomes. MLST profiles, cgMLST, and wgMLST phylogeny analyses were performed. Isolates were grouped into eight MLST types as predominant were ST3 (46.15%) and ST1/RT027 (33.33%). ST3 was detected in a single hospital (16/18) and characterized by two toxin variants: tcdA+/tcdB+ (14) and tcdA-/tcdB+ (4). Twelve ST3 strains belonged to the country-specific cgMLST HC2_6485 cluster and ten were identified as a putative outbreak in the infectious disease ward. All the ST1/RT027 isolates were distributed in six hospitals and clustered in an HC2_4711 with strains from neighbouring countries. All C. difficile were susceptible to vancomycin despite the Thr349Ile mutation in vanS in three isolates. We report the first insights into the C. difficile genotype hospital prevalence during the pandemic.
Collapse
Affiliation(s)
- Elina Dobreva
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria.
| | - Deyan Donchev
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Ivan Stoikov
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Deana Teneva
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Rumyana Hristova
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| | - Marianna Murdjeva
- Laboratory of Microbiology with activities of a Regional tuberculosis laboratory; Hospital for Active Treatment "Sveti Georgi" EAD, 15А Vasil Aprilov Blvd., Plovdiv, Bulgaria
| | - Rossitza Vatcheva-Dobrevska
- Laboratory of Microbiology and Virology, Hospital for Active Treatment "Tsaritsa Yoanna- ISUL", 8 Byalo more Str., Sofia, Bulgaria
| | - Ivan N Ivanov
- National Reference Laboratory of Control and Monitoring of Antibiotic Resistance (NRL-CMAR), Department Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), 26 Yanko Sakazov Blvd., Sofia, Bulgaria
| |
Collapse
|
2
|
Bai L, Xu T, Zhang W, Jiang Y, Gu W, Zhao W, Luan Y, Xiong Y, Zou N, Zhang Y, Luo M, Lu J, Zhang B, Wu Y. Abundant geographical divergence of Clostridioides difficile infection in China: a prospective multicenter cross-sectional study. BMC Infect Dis 2025; 25:185. [PMID: 39920584 PMCID: PMC11806848 DOI: 10.1186/s12879-025-10552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Clostridioides difficile is the predominant pathogen in hospital-acquired infections and antibiotic-associated diarrhea. Dedicated networks and annual reports for C. difficile surveillance have been established in Europe and North America, however the extensive investigation on the prevalence of C. difficile infection (CDI) in China is limited. In this study, 1528 patients with diarrhea were recruited from seven geographically representative regions of China between July 2021 and July 2022. The positivity rate of toxigenic C. difficile using real-time fluorescence quantitative PCR test of feces was 10.2% (156/1528), and 125 (8.2%, 125/1528) strains were successfully isolated. The isolates from different geographical areas had divergent characteristics after multilocus sequence typing, toxin gene profiling, and antimicrobial susceptibility testing. No isolate from clade 2 were found, and clade 1 was still the main clade for these clinical isolates. Interestingly, clade 4, especially ST37, previously known as the characteristic type of China, showed a strong geographical divergence. Clade 3, although rare in China, has been detected in Hainan and Sichuan provinces. Most C. difficile isolates (76.8%, 96/125) were toxigenic. Clindamycin, erythromycin, and moxifloxacin were the top three antibiotics to which resistance was observed, with resistance rates of 81.3%, 63.6%, and 24.0%, respectively. Furthermore, 34 (27.2%, 34/125) multidrug-resistant (MDR) strains were identified. All the strains were sensitive to metronidazole, vancomycin, and meropenem. The genotype of C. difficile varies greatly among the different geographical regions in China, and new types are constantly emerging. Therefore, comprehensive, longitudinal, and standardized surveillance of C. difficile infections is needed in China, covering typical geographical areas.
Collapse
Affiliation(s)
- Lulu Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Telong Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenzhu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yajun Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wenpeng Gu
- Institute of Acute Infectious Disease Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, Yunnan, 650500, China
| | - Wei Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, Jilin, 132001, China
| | - Yang Luan
- Xi'an Municipal Center for Disease Control and Prevention, Xi'an, Shaanxi, 710061, China
| | - Yanfeng Xiong
- Ganzhou Center for Disease Control and Prevention, Ganzhou, Jiangxi, 341001, China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, 643002, China
| | - Yalin Zhang
- Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, 570203, China
| | - Ming Luo
- Yulin Center for Disease Control and Prevention, Yulin, Guangxi, 537006, China
| | - Jinxing Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Bike Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuan Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
3
|
Miyazaki T, Aoki K, Maeda T, Komori K, Yoshizawa S, Ishii Y, Urita Y, Tateda K. A molecular epidemiological and transmission analysis of Clostridioides difficile using draft whole-genome sequencing in a single hospital. BMC Infect Dis 2024; 24:989. [PMID: 39289598 PMCID: PMC11406711 DOI: 10.1186/s12879-024-09841-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The nosocomial transmission of toxin-producing Clostridioides difficile is a significant concern in infection control. C. difficile, which resides in human intestines, poses a risk of transmission, especially when patients are in close contact with medical staff. METHODS To investigate the nosocomial transmission of C. difficile in a single center, we analyzed the genetic relationships of the bacteria. This was done using draft whole-genome sequencing (WGS) and examining single nucleotide polymorphisms (SNPs) in core-genome, alongside data regarding the patient's hospital wards and room changes. Our retrospective analysis covered 38 strains, each isolated from a different patient, between April 2014 and January 2015. RESULTS We identified 38 strains that were divided into 11 sequence types (STs). ST81 was the most prevalent (n = 11), followed by ST183 (n = 10) and ST17 (n = 7). A cluster of strains that indicated suspected nosocomial transmission (SNT) was identified through SNP analysis. The draft WGS identified five clusters, with 16 of 38 strains belonging to these clusters. There were two clusters for ST81 (ST81-SNT-1 and ST81-SNT-2), two for ST183 (ST183-SNT-1 and ST183-SNT-2), and one for ST17 (ST17-SNT-1). ST183-SNT-1 was the largest SNT cluster, encompassing five patients who were associated with Wards A, B, and K. The most frequent room changer was a patient labeled Pt08, who changed rooms seven times in Ward B. Patients Pt36 and Pt10, who were also in Ward B, had multiple admissions and discharges during the study period. CONCLUSIONS Additional culture tests and SNP analysis of C. difficile using draft WGS revealed silent transmission within the wards, particularly in cases involving frequent room changes and repeated admissions and discharges. Monitoring C. difficile transmission using WGS-based analysis could serve as a valuable marker in infection control management.
Collapse
Affiliation(s)
- Taito Miyazaki
- Infection Control Section, Toho University Omori Medical Center, Tokyo, Japan
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Tadashi Maeda
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kohji Komori
- Department of Microbiology and Infection Control and Prevention, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Sadako Yoshizawa
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Department of Laboratory Medicine, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
4
|
Fishbein SRS, DeVeaux AL, Khanna S, Ferreiro AL, Liao J, Agee W, Ning J, Mahmud B, Wallace MJ, Hink T, Reske KA, Guruge J, Leekha S, Dubberke ER, Dantas G. Commensal-pathogen dynamics structure disease outcomes during Clostridioides difficile colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603094. [PMID: 39026847 PMCID: PMC11257545 DOI: 10.1101/2024.07.11.603094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Gastrointestinal colonization by Clostridioides difficile is common in healthcare settings and ranges in clinical presentation from asymptomatic carriage to lethal C. difficile infection (CDI). We used a systems biology approach to investigate why patients colonized with C. difficile have a range of outcomes. Microbiota-humanization of germ-free mice with fecal samples from toxigenic C. difficile carriers revealed a spectrum of virulence among clade 1 lineages and identified commensal Blautia associated with markers of non-pathogenic colonization. Using gnotobiotic mice engrafted with defined human microbiota, we observed strain-specific CDI severity across clade 1 strains. Yet, mice engrafted with a higher diversity community were protected from severe disease across all strains without suppression of C. difficile colonization. These results indicate that when colonization resistance has been breached without overt infection, commensals can attenuate a diversity of virulent strains without inhibiting pathogen colonization, providing insight into determinants of stable C. difficile carriage.
Collapse
|
5
|
Alam MZ, Madan R. Clostridioides difficile Toxins: Host Cell Interactions and Their Role in Disease Pathogenesis. Toxins (Basel) 2024; 16:241. [PMID: 38922136 PMCID: PMC11209539 DOI: 10.3390/toxins16060241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI.
Collapse
Affiliation(s)
- Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27858, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
6
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
7
|
Blau K, Berger FK, Mellmann A, Gallert C. Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective. Microorganisms 2023; 11:2497. [PMID: 37894155 PMCID: PMC10608975 DOI: 10.3390/microorganisms11102497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Clostridioides difficile is the most important pathogen causing antimicrobial-associated diarrhea and has recently been recognized as a cause of community-associated C. difficile infection (CA-CDI). This study aimed to characterize virulence factors, antimicrobial resistance (AMR), ribotype (RT) distribution and genetic relationship of C. difficile isolates from diverse fecally contaminated environmental sources. C. difficile isolates were recovered from different environmental samples in Northern Germany. Antimicrobial susceptibility testing was determined by E-test or disk diffusion method. Toxin genes (tcdA and tcdB), genes coding for binary toxins (cdtAB) and ribotyping were determined by PCR. Furthermore, 166 isolates were subjected to whole genome sequencing (WGS) for core genome multi-locus sequence typing (cgMLST) and extraction of AMR and virulence-encoding genes. Eighty-nine percent (148/166) of isolates were toxigenic, and 51% (76/148) were positive for cdtAB. Eighteen isolates (11%) were non-toxigenic. Thirty distinct RTs were identified. The most common RTs were RT127, RT126, RT001, RT078, and RT014. MLST identified 32 different sequence types (ST). The dominant STs were ST11, followed by ST2, ST3, and ST109. All isolates were susceptible to vancomycin and metronidazole and displayed a variable rate of resistance to moxifloxacin (14%), clarithromycin (26%) and rifampicin (2%). AMR genes, such as gyrA/B, blaCDD-1/2, aph(3')-llla-sat-4-ant(6)-la cassette, ermB, tet(M), tet(40), and tetA/B(P), conferring resistance toward fluoroquinolone, beta-lactam, aminoglycoside, macrolide and tetracycline antimicrobials, were found in 166, 137, 29, 32, 21, 72, 17, and 9 isolates, respectively. Eleven "hypervirulent" RT078 strains were detected, and several isolates belonged to RTs (i.e., RT127, RT126, RT023, RT017, RT001, RT014, RT020, and RT106) associated with CA-CDI, indicating possible transmission between humans and environmental sources pointing out to a zoonotic potential.
Collapse
Affiliation(s)
- Khald Blau
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| | - Fabian K. Berger
- Institute of Medical Microbiology and Hygiene, Saarland University Medical Center, 66421 Homburg, Germany;
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
| | - Alexander Mellmann
- German National Reference Center for Clostridioides Difficile, 66421 Homburg, Germany;
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
8
|
Abad-Fau A, Sevilla E, Martín-Burriel I, Moreno B, Bolea R. Update on Commonly Used Molecular Typing Methods for Clostridioides difficile. Microorganisms 2023; 11:1752. [PMID: 37512924 PMCID: PMC10384772 DOI: 10.3390/microorganisms11071752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
This review aims to provide a comprehensive overview of the significant Clostridioides difficile molecular typing techniques currently employed in research and medical communities. The main objectives of this review are to describe the key molecular typing methods utilized in C. difficile studies and to highlight the epidemiological characteristics of the most prevalent strains on a global scale. Geographically distinct regions exhibit distinct strain types of C. difficile, with notable concordance observed among various typing methodologies. The advantages that next-generation sequencing (NGS) offers has changed epidemiology research, enabling high-resolution genomic analyses of this pathogen. NGS platforms offer an unprecedented opportunity to explore the genetic intricacies and evolutionary trajectories of C. difficile strains. It is relevant to acknowledge that novel routes of transmission are continually being unveiled and warrant further investigation, particularly in the context of zoonotic implications and environmental contamination.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Eloísa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
9
|
Liu C, Monaghan T, Yadegar A, Louie T, Kao D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics (Basel) 2023; 12:1141. [PMID: 37508237 PMCID: PMC10376792 DOI: 10.3390/antibiotics12071141] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridioides difficile remains an important public health threat, globally. Since the emergence of the hypervirulent strain, ribotype 027, new strains have been reported to cause C. difficile infection (CDI) with poor health outcomes, including ribotypes 014/020, 017, 056, 106, and 078/126. These strains differ in their geographic distribution, genetic makeup, virulence factors, and antimicrobial susceptibility profiles, which can affect their ability to cause disease and respond to treatment. As such, understanding C. difficile epidemiology is increasingly important to allow for effective prevention measures. Despite the heightened epidemiological surveillance of C. difficile over the past two decades, it remains challenging to accurately estimate the burden and international epidemiological trends given the lack of concerted global effort for surveillance, especially in low- and middle-income countries. This review summarizes the changing epidemiology of C. difficile based on available data within the last decade, highlights the pertinent ribotypes from a global perspective, and discusses evolving treatments for CDI.
Collapse
Affiliation(s)
- Crystal Liu
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tanya Monaghan
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Thomas Louie
- Medicine and Microbiology, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Dina Kao
- Division of Gastroenterology, University of Alberta, Edmonton, AB T6G 2P8, Canada
| |
Collapse
|
10
|
Williamson CHD, Roe CC, Terriquez J, Hornstra H, Lucero S, Nunnally AE, Vazquez AJ, Vinocur J, Plude C, Nienstadt L, Stone NE, Celona KR, Wagner DM, Keim P, Sahl JW. A local-scale One Health genomic surveillance of Clostridioides difficile demonstrates highly related strains from humans, canines, and the environment. Microb Genom 2023; 9. [PMID: 37347682 DOI: 10.1099/mgen.0.001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Although infections caused by Clostridioides difficile have historically been attributed to hospital acquisition, growing evidence supports the role of community acquisition in C. difficile infection (CDI). Symptoms of CDI can range from mild, self-resolving diarrhoea to toxic megacolon, pseudomembranous colitis, and death. In this study, we sampled C. difficile from clinical, environmental, and canine reservoirs in Flagstaff, Arizona, USA, to understand the distribution and transmission of the pathogen in a One Health framework; Flagstaff is a medium-sized, geographically isolated city with a single hospital system, making it an ideal site to characterize genomic overlap between sequenced C. difficile isolates across reservoirs. An analysis of 562 genomes from Flagstaff isolates identified 65 sequence types (STs), with eight STs being found across all three reservoirs and another nine found across two reservoirs. A screen of toxin genes in the pathogenicity locus identified nine STs where all isolates lost the toxin genes needed for CDI manifestation (tcdB, tcdA), demonstrating the widespread distribution of non-toxigenic C. difficile (NTCD) isolates in all three reservoirs; 15 NTCD genomes were sequenced from symptomatic, clinical samples, including two from mixed infections that contained both tcdB+ and tcdB- isolates. A comparative single nucleotide polymorphism (SNP) analysis of clinically derived isolates identified 78 genomes falling within clusters separated by ≤2 SNPs, indicating that ~19 % of clinical isolates are associated with potential healthcare-associated transmission clusters; only symptomatic cases were sampled in this study, and we did not sample asymptomatic transmission. Using this same SNP threshold, we identified genomic overlap between canine and soil isolates, as well as putative transmission between environmental and human reservoirs. The core genome of isolates sequenced in this study plus a representative set of public C. difficile genomes (n=136), was 2690 coding region sequences, which constitutes ~70 % of an individual C. difficile genome; this number is significantly higher than has been published in some other studies, suggesting that genome data quality is important in understanding the minimal number of genes needed by C. difficile. This study demonstrates the close genomic overlap among isolates sampled across reservoirs, which was facilitated by maximizing the genomic search space used for comprehensive identification of potential transmission events. Understanding the distribution of toxigenic and non-toxigenic C. difficile across reservoirs has implications for surveillance sampling strategies, characterizing routes of infections, and implementing mitigation measures to limit human infection.
Collapse
Affiliation(s)
| | - Chandler C Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Samantha Lucero
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Amalee E Nunnally
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Adam J Vazquez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | - Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Kimberly R Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
11
|
Rashid SJ, Nale JY, Millard AD, Clokie MRJ. Novel ribotype/sequence type associations and diverse CRISPR-Cas systems in environmental Clostridioides difficile strains from northern Iraq. FEMS Microbiol Lett 2023; 370:fnad091. [PMID: 37723612 PMCID: PMC10806358 DOI: 10.1093/femsle/fnad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
The environment is a natural reservoir of Clostridioides difficile, and here, we aimed to isolate the pathogen from seven locations in northern Iraq. Four of the sites yielded thirty-one isolates (ten from soils, twenty-one from sediments), which together represent ribotypes (RTs) 001 (five), 010 (five), 011 (two), 035 (two), 091 (eight), and 604 (nine). Twenty-five of the isolates (∼81%) are non-toxigenic, while six (∼19%) encode the toxin A and B genes. The genomes of eleven selected isolates represent six sequence types (STs): ST-3 (two), ST-15 (one), ST-107 (five), ST-137 (one), ST-177 (one), and ST-181 (one). Five novel RT/ST associations: RT011/ST-137, RT035/ST-107, RT091/ST-107, RT604/ST-177, and RT604/ST-181 were identified, and the first three are linked to RTs previously uncharacterized by multilocus sequence typing (MLST). Nine of the genomes belong to Clade 1, and two are closely related to the cryptic C-I clade. Diverse multiple prophages and CRISPR-Cas systems (class 1 subtype I-B1 and class 2 type V CRISPR-Cas systems) with spacers identical to other C. difficile phages and plasmids were detected in the genomes. Our data show the broader diversity that exists within environmental C. difficile strains from a much less studied location and their potential role in the evolution and emergence of new strains.
Collapse
Affiliation(s)
- Srwa J Rashid
- Medical Laboratory Technology Department, Koya Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan, Iraq
| | - Janet Y Nale
- Centre for Epidemiology and Planetary Health, Scotland’s Rural College, Inverness IV2 5NA, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
12
|
Persson S, Nielsen HL, Coia JE, Engberg J, Olesen BS, Engsbro AL, Petersen AM, Holt HM, Lemming L, Marmolin ES, Søndergaard TS, Andersen LP, Jensen MBF, Wiuff C, Sørensen G, Nielsen SH, Nielsen EM. Sentinel surveillance and epidemiology of Clostridioides difficile in Denmark, 2016 to 2019. Euro Surveill 2022; 27:2200244. [PMID: 36695439 PMCID: PMC9732923 DOI: 10.2807/1560-7917.es.2022.27.49.2200244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
BackgroundSince 2008, Danish national surveillance of Clostridioides difficile has focused on binary toxin-positive strains in order to monitor epidemic types such as PCR ribotype (RT) 027 and 078. Additional surveillance is needed to provide a more unbiased representation of all strains from the clinical reservoir.AimSetting up a new sentinel surveillance scheme for an improved understanding of type distribution relative to time, geography and epidemiology, here presenting data from 2016 to 2019.MethodsFor 2─4 weeks in spring and autumn each year between 2016 and 2019, all 10 Danish Departments of Clinical Microbiology collected faecal samples containing toxigenic C. difficile. Isolates were typed at the national reference laboratory at Statens Serum Institut. The typing method in 2016-17 used tandem-repeat-sequence typing, while the typing method in 2018-19 was whole genome sequencing.ResultsDuring the study period, the sentinel surveillance scheme included ca 14-15% of all Danish cases of C. difficile infections. Binary toxin-negative strains accounted for 75% and 16 of the 20 most prevalent types. The most common sequence types (ST) were ST2/13 (RT014/020) (19.5%), ST1 (RT027) (10.8%), ST11 (RT078) (6.7%), ST8 (RT002) (6.6%) and ST6 (RT005/117) (5.1%). The data also highlighted geographical differences, mostly related to ST1 and temporal decline of ST1 (p = 0.0008) and the increase of ST103 (p = 0.002), ST17 (p = 0.004) and ST37 (p = 0.003), the latter three binary toxin-negative.ConclusionSentinel surveillance allowed nationwide monitoring of geographical differences and temporal changes in C. difficile infections in Denmark, including emerging types, regardless of binary toxin status.
Collapse
Affiliation(s)
- Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - John Eugenio Coia
- Department of Regional Health Research IRS, University of Southern Denmark, Esbjerg, Denmark
- Department of Clinical Microbiology, Esbjerg Hospital, University of Southern Denmark, Esbjerg, Denmark
| | - Jørgen Engberg
- Department of Clinical Microbiology, Zealand University Hospital, Køge, Denmark
| | - Bente Scharvik Olesen
- Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Anne Line Engsbro
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Andreas Munk Petersen
- Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Lars Lemming
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Camilla Wiuff
- Department of Clinical Microbiology, Esbjerg Hospital, University of Southern Denmark, Esbjerg, Denmark
| | - Gitte Sørensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Eva Møller Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
13
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Kunishima H, Ohge H, Suzuki H, Nakamura A, Matsumoto K, Mikamo H, Mori N, Morinaga Y, Yanagihara K, Yamagishi Y, Yoshizawa S. Japanese Clinical Practice Guidelines for Management of Clostridioides (Clostridium) difficile infection. J Infect Chemother 2022; 28:1045-1083. [PMID: 35618618 DOI: 10.1016/j.jiac.2021.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Japan.
| | - Hiroki Ohge
- Department of Infectious Diseases, Hiroshima University Hospital, Japan
| | - Hiromichi Suzuki
- Division of Infectious Diseases, Department of Medicine, Tsukuba Medical Center Hospital, Japan
| | - Atsushi Nakamura
- Division of Infection Control and Prevention, Nagoya City University Hospital, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Japan
| | - Hiroshige Mikamo
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Nobuaki Mori
- Division of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yuka Yamagishi
- Clinical Infectious Diseases, Graduate School of Medicine, Aichi Medical University, Japan
| | - Sadako Yoshizawa
- Department of Clinical Laboratory/Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Japan
| |
Collapse
|
15
|
Martínez-Meléndez A, Cruz-López F, Morfin-Otero R, Maldonado-Garza HJ, Garza-González E. An Update on Clostridioides difficile Binary Toxin. Toxins (Basel) 2022; 14:toxins14050305. [PMID: 35622552 PMCID: PMC9146464 DOI: 10.3390/toxins14050305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Infection with Clostridioides difficile (CDI), a common healthcare-associated infection, includes symptoms ranging from mild diarrhea to severe cases of pseudomembranous colitis. Toxin A (TcdA) and toxin B (TcdB) cause cytotoxicity and cellular detachment from intestinal epithelium and are responsible for CDI symptomatology. Approximately 20% of C. difficile strains produce a binary toxin (CDT) encoded by the tcdA and tcdB genes, which is thought to enhance TcdA and TcdB toxicity; however, the role of CDT in CDI remains controversial. Here, we focused on describing the main features of CDT and its impact on the host, clinical relevance, epidemiology, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Hospital 308, Colonia el Retiro, Guadalajara 44280, Jalisco, Mexico;
| | - Héctor J. Maldonado-Garza
- Servicio de Gastroenterología, Facultad de Medicina/Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico;
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina y Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|
16
|
Clostridioides difficile from brazilian hospitals: characterization of virulence genes by whole genome sequencing. Microbes Infect 2022; 24:104953. [PMID: 35217192 DOI: 10.1016/j.micinf.2022.104953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile (CD) is the most frequent cause of healthcare related diarrhea and its severity has increased in the last decade by the spread of hypervirulent strains. Most important CD virulence factor is toxin production; however, not only toxins are responsible for Clostridioides virulence. We sequenced 38 strains and analyzed the presence and integrity of 24 virulence (including toxin) genes. We identified 28 toxigenic strains, six also presented the cdt genes. Only six strains didn't present all others genes searched. All absent genes were adhesion related. Understand others CD virulence factors can lead to a best understanding on this matter.
Collapse
|
17
|
Redding LE, Tu V, Abbas A, Alvarez M, Zackular JP, Gu C, Bushman FD, Kelly DJ, Barnhart D, Lee JJ, Bittinger KL. Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations. Anaerobe 2022; 74:102539. [PMID: 35217150 PMCID: PMC9359814 DOI: 10.1016/j.anaerobe.2022.102539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Objectives: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geographic area. Methods: C. difficile isolates from 36 dogs and 15 dairy calves underwent whole genome sequencing, and phenotypic assays assessing growth and virulence were performed. Genomes of animal-derived isolates were compared to 29 genomes of isolates from a pediatric population as well as 44 reference genomes. Results: Growth rates and relative cytotoxicity of isolates were significantly higher and lower, respectively, in bovine-derived isolates compared to pediatric- and canine-derived isolates. Analysis of core genes showed clustering by host species, though in a few cases, human strains co-clustered with canine or bovine strains, suggesting possible interspecies transmission. Geographic differences (e.g., farm, litter) were small compared to differences between species. In an analysis of accessory genes, the total number of genes in each genome varied between host species, with 6.7% of functional orthologs differentially present/absent between host species and bovine-derived strains having the lowest number of genes. Canine-derived isolates were most likely to be non-toxigenic and more likely to carry phages. A targeted study of episomes identified in local pediatric strains showed sharing of a methicillin-resistance plasmid with dogs, and historic sharing of a wide range of episomes across hosts. Bovine-derived isolates harbored the widest variety of antibiotic-resistance genes, followed by canine Conclusions: While C. difficile isolates mostly clustered by host species, occasional co-clustering of canine and pediatric-derived isolates suggests the possibility of interspecies transmission. The presence of a pool of resistance genes in animal-derived isolates with the potential to appear in humans given sufficient pressure from antibiotic use warrants concern.
Collapse
Affiliation(s)
- L E Redding
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA.
| | - V Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| | - A Abbas
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Alvarez
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - J P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C Gu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - F D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D J Kelly
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - D Barnhart
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, 19348, USA
| | - J J Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| | - K L Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Perumalsamy S, Lim SC, Riley TV. Clostridioides (Clostridium) difficile isolated from paediatric patients in Western Australia 2019-2020. Pathology 2022; 54:460-465. [PMID: 35125203 DOI: 10.1016/j.pathol.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022]
Abstract
Less is understood about the epidemiology of Clostridioides difficile infection (CDI) in children compared to adults, and its impact is complicated by variations in the natural development of infection in paediatric patients. The interplay of rising CDI incidence in hospitalised paediatric patients, emergence of hypervirulent strains and community associated CDI (CA-CDI) in the past decade is a potential threat in both hospital and community settings. Research in Australia regarding paediatric CDI is limited. Here, we report the molecular characterisation of C. difficile isolated from paediatric patients at a tertiary hospital in Perth, Western Australia. A total of 427 stool samples was collected from patients aged from <1 to 17 years being investigated for diarrhoea from July 2019 to June 2020. Stool specimens were cultured and isolates of C. difficile characterised by ribotyping and toxin gene profiling. Clostridioides difficile was recovered from 84/427 (19.7%) samples tested. The most prevalent PCR ribotypes (RTs) were RT 002 (12.4%), a toxigenic strain, and RT 009 (15.7%), a non-toxigenic strain. Interestingly, C. difficile RT 078 and RT 017, strains that are not endemic in Australia, were isolated from a 1- and 4-year-old child, respectively. Clostridioides difficile RT 106, a strain of emerging importance in Australia, was recovered from two cases (5.3%). Resistance to metronidazole, fidaxomicin, amoxicillin, rifaximin and meropenem was not detected, however, 45 isolates (50.6%) showed resistance to at least one agent, and multidrug resistance was observed in 13.3% of the resistant isolates (6/45). This study provides a baseline for future surveillance of paediatric CDI in Australia. Given that young children can be asymptomatically colonised with toxigenic C. difficile strains, they represent a potential reservoir of strains causing CDI in adults.
Collapse
Affiliation(s)
- Sicilia Perumalsamy
- The University of Western Australia, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Su Chen Lim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Thomas V Riley
- The University of Western Australia, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia; PathWest Laboratory Medicine, Department of Microbiology, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.
| |
Collapse
|
19
|
Su T, Chen W, Wang D, Cui Y, Ni Q, Jiang C, Dong D, Peng Y. Complete Genome Sequencing and Comparative Phenotypic Analysis Reveal the Discrepancy Between Clostridioides difficile ST81 and ST37 Isolates. Front Microbiol 2021; 12:776892. [PMID: 34992586 PMCID: PMC8725731 DOI: 10.3389/fmicb.2021.776892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Toxin A-negative, toxin B-positive Clostridioides difficile strains, which primarily include the ST81 and ST37 genotypes, are predominant in C. difficile infections leading to antibiotic-associated diarrhea in China. Recently, ST81 has been reported as the most prevalent genotype rather than ST37, although the genetic and functional characteristics of the two genotypes remain ambiguous. In this study, we conducted comprehensive comparative analysis of these two genotypes through complete genome sequencing and phenotypic profiling. The whole genome sequencing revealed that the ST81 and ST37 isolates were closely related genetically with similar gene compositions, and high rate of the core genome shared. The integrative and conjugative elements identified in ST81 were similar to those in ST37, albeit with more diverse and insertion regions. By characterizing the phenotypes related to colonization or survival in the host, we found that the ST81 isolates exhibited robust colonization ability and survival both in vitro and in vivo, enhanced spore production, and slightly increased motility, which may be attributable to the discrepancy in non-synonymous single-nucleotide polymorphisms in the relevant functional genes. Furthermore, the ST81 isolates displayed a significantly higher rate of resistance to fluoroquinolones compared with the ST37 isolates (94.12% vs. 62.5%) and mostly carried the amino acid substitution Asp426Val in GyrB. In summary, the results of our study indicate that ST81 isolates exhibit enhanced ability to transmit between hosts and survive in harsh environments, providing key genetic insights for further epidemiological investigations and surveillance of C. difficile infection.
Collapse
Affiliation(s)
- Tongxuan Su
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daosheng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Cui
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Ni
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Danfeng Dong,
| | - Yibing Peng
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Yibing Peng,
| |
Collapse
|
20
|
Perumalsamy S, Riley TV. Molecular Epidemiology of Clostridioides difficile Infections in Children. J Pediatric Infect Dis Soc 2021; 10:S34-S40. [PMID: 34791401 DOI: 10.1093/jpids/piab057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clostridioides difficile is a prominent cause of health care-related gastrointestinal illness in adults. C. difficile infection (CDI) has been researched for over 40 years; however, research on pediatric CDI specifically has lagged behind for various reasons. Over the past decade, C. difficile has been increasingly reported as a cause of a broad spectrum of gastrointestinal diseases in children, ranging from mild self-limiting diarrhea to severe conditions such as pseudomembranous colitis and toxic megacolon. Recent publications have shown a rise in CDI incidence in children in different parts of the world, especially in patients with particular comorbidities such as hematological malignancies and inflammatory bowel disease. In addition, rising CDI rates have been reported in children in the community without traditional risk factors for CDI. Due to the extensive use of sensitive molecular detection methods to diagnose CDI in many countries, differentiating children who require treatment from those colonized with toxigenic strains remains a problem. Consequently, the molecular epidemiology of pediatric CDI is poorly understood. Even though well-known C. difficile strains causing CDI in children have been described (including hypervirulent strains such as ribotypes 027 and 078), there is a paucity of information about specific C. difficile strains. This mini-review summarizes the information that is currently available on the molecular epidemiology of CDI in children.
Collapse
Affiliation(s)
- Sicilia Perumalsamy
- The University of Western Australia, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Thomas V Riley
- The University of Western Australia, School of Biomedical Sciences, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
21
|
Seth-Smith HMB, Biggel M, Roloff T, Hinic V, Bodmer T, Risch M, Casanova C, Widmer A, Sommerstein R, Marschall J, Tschudin-Sutter S, Egli A. Transition From PCR-Ribotyping to Whole Genome Sequencing Based Typing of Clostridioides difficile. Front Cell Infect Microbiol 2021; 11:681518. [PMID: 34141631 PMCID: PMC8204696 DOI: 10.3389/fcimb.2021.681518] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland.,Swiss Institute for Bioinformatics, Basel, Switzerland
| | - Vladimira Hinic
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Thomas Bodmer
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Martin Risch
- Clinical Microbiology, Labormedizinisches Zentrum Dr Risch, Liebefeld, Switzerland
| | - Carlo Casanova
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Andreas Widmer
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Rami Sommerstein
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland.,Infectious Diseases, Hirslanden Central Switzerland, Lucerne, Switzerland
| | - Jonas Marschall
- Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Sarah Tschudin-Sutter
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Badilla-Lobo A, Rodríguez C. Microbiological features, epidemiology, and clinical presentation of Clostridioidesdifficile strains from MLST Clade 2: A narrative review. Anaerobe 2021; 69:102355. [PMID: 33711422 DOI: 10.1016/j.anaerobe.2021.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is an emerging One Health pathogen and a common etiologic agent of diarrhea, both in healthcare settings and the community. This bacterial species is highly diverse, and its global population has been classified in eight clades by multilocus sequence typing (MLST). The C. difficile MLST Clade 2 includes the NAP1/RT027/ST01 strain, which is highly recognized due to its epidemicity and association with severe disease presentation and mortality. By contrast, the remaining 83 sequence types (STs) that compose this clade have received much less attention. In response to this shortcoming, we reviewed articles published in English between 1999 and 2020 and collected information for 27 Clade 2 STs, with an emphasis on STs 01, 67, 41 and 188/231/365. Our analysis provides evidence of large phenotypic differences that preclude support of the rather widespread notion that ST01 and Clade 2 strains are "hypervirulent". Moreover, it revealed a profound lack of (meta)data for nearly 70% of the Clade 2 STs that have been identified in surveillance efforts. Targeted studies aiming to relate wet-lab and bioinformatics results to patient and clinical parameters should be performed to gain a more in-depth insight into the biology of this intriguing group of C. difficile isolates.
Collapse
Affiliation(s)
- Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
23
|
Bjöersdorff OG, Lindberg S, Kiil K, Persson S, Guardabassi L, Damborg P. Dogs are carriers of Clostridioides difficile lineages associated with human community-acquired infections. Anaerobe 2021; 67:102317. [PMID: 33418077 DOI: 10.1016/j.anaerobe.2020.102317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
There is an increasing concern about the role of animals as reservoirs of Clostridioides difficile. In this study, we investigated prevalence, antimicrobial resistance and zoonotic potential of C. difficile in dogs. Two-hundred and twenty-five dog faecal deposits were collected from trashcans in nine public gardens. C. difficile was isolated using selective plating and enrichment culture, identified by MALDI-TOF, tested for susceptibility to seven antibiotics by E-test, and sequenced on an Illumina NextSeq platform. Genome sequences were analysed to determine multilocus sequence types and resistance and toxin gene profiles. Zoonotic potential was assessed by measuring genetic variations of core genome (cg)MLST types between canine isolates and 216 temporally and spatially related human clinical isolates from a national database. C. difficile was isolated from 11 samples (4.9%). Seven isolates were toxigenic (tcdA+, tcdB+, cdtA/B-) and belonged to the sequence types ST2, ST6, ST10 and ST42. The four non-toxigenic isolates were assigned to ST15, ST26 and one novel ST. ST2, corresponding to PCR ribotype RT014/020, was the dominating lineage (n = 4) and, together with ST26 and ST42 isolates, showed close resemblance to human isolates, i.e. 2-5 allelic differences among the 1999 genes analysed by cgMLST. Three non-toxigenic isolates displayed resistance to clindamycin, erythromycin and tetracycline mediated by erm(B) and tet(M). Resistance to metronidazole, moxifloxacine, rifampicin or vancomycin was not detected. In conclusion, a small proportion of faecal deposits contained toxigenic C. difficile such as ST2 (RT014/020), which is a major cause of community-acquired infections. Our finding suggests that pathogenic strains can be exchanged between dogs and humans.
Collapse
Affiliation(s)
- Olivia Graaf Bjöersdorff
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sanna Lindberg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristoffer Kiil
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
24
|
Aguilar-Zamora E, Weimer BC, Torres RC, Gómez-Delgado A, Ortiz-Olvera N, Aparicio-Ozores G, Barbero-Becerra VJ, Torres J, Camorlinga-Ponce M. Molecular Epidemiology and Antimicrobial Resistance of Clostridioides difficile in Hospitalized Patients From Mexico. Front Microbiol 2021; 12:787451. [PMID: 35360652 PMCID: PMC8960119 DOI: 10.3389/fmicb.2021.787451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a global public health problem, which is a primary cause of antibiotic-associated diarrhea in humans. The emergence of hypervirulent and antibiotic-resistant strains is associated with the increased incidence and severity of the disease. There are limited studies on genomic characterization of C. difficile in Latin America. We aimed to learn about the molecular epidemiology and antimicrobial resistance in C. difficile strains from adults and children in hospitals of México. We studied 94 C. difficile isolates from seven hospitals in Mexico City from 2014 to 2018. Whole-genome sequencing (WGS) was used to determine the genotype and examine the toxigenic profiles. Susceptibility to antibiotics was determined by E-test. Multilocus sequence typing (MLST) was used to determine allelic profiles. Results identified 20 different sequence types (ST) in the 94 isolates, mostly clade 2 and clade 1. ST1 was predominant in isolates from adult and children. Toxigenic strains comprised 87.2% of the isolates that were combinations of tcdAB and cdtAB (tcdA+/tcdB+/cdtA+/cdtB+, followed by tcdA+/tcdB+/cdtA-/cdtB-, tcdA-/tcdB+/cdtA-/ cdtB-, and tcdA-/tcdB-/cdtA+/cdtB+). Toxin profiles were more diverse in isolates from children. All 94 isolates were susceptible to metronidazole and vancomycin, whereas a considerable number of isolates were resistant to clindamycin, fluroquinolones, rifampicin, meropenem, and linezolid. Multidrug-resistant isolates (≥3 antibiotics) comprised 65% of the isolates. The correlation between resistant genotypes and phenotypes was evaluated by the kappa test. Mutations in rpoB and rpoC showed moderate concordance with resistance to rifampicin and mutations in fusA substantial concordance with fusidic acid resistance. cfrE, a gene recently described in one Mexican isolate, was present in 65% of strains linezolid resistant, all ST1 organisms. WGS is a powerful tool to genotype and characterize virulence and antibiotic susceptibility patterns.
Collapse
Affiliation(s)
- Emmanuel Aguilar-Zamora
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, United States
| | - Roberto C. Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Alejandro Gómez-Delgado
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
| | - Nayeli Ortiz-Olvera
- Departamento de Gastroenterología, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- *Correspondence: Javier Torres,
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Medica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, CMN Siglo XXI, IMSS, México City, Mexico
- Margarita Camorlinga-Ponce,
| |
Collapse
|
25
|
Orozco-Aguilar J, Alfaro-Alarcón A, Acuña-Amador L, Chaves-Olarte E, Rodríguez C, Quesada-Gómez C. In vivo animal models confirm an increased virulence potential and pathogenicity of the NAP1/RT027/ST01 genotype within the Clostridium difficile MLST Clade 2. Gut Pathog 2020; 12:45. [PMID: 32983262 PMCID: PMC7510272 DOI: 10.1186/s13099-020-00383-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background Based on MLST analyses the global population of C. difficile is distributed in eight clades, of which Clade 2 includes the “hypervirulent” NAP1/RT027/ST01 strain along with various unexplored sequence types (STs). Methods To clarify whether this clinically relevant phenotype is a widespread feature of C. difficile Clade 2, we used the murine ileal loop model to compare the in vivo pro-inflammatory (TNF-α, IL-1β, IL-6) and oxidative stress activities (MPO) of five Clade 2 clinical C. difficile isolates from sequence types (STs) 01, 41, 67, and 252. Besides, we infected Golden Syrian hamsters with spores from these strains to determine their lethality, and obtain a histological evaluation of tissue damage, WBC counts, and serum injury biomarkers (LDH, ALT, AST, albumin, BUN, creatinine, Na+, and Cl−). Genomic distances were calculated using Mash and FastANI to explore whether the responses were dictated by phylogeny. Results The ST01 isolate tested ranked first in all assays, as it induced the highest overall levels of pro-inflammatory cytokines, MPO activity, epithelial damage, biochemical markers, and mortality measured in both animal models. Statistically indistinguishable or rather similar outputs were obtained for a ST67 isolate in tests such as tissue damage, neutrophils count, and lethal activity. The results recorded for the two ST41 isolates tested were of intermediate magnitude and the ST252 isolate displayed the lowest pathogenic potential in all animal experiments. This ordering matched the genomic distance of the ST01 isolate to the non-ST01 isolates. Conclusions Despite their close phylogenic relatedness, our results demonstrate differences in pathogenicity and virulence levels in Clade 2 C. difficile strains, confirm the high severity of infections caused by the NAP1/RT027/ST01 strain, and highlight the importance of C. difficile typing.
Collapse
Affiliation(s)
- Josué Orozco-Aguilar
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica.,Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.,Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica
| | - Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Luis Acuña-Amador
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica.,Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
26
|
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020; 175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
There has been an increase in the incidence and severity of Clostridioides difficile infection (CDI) worldwide, and strategies to control, monitor, and diminish the associated morbidity and mortality have been developed. Several typing methods have been used for typing of isolates and studying the epidemiology of CDI; serotyping was the first typing method, but then was replaced by pulsed-field gel electrophoresis (PFGE). PCR ribotyping is now the gold standard method; however, multi locus sequence typing (MLST) schemes have been developed. New sequencing technologies have allowed comparing whole bacterial genomes to address genetic relatedness with a high level of resolution and discriminatory power to distinguish between closely related strains. Here, we review the most frequent C. difficile ribotypes reported worldwide, with a focus on their epidemiology and genetic characteristics.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Sierra Mojada 950, Col. Independencia, CP 44350 Guadalajara, Jalisco, Mexico
| | - Licet Villarreal-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Simon D Baines
- University of Hertfordshire, School of Life and Medical Sciences, Department of Biological and Environmental Sciences, Hatfield AL10 9AB, UK
| | - Adrián Camacho-Ortíz
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
27
|
Bioaerosols generated from toilet flushing in rooms of patients with Clostridioides difficile infection. Infect Control Hosp Epidemiol 2020; 41:517-521. [PMID: 32000872 DOI: 10.1017/ice.2020.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is the most frequently reported hospital-acquired infection in the United States. Bioaerosols generated during toilet flushing are a possible mechanism for the spread of this pathogen in clinical settings. OBJECTIVE To measure the bioaerosol concentration from toilets of patients with CDI before and after flushing. DESIGN In this pilot study, bioaerosols were collected 0.15 m, 0.5 m, and 1.0 m from the rims of the toilets in the bathrooms of hospitalized patients with CDI. Inhibitory, selective media were used to detect C. difficile and other facultative anaerobes. Room air was collected continuously for 20 minutes with a bioaerosol sampler before and after toilet flushing. Wilcoxon rank-sum tests were used to assess the difference in bioaerosol production before and after flushing. SETTING Rooms of patients with CDI at University of Iowa Hospitals and Clinics. RESULTS Bacteria were positively cultured from 8 of 24 rooms (33%). In total, 72 preflush and 72 postflush samples were collected; 9 of the preflush samples (13%) and 19 of the postflush samples (26%) were culture positive for healthcare-associated bacteria. The predominant species cultured were Enterococcus faecalis, E. faecium, and C. difficile. Compared to the preflush samples, the postflush samples showed significant increases in the concentrations of the 2 large particle-size categories: 5.0 µm (P = .0095) and 10.0 µm (P = .0082). CONCLUSIONS Bioaerosols produced by toilet flushing potentially contribute to hospital environmental contamination. Prevention measures (eg, toilet lids) should be evaluated as interventions to prevent toilet-associated environmental contamination in clinical settings.
Collapse
|
28
|
Waker E, Ambrozkiewicz F, Kulecka M, Paziewska A, Skubisz K, Cybula P, Targoński Ł, Mikula M, Walewski J, Ostrowski J. High Prevalence of Genetically Related Clostridium Difficile Strains at a Single Hemato-Oncology Ward Over 10 Years. Front Microbiol 2020; 11:1618. [PMID: 32793147 PMCID: PMC7384382 DOI: 10.3389/fmicb.2020.01618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Aims: Clostridium difficile (C. difficile) infection (CDI) is the main cause of healthcare-associated infectious diarrhea. We used whole-genome sequencing (WGS) to measure the prevalence and genetic variability of C. difficile at a single hemato-oncology ward over a 10 year period. Methods: Between 2008 and 2018, 2077 stool samples were obtained from diarrheal patients hospitalized at the Department of Lymphoma; of these, 618 were positive for toxin A/B. 140 isolates were then subjected to WGS on Ion Torrent PGM sequencer. Results: 36 and 104 isolates were recovered from 36 to 46 patients with single and multiple CDIs, respectively. Of these, 131 strains were toxigenic. Toxin gene profiles tcdA(+);tcdB(+);cdtA/cdtB(+) and tcdA(+);tcdB(+);cdtA/cdtB(-) were identified in 122 and nine strains, respectively. No isolates showed reduced susceptibility to metronidazole and vancomycin. All tested strains were resistant to ciprofloxacin, and 72.9, 42.9, and 72.9% of strains were resistant to erythromycin, clindamycin, or moxifloxacin, respectively. Multi-locus sequence typing (MLST) identified 23 distinct sequence types (STs) and two unidentified strains. Strains ST1 and ST42 represented 31 and 30.1% of all strains tested, respectively. However, while ST1 was detected across nearly all years studied, ST42 was detected only from 2009 to 2011. Conclusion: The high proportion of infected patients in 2008-2011 may be explained by the predominance of more transmissible and virulent C. difficile strains. Although this retrospective study was not designed to define outbreaks of C. difficile, the finding that most isolates exhibited high levels of genetic relatedness suggests nosocomial acquisition.
Collapse
Affiliation(s)
- Edyta Waker
- Department of Clinical Microbiology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Skubisz
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Patrycja Cybula
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Łukasz Targoński
- Department of Lymphoproliferative Diseases, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoproliferative Diseases, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
- *Correspondence: Jerzy Ostrowski,
| |
Collapse
|
29
|
Wu Y, Yang L, Li WG, Zhang WZ, Liu ZJ, Lu JX. Microevolution within ST11 group Clostridioides difficile isolates through mobile genetic elements based on complete genome sequencing. BMC Genomics 2019; 20:796. [PMID: 31666016 PMCID: PMC6822371 DOI: 10.1186/s12864-019-6184-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Clade 5 Clostridioides difficile diverges significantly from the other clades and is therefore, attracting increasing attention due its great heterogeneity. In this study, we used third-generation sequencing techniques to sequence the complete whole genomes of three ST11 C. difficile isolates, RT078 and another two new ribotypes (RTs), obtained from three independent hospitalized elderly patients undergoing antibiotics treatment. Mobile genetic elements (MGEs), antibiotic-resistance, drug resistance genes, and virulent-related genes were analyzed and compared within these three isolates. RESULTS Isolates 10,010 and 12,038 carried a distinct deletion in tcdA compared with isolate 21,062. Furthermore, all three isolates had identical deletions and point-mutations in tcdC, which was once thought to be a unique characteristic of RT078. Isolate 21,062 (RT078) had a unique plasmid, different numbers of transposons and genetic organization, and harboring special CRISPR spacers. All three isolates retained high-level sensitivity to 11 drugs and isolate 21,062 (RT078) carried distinct drug-resistance genes and loss of numerous flagellum-related genes. CONCLUSIONS We concluded that capillary electrophoresis based PCR-ribotyping is important for confirming RT078. Furthermore, RT078 isolates displayed specific MGEs, indicating an independent evolutionary process. In the further study, we could testify these findings with more RT078 isolates of divergent origins.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - Lin Yang
- BGI-Shen zhen, main building, Beishan industry zone, Yan tian District, Shenzhen, China
| | - Wen-Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Jie Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
30
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
31
|
Moore RJ, Lacey JA. Genomics of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0033-2018. [PMID: 31215504 PMCID: PMC11257213 DOI: 10.1128/microbiolspec.gpp3-0033-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequences are now available for all the clinically important clostridia and many of the lesser or opportunistically pathogenic clostridia. The complex clade structures of C. difficile, C. perfringens, and the species that produce botulinum toxins have been delineated by whole-genome sequence analysis. The true clostridia of cluster I show relatively low levels of gross genomic rearrangements within species, in contrast to the species of cluster XI, notably C. difficile, which have been found to have very plastic genomes with significant levels of chromosomal rearrangement. Throughout the clostridial phylotypes, a large proportion of the strain diversity is driven by the acquisition and loss of mobile elements, including phages, plasmids, insertion sequences, and transposons. Genomic analysis has been used to investigate the diversity and spread of C. difficile within hospital settings, the zoonotic transfer of isolates, and the emergence, origins, and geographic spread of epidemic ribotypes. In C. perfringens the clades defined by chromosomal sequence analysis show no indications of clustering based on host species or geographical location. Whole-genome sequence analysis helps to define the different survival and pathogenesis strategies that the clostridia use. Some, such as C. botulinum, produce toxins which rapidly act to kill the host, whereas others, such as C. perfringens and C. difficile, produce less lethal toxins which can damage tissue but do not rapidly kill the host. The genomes provide a resource that can be mined to identify potential vaccine antigens and targets for other forms of therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Moore
- Host-Microbe Interactions Laboratory, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
32
|
Independent Microevolution Mediated by Mobile Genetic Elements of Individual Clostridium difficile Isolates from Clade 4 Revealed by Whole-Genome Sequencing. mSystems 2019; 4:mSystems00252-18. [PMID: 30944881 PMCID: PMC6435816 DOI: 10.1128/msystems.00252-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
Mobile genetic elements play a key role in the continuing evolution of Clostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4 C. difficile isolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/b with aac(6′) aph(2′′) instead of catD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates. Horizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome of Clostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37 C. difficile isolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly, catD, known to be harbored by Tn4453a/b, was replaced by aac(6′) aph(2′′) in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges between C. difficile and other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified in C. difficile isolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number of C. difficile isolates resistant to all antibiotics tested here suggests the ease with which resistance is acquired in vivo. This study gives insights into the genetic mechanism of microevolution within clade 4. IMPORTANCE Mobile genetic elements play a key role in the continuing evolution of Clostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4 C. difficile isolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/b with aac(6′) aph(2′′) instead of catD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.
Collapse
|
33
|
Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 2019; 77:118-129. [DOI: 10.1016/j.fm.2018.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
|
34
|
Ramírez-Vargas G, López-Ureña D, Badilla A, Orozco-Aguilar J, Murillo T, Rojas P, Riedel T, Overmann J, González G, Chaves-Olarte E, Quesada-Gómez C, Rodríguez C. Novel Clade C-I Clostridium difficile strains escape diagnostic tests, differ in pathogenicity potential and carry toxins on extrachromosomal elements. Sci Rep 2018; 8:13951. [PMID: 30224751 PMCID: PMC6141592 DOI: 10.1038/s41598-018-32390-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
The population structure of Clostridium difficile currently comprises eight major genomic clades. For the highly divergent C-I clade, only two toxigenic strains have been reported, which lack the tcdA and tcdC genes and carry a complete locus for the binary toxin (CDT) next to an atypical TcdB monotoxin pathogenicity locus (PaLoc). As part of a routine surveillance of C. difficile in stool samples from diarrheic human patients, we discovered three isolates that consistently gave negative results in a PCR-based screening for tcdC. Through phenotypic assays, whole-genome sequencing, experiments in cell cultures, and infection biomodels we show that these three isolates (i) escape common laboratory diagnostic procedures, (ii) represent new ribotypes, PFGE-types, and sequence types within the Clade C-I, (iii) carry chromosomal or plasmidal TcdBs that induce classical or variant cytopathic effects (CPE), and (iv) cause different levels of cytotoxicity and hamster mortality rates. These results show that new strains of C. difficile can be detected by more refined techniques and raise questions on the origin, evolution, and distribution of the toxin loci of C. difficile and the mechanisms by which this emerging pathogen causes disease.
Collapse
Affiliation(s)
- Gabriel Ramírez-Vargas
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Diana López-Ureña
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Adriana Badilla
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Josué Orozco-Aguilar
- Laboratory for Biological Assays (LEBi), University of Costa Rica, San José, Costa Rica
| | - Tatiana Murillo
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Priscilla Rojas
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner-site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner-site Hannover-Braunschweig, Braunschweig, Germany
| | - Gabriel González
- Research Center for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Esteban Chaves-Olarte
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Research Center for Tropical Diseases (CIET) and Faculty of Microbiology, University of Costa Rica, San José, Costa Rica.
| |
Collapse
|
35
|
Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Genome-Wide Typing of Clostridium difficile. J Clin Microbiol 2018; 56:JCM.01987-17. [PMID: 29618503 DOI: 10.1128/jcm.01987-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/28/2018] [Indexed: 01/18/2023] Open
Abstract
Clostridium difficile, recently renamed Clostridioides difficile, is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping (n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange.
Collapse
|
36
|
Mirande C, Bizine I, Giannetti A, Picot N, van Belkum A. Epidemiological aspects of healthcare-associated infections and microbial genomics. Eur J Clin Microbiol Infect Dis 2018; 37:823-831. [PMID: 29340898 DOI: 10.1007/s10096-017-3170-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022]
Abstract
Hospital-acquired infections (HAIs) are a cause of continuously increasing morbidity and mortality. Most of these infections are caused by a limited set of bacterial species, which share the capability to efficiently spread from patient to patient and to easily acquire antibiotic resistance determinants. This renders correct and rapid species identification and antibiotic susceptibility testing (AST) important and underscores the relevance of bacterial epidemiological typing. The latter is needed for the sensitive detection and exact tracing of nosocomial spread of these potentially multidrug-resistant microorganisms (MDRO). Many microbial typing technologies have been developed and put to some level of executive practice, but it seems that the continued evolution in methodology has currently reached an apex: there is likely to be scientific and practical consensus on the ultimate typing potential of bacterial whole-genome sequencing (WGS). The possibility to perform pan-genomic nucleotide-to-nucleotide comparisons between strains belonging to a single species and to detect even minute changes in nucleotide order will identify closely related organisms, while upon accumulation of such mutations, independent descend can be assumed. Calibration of difference levels [i.e. number of single nucleotide polymorphisms (SNPs)] into categories of inter-strain relatedness needs to be performed in order to generate robust, portable typing schemes. Here, we will briefly discuss the state of affairs regarding bacterial epidemiology based upon WGS, its relatedness with the nomenclature of former typing approaches and the continuing need for a global typing language.
Collapse
Affiliation(s)
- C Mirande
- Research and Development Microbiology, bioMérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France.
| | - I Bizine
- Research and Development Microbiology, bioMérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - A Giannetti
- Research and Development Microbiology, bioMérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - N Picot
- IP and Scientific Watch Department, bioMérieux, Chemin de l'Orme, Marcy l'Etoile, France
| | - A van Belkum
- Data Analytics Unit, bioMérieux, 3 Route de Port Michaud, 38390, La Balme Les Grottes, France
| |
Collapse
|
37
|
Liu XS, Li WG, Zhang WZ, Wu Y, Lu JX. Molecular Characterization of Clostridium difficile Isolates in China From 2010 to 2015. Front Microbiol 2018; 9:845. [PMID: 29760687 PMCID: PMC5936795 DOI: 10.3389/fmicb.2018.00845] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile infection (CDI) has become a worldwide public health problem causing high mortality and a large disease burden. Molecular typing and analysis is important for surveillance and infection control of CDI. However, molecular characterization of C. difficile across China is extremely rare. Here, we report on the toxin profiles, molecular subtyping with multilocus sequence typing (MLST) and PCR ribotyping, and epidemiological characteristics of 199 C. difficile isolates collected between 2010 through 2015 from 13 participating centers across China. We identified 35 STs and 27 ribotypes (RTs) among the 199 C. difficile isolates: ST35 (15.58%), ST3 (15.08%), ST37 (12.06%), and RT017 (14.07%), RT001 (12.06%), RT012 (11.56%) are the most prevalent. One isolate with ST1 and 8 isolates with ST 11 were identified. We identified a new ST in this study, denoted ST332. The toxin profile tcdA+tcdB+tcdC+tcdR+tcdE+CDT- (65.83%) was the predominant profile. Furthermore, 11 isolates with positive binary toxin genes were discovered. According to the PCR ribotyping, one isolate with RT 027, and 6 isolates with RT 078 were confirmed. The epidemiological characteristics of C. difficile in China shows geographical differences, and both the toxin profile and molecular types exhibit great diversity across the different areas.
Collapse
Affiliation(s)
- Xiao-Shu Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Ge Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Zhu Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
38
|
Silva ROS, de Oliveira Júnior CA, Blanc DS, Pereira ST, de Araujo MCR, Vasconcelos A, Lobato FCF. Clostridioides difficile infection in dogs with chronic-recurring diarrhea responsive to dietary changes. Anaerobe 2018; 51:50-53. [PMID: 29621604 PMCID: PMC7111076 DOI: 10.1016/j.anaerobe.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 01/26/2023]
Abstract
Five dogs with chronic-recurring diarrhea were positive for Clostridioides difficile infection (CDI), but were unresponsive to treatment with metronidazole. One of these animals was subjected to a colonoscopy, which revealed eosinophilic infiltration of the colon. All five animals completely recovered after dietary changes. The present work suggests that CDI might occur in dogs with other intestinal alterations. In addition, this report suggests that dysbiosis should be considered in animals that have chronic-recurring diarrhea and test positive for C. difficile. C. difficile infection (CDI) in dogs are still largely unknown. Five dogs with chronic-recurring diarrhea were positive for CDI. All animals completely recovered after dietary changes. Dysbiosis should be considered in dogs with chronic-recurring diarrhea and CDI.
Collapse
Affiliation(s)
- Rodrigo Otávio Silveira Silva
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil.
| | | | - Dominique S Blanc
- Service of Hospital Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Artur Vasconcelos
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil
| | - Francisco Carlos Faria Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Antônio Carlos Avenue, 6627, Belo Horizonte, MG, 31.270-901, Brazil
| |
Collapse
|
39
|
Comparative Genomics of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:59-75. [PMID: 29383664 DOI: 10.1007/978-3-319-72799-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clostridium difficile, a gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of genome sequences in large numbers, mainly due to the use of next-generation sequencing methods, have undoubtedly shown their immense advantages in the determination of the C. difficile population structure. The implementation of fine-scale comparative genomic approaches have paved the way to global transmission and recurrence studies, but also more targeted studies such as the PaLoc or the CRISPR/Cas systems. In this chapter, we provide an overview of the recent and significant findings on C. difficile using comparative genomics studies with implication for the epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
|
40
|
PCR-ribotype distribution of Clostridium difficile in Irish pigs. Anaerobe 2017; 48:237-241. [DOI: 10.1016/j.anaerobe.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/25/2017] [Accepted: 10/07/2017] [Indexed: 01/05/2023]
|
41
|
Andersen JM, Shoup M, Robinson C, Britton R, Olsen KEP, Barrangou R. CRISPR Diversity and Microevolution in Clostridium difficile. Genome Biol Evol 2016; 8:2841-55. [PMID: 27576538 PMCID: PMC5630864 DOI: 10.1093/gbe/evw203] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes.
Collapse
Affiliation(s)
- Joakim M Andersen
- Department of Food, Processing and Nutritional Sciences, North Carolina State University, NC
| | - Madelyn Shoup
- Department of Microbiology and Molecular Genetics, Michigan State University, MI
| | - Cathy Robinson
- Department of Microbiology and Molecular Genetics, Michigan State University, MI
| | - Robert Britton
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, TX
| | - Katharina E P Olsen
- Microbial Competence Centre, Novo Nordisk, Bagsværd, Denmark (Former Employment: Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark)
| | - Rodolphe Barrangou
- Department of Food, Processing and Nutritional Sciences, North Carolina State University, NC
| |
Collapse
|
42
|
Lewis BB, Carter RA, Pamer EG. Bile acid sensitivity and in vivo virulence of clinical Clostridium difficile isolates. Anaerobe 2016; 41:32-36. [PMID: 27241781 DOI: 10.1016/j.anaerobe.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is an anaerobic bacterium that causes diarrheal illnesses. Disease onset is linked with exposure to oral antibiotics and consequent depletion of secondary bile acids. Here we investigate the relationship between in vitro secondary bile acid tolerance and in vivo disease scores of diverse C. difficile strains in mice.
Collapse
Affiliation(s)
- Brittany B Lewis
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Immunology Programs, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Rebecca A Carter
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Immunology Programs, Sloan Kettering Institute, New York, NY, 10065, United States
| | - Eric G Pamer
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Immunology Programs, Sloan Kettering Institute, New York, NY, 10065, United States.
| |
Collapse
|
43
|
Rodriguez C, Taminiau B, Van Broeck J, Delmée M, Daube G. Clostridium difficile in Food and Animals: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 932:65-92. [PMID: 27350639 DOI: 10.1007/5584_2016_27] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zoonoses are infections or diseases that can be transmitted between animals and humans through direct contact, close proximity or the environment. Clostridium difficile is ubiquitous in the environment, and the bacterium is able to colonise the intestinal tract of both animals and humans. Since domestic and food animals frequently test positive for toxigenic C. difficile, even without showing any signs of disease, it seems plausible that C. difficile could be zoonotic. Therefore, animals could play an essential role as carriers of the bacterium. In addition, the presence of the spores in different meats, fish, fruits and vegetables suggests a risk of foodborne transmission. This review summarises the current available data on C. difficile in animals and foods, from when the bacterium was first described up to the present.
Collapse
Affiliation(s)
- C Rodriguez
- Department of Food Science, University of Liège-Faculty of Veterinary Medicine, Avenue de Cureghem 10, bât 43bis Sart-Tilman, 4000, Liège, Belgium.
| | - B Taminiau
- Department of Food Science, University of Liège-Faculty of Veterinary Medicine, Avenue de Cureghem 10, bât 43bis Sart-Tilman, 4000, Liège, Belgium
| | - J Van Broeck
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologie médicale, Université Catholique de Louvain, Brussels, Belgium
| | - M Delmée
- Belgian Reference Centre for Clostridium difficile (NRC), Pôle de microbiologie médicale, Université Catholique de Louvain, Brussels, Belgium
| | - G Daube
- Department of Food Science, University of Liège-Faculty of Veterinary Medicine, Avenue de Cureghem 10, bât 43bis Sart-Tilman, 4000, Liège, Belgium
| |
Collapse
|
44
|
Abstract
Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen.
Collapse
|
45
|
Ünal CM, Steinert M. Novel therapeutic strategies for Clostridium difficile infections. Expert Opin Ther Targets 2015; 20:269-85. [PMID: 26565670 DOI: 10.1517/14728222.2016.1090428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In recent years, Clostridium difficile has become the primary cause of antibiotic-associated diarrhea and pseudomembranous colitis, resulting in long and complicated hospital stays that represent a serious burden for patients as well as health care systems. Currently, conservative treatment of C. difficile infection (CDI) relies on the antibiotics vancomycin, metronidazole or fidaxomicin, or in case of multiple recurrences, fecal microbiota transplantation (FMT). AREAS COVERED The fast-spreading, epidemic nature of this pathogen urgently necessitates the search for alternative treatment strategies as well as antibiotic targets. Accordingly, in this review, we highlight the recent findings regarding virulence associated traits of C. difficile, evaluate their potential as alternative drug targets, and present current efforts in designing inhibitory compounds, with the aim of pointing out possibilities for future treatment strategies. EXPERT OPINION Increased attention on systematic analysis of the virulence mechanisms of C. difficile has already led to the identification of several alternative drug targets. In the future, applying state of the art 'omics' and the development of novel infection models that mimic the human gut, a highly complex ecological niche, will unveil the genomic and metabolic plasticity of this pathogen and will certainly help dealing with future challenges.
Collapse
Affiliation(s)
- Can M Ünal
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,b 2 Türk-Alman Üniversitesi, Fen Fakültesi , Şahinkaya Cad. 86, 34820, Istanbul, Turkey
| | - Michael Steinert
- a 1 Technische Universität Braunschweig, Institut für Mikrobiologie , Spielmannstr. 7, D-38106, Braunschweig, Germany ; .,c 3 Helmholtz Centre for Infection Research , Mascheroder Weg 1, 38124, Braunschweig, Germany
| |
Collapse
|
46
|
Amy J, Johanesen P, Lyras D. Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid 2015; 80:97-110. [PMID: 25929174 DOI: 10.1016/j.plasmid.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/21/2022]
Abstract
Clostridium difficile is a major nosocomial pathogen, causing gastrointestinal disease in patients undergoing antibiotic therapy. This bacterium contains many extrachromosomal and integrated genetic elements, with recent genomic work giving new insights into their variability and distribution. This review summarises research conducted in this area over the last 30 years and includes a discussion on the functional contributions of these elements to host cell phenotypes, as well as encompassing recent genome sequencing studies that have contributed to our understanding of their evolution and dissemination. Importantly, we also include a review of antibiotic resistance determinants associated with mobile genetic elements since antibiotic use and the spread of antibiotic resistance are currently of significant global clinical importance.
Collapse
Affiliation(s)
- Jacob Amy
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Priscilla Johanesen
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
47
|
Popoff MR. From saprophytic to toxigenic clostridia, a complex evolution based on multiple diverse genetic transfers and/or rearrangements. Res Microbiol 2015; 166:221-4. [PMID: 25744779 DOI: 10.1016/j.resmic.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/15/2022]
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France.
| |
Collapse
|