1
|
Karipidis K, Baaken D, Loney T, Blettner M, Brzozek C, Elwood M, Narh C, Orsini N, Röösli M, Paulo MS, Lagorio S. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies - Part I: Most researched outcomes. ENVIRONMENT INTERNATIONAL 2024; 191:108983. [PMID: 39241333 DOI: 10.1016/j.envint.2024.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The objective of this review was to assess the quality and strength of the evidence provided by human observational studies for a causal association between exposure to radiofrequency electromagnetic fields (RF-EMF) and risk of the most investigated neoplastic diseases. METHODS Eligibility criteria: We included cohort and case-control studies of neoplasia risks in relation to three types of exposure to RF-EMF: near-field, head-localized, exposure from wireless phone use (SR-A); far-field, whole body, environmental exposure from fixed-site transmitters (SR-B); near/far-field occupational exposures from use of hand-held transceivers or RF-emitting equipment in the workplace (SR-C). While no restrictions on tumour type were applied, in the current paper we focus on incidence-based studies of selected "critical" neoplasms of the central nervous system (brain, meninges, pituitary gland, acoustic nerve) and salivary gland tumours (SR-A); brain tumours and leukaemias (SR-B, SR-C). We focussed on investigations of specific neoplasms in relation to specific exposure sources (i.e. E-O pairs), noting that a single article may address multiple E-O pairs. INFORMATION SOURCES Eligible studies were identified by literature searches through Medline, Embase, and EMF-Portal. Risk-of-bias (RoB) assessment: We used a tailored version of the Office of Health Assessment and Translation (OHAT) RoB tool to evaluate each study's internal validity. At the summary RoB step, studies were classified into three tiers according to their overall potential for bias (low, moderate and high). DATA SYNTHESIS We synthesized the study results using random effects restricted maximum likelihood (REML) models (overall and subgroup meta-analyses of dichotomous and categorical exposure variables), and weighted mixed effects models (dose-response meta-analyses of lifetime exposure intensity). Evidence assessment: Confidence in evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. RESULTS We included 63 aetiological articles, published between 1994 and 2022, with participants from 22 countries, reporting on 119 different E-O pairs. RF-EMF exposure from mobile phones (ever or regular use vs no or non-regular use) was not associated with an increased risk of glioma [meta-estimate of the relative risk (mRR) = 1.01, 95 % CI = 0.89-1.13), meningioma (mRR = 0.92, 95 % CI = 0.82-1.02), acoustic neuroma (mRR = 1.03, 95 % CI = 0.85-1.24), pituitary tumours (mRR = 0.81, 95 % CI = 0.61-1.06), salivary gland tumours (mRR = 0.91, 95 % CI = 0.78-1.06), or paediatric (children, adolescents and young adults) brain tumours (mRR = 1.06, 95 % CI = 0.74-1.51), with variable degree of across-study heterogeneity (I2 = 0 %-62 %). There was no observable increase in mRRs for the most investigated neoplasms (glioma, meningioma, and acoustic neuroma) with increasing time since start (TSS) use of mobile phones, cumulative call time (CCT), or cumulative number of calls (CNC). Cordless phone use was not significantly associated with risks of glioma [mRR = 1.04, 95 % CI = 0.74-1.46; I2 = 74 %) meningioma, (mRR = 0.91, 95 % CI = 0.70-1.18; I2 = 59 %), or acoustic neuroma (mRR = 1.16; 95 % CI = 0.83-1.61; I2 = 63 %). Exposure from fixed-site transmitters (broadcasting antennas or base stations) was not associated with childhood leukaemia or paediatric brain tumour risks, independently of the level of the modelled RF exposure. Glioma risk was not significantly increased following occupational RF exposure (ever vs never), and no differences were detected between increasing categories of modelled cumulative exposure levels. DISCUSSION In the sensitivity analyses of glioma, meningioma, and acoustic neuroma risks in relation to mobile phone use (ever use, TSS, CCT, and CNC) the presented results were robust and not affected by changes in study aggregation. In a leave-one-out meta-analyses of glioma risk in relation to mobile phone use we identified one influential study. In subsequent meta-analyses performed after excluding this study, we observed a substantial reduction in the mRR and the heterogeneity between studies, for both the contrast Ever vs Never (regular) use (mRR = 0.96, 95 % CI = 0.87-1.07, I2 = 47 %), and in the analysis by increasing categories of TSS ("<5 years": mRR = 0.97, 95 % CI = 0.83-1.14, I2 = 41 %; "5-9 years ": mRR = 0.96, 95 % CI = 0.83-1.11, I2 = 34 %; "10+ years": mRR = 0.97, 95 % CI = 0.87-1.08, I2 = 10 %). There was limited variation across studies in RoB for the priority domains (selection/attrition, exposure and outcome information), with the number of studies evenly classified as at low and moderate risk of bias (49 % tier-1 and 51 % tier-2), and no studies classified as at high risk of bias (tier-3). The impact of the biases on the study results (amount and direction) proved difficult to predict, and the RoB tool was inherently unable to account for the effect of competing biases. However, the sensitivity meta-analyses stratified on bias-tier, showed that the heterogeneity observed in our main meta-analyses across studies of glioma and acoustic neuroma in the upper TSS stratum (I2 = 77 % and 76 %), was explained by the summary RoB-tier. In the tier-1 study subgroup, the mRRs (95 % CI; I2) in long-term (10+ years) users were 0.95 (0.85-1.05; 5.5 %) for glioma, and 1.00 (0.78-1.29; 35 %) for acoustic neuroma. The time-trend simulation studies, evaluated as complementary evidence in line with a triangulation approach for external validity, were consistent in showing that the increased risks observed in some case-control studies were incompatible with the actual incidence rates of glioma/brain cancer observed in several countries and over long periods. Three of these simulation studies consistently reported that RR estimates > 1.5 with a 10+ years induction period were definitely implausible, and could be used to set a "credibility benchmark". In the sensitivity meta-analyses of glioma risk in the upper category of TSS excluding five studies reporting implausible effect sizes, we observed strong reductions in both the mRR [mRR of 0.95 (95 % CI = 0.86-1.05)], and the degree of heterogeneity across studies (I2 = 3.6 %). CONCLUSIONS Consistently with the published protocol, our final conclusions were formulated separately for each exposure-outcome combination, and primarily based on the line of evidence with the highest confidence, taking into account the ranking of RF sources by exposure level as inferred from dosimetric studies, and the external coherence with findings from time-trend simulation studies (limited to glioma in relation to mobile phone use). For near field RF-EMF exposure to the head from mobile phone use, there was moderate certainty evidence that it likely does not increase the risk of glioma, meningioma, acoustic neuroma, pituitary tumours, and salivary gland tumours in adults, or of paediatric brain tumours. For near field RF-EMF exposure to the head from cordless phone use, there was low certainty evidence that it may not increase the risk of glioma, meningioma or acoustic neuroma. For whole-body far-field RF-EMF exposure from fixed-site transmitters (broadcasting antennas or base stations), there was moderate certainty evidence that it likely does not increase childhood leukaemia risk and low certainty evidence that it may not increase the risk of paediatric brain tumours. There were no studies eligible for inclusion investigating RF-EMF exposure from fixed-site transmitters and critical tumours in adults. For occupational RF-EMF exposure, there was low certainty evidence that it may not increase the risk of brain cancer/glioma, but there were no included studies of leukemias (the second critical outcome in SR-C). The evidence rating regarding paediatric brain tumours in relation to environmental RF exposure from fixed-site transmitters should be interpreted with caution, due to the small number of studies. Similar interpretative cautions apply to the evidence rating of the relation between glioma/brain cancer and occupational RF exposure, due to differences in exposure sources and metrics across the few included studies. OTHER This project was commissioned and partially funded by the World Health Organization (WHO). Co-financing was provided by the New Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for Radiation and Health; and ARPANSA as a WHO Collaborating Centre for Radiation Protection. REGISTRATION PROSPERO CRD42021236798. Published protocol: [(Lagorio et al., 2021) DOI https://doi.org/10.1016/j.envint.2021.106828].
Collapse
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia.
| | - Dan Baaken
- Competence Center for Electromagnetic Fields, Federal Office for Radiation Protection (BfS), Cottbus, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany(1)
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany(1)
| | - Chris Brzozek
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia
| | - Mark Elwood
- Epidemiology and Biostatistics, School of Population Health, University of Auckland, New Zealand
| | - Clement Narh
- Department of Epidemiology and Biostatistics, School of Public Health (Hohoe Campus), University of Health and Allied Sciences, PMB31 Ho, Ghana
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marilia Silva Paulo
- Comprehensive Health Research Center, NOVA Medical School, Universidad NOVA de Lisboa, Portugal
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy(1)
| |
Collapse
|
2
|
Esposito S, Ruggiero E, Di Castelnuovo A, Costanzo S, Bonaccio M, Bracone F, Esposito V, Innocenzi G, Paolini S, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A. Identifying brain tumor patients' subtypes based on pre-diagnostic history and clinical characteristics: a pilot hierarchical clustering and association analysis. Front Oncol 2023; 13:1276253. [PMID: 38146510 PMCID: PMC10749422 DOI: 10.3389/fonc.2023.1276253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction Central nervous system (CNS) tumors are severe health conditions with increasing incidence in the last years. Different biological, environmental and clinical factors are thought to have an important role in their epidemiology, which however remains unclear. Objective The aim of this pilot study was to identify CNS tumor patients' subtypes based on this information and to test associations with tumor malignancy. Methods 90 patients with suspected diagnosis of CNS tumor were recruited by the Neurosurgery Unit of IRCCS Neuromed. Patients underwent anamnestic and clinical assessment, to ascertain known or suspected risk factors including lifestyle, socioeconomic, clinical and psychometric characteristics. We applied a hierarchical clustering analysis to these exposures to identify potential groups of patients with a similar risk pattern and tested whether these clusters associated with brain tumor malignancy. Results Out of 67 patients with a confirmed CNS tumor diagnosis, we identified 28 non-malignant and 39 malignant tumor cases. These subtypes showed significant differences in terms of gender (with men more frequently presenting a diagnosis of cancer; p = 6.0 ×10-3) and yearly household income (with non-malignant tumor patients more frequently earning ≥25k Euros/year; p = 3.4×10-3). Cluster analysis revealed the presence of two clusters of patients: one (N=41) with more professionally active, educated, wealthier and healthier patients, and the other one with mostly retired and less healthy men, with a higher frequency of smokers, personal history of cardiovascular disease and cancer familiarity, a mostly sedentary lifestyle and generally lower income, education and cognitive performance. The former cluster showed a protective association with the malignancy of the disease, with a 74 (14-93) % reduction in the prevalent risk of CNS malignant tumors, compared to the other cluster (p=0.026). Discussion These preliminary data suggest that patients' profiling through unsupervised machine learning approaches may somehow help predicting the risk of being affected by a malignant form. If confirmed by further analyses in larger independent cohorts, these findings may be useful to create potential intelligent ranking systems for treatment priority, overcoming the lack of histopathological information and molecular diagnosis of the tumor, which are typically not available until the time of surgery.
Collapse
Affiliation(s)
- Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | | - Francesca Bracone
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Sergio Paolini
- Department of Neurosurgery, IRCCS Neuromed, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Libera Università Mediterranea (LUM) “Giuseppe Degennaro”, Casamassima (Bari), Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Libera Università Mediterranea (LUM) “Giuseppe Degennaro”, Casamassima (Bari), Italy
- Department of Medicine and Surgery, LUM University, Bari, Italy
| |
Collapse
|
3
|
Choi KH, Ha J, Bae S, Lee AK, Choi HD, Ahn YH, Ha M, Joo H, Kwon HJ, Jung KW. Mobile Phone Use and Time Trend of Brain Cancer Incidence Rate in Korea. Bioelectromagnetics 2021; 42:629-648. [PMID: 34541704 DOI: 10.1002/bem.22373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
This study evaluated the time trends in mobile phone subscriber number by mobile network generation (G) and brain cancer incidence by type in Korea. We obtained data from the Information Technology Statistics of Korea (1984-2017) and Korea Central Cancer Registry (1999-2017). The average annual percent change was estimated using Joinpoint regression analysis. We evaluated 29,721 brain cancer cases with an age-standardized incidence rate (ASR) of 2.89/100,000 persons. The glioma and glioblastoma annual ASR significantly increased in 2.6% and 3.9% of males and 3.0% and 3.8% of females, respectively. The ASR for frontal lobe involvement was the highest. The ASR of gliomas of unspecified grade annually increased by 7.8%; those for unspecified topology and histology decreased. The incidence of glioma, glioblastoma, frontal, temporal, and high-grade glioma increased among those aged ≥60 years. No association was observed between the mobile phone subscriber number and brain cancer incidence in Korea. Furthermore, long-term research is warranted because of the latency period of brain cancer. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Johyun Ha
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ae-Kyoung Lee
- Radio Technology Research Department, ETRI, Daejeon, Republic of Korea
| | - Hyung-Do Choi
- Radio Technology Research Department, ETRI, Daejeon, Republic of Korea
| | - Young Hwan Ahn
- Department of Neurosurgery, Ajou University School of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Hyunjoo Joo
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Kyu-Won Jung
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
4
|
Deltour I, Massardier-Pilonchery A, Schlehofer B, Schlaefer K, Hours M, Schüz J. Validation of self-reported occupational noise exposure in participants of a French case-control study on acoustic neuroma. Int Arch Occup Environ Health 2019; 92:991-1001. [PMID: 31028471 DOI: 10.1007/s00420-019-01427-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/03/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To validate self-reported occupational loud noise exposure against expert evaluation of noise levels in a French case-control study on acoustic neuroma and to estimate the impact of exposure misclassification on risk estimation. METHODS Noise levels were evaluated in 1006 jobs held by 111 cases and 217 population controls by an expert. Case-control differences in self-reporting were analyzed with logistic models. Sensitivity, specificity, positive and negative predictive values, and observed agreement of the self-reports were computed relative to the expert evaluation. They were used to calibrate the odds ratio (OR) between lifetime ever occupational loud noise exposure and the risk of acoustic neuroma, without adjustment for measurement error of the expert assessments. RESULTS Cases reported noise levels in individual jobs closer to the expert assessment than controls, but the case-control difference was small for lifetime exposures. For expert-rated exposure of 80 dB(A), reporting of individual jobs by cases was more sensitive (54% in cases, 37% in controls), whereas specificity (91% in cases, 93% in controls) and observed agreement (82% in cases, 81% in controls) were similar. When lifetime exposure was considered, sensitivity increased (76% in cases, 65% in controls), while cases specificity decreased (84%). When these values were used to calibrate self-reports for exposure misclassification compared to expert evaluation at 80 dB(A), the crude OR of 1.7 was reduced to 1.3. CONCLUSIONS Despite the relatively accurate reporting of loud noise, the impact of the calibration on the OR was non-negligible.
Collapse
Affiliation(s)
- Isabelle Deltour
- Section of Environment and Radiation, International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France.
| | - Amélie Massardier-Pilonchery
- University Claude Bernard Lyon 1 and IFSTTAR, Transport Work and Environmental Epidemiology Research and Surveillance Unit, UMRESTTE (UMR 14T9405), 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
- Hospices Civils de Lyon, Lyon, France
| | - Brigitte Schlehofer
- Section of Environment and Radiation, International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France
- Unit of Environmental Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Klaus Schlaefer
- Unit of Environmental Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | - Martine Hours
- University Claude Bernard Lyon 1 and IFSTTAR, Transport Work and Environmental Epidemiology Research and Surveillance Unit, UMRESTTE (UMR 14T9405), 8 Avenue Rockefeller, 69373, Lyon Cedex 08, France
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372, Lyon Cedex 08, France
| |
Collapse
|
5
|
Mobile phone use and risk of brain tumours: a systematic review of association between study quality, source of funding, and research outcomes. Neurol Sci 2017; 38:797-810. [DOI: 10.1007/s10072-017-2850-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023]
|
6
|
Samkange-Zeeb F, Blettner M. Emerging aspects of mobile phone use. EMERGING HEALTH THREATS JOURNAL 2017. [DOI: 10.3402/ehtj.v2i0.7082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- F Samkange-Zeeb
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University, Mainz, Germany
| | - M Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Grell K, Frederiksen K, Schüz J, Cardis E, Armstrong B, Siemiatycki J, Krewski DR, McBride ML, Johansen C, Auvinen A, Hours M, Blettner M, Sadetzki S, Lagorio S, Yamaguchi N, Woodward A, Tynes T, Feychting M, Fleming SJ, Swerdlow AJ, Andersen PK. The Intracranial Distribution of Gliomas in Relation to Exposure From Mobile Phones: Analyses From the INTERPHONE Study. Am J Epidemiol 2016; 184:818-828. [PMID: 27810856 PMCID: PMC5152665 DOI: 10.1093/aje/kww082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
When investigating the association between brain tumors and use of mobile telephones, accurate data on tumor position are essential, due to the highly localized absorption of energy in the human brain from the radio-frequency fields emitted. We used a point process model to investigate this association using information that included tumor localization data from the INTERPHONE Study (Australia, Canada, Denmark, Finland, France, Germany, Israel, Italy, Japan, New Zealand, Norway, Sweden, and the United Kingdom). Our main analysis included 792 regular mobile phone users diagnosed with a glioma between 2000 and 2004. Similar to earlier results, we found a statistically significant association between the intracranial distribution of gliomas and the self-reported location of the phone. When we accounted for the preferred side of the head not being exclusively used for all mobile phone calls, the results were similar. The association was independent of the cumulative call time and cumulative number of calls. However, our model used reported side of mobile phone use, which is potentially influenced by recall bias. The point process method provides an alternative to previously used epidemiologic research designs when one is including localization in the investigation of brain tumors and mobile phone use.
Collapse
Affiliation(s)
- Kathrine Grell
- Correspondence to Dr. Kathrine Grell, Section of Biostatistics, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Oester Farimagsgade 5, 1014 Copenhagen, Denmark (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Silva V, Hilly O, Strenov Y, Tzabari C, Hauptman Y, Feinmesser R. Effect of cell phone-like electromagnetic radiation on primary human thyroid cells. Int J Radiat Biol 2015; 92:107-15. [PMID: 26689947 DOI: 10.3109/09553002.2016.1117678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. MATERIALS AND METHODS Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). RESULTS Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. CONCLUSION Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.
Collapse
Affiliation(s)
- Veronica Silva
- a Laboratory of Otorhinolaryngology Research , The Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University , Petach Tikva
| | - Ohad Hilly
- b Department of Otorhinolaryngology Head and Neck Surgery , Rabin Medical Center, Beilinson Campus , Petach Tikva
| | - Yulia Strenov
- c Department of Pathology , Rabin Medical Center, Beilinson Campus , Petach Tikva
| | - Cochava Tzabari
- c Department of Pathology , Rabin Medical Center, Beilinson Campus , Petach Tikva
| | | | - Raphael Feinmesser
- a Laboratory of Otorhinolaryngology Research , The Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University , Petach Tikva ;,b Department of Otorhinolaryngology Head and Neck Surgery , Rabin Medical Center, Beilinson Campus , Petach Tikva
| |
Collapse
|
9
|
Kim HS, Kim YJ, Lee YH, Lee YS, Choi HD, Pack JK, Kim N, Ahn YH. Effect of whole-body exposure to the 848.5 MHz code division multiple access (CDMA) electromagnetic field on adult neurogenesis in the young, healthy rat brain. Int J Radiat Biol 2015; 91:354-9. [DOI: 10.3109/09553002.2014.995382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Lagorio S, Röösli M. Mobile phone use and risk of intracranial tumors: a consistency analysis. Bioelectromagnetics 2013; 35:79-90. [PMID: 24375548 DOI: 10.1002/bem.21829] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022]
Abstract
A meta-analysis of studies on intracranial tumors and mobile phone use published by the end of 2012 was performed to evaluate the overall consistency of findings, assess the sensitivity of results to changes in the dataset, and try to detect the sources of between-study heterogeneity. Twenty-nine papers met our inclusion criteria. These papers reported on 47 eligible studies (17 on glioma, 15 on meningioma, 15 on acoustic neuroma), consisting of either primary investigations or pooled analyses. Five combinations of non-overlapping studies per outcome were identified. The combined relative risks (cRRs) in long-term mobile phone users (≥10 years) ranged between 0.98 (0.75-1.28) and 1.11 (0.86-1.44) for meningioma, with little heterogeneity across studies. High heterogeneity was detected across estimates of glioma and acoustic neuroma risk in long term users, with cRRs ranging between 1.19 (95% CI 0.86-1.64) and 1.40 (0.96-2.04), and from 1.14 (0.65-1.99) to 1.33 (0.65-2.73), respectively. A meta-regression of primary studies showed that the methodological differences embedded in the variable "study-group" explained most of the overall heterogeneity in results. Summary risk estimates based on heterogeneous findings should not be over-interpreted. Overall, the results of our study detract from the hypothesis that mobile phone use affects the occurrence of intracranial tumors. However, reproducibility (or lack of) is just one clue in the critical appraisal of epidemiological evidence. Based on other considerations, such as the limited knowledge currently available on risk beyond 15 years from first exposure, or following mobile phone use started in childhood, the pursuance of epidemiological surveillance is warranted.
Collapse
|
11
|
Mornet E, Kania R, Sauvaget E, Herman P, Tran Ba Huy P. Vestibular schwannoma and cell-phones. Results, limits and perspectives of clinical studies. Eur Ann Otorhinolaryngol Head Neck Dis 2013; 130:275-82. [PMID: 23725662 DOI: 10.1016/j.anorl.2012.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/19/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022]
Abstract
The widespread development of cell-phones entails novel user exposure to electromagnetic fields. Health impact is a public health issue and a source of anxiety in the population. Some clinical studies reported an association between cell and cordless phone use and vestibular schwannoma; others found none. A systematic review was performed of all published clinical studies (cohort, registry, case-control and validation studies), with analysis of results, to determine the nature of the association and the level of evidence. Cohort studies were inconclusive due to short exposure durations and poor representativeness. Registry studies showed no correlation between evolution of cell-phone use and incidence of vestibular schwannoma. Case-control studies reported contradictory results, with methodological flaws. Only a small number of subjects were included in long-term studies (>10 years), and these failed to demonstrate any indisputable causal relationship. Exposure assessment methods were debatable, and long-term assessment was lacking. An on-going prospective study should determine any major effect of electromagnetic fields; schwannoma being a rare pathology, absence of association will be difficult to prove. No clinical association has been demonstrated between cell and cordless phone use and vestibular schwannoma. Existing studies are limited by their retrospective assessment of exposure.
Collapse
Affiliation(s)
- E Mornet
- Service d'ORL et chirurgie cervico-faciale, université Paris Diderot, hôpital Lariboisière, 2, rue Ambroise-Paré, 75475 Paris cedex 10, France.
| | | | | | | | | |
Collapse
|
12
|
Carlberg M, Hardell L. On the association between glioma, wireless phones, heredity and ionising radiation. ACTA ACUST UNITED AC 2012; 19:243-52. [PMID: 22939605 DOI: 10.1016/j.pathophys.2012.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
Abstract
We performed two case-control studies on brain tumours diagnosed during 1 January 1997 to 30 June 2000 and 1 July 2000 to 31 December 2003, respectively. Living cases and controls aged 20-80 years were included. An additional study was performed on deceased cases with a malignant brain tumour using deceased controls. Pooled results for glioma yielded for ipsilateral use of mobile phone odds ratio (OR)=2.9, 95% confidence interval (CI)=1.8-4.7 in the >10 years latency group. The corresponding result for cordless phone was OR=3.8, 95% CI=1.8-8.1. OR increased statistically significant for cumulative use of wireless phones per 100h and per year of latency. For high-grade glioma ipsilateral use of mobile phone gave OR=3.9, 95% CI=2.3-6.6 and cordless phone OR=5.5, 95% CI=2.3-13 in the >10 years latency group. Heredity for brain tumour gave OR=3.4, 95% CI=2.1-5.5 for glioma. There was no interaction with use of wireless phones. X-ray investigation of the head gave overall OR=1.3, 95% CI=1.1-1.7 for glioma without interaction with use of wireless phones or heredity. In conclusion use of mobile and cordless phone increased the risk for glioma with highest OR for ipsilateral use, latency >10 years and third tertile of cumulative use in hours. In total, the risk was highest in the age group <20 years for first use of a wireless phone.
Collapse
Affiliation(s)
- Michael Carlberg
- Department of Oncology, University Hospital, SE-701 85 Örebro, Sweden.
| | | |
Collapse
|
13
|
Repacholi MH, Lerchl A, Röösli M, Sienkiewicz Z, Auvinen A, Breckenkamp J, d'Inzeo G, Elliott P, Frei P, Heinrich S, Lagroye I, Lahkola A, McCormick DL, Thomas S, Vecchia P. Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics 2011; 33:187-206. [PMID: 22021071 DOI: 10.1002/bem.20716] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/25/2011] [Indexed: 12/20/2022]
Abstract
We conducted a systematic review of scientific studies to evaluate whether the use of wireless phones is linked to an increased incidence of the brain cancer glioma or other tumors of the head (meningioma, acoustic neuroma, and parotid gland), originating in the areas of the head that most absorb radiofrequency (RF) energy from wireless phones. Epidemiology and in vivo studies were evaluated according to an agreed protocol; quality criteria were used to evaluate the studies for narrative synthesis but not for meta-analyses or pooling of results. The epidemiology study results were heterogeneous, with sparse data on long-term use (≥ 10 years). Meta-analyses of the epidemiology studies showed no statistically significant increase in risk (defined as P < 0.05) for adult brain cancer or other head tumors from wireless phone use. Analyses of the in vivo oncogenicity, tumor promotion, and genotoxicity studies also showed no statistically significant relationship between exposure to RF fields and genotoxic damage to brain cells, or the incidence of brain cancers or other tumors of the head. Assessment of the review results using the Hill criteria did not support a causal relationship between wireless phone use and the incidence of adult cancers in the areas of the head that most absorb RF energy from the use of wireless phones. There are insufficient data to make any determinations about longer-term use (≥ 10 years).
Collapse
Affiliation(s)
- Michael H Repacholi
- Department of Information Engineering, Electronics and Telecommunications, "La Sapienza" University of Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Acoustic neuroma risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Cancer Epidemiol 2011; 35:453-64. [PMID: 21862434 DOI: 10.1016/j.canep.2011.05.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND The rapid increase in mobile telephone use has generated concern about possible health risks of radiofrequency electromagnetic fields from these devices. METHODS A case-control study of 1105 patients with newly diagnosed acoustic neuroma (vestibular schwannoma) and 2145 controls was conducted in 13 countries using a common protocol. Past mobile phone use was assessed by personal interview. In the primary analysis, exposure time was censored at one year before the reference date (date of diagnosis for cases and date of diagnosis of the matched case for controls); analyses censoring exposure at five years before the reference date were also done to allow for a possible longer latent period. RESULTS The odds ratio (OR) of acoustic neuroma with ever having been a regular mobile phone user was 0.85 (95% confidence interval 0.69-1.04). The OR for ≥10 years after first regular mobile phone use was 0.76 (0.52-1.11). There was no trend of increasing ORs with increasing cumulative call time or cumulative number of calls, with the lowest OR (0.48 (0.30-0.78)) observed in the 9th decile of cumulative call time. In the 10th decile (≥1640 h) of cumulative call time, the OR was 1.32 (0.88-1.97); there were, however, implausible values of reported use in those with ≥1640 h of accumulated mobile phone use. With censoring at 5 years before the reference date the OR for ≥10 years after first regular mobile phone use was 0.83 (0.58-1.19) and for ≥1640 h of cumulative call time it was 2.79 (1.51-5.16), but again with no trend in the lower nine deciles and with the lowest OR in the 9th decile. In general, ORs were not greater in subjects who reported usual phone use on the same side of the head as their tumour than in those who reported it on the opposite side, but it was greater in those in the 10th decile of cumulative hours of use. CONCLUSIONS There was no increase in risk of acoustic neuroma with ever regular use of a mobile phone or for users who began regular use 10 years or more before the reference date. Elevated odds ratios observed at the highest level of cumulative call time could be due to chance, reporting bias or a causal effect. As acoustic neuroma is usually a slowly growing tumour, the interval between introduction of mobile phones and occurrence of the tumour might have been too short to observe an effect, if there is one.
Collapse
|
15
|
Abstract
The overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 person-years; 11.52 per 100,000 person-years for benign tumors and 7.19 per 100,000 person-years for malignant tumors. Incidence, response to treatment, and survival after diagnosis vary greatly by age at diagnosis, histologic type of tumor, and degree of neurologic compromise. The only established environmental risk factor for brain tumors is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor for brain tumor development. However, studies have been inconsistent and inconclusive due to systematic differences in study designs and difficulty of accurately measuring cell phone use. Recently studies of genetic risk factors for brain tumors have expanded to genome-wide association studies. In addition, genome-wide studies of somatic genetic changes in tumors show correlation with clinical outcomes.
Collapse
|
16
|
Shum M, Kelsh MA, Sheppard AR, Zhao K. An evaluation of self-reported mobile phone use compared to billing records among a group of engineers and scientists. Bioelectromagnetics 2011; 32:37-48. [PMID: 20857456 DOI: 10.1002/bem.20613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most epidemiologic studies of potential health impacts of mobile phones rely on self-reported information, which can lead to exposure misclassification. We compared self-reported questionnaire data among 60 participants, and phone billing records over a 3-year period (2002-2004). Phone usage information was compared by the calculation of the mean and median number of calls and duration of use, as well as correlation coefficients and associated P-values. Average call duration from self-reports was slightly lower than billing records (2.1 min vs. 2.8 min, P = 0.01). Participants reported a higher number of average daily calls than billing records (7.9 vs. 4.1, P = 0.002). Correlation coefficients for average minutes per day of mobile phone use and average number of calls per day were relatively high (R = 0.71 and 0.69, respectively, P < 0.001). Information reported at the monthly level tended to be more accurate than estimates of weekly or daily use. Our findings of modest correlations between self-reported mobile phone usage and billing records and substantial variability in recall are consistent with previous studies. However, the direction of over- and under-reporting was not consistent with previous research. We did not observe increased variability over longer periods of recall or a pattern of lower accuracy among older age groups compared with younger groups. Study limitations included a relatively small sample size, low participation rates, and potential limited generalizability. The variability within studies and non-uniformity across studies indicates that estimation of the frequency and duration of phone use by questionnaires should be supplemented with subscriber records whenever practical.
Collapse
Affiliation(s)
- Mona Shum
- Exponent, Inc., Menlo Park, California, USA
| | | | | | | |
Collapse
|
17
|
Levis AG, Minicuci N, Ricci P, Gennaro V, Garbisa S. Mobile phones and head tumours. The discrepancies in cause-effect relationships in the epidemiological studies - how do they arise? Environ Health 2011; 10:59. [PMID: 21679472 PMCID: PMC3146917 DOI: 10.1186/1476-069x-10-59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/17/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Whether or not there is a relationship between use of mobile phones (analogue and digital cellulars, and cordless) and head tumour risk (brain tumours, acoustic neuromas, and salivary gland tumours) is still a matter of debate; progress requires a critical analysis of the methodological elements necessary for an impartial evaluation of contradictory studies. METHODS A close examination of the protocols and results from all case-control and cohort studies, pooled- and meta-analyses on head tumour risk for mobile phone users was carried out, and for each study the elements necessary for evaluating its reliability were identified. In addition, new meta-analyses of the literature data were undertaken. These were limited to subjects with mobile phone latency time compatible with the progression of the examined tumours, and with analysis of the laterality of head tumour localisation corresponding to the habitual laterality of mobile phone use. RESULTS Blind protocols, free from errors, bias, and financial conditioning factors, give positive results that reveal a cause-effect relationship between long-term mobile phone use or latency and statistically significant increase of ipsilateral head tumour risk, with biological plausibility. Non-blind protocols, which instead are affected by errors, bias, and financial conditioning factors, give negative results with systematic underestimate of such risk. However, also in these studies a statistically significant increase in risk of ipsilateral head tumours is quite common after more than 10 years of mobile phone use or latency. The meta-analyses, our included, examining only data on ipsilateral tumours in subjects using mobile phones since or for at least 10 years, show large and statistically significant increases in risk of ipsilateral brain gliomas and acoustic neuromas. CONCLUSIONS Our analysis of the literature studies and of the results from meta-analyses of the significant data alone shows an almost doubling of the risk of head tumours induced by long-term mobile phone use or latency.
Collapse
Affiliation(s)
- Angelo G Levis
- Department of Experimental Biomedical Sciences, Medical School of Padova, Padova, Italy
| | - Nadia Minicuci
- Institute of Neuroscience, National Research Council, Padova, Italy
| | | | | | - Spiridione Garbisa
- Department of Experimental Biomedical Sciences, Medical School of Padova, Padova, Italy
| |
Collapse
|
18
|
Cardis E, Armstrong BK, Bowman JD, Giles GG, Hours M, Krewski D, McBride M, Parent ME, Sadetzki S, Woodward A, Brown J, Chetrit A, Figuerola J, Hoffmann C, Jarus-Hakak A, Montestruq L, Nadon L, Richardson L, Villegas R, Vrijheid M. Risk of brain tumours in relation to estimated RF dose from mobile phones: results from five Interphone countries. Occup Environ Med 2011; 68:631-40. [PMID: 21659469 PMCID: PMC3158328 DOI: 10.1136/oemed-2011-100155] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives The objective of this study was to examine the associations of brain tumours with radio frequency (RF) fields from mobile phones. Methods Patients with brain tumour from the Australian, Canadian, French, Israeli and New Zealand components of the Interphone Study, whose tumours were localised by neuroradiologists, were analysed. Controls were matched on age, sex and region and allocated the ‘tumour location’ of their matched case. Analyses included 553 glioma and 676 meningioma cases and 1762 and 1911 controls, respectively. RF dose was estimated as total cumulative specific energy (TCSE; J/kg) absorbed at the tumour's estimated centre taking into account multiple RF exposure determinants. Results ORs with ever having been a regular mobile phone user were 0.93 (95% CI 0.73 to 1.18) for glioma and 0.80 (95% CI 0.66 to 0.96) for meningioma. ORs for glioma were below 1 in the first four quintiles of TCSE but above 1 in the highest quintile, 1.35 (95% CI 0.96 to 1.90). The OR increased with increasing TCSE 7+ years before diagnosis (p-trend 0.01; OR 1.91, 95% CI 1.05 to 3.47 in the highest quintile). A complementary analysis in which 44 glioma and 135 meningioma cases in the most exposed area of the brain were compared with gliomas and meningiomas located elsewhere in the brain showed increased ORs for tumours in the most exposed part of the brain in those with 10+ years of mobile phone use (OR 2.80, 95% CI 1.13 to 6.94 for glioma). Patterns for meningioma were similar, but ORs were lower, many below 1.0. Conclusions There were suggestions of an increased risk of glioma in long-term mobile phone users with high RF exposure and of similar, but apparently much smaller, increases in meningioma risk. The uncertainty of these results requires that they be replicated before a causal interpretation can be made.
Collapse
Affiliation(s)
- E Cardis
- Centre for Research in Environmental Epidemiology (CREAL), Hospital del Mar Research Institute (IMIM), CIBER Epidemiologia y Salud Pública (CIBERESP), Doctor Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cardis E, Varsier N, Bowman JD, Deltour I, Figuerola J, Mann S, Moissonnier M, Taki M, Vecchia P, Villegas R, Vrijheid M, Wake K, Wiart J. Estimation of RF energy absorbed in the brain from mobile phones in the Interphone Study. Occup Environ Med 2011; 68:686-93. [PMID: 21659468 PMCID: PMC3158331 DOI: 10.1136/oemed-2011-100065] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives The objective of this study was to develop an estimate of a radio frequency (RF) dose as the amount of mobile phone RF energy absorbed at the location of a brain tumour, for use in the Interphone Epidemiological Study. Methods We systematically evaluated and quantified all the main parameters thought to influence the amount of specific RF energy absorbed in the brain from mobile telephone use. For this, we identified the likely important determinants of RF specific energy absorption rate during protocol and questionnaire design, we collected information from study subjects, network operators and laboratories involved in specific energy absorption rate measurements and we studied potential modifiers of phone output through the use of software-modified phones. Data collected were analysed to assess the relative importance of the different factors, leading to the development of an algorithm to evaluate the total cumulative specific RF energy (in joules per kilogram), or dose, absorbed at a particular location in the brain. This algorithm was applied to Interphone Study subjects in five countries. Results The main determinants of total cumulative specific RF energy from mobile phones were communication system and frequency band, location in the brain and amount and duration of mobile phone use. Though there was substantial agreement between categorisation of subjects by cumulative specific RF energy and cumulative call time, misclassification was non-negligible, particularly at higher frequency bands. Factors such as adaptive power control (except in Code Division Multiple Access networks), discontinuous transmission and conditions of phone use were found to have a relatively minor influence on total cumulative specific RF energy. Conclusions While amount and duration of use are important determinants of RF dose in the brain, their impact can be substantially modified by communication system, frequency band and location in the brain. It is important to take these into account in analyses of risk of brain tumours from RF exposure from mobile phones.
Collapse
Affiliation(s)
- E Cardis
- Centre for Research in Environmental Epidemiology (CREAL), Hospital del Mar Research Institute (IMIM), CIBER Epidemiologia y Salud PÃblica (CIBERESP), Doctor Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dragicevic N, Bradshaw PC, Mamcarz M, Lin X, Wang L, Cao C, Arendash GW. Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit? Neuroscience 2011; 185:135-49. [PMID: 21514369 DOI: 10.1016/j.neuroscience.2011.04.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/15/2011] [Accepted: 04/05/2011] [Indexed: 01/29/2023]
Abstract
We have recently reported that long-term exposure to high frequency electromagnetic field (EMF) treatment not only prevents or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, but also improves memory in normal mice. To elucidate the possible mechanism(s) for these EMF-induced cognitive benefits, brain mitochondrial function was evaluated in aged Tg mice and non-transgenic (NT) littermates following 1 month of daily EMF exposure. In Tg mice, EMF treatment enhanced brain mitochondrial function by 50-150% across six established measures, being greatest in cognitively-important brain areas (e.g. cerebral cortex and hippocampus). EMF treatment also increased brain mitochondrial function in normal aged mice, although the enhancement was not as robust and less widespread compared to that of Tg mice. The EMF-induced enhancement of brain mitochondrial function in Tg mice was accompanied by 5-10 fold increases in soluble Aβ1-40 within the same mitochondrial preparations. These increases in mitochondrial soluble amyloid-β peptide (Aβ) were apparently due to the ability of EMF treatment to disaggregate Aβ oligomers, which are believed to be the form of Aβ causative to mitochondrial dysfunction in Alzheimer's disease (AD). Finally, the EMF-induced mitochondrial enhancement in both Tg and normal mice occurred through non-thermal effects because brain temperatures were either stable or decreased during/after EMF treatment. These results collectively suggest that brain mitochondrial enhancement may be a primary mechanism through which EMF treatment provides cognitive benefit to both Tg and NT mice. Especially in the context that mitochondrial dysfunction is an early and prominent characteristic of Alzheimer's pathogenesis, EMF treatment could have profound value in the disease's prevention and treatment through intervention at the mitochondrial level.
Collapse
Affiliation(s)
- N Dragicevic
- Department of Cell Biology, University of South Florida, FL 33620, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Neubauer G, Cecil S, Giczi W, Petric B, Preiner P, Fröhlich J, Röösli M. The association between exposure determined by radiofrequency personal exposimeters and human exposure: a simulation study. Bioelectromagnetics 2011; 31:535-45. [PMID: 20564178 DOI: 10.1002/bem.20587] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The selection of an adequate exposure assessment approach is imperative for the quality of epidemiological studies. The use of personal exposimeters turned out to be a reasonable approach to determine exposure profiles, however, certain limitations regarding the absolute values delivered by the devices have to be considered. Apart from the limited dynamic range, it has to be taken into account that these devices give only an approximation of the exposure due to the influence of the body of the person carrying the exposimeter, the receiver characteristics of the exposimeter, as well as the dependence of the measured value on frequency band, channel, slot configuration, and communication traffic. In this study, the relationship between the field strength measured close to the human body at the location of the exposimeter and the exposure, that is, the field strength at the location of the human body without the human body present, is investigated by numerical means using the Visible Human model as an anatomical phantom. Two different scenarios were chosen: (1) For FM, GSM, and UMTS an urban outdoor scenario was examined that included a transmitting antenna mounted on the roof of one of four buildings at a street crossing, (2) For WLAN an indoor scenario was investigated. For GSM the average degree of underestimation by the exposimeter (relation of the average field levels at the location of the exposimeter to the field level averaged over the volume of the human body without the body present) was 0.76, and for UMTS 0.87; for FM no underestimation was found, the ratio was 1. In the case of WLAN the degree of underestimation was more pronounced, the ratio was 0.64. This study clearly suggests that a careful evaluation of correction factors for different scenarios is needed prior to the definition of the study protocol. It has to be noted that the reference scenario used in this study does not allow for final conclusions on general correction factors.
Collapse
|
22
|
Abstract
The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. Wireless communication has dramatically influenced our lifestyle; its impact on human health has not been completely assessed. Widespread concern continues in the community about the deleterious effects of radiofrequency radiations on human tissues and the subsequent potential threat of carcinogenesis. Exposure to low-frequency electromagnetic field has been linked to a variety of adverse health outcomes. This article surveys the results of early cell phone studies, where exposure duration was too short to expect tumor genesis, and 2 sets of more recent studies with longer exposure duration: the Interphone studies and the Swedish studies led by Hardell.
Collapse
|
23
|
Tumori del sistema nervoso centrale. Classificazioni istologiche e topografiche, epidemiologia. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Sato Y, Akiba S, Kubo O, Yamaguchi N. A case-case study of mobile phone use and acoustic neuroma risk in Japan. Bioelectromagnetics 2010; 32:85-93. [PMID: 21225885 DOI: 10.1002/bem.20616] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 08/22/2010] [Indexed: 11/10/2022]
Abstract
Results of case-control studies of mobile phone use and acoustic neuroma have been inconsistent. We conducted a case-case study of mobile phone use and acoustic neuroma using a self-administered postal questionnaire. A total of 1589 cases identified in 22 hospitals throughout Japan were invited to participate, and 787 cases (51%) actually participated. Associations between laterality of mobile phone use prior to the reference dates (1 and 5 years before diagnosis) and tumor location were analyzed. The overall risk ratio was 1.08 (95% confidence interval (CI), 0.93-1.28) for regular mobile phone use until 1 year before diagnosis and 1.14 (95% CI, 0.96-1.40) for regular mobile phone use until 5 years before diagnosis. A significantly increased risk was identified for mobile phone use for >20 min/day on average, with risk ratios of 2.74 at 1 year before diagnosis, and 3.08 at 5 years before diagnosis. Cases with ipsilateral combination of tumor location and more frequently used ear were found to have tumors with smaller diameters, suggesting an effect of detection bias. Furthermore, analysis of the distribution of left and right tumors suggested an effect of tumor-side-related recall bias for recall of mobile phone use at 5 years before diagnosis. The increased risk identified for mobile phone users with average call duration >20 min/day should be interpreted with caution, taking into account the possibilities of detection and recall biases. However, we could not conclude that the increased risk was entirely explicable by these biases, leaving open the possibility that mobile phone use increased the risk of acoustic neuroma.
Collapse
Affiliation(s)
- Yasuto Sato
- Department of Public Health, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. Int J Epidemiol 2010; 39:675-94. [PMID: 20483835 DOI: 10.1093/ije/dyq079] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The rapid increase in mobile telephone use has generated concern about possible health risks related to radiofrequency electromagnetic fields from this technology. METHODS An interview-based case-control study with 2708 glioma and 2409 meningioma cases and matched controls was conducted in 13 countries using a common protocol. RESULTS A reduced odds ratio (OR) related to ever having been a regular mobile phone user was seen for glioma [OR 0.81; 95% confidence interval (CI) 0.70-0.94] and meningioma (OR 0.79; 95% CI 0.68-0.91), possibly reflecting participation bias or other methodological limitations. No elevated OR was observed > or =10 years after first phone use (glioma: OR 0.98; 95% CI 0.76-1.26; meningioma: OR 0.83; 95% CI 0.61-1.14). ORs were <1.0 for all deciles of lifetime number of phone calls and nine deciles of cumulative call time. In the 10th decile of recalled cumulative call time, > or =1640 h, the OR was 1.40 (95% CI 1.03-1.89) for glioma, and 1.15 (95% CI 0.81-1.62) for meningioma; but there are implausible values of reported use in this group. ORs for glioma tended to be greater in the temporal lobe than in other lobes of the brain, but the CIs around the lobe-specific estimates were wide. ORs for glioma tended to be greater in subjects who reported usual phone use on the same side of the head as their tumour than on the opposite side. CONCLUSIONS Overall, no increase in risk of glioma or meningioma was observed with use of mobile phones. There were suggestions of an increased risk of glioma at the highest exposure levels, but biases and error prevent a causal interpretation. The possible effects of long-term heavy use of mobile phones require further investigation.
Collapse
|
26
|
Myung SK, Ju W, McDonnell DD, Lee YJ, Kazinets G, Cheng CT, Moskowitz JM. Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol 2009; 27:5565-72. [PMID: 19826127 DOI: 10.1200/jco.2008.21.6366] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Case-control studies have reported inconsistent findings regarding the association between mobile phone use and tumor risk. We investigated these associations using a meta-analysis. METHODS We searched MEDLINE (PubMed), EMBASE, and the Cochrane Library in August 2008. Two evaluators independently reviewed and selected articles based on predetermined selection criteria. RESULTS Of 465 articles meeting our initial criteria, 23 case-control studies, which involved 37,916 participants (12,344 patient cases and 25,572 controls), were included in the final analyses. Compared with never or rarely having used a mobile phone, the odds ratio for overall use was 0.98 for malignant and benign tumors (95% CI, 0.89 to 1.07) in a random-effects meta-analysis of all 23 studies. However, a significant positive association (harmful effect) was observed in a random-effects meta-analysis of eight studies using blinding, whereas a significant negative association (protective effect) was observed in a fixed-effects meta-analysis of 15 studies not using blinding. Mobile phone use of 10 years or longer was associated with a risk of tumors in 13 studies reporting this association (odds ratio = 1.18; 95% CI, 1.04 to 1.34). Further, these findings were also observed in the subgroup analyses by methodologic quality of study. Blinding and methodologic quality of study were strongly associated with the research group. CONCLUSION The current study found that there is possible evidence linking mobile phone use to an increased risk of tumors from a meta-analysis of low-biased case-control studies. Prospective cohort studies providing a higher level of evidence are needed.
Collapse
Affiliation(s)
- Seung-Kwon Myung
- Smoking Cessation Clinic, Center for Cancer Prevention and Detection, Division of Cancer Prevention, National Cancer Control Research Institute, National Cancer Center, Goyang, Republic of Korea;
| | | | | | | | | | | | | |
Collapse
|
27
|
Schüz J, Lagorio S, Bersani F. Electromagnetic fields and epidemiology: An overview inspired by the fourth course at the International School of Bioelectromagnetics. Bioelectromagnetics 2009; 30:511-24. [DOI: 10.1002/bem.20510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
|
29
|
Estimating the risk of brain tumors from cellphone use: Published case–control studies. PATHOPHYSIOLOGY 2009; 16:137-47. [DOI: 10.1016/j.pathophys.2009.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/30/2009] [Indexed: 10/20/2022] Open
|
30
|
Hardell L, Carlberg M, Hansson Mild K. Epidemiological evidence for an association between use of wireless phones and tumor diseases. PATHOPHYSIOLOGY 2009; 16:113-22. [DOI: 10.1016/j.pathophys.2009.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/30/2009] [Indexed: 10/21/2022] Open
|
31
|
Vrijheid M, Armstrong BK, Bédard D, Brown J, Deltour I, Iavarone I, Krewski D, Lagorio S, Moore S, Richardson L, Giles GG, McBride M, Parent ME, Siemiatycki J, Cardis E. Recall bias in the assessment of exposure to mobile phones. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2009; 19:369-81. [PMID: 18493271 DOI: 10.1038/jes.2008.27] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/02/2008] [Indexed: 05/22/2023]
Abstract
Most studies of mobile phone use are case-control studies that rely on participants' reports of past phone use for their exposure assessment. Differential errors in recalled phone use are a major concern in such studies. INTERPHONE, a multinational case-control study of brain tumour risk and mobile phone use, included validation studies to quantify such errors and evaluate the potential for recall bias. Mobile phone records of 212 cases and 296 controls were collected from network operators in three INTERPHONE countries over an average of 2 years, and compared with mobile phone use reported at interview. The ratio of reported to recorded phone use was analysed as measure of agreement. Mean ratios were virtually the same for cases and controls: both underestimated number of calls by a factor of 0.81 and overestimated call duration by a factor of 1.4. For cases, but not controls, ratios increased with increasing time before the interview; however, these trends were based on few subjects with long-term data. Ratios increased by level of use. Random recall errors were large. In conclusion, there was little evidence for differential recall errors overall or in recent time periods. However, apparent overestimation by cases in more distant time periods could cause positive bias in estimates of disease risk associated with mobile phone use.
Collapse
Affiliation(s)
- Martine Vrijheid
- Radiation Group, International Agency for Research on Cancer, Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kundi M. The controversy about a possible relationship between mobile phone use and cancer. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:316-24. [PMID: 19337502 PMCID: PMC2661897 DOI: 10.1289/ehp.11902] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/26/2008] [Indexed: 05/13/2023]
Abstract
OBJECTIVE During the last decade, mobile phone use increased to almost 100% prevalence in many countries of the world. Evidence for potential health hazards accumulated in parallel by epidemiologic investigations has raised controversies about the appropriate interpretation and the degree of bias and confounding responsible for reduced or increased risk estimates. DATA SOURCES Overall, I identified 33 epidemiologic studies in the peer-reviewed literature, most of which (25) were about brain tumors. Two groups have collected data for >or=10 years of mobile phone use: Hardell and colleagues from Sweden and the Interphone group, an international consortium from 13 countries coordinated by the International Agency for Research on Cancer. DATA SYNTHESIS Combined odds ratios (95% confidence intervals) from these studies for glioma, acoustic neuroma, and meningioma were 1.5 (1.2-1.8); 1.3 (0.95-1.9); and 1.1 (0.8-1.4), respectively. CONCLUSIONS Methodologic considerations revealed that three important conditions for epidemiologic studies to detect an increased risk are not met: a ) no evidence-based exposure metric is available; b) the observed duration of mobile phone use is generally still too low; c) no evidence-based selection of end points among the grossly different types of neoplasias is possible because of lack of etiologic hypotheses. Concerning risk estimates, selection bias, misclassification bias, and effects of the disease on mobile phone use could have reduced estimates, and recall bias may have led to spuriously increased risks. The overall evidence speaks in favor of an increased risk, but its magnitude cannot be assessed at present because of insufficient information on long-term use.
Collapse
Affiliation(s)
- Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Vrijheid M, Richardson L, Armstrong BK, Auvinen A, Berg G, Carroll M, Chetrit A, Deltour I, Feychting M, Giles GG, Hours M, Iavarone I, Lagorio S, Lönn S, Mcbride M, Parent ME, Sadetzki S, Salminen T, Sanchez M, Schlehofer B, Schüz J, Siemiatycki J, Tynes T, Woodward A, Yamaguchi N, Cardis E. Quantifying the Impact of Selection Bias Caused by Nonparticipation in a Case–Control Study of Mobile Phone Use. Ann Epidemiol 2009; 19:33-41. [DOI: 10.1016/j.annepidem.2008.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
34
|
Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il'yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA, Brain Tumor Epidemiology Consortium. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113:1953-68. [PMID: 18798534 PMCID: PMC2861559 DOI: 10.1002/cncr.23741] [Citation(s) in RCA: 612] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epidemiologists in the Brain Tumor Epidemiology Consortium (BTEC) have prioritized areas for further research. Although many risk factors have been examined over the past several decades, there are few consistent findings, possibly because of small sample sizes in individual studies and differences between studies in patients, tumor types, and methods of classification. Individual studies generally have lacked samples of sufficient size to examine interactions. A major priority based on available evidence and technologies includes expanding research in genetics and molecular epidemiology of brain tumors. BTEC has taken an active role in promoting understudied groups, such as pediatric brain tumors; the etiology of rare glioma subtypes, such as oligodendroglioma; and meningioma, which, although it is not uncommon, has only recently been registered systematically in the United States. There also is a pressing need for more researchers, especially junior investigators, to study brain tumor epidemiology. However, relatively poor funding for brain tumor research has made it difficult to encourage careers in this area. In this report, BTEC epidemiologists reviewed the group's consensus on the current state of scientific findings, and they present a consensus on research priorities to identify which important areas the science should move to address.
Collapse
Affiliation(s)
- Melissa L Bondy
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Phyllis Adatto, Jill Barnholtz-Sloan, Fabienne Bauchet, Luc Bauchet, Melissa Bondy, Jennifer Brusstar, Patricia Buffler, Mary Ann Butler, Elizabeth Cardis, Tania Carreon-Valencia, Jeffrey Chang, Anand Chokkalingam, Charles Cobbs, Jimmy Efrid, Paul Graham Fisher, James Gurney, Trisha Hartge, Dora II'yasova, Alice Kang, Carol Kruchko, Amy Kyle, Rose Lai, Sharon Lamb, Ching Lau, Beatrice Malmer, Bridget McCarthy, Roberta McKean-Cowdin, Eckart Meese, Catherine Metayer, Dominique Michaud, Isis Mikhail, Lloyd Morgan, Beth Mueller, Michael Murphy, John Neuberger, Manuela Orjuela, Harriet Patterson, Susan Preston-Martin, Preetha Rajaraman, Steve Rapaport, Avima Ruder, Siegal Sadetzki, Michael Scheurer, Brigitte Schlehofer, Joerg Schlehofer, Judith Schwartzbaum, Jenni Spezeski, Tarik Tihan, Rob Tufel, Kevin Urayama, Joseph Wiemels, John Wiencke, Margaret Wrensch,
Collapse
|
35
|
Moquet J, Ainsbury E, Bouffler S, Lloyd D. Exposure to low level GSM 935 MHZ radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells. RADIATION PROTECTION DOSIMETRY 2008; 131:287-296. [PMID: 18550513 DOI: 10.1093/rpd/ncn171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aim of this study was to investigate whether radiofrequency (RF) fields characteristic of mobile phones at non-thermal levels can induce apoptosis in murine neuroblastoma (N2a) cells in both proliferating and differentiated states. Cells were exposed continuously for 24 h to one of the three 935-MHz RF signals: global system for mobile communication (GSM) basic, GSM talk and a continuous wave, unmodulated signal; all at a specific energy absorption rate of 2 W kg(-1). The measured increase in temperature of the cells due to the RF fields was around 0.06 degrees C. At a number of time points between 0 and 48 h post-exposure, the cells were assessed for apoptosis under a fluorescence microscope using three independent assays: Annexin V, caspase activation and in situ end-labelling. No statistically significant differences in apoptosis levels were observed between the exposed and sham-exposed cells using the three assays at any time point post-exposure. These data suggest that RF exposures, characteristic of GSM mobile phones, do not significantly affect the apoptosis levels in proliferating and differentiated murine neuroblastoma cell line N2a.
Collapse
Affiliation(s)
- J Moquet
- Health Protection Agency, Radiation Protection Division, Chilton, Didcot, Oxon OX11 0RQ, UK.
| | | | | | | |
Collapse
|
36
|
Takebayashi T, Varsier N, Kikuchi Y, Wake K, Taki M, Watanabe S, Akiba S, Yamaguchi N. Mobile phone use, exposure to radiofrequency electromagnetic field, and brain tumour: a case-control study. Br J Cancer 2008; 98:652-9. [PMID: 18256587 PMCID: PMC2243154 DOI: 10.1038/sj.bjc.6604214] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In a case–control study in Japan of brain tumours in relation to mobile phone use, we used a novel approach for estimating the specific absorption rate (SAR) inside the tumour, taking account of spatial relationships between tumour localisation and intracranial radiofrequency distribution. Personal interviews were carried out with 88 patients with glioma, 132 with meningioma, and 102 with pituitary adenoma (322 cases in total), and with 683 individually matched controls. All maximal SAR values were below 0.1 W kg−1, far lower than the level at which thermal effects may occur, the adjusted odds ratios (ORs) for regular mobile phone users being 1.22 (95% confidence interval (CI): 0.63–2.37) for glioma and 0.70 (0.42–1.16) for meningioma. When the maximal SAR value inside the tumour tissue was accounted for in the exposure indices, the overall OR was again not increased and there was no significant trend towards an increasing OR in relation to SAR-derived exposure indices. A non-significant increase in OR among glioma patients in the heavily exposed group may reflect recall bias.
Collapse
Affiliation(s)
- T Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|