1
|
Huang H, Yu J, Chen L, Zhang L, Li T, Ye D, Zhang X, Wang Y, Zheng Z, Liu T, Yu H. The effect of different amendments on Cd availability and bacterial community after three-year consecutive application in Cd-contaminated paddy soils. ENVIRONMENTAL RESEARCH 2024; 259:119459. [PMID: 38942257 DOI: 10.1016/j.envres.2024.119459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment. A field experiment was conducted in a Cd-contaminated paddy (available Cd concentration 0.40 mg kg-1) on the Chengdu Plain to investigate the changes in soil Cd availability and response characteristics of soil bacterial communities after consecutive application of rice straw biochar (SW), fly ash (FM) and marble powder (YH) amendments from 2018 to 2020. Compared with control treatment without amendments (CK), soil pH increased by 0.6, 0.5 and 1.5 under SW, FM and YH amendments, respectively, and the soil available Cd concentration decreased by 10.71%, 21.42% and 25.00%, respectively. The Cd concentration in rice grain was less than 0.2 mg kg-1 under YH amendment, which was within the Chinese Contaminant Limit in Food of National Food Safety Standards (GB2762-2022) in the second and third years. The three amendments had different effects on the transformation of Cd fractions in soil, which may be relevant to the specific bacterial communities shaped under different treatments. The proportion of Fe-Mn oxide-bound fraction Cd (OX-Cd) increased by 11% under YH treatment, which may be due to the promotion of Fe(III) and Cd binding by some enriched iron-oxidizing bacteria, such as Lysobacter, uncultured_Pelobacter sp. and Sulfurifusis. Candidatus_Tenderia and Sideroxydans were enriched under SW and FM amendments, respectively, and were likely beneficial for reducing Cd availability in soil through Cd immobilization. These results revealed the significance of the bacterial community in soil Cd immobilization after consecutive application of amendments and highlighted the potential of applying YH amendment to ensure the safe production of rice in Cd-contaminated soil.
Collapse
Affiliation(s)
- Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Jieyi Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Lan Chen
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Tao Liu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Shi J, Qian W, Zhou Z, Jin Z, Gao X, Fan J, Wang X. Effects of acid mine drainage and sediment contamination on soil bacterial communities, interaction patterns, and functions in alkaline desert grassland. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134832. [PMID: 38852245 DOI: 10.1016/j.jhazmat.2024.134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.
Collapse
Affiliation(s)
- Jianfei Shi
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; Public Technology Service Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xin Gao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jinglong Fan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi, Xinjiang 830011, China; Taklimakan Station for Desert Research, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xin Wang
- Shaanxi Forestry Survey and Planning Institute, Xi'an, Shaanxi 710082, China
| |
Collapse
|
3
|
Song Y, Finkelstein R, Rhoads W, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Impacts of Copper and Water Heater Anodes on Pathogens and Microbiomes in Hot Water Plumbing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13612-13624. [PMID: 37643149 PMCID: PMC10501123 DOI: 10.1021/acs.est.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Hot water building plumbing systems are vulnerable to the proliferation of opportunistic pathogens (OPs), including Legionella pneumophila and Mycobacterium avium. Implementation of copper as a disinfectant could help reduce OPs, but a mechanistic understanding of the effects on the microbial community under real-world plumbing conditions is lacking. Here, we carried out a controlled pilot-scale study of hot water systems and applied shotgun metagenomic sequencing to examine the effects of copper dose (0-2 mg/L), orthophosphate corrosion control agent, and water heater anode materials (aluminum vs magnesium vs powered anode) on the bulk water and biofilm microbiome composition. Metagenomic analysis revealed that, even though a copper dose of 1.2 mg/L was required to reduce Legionella and Mycobacterium numbers, lower doses (e.g., ≤0.6 mg/L) measurably impacted the broader microbial community, indicating that the OP strains colonizing these systems were highly copper tolerant. Orthophosphate addition reduced bioavailability of copper, both to OPs and to the broader microbiome. Functional gene analysis indicated that both membrane damage and interruption of nucleic acid replication are likely at play in copper inactivation mechanisms. This study identifies key factors (e.g., orthophosphate, copper resistance, and anode materials) that can confound the efficacy of copper for controlling OPs in hot water plumbing.
Collapse
Affiliation(s)
- Yang Song
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Utilities
Department, Town of Cary, 316 N. Academy St., Cary, North Carolina 27512, United States
| | - Rachel Finkelstein
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- AECOM, 3101 Wilson Boulevard, Arlington, Virginia 22201, United States
| | - William Rhoads
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Black
& Veatch, 8400 Ward
Pkwy, Kansas City, Missouri 64114, United States
| | - Marc A. Edwards
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil
and Environmental Engineering, Virginia
Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Jones S, Santini JM. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Essays Biochem 2023; 67:685-699. [PMID: 37449416 PMCID: PMC10427800 DOI: 10.1042/ebc20220257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Bioleaching offers a low-input method of extracting valuable metals from sulfide minerals, which works by exploiting the sulfur and iron metabolisms of microorganisms to break down the ore. Bioleaching microbes generate energy by oxidising iron and/or sulfur, consequently generating oxidants that attack sulfide mineral surfaces, releasing target metals. As sulfuric acid is generated during the process, bioleaching organisms are typically acidophiles, and indeed the technique is based on natural processes that occur at acid mine drainage sites. While the overall concept of bioleaching appears straightforward, a series of enzymes is required to mediate the complex sulfur oxidation process. This review explores the mechanisms underlying bioleaching, summarising current knowledge on the enzymes driving microbial sulfur and iron oxidation in acidophiles. Up-to-date models are provided of the two mineral-defined pathways of sulfide mineral bioleaching: the thiosulfate and the polysulfide pathway.
Collapse
Affiliation(s)
- Sarah Jones
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, U.K
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, WC1E 6BT, U.K
| |
Collapse
|
5
|
Groult B, St-Jean V, Lazar CS. Linking Groundwater to Surface Discharge Ecosystems: Archaeal, Bacterial, and Eukaryotic Community Diversity and Structure in Quebec (Canada). Microorganisms 2023; 11:1674. [PMID: 37512847 PMCID: PMC10384904 DOI: 10.3390/microorganisms11071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Aquifer systems are composed of water flowing from surface recharge areas, to the subsurface and back to the surface in discharge regions. Groundwater habitats harbor a large microbial biomass and diversity, potentially contributing to surface aquatic ecosystems. Although this contribution has been widely studied in marine environments, very little is known about the connection between underground and surface microbial communities in freshwater settings. Therefore, in this study, we used amplicon sequencing to analyze the archaeal, bacterial, and eukaryotic community diversity and structure in groundwater and surface water samples, spanning the vast regions of the Laurentides and Lanaudières in the Quebec province (Canada). Our results show significant differences between subsurface and surface taxa; with more fungi, Amoebozoa, and chemolithoautotrophic prokaryotes involved in nitrogen-, sulfur-, and iron-cycling dominating the underground samples; while algae, ciliates, methanogens, and Actinobacteria dominate the surface discharge waters. Microbial source tracking suggested that only a small portion of the microbial communities in the groundwater contributed to the surface discharge communities. However, many taxa were shared between both habitats, with a large range of functional diversity, likely explaining their survival in both subsurface and surface water ecosystems.
Collapse
Affiliation(s)
- Benjamin Groult
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Vicky St-Jean
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
6
|
Zhuang J, Zhang R, Zeng Y, Dai T, Ye Z, Gao Q, Yang Y, Guo X, Li G, Zhou J. Petroleum pollution changes microbial diversity and network complexity of soil profile in an oil refinery. Front Microbiol 2023; 14:1193189. [PMID: 37287448 PMCID: PMC10242060 DOI: 10.3389/fmicb.2023.1193189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Petroleum pollution resulting from spills and leakages in oil refinery areas has been a significant environmental concern for decades. Despite this, the effects of petroleum pollutants on soil microbial communities and their potential for pollutant biodegradation still required further investigation. Methods In this study, we collected 75 soil samples from 0 to 5 m depths of 15 soil profiles in an abandoned refinery to analyze the effect of petroleum pollution on soil microbial diversity, community structure, and network co-occurrence patterns. Results Our results suggested soil microbial a-diversity decreased under high C10-C40 levels, coupled with significant changes in the community structure of soil profiles. However, soil microbial network complexity increased with petroleum pollution levels, suggesting more complex microbial potential interactions. A module specific for methane and methyl oxidation was also found under high C10-C40 levels of the soil profile, indicating stronger methanotrophic and methylotrophic metabolic activities at the heavily polluted soil profile. Discussion The increased network complexity observed may be due to more metabolic pathways and processes, as well as increased microbial interactions during these processes. These findings highlight the importance of considering both microbial diversity and network complexity in assessing the effects of petroleum pollution on soil ecosystems.
Collapse
Affiliation(s)
- Jugui Zhuang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ruihuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Zhencheng Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
7
|
Current Trends in Metal Biomining with a Focus on Genomics Aspects and Attention to Arsenopyrite Leaching-A Review. Microorganisms 2023; 11:microorganisms11010186. [PMID: 36677478 PMCID: PMC9864737 DOI: 10.3390/microorganisms11010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The presented review is based on scientific microbiological articles and patents in the field of biomining valuable metals. The main attention is paid to publications of the last two decades, which illustrate some shifts in objects of interest and modern trends both in general and applied microbiology. The review demonstrates that microbial bioleaching continues to develop actively, despite various problems in its industrial application. The previous classic trends in the microbial bioleaching persist and remain unchanged, including (i) the search for and selection of new effective species and strains and (ii) technical optimization of the bioleaching process. Moreover, new trends were formed during the last decades with an emphasis on the phylogeny of leaching microbiota and on genomes of the leaching microorganisms. This area of genomics provides new, interesting information and forms a basis for the subsequent construction of new leaching strains. For example, this review mentions some changed strains with increased resistance to toxic compounds. Additionally, the review considers some problems of bioleaching valuable metals from toxic arsenopyrite.
Collapse
|
8
|
Shen C, Su L, Zhao Y, Liu W, Liu R, Zhang F, Shi Y, Wang J, Tang Q, Yang Y, Bon Man Y, Zhang J. Plants boost pyrrhotite-driven nitrogen removal in constructed wetlands. BIORESOURCE TECHNOLOGY 2023; 367:128240. [PMID: 36332867 DOI: 10.1016/j.biortech.2022.128240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pyrrhotite is a promising electron donor for autotrophic denitrification. Using pyrrhotite as the substrate in constructed wetlands (CWs) can enhance the nitrogen removal performance in carbon-limited wastewater treatment. However, the role of plants in pyrrhotite-integrated CW is under debate as the oxygen released from plant roots may destroy the anoxic condition for autotrophic denitrification. This study compared pyrrhotite-integrated CWs with and without plants and identified the effects of plants' presence in nitrogen removal, pyrrhotite oxidized dissolution, and microbial community. The results show that plants enhanced the TN removal significantly (from 41.6 ± 3.9 % to 97.1 ± 2.6 %). Plants can accelerate the PAD in CW through the strengthening of pyrrhotite dissolution. Enriched functional (Thiobacillus and Acidiferrobacter) and a more complex bacterial co-occurrence network has been found in CW with plants. This study identified the role of plants in PAD acceleration, providing an in-depth understanding of pyrrhotite in CW systems.
Collapse
Affiliation(s)
- Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield Dublin 4, Ireland
| | - Liti Su
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Yaqian Zhao
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield Dublin 4, Ireland; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Wenbo Liu
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield Dublin 4, Ireland
| | - Fuhao Zhang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, China; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yun Shi
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Jie Wang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Qiuqi Tang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China
| | - Yan Yang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong SAR, China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, Zhejiang 310023, China.
| |
Collapse
|
9
|
Liao H, Hao X, Qin F, Delgado-Baquerizo M, Liu Y, Zhou J, Cai P, Chen W, Huang Q. Microbial autotrophy explains large-scale soil CO 2 fixation. GLOBAL CHANGE BIOLOGY 2023; 29:231-242. [PMID: 36226978 DOI: 10.1111/gcb.16452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities play critical roles in fixing carbon from the atmosphere and fixing it in the soils. However, the large-scale variations and drivers of these microbial communities remain poorly understood. Here, we conducted a large-scale survey across China and found that soil autotrophic organisms are critical for explaining CO2 fluxes from the atmosphere to soils. In particular, we showed that large-scale variations in CO2 fixation rates are highly correlated to those in autotrophic bacteria and phototrophic protists. Paddy soils, supporting a larger proportion of obligate bacterial and protist autotrophs, display four-fold of CO2 fixation rates over upland and forest soils. Precipitation and pH, together with key ecological clusters of autotrophic microbes, also played important roles in controlling CO2 fixation. Our work provides a novel quantification on the contribution of terrestrial autotrophic microbes to soil CO2 fixation processes at a large scale, with implications for global carbon regulation under climate change.
Collapse
Affiliation(s)
- Hao Liao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Fei Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | | | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Allioux M, Yvenou S, Merkel A, Cozannet M, Aubé J, Pommellec J, Le Romancer M, Lavastre V, Guillaume D, Alain K. A metagenomic insight into the microbiomes of geothermal springs in the Subantarctic Kerguelen Islands. Sci Rep 2022; 12:22243. [PMID: 36564496 PMCID: PMC9789041 DOI: 10.1038/s41598-022-26299-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The Kerguelen Islands, located in the southern part of the Indian Ocean, are very isolated geographically. The microbial diversity and communities present on the island, especially associated to geothermal springs, have never been analyzed with high-throughput sequencing methods. In this article, we performed the first metagenomics analysis of microorganisms present in Kerguelen hot springs. From four hot springs, we assembled metagenomes and recovered 42 metagenome-assembled genomes, mostly associated with new putative taxa based on phylogenomic analyses and overall genome relatedness indices. The 42 MAGs were studied in detail and showed putative affiliations to 13 new genomic species and 6 new genera of Bacteria or Archaea according to GTDB. Functional potential of MAGs suggests the presence of thermophiles and hyperthermophiles, as well as heterotrophs and primary producers possibly involved in the sulfur cycle, notably in the oxidation of sulfur compounds. This paper focused on only four of the dozens of hot springs in the Kerguelen Islands and should be considered as a preliminary study of the microorganisms inhabiting the hot springs of these isolated islands. These results show that more efforts should be made towards characterization of Kerguelen Islands ecosystems, as they represent a reservoir of unknown microbial lineages.
Collapse
Affiliation(s)
- Maxime Allioux
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Stéven Yvenou
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Alexander Merkel
- , Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Marc Cozannet
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Johanne Aubé
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Jolann Pommellec
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Marc Le Romancer
- UBO, UFR Sciences et Techniques, UR 7462, Laboratoire Géoarchitecture, Territoires, Urbanisation, Biodiversité, Environnement, Rennes, France
| | | | | | - Karine Alain
- Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, Unité Biologie et Ecologie des Ecosystèmes Marins Profonds BEEP, IUEM, Rue Dumont d'Urville, 29280, Plouzané, France.
| |
Collapse
|
11
|
Sand W, Schippers A, Hedrich S, Vera M. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A. Appl Microbiol Biotechnol 2022; 106:6933-6952. [PMID: 36194263 PMCID: PMC9592645 DOI: 10.1007/s00253-022-12168-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Abstract Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides’ mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell–cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. Key points • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization
Collapse
Affiliation(s)
- Wolfgang Sand
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany. .,Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany
| | - Sabrina Hedrich
- Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Ma L, Yang W, Huang S, Liu R, Li H, Huang X, Xiong J, Liu X. Integrative Assessments on Molecular Taxonomy of Acidiferrobacter thiooxydans ZJ and Its Environmental Adaptation Based on Mobile Genetic Elements. Front Microbiol 2022; 13:826829. [PMID: 35250944 PMCID: PMC8889020 DOI: 10.3389/fmicb.2022.826829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acidiferrobacter spp. are facultatively anaerobic acidophiles that belong to a distinctive Acidiferrobacteraceae family, which are similar to Ectothiorhodospiraceae phylogenetically, and are closely related to Acidithiobacillia class/subdivision physiologically. The limited genome information has kept them from being studied on molecular taxonomy and environmental adaptation in depth. Herein, Af. thiooxydans ZJ was isolated from acid mine drainage (AMD), and the complete genome sequence was reported to scan its genetic constitution for taxonomic and adaptative feature exploration. The genome has a single chromosome of 3,302,271 base pairs (bp), with a GC content of 63.61%. The phylogenetic tree based on OrthoANI highlighted the unique position of Af. thiooxydans ZJ, which harbored more unique genes among the strains from Ectothiorhodospiraceae and Acidithiobacillaceae by pan-genome analysis. The diverse mobile genetic elements (MGEs), such as insertion sequence (IS), clustered regularly interspaced short palindromic repeat (CRISPR), prophage, and genomic island (GI), have been identified and characterized in Af. thiooxydans ZJ. The results showed that Af. thiooxydans ZJ may effectively resist the infection of foreign viruses and gain functional gene fragments or clusters to shape its own genome advantageously. This study will offer more evidence of the genomic plasticity and improve our understanding of evolutionary adaptation mechanisms to extreme AMD environment, which could expand the potential utilization of Af. thiooxydans ZJ as an iron and sulfur oxidizer in industrial bioleaching.
Collapse
Affiliation(s)
- Liyuan Ma
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Weiyi Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Shanshan Huang
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Rui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Huiying Li
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xinping Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Junming Xiong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
13
|
Abramov SM, Straub D, Tejada J, Grimm L, Schädler F, Bulaev A, Thorwarth H, Amils R, Kappler A, Kleindienst S. Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Appl Environ Microbiol 2022; 88:e0229021. [PMID: 34910570 PMCID: PMC8863065 DOI: 10.1128/aem.02290-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
In the mining-impacted Rio Tinto, Spain, Fe-cycling microorganisms influence the transport of heavy metals (HMs) into the Atlantic Ocean. However, it remains largely unknown how spatial and temporal hydrogeochemical gradients along the Rio Tinto shape the composition of Fe-cycling microbial communities and how this in turn affects HM mobility. Using a combination of DNA- and RNA-based 16S rRNA (gene) amplicon sequencing and hydrogeochemical analyses, we explored the impact of pH, Fe(III), Fe(II), and Cl- on Fe-cycling microorganisms. We showed that the water column at the acidic (pH 2.2) middle course of the river was colonized by Fe(II) oxidizers affiliated with Acidithiobacillus and Leptospirillum. At the upper estuary, daily fluctuations of pH (2.7 to 3.7) and Cl- (6.9 to 16.6 g/L) contributed to the establishment of a unique microbial community, including Fe(II) oxidizers belonging to Acidihalobacter, Marinobacter, and Mariprofundus, identified at this site. Furthermore, DNA- and RNA-based profiles of the benthic community suggested that acidophilic and neutrophilic Fe(II) oxidizers (e.g., Acidihalobacter, Marinobacter, and Mariprofundus), Fe(III) reducers (e.g., Thermoanaerobaculum), and sulfate-reducing bacteria drive the Fe cycle in the estuarine sediments. RNA-based relative abundances of Leptospirillum at the middle course as well as abundances of Acidihalobacter and Mariprofundus at the upper estuary were higher than DNA-based results, suggesting a potentially higher level of activity of these taxa. Based on our findings, we propose a model of how tidal water affects the composition and activity of the Fe-cycling taxa, playing an important role in the transport of HMs (e.g., As, Cd, Cr, and Pb) along the Rio Tinto. IMPORTANCE The estuary of the Rio Tinto is a unique environment in which extremely acidic, heavy metal-rich, and especially iron-rich river water is mixed with seawater. Due to the mixing events, the estuarine water is characterized by a low pH, almost seawater salinity, and high concentrations of bioavailable iron. The unusual hydrogeochemistry maintains unique microbial communities in the estuarine water and in the sediment. These communities include halotolerant iron-oxidizing microorganisms which typically inhabit acidic saline environments and marine iron-oxidizing microorganisms which, in contrast, are not typically found in acidic environments. Furthermore, highly saline estuarine water favored the prosperity of acidophilic heterotrophs, typically inhabiting brackish and saline environments. The Rio Tinto estuarine sediment harbors a diverse microbial community with both acidophilic and neutrophilic members that can mediate the iron cycle and, in turn, can directly impact the mobility and transport of heavy metals in the Rio Tinto estuary.
Collapse
Affiliation(s)
- Sergey M. Abramov
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Daniel Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Quantitative Biology Center, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Julian Tejada
- University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Baden-Württemberg, Germany
| | - Lars Grimm
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Franziska Schädler
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| | - Aleksandr Bulaev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Harald Thorwarth
- University of Applied Forest Sciences Rottenburg, Rottenburg am Neckar, Baden-Württemberg, Germany
| | - Ricardo Amils
- Centre for Molecular Biology Severo Ochoa, Autonomous University of Madrid, Madrid, Spain
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, Tuebingen, Baden-Württemberg, Germany
| | - Sara Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Baden-Württemberg, Germany
| |
Collapse
|
14
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
15
|
Imhoff JF, Kyndt JA, Meyer TE. Genomic Comparison, Phylogeny and Taxonomic Reevaluation of the Ectothiorhodospiraceae and Description of Halorhodospiraceae fam. nov. and Halochlorospira gen. nov. Microorganisms 2022; 10:295. [PMID: 35208750 PMCID: PMC8877833 DOI: 10.3390/microorganisms10020295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Ectothiorhodospiraceae family represents purple sulfur bacteria of the Gammaproteobacteria found primarily in alkaline soda lakes of moderate to extremely high salinity. The main microscopically visible characteristic separating them from the Chromatiaceae is the excretion of the intermediate elemental sulfur formed during oxidation of sulfide prior to complete oxidation to sulfate rather than storing it in the periplasm. We present a comparative study of 38 genomes of all species of phototrophic Ectothiorhodospiraceae. We also include a comparison with those chemotrophic bacteria that have been assigned to the family previously and critically reevaluate this assignment. The data demonstrate the separation of Halorhodospira species in a major phylogenetic branch distant from other Ectothiorhodospiraceae and support their separation into a new family, for which the name Halorhodospiraceae fam. nov. is proposed. In addition, the green-colored, bacteriochlorophyll-containing species Halorhodospira halochloris and Halorhodospira abdelmalekii were transferred to the new genus Halochlorospira gen. nov. of this family. The data also enable classification of several so far unclassified isolates and support the separation of Ectothiorhodospira shaposhnikovii and Ect. vacuolata as well as Ect. mobilis and Ect. marismortui as distinct species.
Collapse
Affiliation(s)
- Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Terrance E. Meyer
- Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
16
|
Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions. THE ISME JOURNAL 2021; 15:3221-3238. [PMID: 34007059 PMCID: PMC8528912 DOI: 10.1038/s41396-021-00995-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Members of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysis, thus defining 19 Acidithiobacillia lineages ranking at different taxonomic levels. This work provides the most comprehensive classification and pangenomic analysis of this deep-branching class of Proteobacteria to date. The phylogenomic framework obtained illuminates not only the evolutionary past of this lineage, but also the molecular evolution of relevant aerobic respiratory proteins, namely the cytochrome bo3 ubiquinol oxidases.
Collapse
|
17
|
Diffusible signal factor signaling controls bioleaching activity and niche protection in the acidophilic, mineral-oxidizing leptospirilli. Sci Rep 2021; 11:16275. [PMID: 34381075 PMCID: PMC8357829 DOI: 10.1038/s41598-021-95324-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Bioleaching of metal sulfide ores involves acidophilic microbes that catalyze the chemical dissolution of the metal sulfide bond that is enhanced by attached and planktonic cell mediated oxidation of iron(II)-ions and inorganic sulfur compounds. Leptospirillum spp. often predominate in sulfide mineral-containing environments, including bioheaps for copper recovery from chalcopyrite, as they are effective primary mineral colonizers and oxidize iron(II)-ions efficiently. In this study, we demonstrated a functional diffusible signal factor interspecies quorum sensing signaling mechanism in Leptospirillum ferriphilum and Leptospirillum ferrooxidans that produces (Z)-11-methyl-2-dodecenoic acid when grown with pyrite as energy source. In addition, pure diffusible signal factor and extracts from supernatants of pyrite grown Leptospirillum spp. inhibited biological iron oxidation in various species, and that pyrite grown Leptospirillum cells were less affected than iron grown cells to self inhibition. Finally, transcriptional analyses for the inhibition of iron-grown L. ferriphilum cells due to diffusible signal factor was compared with the response to exposure of cells to N- acyl-homoserine-lactone type quorum sensing signal compounds. The data suggested that Leptospirillum spp. diffusible signal factor production is a strategy for niche protection and defense against other microbes and it is proposed that this may be exploited to inhibit unwanted acidophile species.
Collapse
|
18
|
Degli Esposti M, Moya-Beltrán A, Quatrini R, Hederstedt L. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:664216. [PMID: 34211444 PMCID: PMC8239418 DOI: 10.3389/fmicb.2021.664216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Respiration is a major trait shaping the biology of many environments. Cytochrome oxidase containing heme A (COX) is a common terminal oxidase in aerobic bacteria and is the only one in mammalian mitochondria. The synthesis of heme A is catalyzed by heme A synthase (CtaA/Cox15), an enzyme that most likely coevolved with COX. The evolutionary origin of COX in bacteria has remained unknown. Using extensive sequence and phylogenetic analysis, we show that the ancestral type of heme A synthases is present in iron-oxidizing Proteobacteria such as Acidithiobacillus spp. These bacteria also contain a deep branching form of the major COX subunit (COX1) and an ancestral variant of CtaG, a protein that is specifically required for COX biogenesis. Our work thus suggests that the ancestors of extant iron-oxidizers were the first to evolve COX. Consistent with this conclusion, acidophilic iron-oxidizing prokaryotes lived on emerged land around the time for which there is the earliest geochemical evidence of aerobic respiration on earth. Hence, ecological niches of iron oxidation have apparently promoted the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Zhou C, Miao T, Jiang L, Zhang H, Zhang Y, Zhang X. Conditions that promote the formation of black bloom in aquatic microcosms and its effects on sediment bacteria related to iron and sulfur cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141869. [PMID: 32882542 DOI: 10.1016/j.scitotenv.2020.141869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Black bloom occurs frequently in eutrophic waters. We investigated the conditions promoted the formation of black bloom via in-situ measurement in two aquatic microcosms and the effects of black bloom on the bacterial community composition. Although larger changes in dissolved oxygen (DO) were detected in the Hydrilla verticillata-dominated microcosm over the 90-day simulation, black bloom occurred more readily in the phytoplankton-dominated than macrophyte-dominated microcosm under conditions of O2 depletion and temperature above 30 °C. The sediment bacterial community composition shifted after black bloom; the relative abundance of Thiobacillus and Sideroxydans, which oxidize iron (Fe) and sulfur (S), decreased by 47% and 48%, respectively, in the phytoplankton-dominated microcosm and by 18% and 20% in the macrophyte-dominated microcosm. By contrast, Desulfatiglans increased by 13% and 19%, respectively, after black bloom. Furthermore, inter-taxa correlations remarkably changed according to co-occurrence network analysis. Thirty-six different taxa from the phylum to the genus level were identified as biomarkers of sediments collected before and after the black bloom event. Most of these biomarkers are related to Fe/S cycling in aquatic ecosystems.
Collapse
Affiliation(s)
- Chi Zhou
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Teng Miao
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Lai Jiang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Hang Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Yi Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430070, PR China
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
20
|
Napieralski SA, Roden EE. The Weathering Microbiome of an Outcropping Granodiorite. Front Microbiol 2021; 11:601907. [PMID: 33381096 PMCID: PMC7767972 DOI: 10.3389/fmicb.2020.601907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have long been recognized for their capacity to catalyze the weathering of silicate minerals. While the vast majority of studies on microbially mediated silicate weathering focus on organotrophic metabolism linked to nutrient acquisition, it has been recently demonstrated that chemolithotrophic ferrous iron [Fe(II)] oxidizing bacteria (FeOB) are capable of coupling the oxidation of silicate mineral Fe(II) to metabolic energy generation and cellular growth. In natural systems, complex microbial consortia with diverse metabolic capabilities can exist and interact to influence the biogeochemical cycling of essential elements, including iron. Here we combine microbiological and metagenomic analyses to investigate the potential interactions among metabolically diverse microorganisms in the near surface weathering of an outcrop of the Rio Blanco Quartz Diorite (DIO) in the Luquillo Mountains of Puerto Rico. Laboratory based incubations utilizing ground DIO as metabolic energy source for chemolithotrophic FeOB confirmed the ability of FeOB to grow via the oxidation of silicate-bound Fe(II). Dramatically accelerated rates of Fe(II)-oxidation were associated with an enrichment in microorganisms with the genetic capacity for iron oxidizing extracellular electron transfer (EET) pathways. Microbially oxidized DIO displayed an enhanced susceptibility to the weathering activity of organotrophic microorganisms compared to unoxidized mineral suspensions. Our results suggest that chemolithotrophic and organotrophic microorganisms are likely to coexist and contribute synergistically to the overall weathering of the in situ bedrock outcrop.
Collapse
Affiliation(s)
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Xiao E, Ning Z, Sun W, Jiang S, Fan W, Ma L, Xiao T. Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115834. [PMID: 33139093 DOI: 10.1016/j.envpol.2020.115834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Thallium (Tl) is a highly toxic metalloid and is considered a priority pollutant by the US Environmental Protection Agency (EPA). Currently, few studies have investigated the distribution patterns of bacterial and fungal microbiomes in Tl-impacted environments. In this study, we used high-throughput sequencing to assess the bacterial and fungal profiles along a gradient of Tl contents in Tl mine waste rocks in southwestern China. Our results showed that Tl had an important, but different influence on the bacterial and fungal diversity indices. Using linear regression analysis, we furtherly divided the dominant bacterial and fungal groups into three distinct microbial sub-communities thriving at high, moderate, and low levels of Tl. Furthermore, our results also showed that Tl is also an important environmental variable that regulates the distribution patterns of ecological clusters and indicator genera. Interestingly, the microbial groups enriched in the samples with high Tl levels were mainly involved in metal and nutrient cycling. Taken together, our results have provided useful information about the responses of bacterial and fungal groups to Tl contamination.
Collapse
Affiliation(s)
- Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Weimin Sun
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China
| | - Shiming Jiang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenjun Fan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Liang Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Liu JL, Yao J, Zhu X, Zhou DL, Duran R, Mihucz VG, Bashir S, Hudson-Edwards KA. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115667. [PMID: 33497944 DOI: 10.1016/j.envpol.2020.115667] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Mine tailings sites are considered as a continuous source of discharged metal(loid)s and residual organic flotation reagents. They are extremely toxic environments representing unique ecological niches for microbial communities. Mine tailings as a source of multi-resistance genes have been poorly investigated. Metagenomic analysis for four active nonferrous metal(loid) tailings sites with different environmental parameters was conducted. The abundance of Thiobacillus, able to tolerate acidity and showing iron- and sulfur/sulfide oxidation capacities, was significantly different (p < 0.05) between acid and neutral tailings sites. Correlation analyses showed that Zn, Pb, TP, Cd, and Cu were the main drivers influencing the bacterial compositions. Multi-metal resistance genes (MRGs) and antibiotic resistance genes (ARGs), such as baca and copA, were found to be co-selected by high concentrations of metal(loid)s tailings. The main contributors to different distributions of MRGs were Thiobacillus and Nocardioides genus, while genera with low abundance (<0.1%) were the main contributors for ARGs. Functional metabolic pathways related to Fe-S metabolism, polycyclic aromatic hydrocarbons (PAHs) degradation and acid stress were largely from Altererythrobacter, Lysobacter, and Thiobacillus, respectively. Such information provides new insights on active tailings with highly toxic contaminants. Short-term metal(loid) exposure of microorganism in active nonferrous metal(loid) tailings contribute to the co-occurrence of ARGs and MRGs, and aggravation of tailings acidification. Our results recommend that the management of microorganisms involved in acid tolerance and metal/antibiotic resistance is of key importance for in-suit treatment of the continuous discharge of tailings with multiple metal(loid) contaminants into impoundments.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Xiaozhe Zhu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - De-Liang Zhou
- Beijing Zhongdianyida Technology Co., Ltd, Beijing, 100190, China
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de L'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Victor G Mihucz
- Sino-Hungarian Joint Research Laboratory for Environmental Sciences and Health, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Stny. 1/A, Hungary
| | - Safdar Bashir
- Sub-campus Depalpur, University of Agriculture Faisalabad, Okara 56130, Pakistan
| | - Karen A Hudson-Edwards
- Environment & Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9DF, UK
| |
Collapse
|
23
|
Esposti MD. On the evolution of cytochrome oxidases consuming oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148304. [PMID: 32890468 DOI: 10.1016/j.bbabio.2020.148304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
This review examines the current state of the art on the evolution of the families of Heme Copper Oxygen reductases (HCO) that oxidize cytochrome c and reduce oxygen to water, chiefly cytochrome oxidase, COX. COX is present in many bacterial and most eukaryotic lineages, but its origin has remained elusive. After examining previous proposals for COX evolution, the review summarizes recent insights suggesting that COX enzymes might have evolved in soil dwelling, probably iron-oxidizing bacteria which lived on emerged land over two billion years ago. These bacteria were the likely ancestors of extant acidophilic iron-oxidizers such as Acidithiobacillus spp., which belong to basal lineages of the phylum Proteobacteria. Proteobacteria may thus be considered the originators of COX, which was then laterally transferred to other prokaryotes. The taxonomy of bacteria is presented in relation to the current distribution of COX and C family oxidases, from which COX may have evolved.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences UNAM, Ave. Universidad 701, Cuernavaca, CP 62130, Morelos, Mexico.
| |
Collapse
|
24
|
D'Angeli IM, Ghezzi D, Leuko S, Firrincieli A, Parise M, Fiorucci A, Vigna B, Addesso R, Baldantoni D, Carbone C, Miller AZ, Jurado V, Saiz-Jimenez C, De Waele J, Cappelletti M. Geomicrobiology of a seawater-influenced active sulfuric acid cave. PLoS One 2019; 14:e0220706. [PMID: 31393920 PMCID: PMC6687129 DOI: 10.1371/journal.pone.0220706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0-1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave.
Collapse
Affiliation(s)
- Ilenia M D'Angeli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefan Leuko
- DLR Institute of Aerospace Medicine, Radiation Biology, Köln, Germany
| | - Andrea Firrincieli
- School of Environmental and Forest Science, University of Washington, Seattle, WA, United States of America
| | - Mario Parise
- Department of Geological and Environmental Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fiorucci
- Department of Environment, Land and Infrastructure Engineering, Polytechnic University of Turin, Torino, Italy
| | - Bartolomeo Vigna
- Department of Environment, Land and Infrastructure Engineering, Polytechnic University of Turin, Torino, Italy
| | - Rosangela Addesso
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (SA), Italy
| | - Daniela Baldantoni
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (SA), Italy
| | - Cristina Carbone
- DISTAV, Department of Geological, Environmental and Biological Sciences, University of Genoa, Genoa, Italy
| | | | - Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Sevilla, Spain
| | | | - Jo De Waele
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Watanabe T, Kojima H, Umezawa K, Hori C, Takasuka TE, Kato Y, Fukui M. Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera. Front Microbiol 2019; 10:316. [PMID: 30858836 PMCID: PMC6397845 DOI: 10.3389/fmicb.2019.00316] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Even in the current era of metagenomics, the interpretation of nucleotide sequence data is primarily dependent on knowledge obtained from a limited number of microbes isolated in pure culture. Thus, it is of fundamental importance to expand the variety of strains available in pure culture, to make reliable connections between physiological characteristics and genomic information. In this study, two sulfur oxidizers that potentially represent two novel species were isolated and characterized. They were subjected to whole-genome sequencing together with 7 neutrophilic and chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in the obtained genomes were identified and compared with those of isolated sulfur oxidizers in the classes Betaproteobacteria and Gammaproteobacteria. Although the combinations of these genes in the respective genomes are diverse, typical combinations corresponding to three types of core sulfur oxidation pathways were identified. Each pathway involves one of three specific sets of proteins, SoxCD, DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by soeABC is a conserved component in the core pathways lacking SoxCD. Phylogenetically close organisms share same core sulfur oxidation pathway, but a notable exception was observed in the family ‘Sulfuricellaceae’. In this family, some strains have either core pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both pathways. A proteomics analysis showed that proteins constituting the core pathways were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is similar to that of Dsr system, both sets of proteins were detected with high relative abundances in the proteome of a strain possessing genes for these proteins. In addition to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the sequenced genomes. As a result, two strains belonging to the families Thiobacillaceae and Sterolibacteriaceae were observed to harbor genes encoding ArxAB, a type of arsenite oxidase that has been identified in a limited number of bacteria. These findings were made with the newly obtained genomes, including those from 6 genera from which no genome sequence of an isolated organism was previously available. These genomes will serve as valuable references to interpret nucleotide sequences.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|