1
|
Jensen SL, Aaskov ML, Malte H, Bayley M. The missing effect of temperature on branchial O2 loss in an air-breathing catfish. J Exp Biol 2025; 228:jeb250295. [PMID: 40223502 DOI: 10.1242/jeb.250295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Air-breathing fish risk losing aerially sourced O2 to hypoxic water during branchial passage. Two adaptations thought to mitigate this loss are reduced gill size and increased blood O2 affinity. Both are affected by temperature in the facultative air-breathing catfish Pangasianodon hypophthalmus, where increased temperature results in larger gills and reduced blood O2 affinity. Here, we tested whether branchial O2 loss increases with temperature, by measuring this loss and the aerial and aquatic gas exchange at 25°C and 33°C in near aquatic anoxia. Surprisingly, increasing temperature did not change the absolute O2 loss while metabolic rate increased by 75%. Hence, animals suffered a 10% loss of the aerial O2 uptake at 25°C compared with only a 5% loss at 33°C. Our results indicate an increased hypoxia-induced reduction in gill ventilation at 33°C, negatively affecting aquatic exchange of both CO2 and O2, resulting in unchanged O2 loss and a CO2 partitioning shift towards the air phase.
Collapse
Affiliation(s)
- Sara L Jensen
- Zoophysiology, Department of biology, Aarhus University, Aarhus 8000C, Denmark
| | - Magnus L Aaskov
- Zoophysiology, Department of biology, Aarhus University, Aarhus 8000C, Denmark
| | - Hans Malte
- Zoophysiology, Department of biology, Aarhus University, Aarhus 8000C, Denmark
| | - Mark Bayley
- Zoophysiology, Department of biology, Aarhus University, Aarhus 8000C, Denmark
| |
Collapse
|
2
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
3
|
Iarovaia OV, Ulianov SV, Ioudinkova ES, Razin SV. Segregation of α- and β-Globin Gene Cluster in Vertebrate Evolution: Chance or Necessity? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1035-1049. [PMID: 36180994 DOI: 10.1134/s0006297922090140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The review is devoted to the patterns of evolution of α- and β-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/β-globin genes in Amniota occurred due to the performance by α-globins and β-globins of non-canonical functions not related to oxygen transport.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Elena S Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
4
|
Weber RE, Damsgaard C, Fago A, Val AL, Moens L. Ontogeny of hemoglobin‑oxygen binding and multiplicity in the obligate air-breathing fish Arapaima gigas. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111190. [PMID: 35331911 DOI: 10.1016/j.cbpa.2022.111190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
The evolutionary and ontogenetic changes from water- to air-breathing result in major changes in the cardiorespiratory systems. However, the potential changes in hemoglobin's (Hb) oxygen binding properties during ontogenetic transitions to air-breathing remain poorly understood. Here we investigated Hb multiplicity and O2 binding in hemolysates and Hb components from juveniles and adults of the obligate air-breathing pirarucu (Arapaima gigas) that starts life as water-breathing hatchlings. Contrasting with previous electrophoresis studies that report one or two isoHbs in adults, isoelectric focusing (IEF) resolved the hemolysates from both stages into four major bands, which exhibited identical O2 binding properties (i.e. O2 affinities, cooperativity coefficients, and sensitivities to pH and the major organic phosphate effectors), also as compared to the cofactor-free hemolysates. Of note, the multiplicity pattern recurred upon reanalyses of the most-abundant fractions isolated from the juvenile and the adult stages, suggesting possible stabilization of different quaternary states with different isoelectric points during the purification procedure. The study demonstrates unchanged Hb-O2 binding properties during development, despite the pronounced differences in O2 availability between the two media, which harmonizes with findings based on a broader spectrum of interspecific comparisons. Taken together, these results disclose that obligate air-breathing in Arapaima is not contingent upon changes in Hb multiplicity and O2 binding characteristics.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - Christian Damsgaard
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Adalberto L Val
- Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Fago A. New insights into survival strategies to oxygen deprivation in anoxia-tolerant vertebrates. Acta Physiol (Oxf) 2022; 235:e13841. [PMID: 35548887 PMCID: PMC9287066 DOI: 10.1111/apha.13841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Hypoxic environments pose a severe challenge to vertebrates and even short periods of oxygen deprivation are often lethal as they constrain aerobic ATP production. However, a few ectotherm vertebrates are capable of surviving long‐term hypoxia or even anoxia with little or no damage. Among these, freshwater turtles and crucian carp are the recognized champions of anoxia tolerance, capable of overwintering in complete oxygen deprivation for months at freezing temperatures by entering a stable hypometabolic state. While all steps of the oxygen cascade are adjusted in response to oxygen deprivation, this review draws from knowledge of freshwater turtles and crucian carp to highlight mechanisms regulating two of these steps, namely oxygen transport in the blood and oxygen utilization in mitochondria during three sequential phases: before anoxia, when hypoxia develops, during anoxia, and after anoxia at reoxygenation. In cold hypoxia, reduced red blood cell concentration of ATP plays a crucial role in increasing blood oxygen affinity and/or reducing oxygen unloading to tissues, to adjust aerobic metabolism to decrease ambient oxygen. In anoxia, metabolic rewiring of oxygen utilization keeps largely unaltered NADH/NAD+ ratios and limits ADP degradation and succinate buildup. These critical adjustments make it possible to restart mitochondrial respiration and energy production with little generation of reactive oxygen species at reoxygenation when oxygen is again available. Inhibition of key metabolic enzymes seems to play crucial roles in these responses, in particular mitochondrial complex V, although identifying the nature of such inhibition(s) in vivo remains a challenge for future studies.
Collapse
Affiliation(s)
- Angela Fago
- Department of Biology Aarhus University Aarhus Denmark
| |
Collapse
|
6
|
Damsgaard C, Country MW. The Opto-Respiratory Compromise: Balancing Oxygen Supply and Light Transmittance in the Retina. Physiology (Bethesda) 2022; 37:101-113. [PMID: 34843655 PMCID: PMC9159541 DOI: 10.1152/physiol.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The light-absorbing retina has an exceptionally high oxygen demand, which imposes two conflicting needs: high rates of blood perfusion and an unobstructed light path devoid of blood vessels. This review discusses mechanisms and physiological trade-offs underlying retinal oxygen supply in vertebrates and examines how these physiological systems supported the evolution of vision.
Collapse
Affiliation(s)
- Christian Damsgaard
- 1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,2Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Michael W. Country
- 3Retinal Neurophysiology Section, National Eye Institute,
National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Dautova A, Khazhieva E, Isaeva E, Khabibulinna I, Shamratova V. Influence of motor activity and polymorphism I/D of ACE on the affinity of oxygen for hemoglobin. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224801020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of rs4646994 polymorphism of the ACE gene on the affinity of oxygen for hemoglobin among young men with different levels of physical activity has been studied. 245 young men aged 20-22 years were included in the study. All young men were divided into three groups depending on their motor activity: low (LMA), average (AMA) and high (HMA). SatO2, pO2, pCO2, p50 and HbO2 were analyzed in capillary blood of all examined young men. It was found out that I/I genotype of the ACE gene is associated with a decrease in the affinity of oxygen for hemoglobin both in LMA (p=0.022) and in HMA (p=0.000096). The intensification of physical activity among I/D and D/D genotypes is accompanied by an increase in the level of hemoglobin oxygenation in blood, while the I/I genotype with part of HbO2 does not change depending on motor activity. These features can be explained by the shift of the oxygen dissociation curve to the left among young men with the *D allele genotype, with an increase in physical activity. On the contrary, the I/I genotype of the ACE gene have efficient oxygen extraction to tissues, regardless of the level of motor activity compared to the D/D genotype.
Collapse
|
8
|
Bautista NM, Malte H, Natarajan C, Wang T, Storz JF, Fago A. New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin. J Exp Biol 2021; 224:271141. [PMID: 34338300 DOI: 10.1242/jeb.242615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80-100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.
Collapse
Affiliation(s)
- Naim M Bautista
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tobias Wang
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jay F Storz
- School of Biological Sciences , University of Nebraska, Lincoln, NE 68588, USA
| | - Angela Fago
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
The adaptive benefit of evolved increases in hemoglobin-O 2 affinity is contingent on tissue O 2 diffusing capacity in high-altitude deer mice. BMC Biol 2021; 19:128. [PMID: 34158035 PMCID: PMC8218429 DOI: 10.1186/s12915-021-01059-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Complex organismal traits are often the result of multiple interacting genes and sub-organismal phenotypes, but how these interactions shape the evolutionary trajectories of adaptive traits is poorly understood. We examined how functional interactions between cardiorespiratory traits contribute to adaptive increases in the capacity for aerobic thermogenesis (maximal O2 consumption, V̇O2max, during acute cold exposure) in high-altitude deer mice (Peromyscus maniculatus). We crossed highland and lowland deer mice to produce F2 inter-population hybrids, which expressed genetically based variation in hemoglobin (Hb) O2 affinity on a mixed genetic background. We then combined physiological experiments and mathematical modeling of the O2 transport pathway to examine the links between cardiorespiratory traits and V̇O2max. RESULTS Physiological experiments revealed that increases in Hb-O2 affinity of red blood cells improved blood oxygenation in hypoxia but were not associated with an enhancement in V̇O2max. Sensitivity analyses performed using mathematical modeling showed that the influence of Hb-O2 affinity on V̇O2max in hypoxia was contingent on the capacity for O2 diffusion in active tissues. CONCLUSIONS These results suggest that increases in Hb-O2 affinity would only have adaptive value in hypoxic conditions if concurrent with or preceded by increases in tissue O2 diffusing capacity. In high-altitude deer mice, the adaptive benefit of increasing Hb-O2 affinity is contingent on the capacity to extract O2 from the blood, which helps resolve controversies about the general role of hemoglobin function in hypoxia tolerance.
Collapse
|
10
|
Effect of NH2-terminal acetylation on the oxygenation properties of vertebrate haemoglobin. Biochem J 2021; 477:3839-3850. [PMID: 32936244 DOI: 10.1042/bcj20200623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
In vertebrate haemoglobin (Hb), the NH2-terminal residues of the α- and β-chain subunits are thought to play an important role in the allosteric binding of protons (Bohr effect), CO2 (as carbamino derivatives), chloride ions, and organic phosphates. Accordingly, acetylation of the α- and/or β-chain NH2-termini may have significant effects on the oxygenation properties of Hb. Here we investigate the effect of NH2-terminal acetylation by using a newly developed expression plasmid system that enables us to compare recombinantly expressed Hbs that are structurally identical except for the presence or absence of NH2-terminal acetyl groups. Experiments with native and recombinant Hbs of representative vertebrates reveal that NH2-terminal acetylation does not impair the Bohr effect, nor does it significantly diminish responsiveness to allosteric cofactors, such as chloride ions or organic phosphates. These results suggest that observed variation in the oxygenation properties of vertebrate Hbs is principally explained by amino acid divergence in the constituent globin chains rather than post-translational modifications of the globin chain NH2-termini.
Collapse
|
11
|
The rise and fall of globins in the amphibia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100759. [PMID: 33202310 DOI: 10.1016/j.cbd.2020.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
The globin gene repertoire of gnathostome vertebrates is dictated by differential retention and loss of nine paralogous genes: androglobin, neuroglobin, globin X, cytoglobin, globin Y, myoglobin, globin E, and the α- and β-globins. We report the globin gene repertoire of three orders of modern amphibians: Anura, Caudata, and Gymnophiona. Combining phylogenetic and conserved synteny analysis, we show that myoglobin and globin E were lost only in the Batrachia clade, but retained in Gymnophiona. The major amphibian groups also retained different paralogous copies of globin X. None of the amphibian presented αD-globin gene. Nevertheless, two clades of β-globins are present in all amphibians, indicating that the amphibian ancestor possessed two paralogous proto β-globins. We also show that orthologs of the gene coding for the monomeric hemoglobin found in the heart of Rana catesbeiana are present in Neobatrachia and Pelobatoidea species we analyzed. We suggest that these genes might perform myoglobin- and globin E-related functions. We conclude that the repertoire of globin genes in amphibians is dictated by both retention and loss of the paralogous genes cited above and the rise of a new globin gene through co-option of an α-globin, possibly facilitated by a prior event of transposition.
Collapse
|
12
|
Damsgaard C, Lauridsen H, Harter TS, Kwan GT, Thomsen JS, Funder AM, Supuran CT, Tresguerres M, Matthews PG, Brauner CJ. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 2020; 9:58995. [PMID: 32840208 PMCID: PMC7447425 DOI: 10.7554/elife.58995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that the evolution of high acuity vision in fishes was directly associated with their unique pH-sensitive hemoglobins that allow O2 to be delivered to the retina at PO2s more than ten-fold that of arterial blood (Damsgaard et al., 2019). Here, we show strong evidence that vacuolar-type H+-ATPase and plasma-accessible carbonic anhydrase in the vascular structure supplying the retina act together to acidify the red blood cell leading to O2 secretion. In vivo data indicate that this pathway primarily affects the oxygenation of the inner retina involved in signal processing and transduction, and that the evolution of this pathway was tightly associated with the morphological expansion of the inner retina. We conclude that this mechanism for retinal oxygenation played a vital role in the adaptive evolution of vision in teleost fishes.
Collapse
Affiliation(s)
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Till S Harter
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | - Garfield T Kwan
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | | | - Anette Md Funder
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Department, Sezione di Scienze Farmaceutiche, Florence, Italy
| | - Martin Tresguerres
- Scripps Institution of Oceanography, UC San Diego, La Jolla, United States
| | - Philip Gd Matthews
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Pu P, Lu S, Niu Z, Zhang T, Zhao Y, Yang X, Zhao Y, Tang X, Chen Q. Oxygenation properties and underlying molecular mechanisms of hemoglobins in plateau zokor ( Eospalax baileyi). Am J Physiol Regul Integr Comp Physiol 2019; 317:R696-R708. [PMID: 31508994 DOI: 10.1152/ajpregu.00335.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plateau zokor (Eospalax baileyi) is a species of subterranean rodent endemic to the Tibetan Plateau. It is well adapted to the cold and hypoxic and hypercapnic burrow. To study the oxygenation properties of plateau zokor hemoglobins (Hbs), we measured intrinsic Hb-O2 affinities and their sensitivities to pH (Bohr effect); CO2; Cl-, 2,3-diphosphoglycerate (DPG); and temperature using purified Hbs from zokor and mouse. The optimal deoxyHb model of plateau zokor was constructed and used to study its structural characteristics by molecular dynamics simulations. O2 binding results revealed that plateau zokor Hbs exhibit remarkably high intrinsic Hb-O2 affinity, low CO2 effects compared with human and the relatively low anion allosteric effector sensitivities (DPG and Cl-) at normal temperature, which would safeguard the pulmonary Hb-O2 loading under hypoxic and hypercapnic conditions. Furthermore, the high anion allosteric effector sensitivities at low temperature and low temperature sensitivities of plateau zokor Hbs would facilitate the releasing of O2 in cold extremities and metabolic tissues. However, the high Hb-O2 affinity of plateau zokor is not compensated by high pH sensitivity as the Bohr factors of plateau zokor Hbs were as low as those of mouse. The results of molecular dynamics simulations revealed the reduced hydrogen bonding between the α1β1- and α2β2-dimer interface of deoxyHb in zokor compared with mouse. It may be the primary mechanism of the high intrinsic Hb-O2 affinities in zokor. Specifically, substitution of the 131Ser→Asn in the α2-chain weakened the connection between α1- and β2-subunit.
Collapse
Affiliation(s)
- Peng Pu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Songsong Lu
- Faculty of Forestry, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhiyi Niu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yaofeng Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Xingwen Yang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yao Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Li R, Dai X, Feng Z, Li Y, Zhao M, Liu J, Li H, Chen Y, Ma Y, Tang Y. Effect of toxic ligands on O 2 binding to heme and their toxicity mechanism. Phys Chem Chem Phys 2019; 21:14957-14963. [PMID: 31236551 DOI: 10.1039/c9cp02583a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme, as the cofactor and active site of Hb, enables Hb to carry out the necessary function required for O2 management for life, that is, reversible O2 binding for transport. In this paper, the microscopic mechanism of heme-associated poisoning has been elucidated from the perspective of electronic interaction by performing first-principles calculations. The results show that the functional groups (-CHO, -COOH, -NO2, -NH2) and CN exhibit a stronger affinity for heme than O2 and are more likely to occupy the O2 binding site, which results in the loss of the ability of heme to carry O2. Moreover, the addition of functional groups, CO and CN to heme at the side site can cause a pronounced enhancement toward the O2 binding characteristics of heme, which prevents heme from releasing O2 to oxygen-consuming tissues as the blood circulates. The reversible O2 binding function of heme is disrupted by the presence of these toxic ligands in the heme binding pocket, which greatly affects O2 transport in the blood. The inability of tissues to obtain O2 leads to tissue hypoxia, which is the main cause of poisoning. Based on the energy, geometry and electronic properties, the hypoxia mechanism proposed by us coincides well with experiment, and the research has the potential to provide a theoretical reference for the relevant areas of bioscience.
Collapse
Affiliation(s)
- Renyi Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xianqi Dai
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhen Feng
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yi Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Mingyu Zhao
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jing Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Huiting Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yang Chen
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yaqiang Ma
- College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yanan Tang
- Quantum Materials Research Center, College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, China.
| |
Collapse
|
15
|
Kuroiwa Y, Fukui T, Takahara S, Lee SY, Oe K, Arakura M, Kumabe Y, Oda T, Matsumoto T, Matsushita T, Akisue T, Sakai Y, Kuroda R, Niikura T. Topical cutaneous application of CO 2 accelerates bone healing in a rat femoral defect model. BMC Musculoskelet Disord 2019; 20:237. [PMID: 31113412 PMCID: PMC6530028 DOI: 10.1186/s12891-019-2601-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Bone defects may occur because of severe trauma, nonunion, infection, or tumor resection. However, treatments for bone defects are often difficult and have not been fully established yet. We previously designed an efficient system of topical cutaneous application of carbon dioxide (CO2) using a novel hydrogel, which facilitates CO2 absorption through the skin into the deep area within a limb. In this study, the effect of topical cutaneous application of CO2 on bone healing was investigated using a rat femoral defect model. METHODS In this basic research study, an in vivo bone defect model, fixed with an external fixator, was created using a rat femur. The affected limb was shaved, and CO2 was applied for 20 min/day, 5 days/week. In the control animals, CO2 gas was replaced with air. Radiographic, histological, biomechanical, and genetic assessments were performed to evaluate bone healing. RESULTS Radiographically, bone healing rate was significantly higher in the CO2 group than in the control group at 4 weeks (18.2% vs. 72.7%). The degree of bone healing scored using the histopathological Allen grading system was significantly higher in the CO2 group than in the control group at 2 weeks (1.389 ± 0.334 vs. 1.944 ± 0.375). The ultimate stress, extrinsic stiffness, and failure energy were significantly greater in the CO2 group than in the control group at 4 weeks (3.2 ± 0.8% vs. 38.1 ± 4.8%, 0.6 ± 0.3% vs. 41.5 ± 12.2%, 2.6 ± 0.8% vs. 24.7 ± 5.9%, respectively.). The volumetric bone mineral density of the callus in micro-computed tomography analysis was significantly higher in the CO2 group than in the control group at 4 weeks (180.9 ± 43.0 mg/cm3 vs. 247.9 ± 49.9 mg/cm3). Gene expression of vascular endothelial growth factor in the CO2 group was significantly greater than that in the control group at 3 weeks (0.617 ± 0.240 vs. 2.213 ± 0.387). CONCLUSIONS Topical cutaneous application of CO2 accelerated bone healing in a rat femoral defect model. CO2 application can be a novel and useful therapy for accelerating bone healing in bone defects; further research on its efficacy in humans is warranted.
Collapse
Affiliation(s)
- Yu Kuroiwa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shunsuke Takahara
- Department of Orthopaedic Surgery, Hyogo Prefectural Kakogawa Medical Center, 203 Kanno, Kanno-cho, Kakogawa, 675-8555, Japan
| | - Sang Yang Lee
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Michio Arakura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yohei Kumabe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Oda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
16
|
Wilson RE, Menning DM, Wedemeyer K, Talbot SL. A transcriptome resource for the Arctic Cod (Boreogadus saida). Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Jendroszek A, Malte H, Overgaard CB, Beedholm K, Natarajan C, Weber RE, Storz JF, Fago A. Allosteric mechanisms underlying the adaptive increase in hemoglobin-oxygen affinity of the bar-headed goose. J Exp Biol 2018; 221:jeb185470. [PMID: 30026237 PMCID: PMC6176913 DOI: 10.1242/jeb.185470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 01/07/2023]
Abstract
The high blood-O2 affinity of the bar-headed goose (Anser indicus) is an integral component of the biochemical and physiological adaptations that allow this hypoxia-tolerant species to undertake migratory flights over the Himalayas. The high blood-O2 affinity of this species was originally attributed to a single amino acid substitution of the major hemoglobin (Hb) isoform, HbA, which was thought to destabilize the low-affinity T state, thereby shifting the T-R allosteric equilibrium towards the high-affinity R state. Surprisingly, this mechanistic hypothesis has never been addressed using native proteins purified from blood. Here, we report a detailed analysis of O2 equilibria and kinetics of native major HbA and minor HbD isoforms from bar-headed goose and greylag goose (Anser anser), a strictly lowland species, to identify and characterize the mechanistic basis for the adaptive change in Hb function. We find that HbA and HbD of bar-headed goose have consistently higher O2 affinities than those of the greylag goose. The corresponding Hb isoforms of the two species are equally responsive to physiological allosteric cofactors and have similar Bohr effects. Thermodynamic analyses of O2 equilibrium curves according to the two-state Monod-Wyman-Changeaux model revealed higher R-state O2 affinities in the bar-headed goose Hbs, associated with lower O2 dissociation rates, compared with the greylag goose. Conversely, the T state was not destabilized and the T-R allosteric equilibrium was unaltered in bar-headed goose Hbs. The physiological implication of these results is that increased R-state affinity allows for enhanced O2 saturation in the lungs during hypoxia, but without impairing O2 delivery to tissues.
Collapse
Affiliation(s)
| | - Hans Malte
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Kristian Beedholm
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Roy E Weber
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Barts N, Greenway R, Passow CN, Arias-Rodriguez L, Kelley JL, Tobler M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018; 61:273-286. [DOI: 10.1139/gen-2017-0051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H2S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H2S—along with related lineages from non-sulfidic environments—to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H2S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H2S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H2S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H2S-rich environments are not necessarily repeatable across replicated lineages.
Collapse
Affiliation(s)
- Nicholas Barts
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Ryan Greenway
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Courtney N. Passow
- Ecology, Evolution and Behavior, University of Minnesota St. Paul, 205 Cargill Building, St. Paul, MN 55108, USA
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), C.P. 86150, Villahermosa, Tabasco, México
| | - Joanna L. Kelley
- Department of Biological Sciences, Washington State University, 431 Heald Hall, Pullman, WA 99164, USA
| | - Michael Tobler
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
19
|
Duan T, Shi C, Zhou J, Lv X, Li Y, Luo Y. How does the snakehead Channa argus survive in air? The combined roles of the suprabranchial chamber and physiological regulations during aerial respiration. Biol Open 2018; 7:bio.029223. [PMID: 29361611 PMCID: PMC5861356 DOI: 10.1242/bio.029223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study aimed to test the hypothesis that the aerial survival of the northern snakehead is involved not only with suprabranchial chamber respiration but also with physiological regulations. The aerial survival time and oxygen consumption rate (VO2) were determined in snakeheads with either normal or injured suprabranchial organs. Some hematological and biochemical parameters were assessed during aerial exposure. The results showed that resting VO2 decreased when switching from water to air in both the control and the suprabranchial organ-injured fish, with decreases of 22.4% and 23.5%, respectively. Resting VO2 in air was not different between the control and the suprabranchial organ-injured fish. The red blood cell (RBC) count and hemoglobin concentration showed no marked changes, while RBC size increased when exposed to air. The liver lactate concentration remained unchanged, and the white muscle lactate concentration decreased when switching from water to air. The blood ammonia concentration tended to increase during aerial respiration. These results suggest that the aerial survival of the snakehead is positively associated with a combination of factors, including respiration of suprabranchial organs and other accessory organs, depressed metabolic demands and increased oxygen transport, and negatively associated with the accumulation of blood ammonia but not anaerobic metabolism. Summary: The aerial survival of the northern snakehead could be involved with suprabranchial chamber respiration, and also with physiological regulations.
Collapse
Affiliation(s)
- Ting Duan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenchen Shi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Zhou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Xiao Lv
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yongli Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yiping Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
20
|
Functional diversification of sea lamprey globins in evolution and development. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:283-291. [PMID: 29155105 DOI: 10.1016/j.bbapap.2017.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Agnathans have a globin repertoire that markedly differs from that of jawed (gnathostome) vertebrates. The sea lamprey (Petromyzon marinus) harbors at least 18 hemoglobin, two myoglobin, two globin X, and one cytoglobin genes. However, agnathan hemoglobins and myoglobins are not orthologous to their cognates in jawed vertebrates. Thus, blood-based O2 transport and muscle-based O2 storage proteins emerged twice in vertebrates from a tissue-globin ancestor. Notably, the sea lamprey displays three switches in hemoglobin expression in its life cycle, analogous to hemoglobin switching in vertebrates. To study the functional changes associated with the evolution and ontogenesis of distinct globin types, we determined O2 binding equilibria, type of quaternary assembly, and nitrite reductase enzymatic activities of one adult (aHb5a) and one embryonic/larval hemoglobin (aHb6), myoglobin (aMb1) and cytoglobin (Cygb) of the sea lamprey. We found clear functional differentiation among globin types expressed at different developmental stages and in different tissues. Cygb and aMb1 have high O2 affinity and nitrite reductase activity, while the two hemoglobins display low O2 affinity and nitrite reductase activity. Cygb and aHb6 but not aHb5a show cooperative O2 binding, correlating with increased stability of dimers, as shown by gel filtration and molecular modeling. The high O2-affinity and the lack of cooperativity confirm the identity of the sea lamprey aMb1 as O2 storage protein of the muscle. The dimeric structure and O2-binding properties of sea lamprey and mammalian Cygb were very similar, suggesting a conservation of function since their divergence around 500million years ago.
Collapse
|
21
|
Weber RE, Jarvis JUM, Fago A, Bennett NC. O 2 binding and CO 2 sensitivity in haemoglobins of subterranean African mole rats. ACTA ACUST UNITED AC 2017; 220:3939-3948. [PMID: 28851819 DOI: 10.1242/jeb.160457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little information available on adjustments in haemoglobin (Hb) function that may mitigate the impact of exogenous and endogenous constraints on the uptake and internal transport of O2, we measured haematological characteristics, as well as Hb-O2 binding affinity and sensitivity to pH (Bohr effect), CO2, temperature and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns in haematocrit (Hct) and blood and red cell DPG and Hb concentrations or in intrinsic Hb-O2 affinity and its sensitivity to pH and DPG that correlate with burrowing, sociality and soil type. However, the results reveal low specific (pH independent) effects of CO2 on Hb-O2 affinity compared with humans that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular mechanisms underlying functional variation in rodent Hbs.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | | | - Angela Fago
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Nigel C Bennett
- Zoology and Entomology Department, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
22
|
Fago A. Functional roles of globin proteins in hypoxia-tolerant ectothermic vertebrates. J Appl Physiol (1985) 2017; 123:926-934. [PMID: 28428250 DOI: 10.1152/japplphysiol.00104.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
Globins are heme-containing proteins ubiquitously expressed in vertebrates, where they serve a broad range of biological functions, directly or indirectly related to the tight control of oxygen levels and its toxic products in vivo. Perhaps the most investigated of all proteins, hemoglobin and myoglobin are primarily involved in oxygen transport and storage, but also in facilitating arterial vasodilation, suppressing mitochondrial respiration, and preventing tissue oxidative damage via accessory redox enzymatic activities during hypoxia. By contrast, the more recently discovered neuroglobin and cytoglobin do not seem to function as reversible oxygen carriers and are instead involved in redox activities, although their exact biological roles remain to be clarified. In this context, hypoxia-tolerant ectotherms, such as freshwater turtles and members of the carp family that survive winter in extreme hypoxia, have proven as excellent models to appreciate the diversity of biological functions of globin proteins. Unraveling physiological roles of globin proteins in these extreme animals will clarify an important part of the adaptive mechanisms for surviving extreme fluctuations of oxygen availability that are prohibitive to mammals.
Collapse
Affiliation(s)
- Angela Fago
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Regulation of blood oxygen transport in hibernating mammals. J Comp Physiol B 2017; 187:847-856. [DOI: 10.1007/s00360-017-1085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022]
|
24
|
Storz JF. Gene Duplication and Evolutionary Innovations in Hemoglobin-Oxygen Transport. Physiology (Bethesda) 2017; 31:223-32. [PMID: 27053736 DOI: 10.1152/physiol.00060.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During vertebrate evolution, duplicated hemoglobin (Hb) genes diverged with respect to functional properties as well as the developmental timing of expression. For example, the subfamilies of genes that encode the different subunit chains of Hb are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different developmental stages. In some vertebrate taxa, functional differentiation between co-expressed Hb isoforms may also contribute to physiologically important divisions of labor.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
25
|
Harter TS, Brauner CJ. The O 2 and CO 2 Transport System in Teleosts and the Specialized Mechanisms That Enhance Hb–O 2 Unloading to Tissues. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.fp.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Vitagliano L, Mazzarella L, Merlino A, Vergara A. Fine Sampling of the R→T Quaternary-Structure Transition of a Tetrameric Hemoglobin. Chemistry 2016; 23:605-613. [DOI: 10.1002/chem.201603421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Luigi Vitagliano
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
| | - Lelio Mazzarella
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
| | - Antonello Merlino
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
| | - Alessandro Vergara
- Institute of Biostructures and Biomaging; CNR; Via Mezzocannone 16 80134 Napoli Italy
- Dept. Chemical Sciences; University of Napoli “Federico II”; Via Cinthia 80126 Napoli Italy
- CEINGE Biotecnologie Avanzate scarlm; Via G. Salvatore Napoli Italy
| |
Collapse
|
27
|
Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 2016; 219:3190-3203. [PMID: 27802149 PMCID: PMC5091379 DOI: 10.1242/jeb.127134] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In air-breathing vertebrates at high altitude, fine-tuned adjustments in hemoglobin (Hb)-O2 affinity provide an energetically efficient means of mitigating the effects of arterial hypoxemia. However, it is not always clear whether an increased or decreased Hb-O2 affinity should be expected to improve tissue O2 delivery under different degrees of hypoxia, due to the inherent trade-off between arterial O2 loading and peripheral O2 unloading. Theoretical results indicate that the optimal Hb-O2 affinity varies as a non-linear function of environmental O2 availability, and the threshold elevation at which an increased Hb-O2 affinity becomes advantageous depends on the magnitude of diffusion limitation (the extent to which O2 equilibration at the blood-gas interface is limited by the kinetics of O2 exchange). This body of theory provides a framework for interpreting the possible adaptive significance of evolved changes in Hb-O2 affinity in vertebrates that have colonized high-altitude environments. To evaluate the evidence for an empirical generalization and to test theoretical predictions, I synthesized comparative data in a phylogenetic framework to assess the strength of the relationship between Hb-O2 affinity and native elevation in mammals and birds. Evidence for a general trend in mammals is equivocal, but there is a remarkably strong positive relationship between Hb-O2 affinity and native elevation in birds. Evolved changes in Hb function in high-altitude birds provide one of the most compelling examples of convergent biochemical adaptation in vertebrates.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
28
|
Wei C, Wang H, Liu G, Zhao F, Kijas JW, Ma Y, Lu J, Zhang L, Cao J, Wu M, Wang G, Liu R, Liu Z, Zhang S, Liu C, Du L. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep 2016; 6:26770. [PMID: 27230812 PMCID: PMC4882523 DOI: 10.1038/srep26770] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Tibetan sheep have lived on the Tibetan Plateau for thousands of years; however, the process and consequences of adaptation to this extreme environment have not been elucidated for important livestock such as sheep. Here, seven sheep breeds, representing both highland and lowland breeds from different areas of China, were genotyped for a genome-wide collection of single-nucleotide polymorphisms (SNPs). The FST and XP-EHH approaches were used to identify regions harbouring local positive selection between these highland and lowland breeds, and 236 genes were identified. We detected selection events spanning genes involved in angiogenesis, energy production and erythropoiesis. In particular, several candidate genes were associated with high-altitude hypoxia, including EPAS1, CRYAA, LONP1, NF1, DPP4, SOD1, PPARG and SOCS2. EPAS1 plays a crucial role in hypoxia adaption; therefore, we investigated the exon sequences of EPAS1 and identified 12 mutations. Analysis of the relationship between blood-related phenotypes and EPAS1 genotypes in additional highland sheep revealed that a homozygous mutation at a relatively conserved site in the EPAS1 3' untranslated region was associated with increased mean corpuscular haemoglobin concentration and mean corpuscular volume. Taken together, our results provide evidence of the genetic diversity of highland sheep and indicate potential high-altitude hypoxia adaptation mechanisms, including the role of EPAS1 in adaptation.
Collapse
Affiliation(s)
- Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China.,National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China.,Institute of apicultural research, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gang Liu
- National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China
| | - Fuping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | | | - Youji Ma
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, People's Republic of China
| | - Jian Lu
- National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China
| | - Li Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Jiaxue Cao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Mingming Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Guangkai Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Zhen Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Shuzhen Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| | - Chousheng Liu
- National Animal Husbandry Service, National Center of Preservation &Utilization of Animal Genetic Resources, Beijing, People's Republic of China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, National Center for Molecular Genetics and Breeding of Animal, Beijing, People's Republic of China
| |
Collapse
|
29
|
Jensen B, Storz JF, Fago A. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:10-4. [PMID: 26808972 DOI: 10.1016/j.cbpa.2016.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/30/2023]
Abstract
An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading.
Collapse
Affiliation(s)
- Birgitte Jensen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
30
|
Natarajan C, Projecto-Garcia J, Moriyama H, Weber RE, Muñoz-Fuentes V, Green AJ, Kopuchian C, Tubaro PL, Alza L, Bulgarella M, Smith MM, Wilson RE, Fago A, McCracken KG, Storz JF. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level. PLoS Genet 2015; 11:e1005681. [PMID: 26637114 PMCID: PMC4670201 DOI: 10.1371/journal.pgen.1005681] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb) function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages), and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization). In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level. The convergent evolution of similar traits in different species could be due to repeated changes at the genetic level or different changes that produce the same phenotypic effect. To investigate the extent to which convergence in phenotype is caused by repeated mutations, we investigated the molecular basis of convergent changes in the oxygenation properties of hemoglobin (Hb) in eight pairs of high- and low-altitude waterfowl taxa from the Andes. The results revealed that convergent increases in Hb-O2 affinity in highland taxa involved a combination of unique and repeated amino acid replacements. However, convergent changes in Hb function generally did not involve parallel substitutions, indicating that repeatability in the evolution of protein function does not require repeatability at the sequence level.
Collapse
Affiliation(s)
- Chandrasekhar Natarajan
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Joana Projecto-Garcia
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Roy E. Weber
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Violeta Muñoz-Fuentes
- Estación Biológica de Doñana-CSIC, Sevilla, Spain
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | | | - Cecilia Kopuchian
- Centro de Ecología Aplicada del Litoral (CECOAL), Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Corrientes, Argentina
| | - Pablo L. Tubaro
- División Ornitología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Luis Alza
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Mariana Bulgarella
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Matthew M. Smith
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Robert E. Wilson
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Angela Fago
- Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark
| | - Kevin G. McCracken
- Institute of Arctic Biology and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- Department of Biology and Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Coral Gables, Florida, United States of America
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
31
|
Xin Y, Tang X, Wang H, Lu S, Wang Y, Zhang Y, Chen Q. Functional characterization and expression analysis of myoglobin in high-altitude lizard Phrynocephalus erythrurus. Comp Biochem Physiol B Biochem Mol Biol 2015; 188:31-6. [DOI: 10.1016/j.cbpb.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
32
|
Fago A, Jensen FB. Hypoxia tolerance, nitric oxide, and nitrite: lessons from extreme animals. Physiology (Bethesda) 2015; 30:116-26. [PMID: 25729057 DOI: 10.1152/physiol.00051.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Among vertebrates able to tolerate periods of oxygen deprivation, the painted and red-eared slider turtles (Chrysemys picta and Trachemys scripta) and the crucian carp (Carassius carassius) are the most extreme and can survive even months of total lack of oxygen during winter. The key to hypoxia survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and-in air-breathing animals-redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals.
Collapse
Affiliation(s)
- Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; and
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
33
|
Storz JF, Natarajan C, Moriyama H, Hoffmann FG, Wang T, Fago A, Malte H, Overgaard J, Weber RE. Oxygenation properties and isoform diversity of snake hemoglobins. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1178-91. [PMID: 26354849 DOI: 10.1152/ajpregu.00327.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Crans KD, Pranckevicius NA, Scott GR. Physiological tradeoffs may underlie the evolution of hypoxia tolerance and exercise performance in sunfish (Centrarchidae). ACTA ACUST UNITED AC 2015; 218:3264-75. [PMID: 26347564 DOI: 10.1242/jeb.124602] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023]
Abstract
Tradeoffs between hypoxia tolerance and aerobic exercise performance appear to exist in some fish taxa, even though both of these traits are often associated with a high O2 transport capacity. We examined the physiological basis for this potential tradeoff in four species of sunfish from the family Centrarchidae. Hypoxia tolerance was greatest in rock bass, intermediate in pumpkinseed and bluegill and lowest in largemouth bass, based on measurements of critical O2 tension (Pcrit) and O2 tension at loss of equilibrium (PO2 at LOE). Consistent with there being a tradeoff between hypoxia tolerance and aerobic exercise capacity, the least hypoxia-tolerant species had the highest critical swimming speed (Ucrit) during normoxia and suffered the greatest decrease in Ucrit in hypoxia. There was also a positive correlation between Ucrit in normoxia and PO2 at LOE, which remained significant after accounting for phylogeny using phylogenetically independent contrasts. Several sub-organismal traits appeared to contribute to both hypoxia tolerance and aerobic exercise capacity (reflected by traits that were highest in both rock bass and largemouth bass), such as the gas-exchange surface area of the gills, the pH sensitivity of haemoglobin-O2 affinity, and the activities of lactate dehydrogenase and the gluconeogenic enzyme phosphoenolpyruvate carboxykinase in the liver. Some other sub-organismal traits were uniquely associated with either hypoxia tolerance (low sensitivity of haemoglobin-O2 affinity to organic phosphates, high pyruvate kinase and lactate dehydrogenase activities in the heart) or aerobic exercise capacity (capillarity and fibre size of the axial swimming muscle). Therefore, the cumulative influence of a variety of respiratory and metabolic traits can result in physiological tradeoffs associated with the evolution of hypoxia tolerance and aerobic exercise performance in fish.
Collapse
Affiliation(s)
- Kyle D Crans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Nicole A Pranckevicius
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
35
|
Janecka JE, Nielsen SSE, Andersen SD, Hoffmann FG, Weber RE, Anderson T, Storz JF, Fago A. Genetically based low oxygen affinities of felid hemoglobins: lack of biochemical adaptation to high-altitude hypoxia in the snow leopard. J Exp Biol 2015; 218:2402-9. [PMID: 26246610 PMCID: PMC4528707 DOI: 10.1242/jeb.125369] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 01/31/2023]
Abstract
Genetically based modifications of hemoglobin (Hb) function that increase blood-O2 affinity are hallmarks of hypoxia adaptation in vertebrates. Among mammals, felid Hbs are unusual in that they have low intrinsic O2 affinities and reduced sensitivities to the allosteric cofactor 2,3-diphosphoglycerate (DPG). This combination of features compromises the acclimatization capacity of blood-O2 affinity and has led to the hypothesis that felids have a restricted physiological niche breadth relative to other mammals. In seeming defiance of this conjecture, the snow leopard (Panthera uncia) has an extraordinarily broad elevational distribution and occurs at elevations above 6000 m in the Himalayas. Here, we characterized structural and functional variation of big cat Hbs and investigated molecular mechanisms of Hb adaptation and allosteric regulation that may contribute to the extreme hypoxia tolerance of the snow leopard. Experiments revealed that purified Hbs from snow leopard and African lion exhibited equally low O2 affinities and DPG sensitivities. Both properties are primarily attributable to a single amino acid substitution, β2His→Phe, which occurred in the common ancestor of Felidae. Given the low O2 affinity and reduced regulatory capacity of feline Hbs, the extreme hypoxia tolerance of snow leopards must be attributable to compensatory modifications of other steps in the O2-transport pathway.
Collapse
Affiliation(s)
- Jan E Janecka
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Simone S E Nielsen
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Sidsel D Andersen
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Trevor Anderson
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| |
Collapse
|
36
|
Lu S, Xin Y, Tang X, Yue F, Wang H, Bai Y, Niu Y, Chen Q. Differences in Hematological Traits between High- and Low-Altitude Lizards (Genus Phrynocephalus). PLoS One 2015; 10:e0125751. [PMID: 25955247 PMCID: PMC4425549 DOI: 10.1371/journal.pone.0125751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
Phrynocephalus erythrurus (Lacertilia: Agamidae) is considered to be the highest living reptile in the world (about 4500-5000 m above sea level), whereas Phrynocephalus przewalskii inhabits low altitudes (about 1000-1500 m above sea level). Here, we report the differences in hematological traits between these two different Phrynocephalus species. Compared with P. przewalskii, the results indicated that P. erythrurus own higher oxygen carrying capacity by increasing red blood cell count (RBC), hemoglobin concentration ([Hb]) and hematocrit (Hct) and these elevations could promote oxygen carrying capacity without disadvantage of high viscosity. The lower partial pressure of oxygen in arterial blood (PaO2) of P. erythrurus did not cause the secondary alkalosis, which may be attributed to an efficient pulmonary system for oxygen (O2) loading. The elevated blood-O2 affinity in P. erythrurus may be achieved by increasing intrinsic O2 affinity of isoHbs and balancing the independent effects of potential heterotropic ligands. We detected one α-globin gene and three β-globin genes with 1 and 33 amino acid substitutions between these two species, respectively. Molecular dynamics simulation results showed that amino acids substitutions in β-globin chains could lead to the elimination of hydrogen bonds in T-state Hb models of P. erythrurus. Based on the present data, we suggest that P. erythrurus have evolved an efficient oxygen transport system under the unremitting hypobaric hypoxia.
Collapse
Affiliation(s)
- Songsong Lu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Feng Yue
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yucheng Bai
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yonggang Niu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Damsgaard C, Phuong LM, Huong DTT, Jensen FB, Wang T, Bayley M. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction. Am J Physiol Regul Integr Comp Physiol 2015; 308:R907-15. [PMID: 25810388 DOI: 10.1152/ajpregu.00470.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/23/2015] [Indexed: 01/19/2023]
Abstract
Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.
Collapse
Affiliation(s)
- Christian Damsgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark;
| | - Le My Phuong
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Interaction of apoNeuroglobin with heme–Aβ complexes relevant to Alzheimer’s disease. J Biol Inorg Chem 2015; 20:563-74. [DOI: 10.1007/s00775-015-1241-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023]
|
39
|
The evolution of nitric oxide signalling in vertebrate blood vessels. J Comp Physiol B 2014; 185:153-71. [DOI: 10.1007/s00360-014-0877-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
40
|
High blood oxygen affinity in the air-breathing swamp eel Monopterus albus. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:102-8. [DOI: 10.1016/j.cbpa.2014.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022]
|
41
|
Cheviron ZA, Natarajan C, Projecto-Garcia J, Eddy DK, Jones J, Carling MD, Witt CC, Moriyama H, Weber RE, Fago A, Storz JF. Integrating evolutionary and functional tests of adaptive hypotheses: a case study of altitudinal differentiation in hemoglobin function in an Andean Sparrow, Zonotrichia capensis. Mol Biol Evol 2014; 31:2948-62. [PMID: 25135942 PMCID: PMC4209134 DOI: 10.1093/molbev/msu234] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In air-breathing vertebrates, the physiologically optimal blood-O2 affinity is jointly determined by the prevailing partial pressure of atmospheric O2, the efficacy of pulmonary O2 transfer, and internal metabolic demands. Consequently, genetic variation in the oxygenation properties of hemoglobin (Hb) may be subject to spatially varying selection in species with broad elevational distributions. Here we report the results of a combined functional and evolutionary analysis of Hb polymorphism in the rufous-collared sparrow (Zonotrichia capensis), a species that is continuously distributed across a steep elevational gradient on the Pacific slope of the Peruvian Andes. We integrated a population genomic analysis that included all postnatally expressed Hb genes with functional studies of naturally occurring Hb variants, as well as recombinant Hb (rHb) mutants that were engineered through site-directed mutagenesis. We identified three clinally varying amino acid polymorphisms: Two in the α(A)-globin gene, which encodes the α-chain subunits of the major HbA isoform, and one in the α(D)-globin gene, which encodes the α-chain subunits of the minor HbD isoform. We then constructed and experimentally tested single- and double-mutant rHbs representing each of the alternative α(A)-globin genotypes that predominate at different elevations. Although the locus-specific patterns of altitudinal differentiation suggested a history of spatially varying selection acting on Hb polymorphism, the experimental tests demonstrated that the observed amino acid mutations have no discernible effect on respiratory properties of the HbA or HbD isoforms. These results highlight the importance of experimentally validating the hypothesized effects of genetic changes in protein function to avoid the pitfalls of adaptive storytelling.
Collapse
Affiliation(s)
- Zachary A Cheviron
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign School of Biological Sciences, University of Nebraska, Lincoln
| | | | | | - Douglas K Eddy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign
| | - Jennifer Jones
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign
| | | | - Christopher C Witt
- Department of Biology, University of New Mexico Museum of Southwestern Biology, University of New Mexico
| | | | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln
| |
Collapse
|
42
|
Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:66-74. [PMID: 25446936 DOI: 10.1016/j.cbpa.2014.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 01/07/2023]
Abstract
Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
43
|
Turko AJ, Robertson CE, Bianchini K, Freeman M, Wright PA. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure. ACTA ACUST UNITED AC 2014; 217:3988-95. [PMID: 25267849 DOI: 10.1242/jeb.110601] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite the abundance of oxygen in atmospheric air relative to water, the initial loss of respiratory surface area and accumulation of carbon dioxide in the blood of amphibious fishes during emersion may result in hypoxemia. Given that the ability to respond to low oxygen conditions predates the vertebrate invasion of land, we hypothesized that amphibious fishes maintain O2 uptake and transport while emersed by mounting a co-opted hypoxia response. We acclimated the amphibious fish Kryptolebias marmoratus, which are able to remain active for weeks in both air and water, for 7 days to normoxic brackish water (15‰, ~21kPa O2; control), aquatic hypoxia (~3.6kPa), normoxic air (~21 kPa) or aerial hypoxia (~13.6kPa). Angiogenesis in the skin and bucco-opercular chamber was pronounced in air- versus water-acclimated fish, but not in response to hypoxia. Aquatic hypoxia increased the O2-carrying capacity of blood via a large (40%) increase in red blood cell density and a small increase in the affinity of hemoglobin for O2 (P50 decreased 11%). In contrast, air exposure increased the hemoglobin O2 affinity (decreased P50) by 25% without affecting the number of red blood cells. Acclimation to aerial hypoxia both increased the O2-carrying capacity and decreased the hemoglobin O2 affinity. These results suggest that O2 transport is regulated both by O2 availability and also, independently, by air exposure. The ability of the hematological system to respond to air exposure independent of O2 availability may allow extant amphibious fishes, and may also have allowed primitive tetrapods to cope with the complex challenges of aerial respiration during the invasion of land.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Cayleih E Robertson
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kristin Bianchini
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Megan Freeman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
44
|
Revsbech IG, Tufts DM, Projecto-Garcia J, Moriyama H, Weber RE, Storz JF, Fago A. Hemoglobin function and allosteric regulation in semi-fossorial rodents (family Sciuridae) with different altitudinal ranges. ACTA ACUST UNITED AC 2014; 216:4264-71. [PMID: 24172889 DOI: 10.1242/jeb.091397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb-O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb-O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood-O2 affinity in hibernating ground squirrels.
Collapse
Affiliation(s)
- Inge G Revsbech
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allè 3, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Tong J, Zweier JR, Huskey RL, Ismail RS, Hemann C, Zweier JL, Liu X. Effect of temperature, pH and heme ligands on the reduction of Cygb(Fe(3+)) by ascorbate. Arch Biochem Biophys 2014; 554:1-5. [PMID: 24780244 DOI: 10.1016/j.abb.2014.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/14/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
Abstract
Cytoglobin (Cygb) plays a role in regulating vasodilation in response to changes in local oxygen concentration by altering the rate of nitric oxide (NO) metabolism. Because the reduction of Cygb(Fe(3+)) by a reductant is the control step for Cygb-mediated NO metabolism, we examined the effects of temperature, pH, and heme ligands on the Cygb(Fe(3+)) reduction by ascorbate (Asc) under anaerobic conditions. The standard enthalpy of Cygb(Fe(3+)) reduction by Asc was determined to be 42.4 ± 3.1 kJ/mol. The rate of Cygb(Fe(3+)) reduction increased ~6% per °C when temperature varied from 35°C to 40°C. The yield and the rate of Cygb(Fe(3+)) reduction significantly increases with pH (2-3 times per pH unit), paralleling the formation of the Asc ion (A(2-)) and the increased stability of reduced state of heme iron at high pH values. Heme ligand cyanide (CN(-)) decreased the yield and the rate of Cygb(Fe(3+)) reduction, but ligands CO and NO allowed the process of Cygb(Fe(3+)) reduction to continue to completion. Critical information is provided for modeling and prediction of the process of Cygb-mediated NO metabolism in vessels in a range of temperature and pH values.
Collapse
Affiliation(s)
- Jianjing Tong
- Emergency Department, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China; Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph R Zweier
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rachael L Huskey
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Raed S Ismail
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Craig Hemann
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jay L Zweier
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
46
|
Expression and biological role of cytoglobin in human ovarian cancer. Tumour Biol 2014; 35:6933-9. [PMID: 24737588 DOI: 10.1007/s13277-014-1941-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/03/2014] [Indexed: 01/01/2023] Open
Abstract
Loss of cytoglobin is found to be involved in the progression of several human cancers. However, its expression pattern and biological roles in human ovarian cancers are not clear. In this study, we examined cytoglobin expression in 118 archived ovarian cancer specimens using immunohistochemistry. A total of 72 specimens (61.0 %) showed cytoglobin downregulation. cytoglobin downregulation positively correlated with advanced FIGO stage and tumor grade. Cytoglobin plasmid transfection was performed in SKOV3 cell line and siRNA knockdown was carried out in SW626 cell line. MTT, colony formation assay and matrigel invasion assay were carried out to assess the role of cytoglobin on cell proliferation and invasion. Cytoglobin overexpression inhibited cell growth, invasion, cell cycle progression and cyclin D1 expression in SKOV3 cell line and its depletion promoted cell proliferation, invasion, cell cycle transition and cyclin D1 expression. In conclusion, cytoglobin is downregulated in ovarian cancers and associated with advanced stage. Our data provides evidence that cytoglobin regulates the ovarian cancer cell proliferation and invasion.
Collapse
|
47
|
Enthalpic consequences of reduced chloride binding in Andean frog (Telmatobius peruvianus) hemoglobin. J Comp Physiol B 2014; 184:613-21. [DOI: 10.1007/s00360-014-0823-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
48
|
Andersen Ø, De Rosa MC, Yadav P, Pirolli D, Fernandes JMO, Berg PR, Jentoft S, Andrè C. The conserved Phe GH5 of importance for hemoglobin intersubunit contact is mutated in gadoid fish. BMC Evol Biol 2014; 14:54. [PMID: 24655798 PMCID: PMC3998052 DOI: 10.1186/1471-2148-14-54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/06/2014] [Indexed: 02/04/2023] Open
Abstract
Background Functionality of the tetrameric hemoglobin molecule seems to be determined by a few amino acids located in key positions. Oxygen binding encompasses structural changes at the interfaces between the α1β2 and α2β1 dimers, but also subunit interactions are important for the oxygen binding affinity and stability. The latter packing contacts include the conserved Arg B12 interacting with Phe GH5, which is replaced by Leu and Tyr in the αA and αD chains, respectively, of birds and reptiles. Results Searching all known hemoglobins from a variety of gnathostome species (jawed vertebrates) revealed the almost invariant Arg B12 coded by the AGG triplet positioned at an exon-intron boundary. Rare substitutions of Arg B12 in the gnathostome β globins were found in pig, tree shrew and scaled reptiles. Phe GH5 is also highly conserved in the β globins, except for the Leu replacement in the β1 globin of five marine gadoid species, gilthead seabream and the Comoran coelacanth, while Cys and Ile were found in burbot and yellow croaker, respectively. Atlantic cod β1 globin showed a Leu/Met polymorphism at position GH5 dominated by the Met variant in northwest-Atlantic populations that was rarely found in northeast-Atlantic cod. Site-specific analyses identified six consensus codons under positive selection, including 122β(GH5), indicating that the amino acid changes identified at this position may offer an adaptive advantage. In fact, computational mutation analysis showed that the replacement of Phe GH5 with Leu or Cys decreased the number of van der Waals contacts essentially in the deoxy form that probably causes a slight increase in the oxygen binding affinity. Conclusions The almost invariant Arg B12 and the AGG codon seem to be important for the packing contacts and pre-mRNA processing, respectively, but the rare mutations identified might be beneficial. The Leu122β1(GH5)Met and Met55β1(D6)Val polymorphisms in Atlantic cod hemoglobin modify the intradimer contacts B12-GH5 and H2-D6, while amino acid replacements at these positions in avian hemoglobin seem to be evolutionary adaptive in air-breathing vertebrates. The results support the theory that adaptive changes in hemoglobin functions are caused by a few substitutions at key positions.
Collapse
|
49
|
Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc Natl Acad Sci U S A 2013; 110:20669-74. [PMID: 24297909 DOI: 10.1073/pnas.1315456110] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals that sustain high levels of aerobic activity under hypoxic conditions (e.g., birds that fly at high altitude) face the physiological challenge of jointly optimizing blood-O2 affinity for O2 loading in the pulmonary circulation and O2 unloading in the systemic circulation. At high altitude, this challenge is especially acute for small endotherms like hummingbirds that have exceedingly high mass-specific metabolic rates. Here we report an experimental analysis of hemoglobin (Hb) function in South American hummingbirds that revealed a positive correlation between Hb-O2 affinity and native elevation. Protein engineering experiments and ancestral-state reconstructions revealed that this correlation is attributable to derived increases in Hb-O2 affinity in highland lineages, as well as derived reductions in Hb-O2 affinity in lowland lineages. Site-directed mutagenesis experiments demonstrated that repeated evolutionary transitions in biochemical phenotype are mainly attributable to repeated amino acid replacements at two epistatically interacting sites that alter the allosteric regulation of Hb-O2 affinity. These results demonstrate that repeated changes in biochemical phenotype involve parallelism at the molecular level, and that mutations with indirect, second-order effects on Hb allostery play key roles in biochemical adaptation.
Collapse
|
50
|
Mairbäurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 2013; 4:332. [PMID: 24273518 PMCID: PMC3824146 DOI: 10.3389/fphys.2013.00332] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 11/24/2022] Open
Abstract
During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Medical Clinic VII, Sports Medicine, University of Heidelberg Heidelberg, Germany
| |
Collapse
|