1
|
Zafar A, Khalid M, Alsaidan OA, Mujtaba MA. Exploring the molecular pathways of advanced rectal cancer: A focus on genetic, RNA, and biological technique. Pathol Res Pract 2025; 270:155956. [PMID: 40215670 DOI: 10.1016/j.prp.2025.155956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/06/2025] [Indexed: 05/20/2025]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer, with rectal cancer (RC) accounting for approximately 35 % of cases, posing a significant health burden. The early phase of R progression is characterized by the accumulation of genetic and epigenetic changes that promote cell growth. These rapidly dividing cells form a benign adenoma, which can eventually transform into malignant tumors and metastasize to other organs. Among the key molecular alterations, a mutation in the Wnt/β-catenin signaling pathway plays a crucial role. Additionally, BRAF mutation contributes to 8-10 % of CRC cases, while mutation in PIK3C pathways is responsible for 20-25 % of cases. The RC involves complex biological mechanisms. This review article highlights the pivotal role of mRNA in diagnosing and predicting the prognosis of RC, explores the various functions of non-coding RNAs (ncRNA,s), and examines the impact of RNA editing and modification on the progression of tumor genesis. Furthermore, we discuss the cellular signaling pathways and microenvironment interaction and pathways like PI3K/Akt/mTOR and Wnt/β-catenin. Advancements in molecular, RNA, and genetic research have evolved the treatment of cancer. Techniques like next-generation sequencing have tremendously opened the biological field of research. Along with this, techniques like CRISPR/Cas9 aid in the developing therapeutic strategies. Proteomics and metabolomics approach further contribute to novel research direction in oncology.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia.
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
3
|
Fu B, Ma H, Wang L, Guo Z, Wang F, Liu D, Zhang D. Embryonic Origins of Cancer: Insights from Double Homeobox 4 Regulation. Biomolecules 2025; 15:721. [PMID: 40427614 PMCID: PMC12108839 DOI: 10.3390/biom15050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Embryogenesis and tumorigenesis share several key biological characteristics, such as rapid cell proliferation, high plasticity, and immune evasion. This similarity indicates that developmental pathways can be hijacked, leading to the formation of malignant cell states. With regard to this, cancer can be regarded as a stem cell disease. On the contrary, a fetus, in many ways, has similar characteristics to the "ideal tumor", such as immune evasion and rapid growth. Therefore, deciphering the molecular mechanisms beneath these phenomena will help us to understand the embryonic origins of cancer. This review discusses the relationship between embryogenesis and tumorigenesis, highlighting the potential roles played by DUX4. DUX4 is involved in the activation of the zygote genome and then facilitates the establishment of totipotency in pre-implantation embryos, whereas the misexpression of DUX4 is associated with different types of cancer. Taken together, this indicates that DUX4 performs analogous functions in these two processes and connects embryogenesis and tumorigenesis. Through examining DUX4, this review underscores the importance of developmental mechanisms in cancer biology, suggesting that the insights gained from studying embryonic processes may provide novel therapeutic strategies. As we continue to explore the complex relationship between cancer and embryogenesis, elucidating the role of DUX4 in linking these two processes will be critical for developing targeted therapies that exploit developmental pathways.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Zhenhua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.); (L.W.); (Z.G.); (F.W.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
4
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Morcillo-Martín-Romo P, Valverde-Pozo J, Ortiz-Bueno M, Arnone M, Espinar-Barranco L, Espinar-Barranco C, García-Rubiño ME. The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances. Biomedicines 2025; 13:857. [PMID: 40299429 PMCID: PMC12024875 DOI: 10.3390/biomedicines13040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Natural killer (NK) cells play a crucial role in tumor surveillance by exerting cytotoxic activity and modulating immune responses. However, tumors employ diverse evasion strategies that limit NK cell effectiveness. This review aims to explore the molecular mechanisms of NK cell activation and inhibition in cancer, the influence of the tumor microenvironment, and the latest advancements in NK cell-based immunotherapies, including adoptive NK cell transfer and Chimeric Antigen Receptor-Natural Killer (CAR-NK) cell therapies. Methods: A comprehensive literature review was conducted, prioritizing peer-reviewed studies from the last decade on NK cell biology, tumor immune evasion, and immunotherapeutic applications. The analysis includes data from preclinical models and clinical trials evaluating NK cell expansion strategies, cytokine-based stimulation, and CAR-NK cell therapy developments. Results: NK cells eliminate tumors through cytotoxic granule release, death receptor pathways, and cytokine secretion. However, tumor cells evade NK-mediated immunity by downregulating activating ligands, secreting immunosuppressive molecules, and altering the tumor microenvironment. Novel NK cell-based therapies, such as CAR-NK cells and combination approaches with immune checkpoint inhibitors, enhance NK cell persistence and therapeutic efficacy against both hematologic and solid malignancies. Clinical trials suggest improved safety profiles compared to CAR-T therapies, with reduced cytokine release syndrome and graft-versus-host disease. Conclusions: While NK cell-based immunotherapies hold great promise, challenges remain, including limited persistence and tumor-induced immunosuppression. Addressing these hurdles will be critical for optimizing NK cell therapies and advancing next-generation, off-the-shelf immunotherapeutics for broader clinical applications.
Collapse
Affiliation(s)
- Paula Morcillo-Martín-Romo
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Javier Valverde-Pozo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain;
| | - María Ortiz-Bueno
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
| | - Maurizio Arnone
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
| | - Laura Espinar-Barranco
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celia Espinar-Barranco
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain;
| | - María Eugenia García-Rubiño
- Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (P.M.-M.-R.); (M.A.)
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain; (M.O.-B.); (L.E.-B.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
| |
Collapse
|
6
|
Su L, Xu R, Ren Y, Zhao S, Song L, Meng C, Liu W, Zhou X, Du Z. 5-Methylcytosine methylation predicts cervical cancer prognosis, shaping immune cell infiltration. J Int Med Res 2025; 53:3000605251328301. [PMID: 40219803 PMCID: PMC12033582 DOI: 10.1177/03000605251328301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/19/2025] [Indexed: 04/14/2025] Open
Abstract
BackgroundEpigenetics, encompassing DNA and RNA modifications, has emerged as a prominent area of research in the post-genomic era. Numerous studies have elucidated the impact of epigenetics on tumor regulation. However, the methylation patterns of 5-methylcytosine in cervical cancer as well as its role in the tumor microenvironment and immunotherapy remain poorly understood.MethodsUtilizing a comprehensive dataset encompassing samples from 306 patients with cervical cancer from The Cancer Genome Atlas and Gene Expression Omnibus repositories, we conducted an in-depth analysis to evaluate the potential association between the modification patterns of 5-methylcytosine and the infiltration of cells within the tumor microenvironment, taking into account 11 regulators of 5-methylcytosine modification. Subsequently, we employed stepwise regression and Least Absolute Shrinkage and Selection Operator Cox regression to quantify 5-methylcytosine modification patterns in patients with cervical squamous cell carcinoma and endocervical adenocarcinoma, yielding the 5-methylcytosine score. Our study explored the link between the 5-methylcytosine score and clinical characteristics as well as prognostic outcomes in patients with cervical squamous cell carcinoma and endocervical adenocarcinoma.ResultsA comprehensive analysis of 306 patients with cervical cancer revealed two distinct 5-methylcytosine modification patterns, henceforth labeled as 5-methylcytosine clusters A and B. These clusters exhibited distinct immunological profiles and biological attributes, with 5-methylcytosine cluster A exhibiting a higher degree of immune cell infiltration. Utilizing univariate Cox regression analysis, we identified 367 genes regulated by 5-methylcytosine that were significantly correlated with patient prognosis. This analysis further stratified the samples into three distinct genomic subtypes. Survival analyses indicated that patients belonging to gene cluster C exhibited more favorable survival outcomes than those belonging to gene clusters A and B. Intriguingly, most 5-methylcytosine regulatory factors had higher expression levels in gene cluster B than in gene cluster A. Gene set enrichment analysis of a single sample revealed elevated immune cell infiltration within gene cluster B, indicating a stronger immune response in this cluster. The 5-methylcytosine score feature was utilized to determine the 5-methylcytosine modification pattern in cervical cancer, revealing that patients with low 5-methylcytosine scores exhibited better survival rates, whereas those with high scores had increased mutation frequencies and better treatment responses.ConclusionsThis research underscores the key role of 5-methylcytosine modification patterns in cervical cancer. Analysis of these patterns will deepen our understanding of the cervical cancer tumor microenvironment, paving the way for the development of more refined and effective immunotherapy strategies.
Collapse
Affiliation(s)
- Luyang Su
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Ren Xu
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Yanan Ren
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Shixia Zhao
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Liyun Song
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Cuiqiao Meng
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Weilan Liu
- Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei-China
| | - Xuan Zhou
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei-China
| | - Zeqing Du
- Department of Obstetrics and Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei-China
| |
Collapse
|
7
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
8
|
Zhou K, Ma X, Yan T, Zheng H, Xie S, Guo L, Lu R. Stemness-Relevant Gene Signature for Chemotherapeutic Response and Prognosis Prediction in Ovarian Cancer. Stem Cells Int 2025; 2025:2505812. [PMID: 40182754 PMCID: PMC11968171 DOI: 10.1155/sci/2505812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Background: Ovarian cancer (OC) stands as the leading cause of cancer-related deaths among women, globally, owing to metastasis and acquired chemoresistance. Cancer stem cells (CSCs) are accountable for tumor initiation and exhibit resistance to chemotherapy and radiotherapy. Identifying stemness-related biomarkers that can aid in the stratification of risk and the response to chemotherapy for OC is feasible and critical. Methods: Gene expression and clinical data of patients with OC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Four thousand three hundred seventeen stemness-related genes (SRGs) were acquired from the StemChecker database. TCGA was used as the training dataset, while GSE30161 served as validation dataset. Univariate Cox regression analysis was used to identify overall survival (OS)-related SRGs, and multivariate Cox regression analysis and random survival forest analysis were used for generating stemness-relevant prognostic model. Kaplan-Meier plots were used to visualize survival functions. Receiver operating characteristic (ROC) curves were used to assess the prognostic predictive ability of SRG-based features. Associations between signature score, tumor immune phenotype, and response to chemotherapy were analyzed via TIMER 2.0 and oncoPredict R package, respectively. A cohort of Shanghai Cancer Center was employed to verify the predictive robustness of the signature with respect to chemotherapy response. Results: Seven SRGs (actin-binding Rho activating C-terminal like (ABRACL), growth factor receptor bound protein 7 (GRB7), Lin-28 homolog B (LIN28B), lipolysis stimulated lipoprotein receptor (LSR), neuromedin U (NMU), Solute Carrier Family 4 Member 11 (SLC4A11), and thymocyte selection associated family member 2 (THEMIS2)) were found to have excellent predictive potential for patient survival. Patients in the high stemness risk group presented a poorer prognosis (p < 0.0001), and patients with lower stemness scores were more likely to benefit from chemotherapy. Several tumorigenesis pathways, such as mitotic spindle and glycolysis, were enriched in the high stemness risk group. Tumor with high-risk scores tended to be in a status of relatively high tumor infiltration of CD4+ T cells, neutrophils, and macrophages, while tumor with low-risk scores tended to be in a status of relatively high tumor infiltration of CD8+ T cells. Conclusions: The stemness-relevant prognostic gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of OC patients.
Collapse
Affiliation(s)
- Kaixia Zhou
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tianqing Yan
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Teng C, Chen JW, Shen LS, Chen S, Chen GQ. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:13. [PMID: 40201307 PMCID: PMC11977367 DOI: 10.20517/cdr.2024.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cancer remains a significant global health challenge, with current chemotherapeutic strategies frequently limited by the emergence of resistance. In this context, natural compounds with the potential to overcome resistance have garnered considerable attention. Among these, sesquiterpene lactones, primarily derived from plants in the Asteraceae family, stand out for their potential anticancer properties. This review specifically focuses on five key signaling pathways: PI3K/Akt/mTOR, NF-κB, Wnt/β-catenin, MAPK/ERK, and STAT3, which play central roles in the mechanisms of cancer resistance. For each of these pathways, we detail their involvement in both cancer development and the emergence of drug resistance. Additionally, we investigate how sesquiterpene lactones modulate these pathways to overcome resistance across diverse cancer types. These insights highlight the potential of sesquiterpene lactones to drive the advancement of novel therapies that can effectively combat both cancer progression and drug resistance.
Collapse
Affiliation(s)
- Chi Teng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Jia-Wen Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guo-Qing Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| |
Collapse
|
10
|
Xu H, Chen D, Lu J, Wang L, Chen F, Zhong L. LST1 expression correlates with immune infiltration and predicts poor prognosis in acute myeloid leukemia. Discov Oncol 2025; 16:305. [PMID: 40072762 PMCID: PMC11904058 DOI: 10.1007/s12672-025-02082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Clinical management of acute myeloid leukemia (AML) poses significant challenges due to its poor prognosis and heterogeneous nature. Discovering new biomarkers is crucial for improving risk assessment and customizing treatment approaches. While leukocyte-specific transcript 1 (LST1) is implicated in inflammation and immune regulation, its function in AML remains ambiguous. In this investigation, we conduct a comprehensive investigation into LST1 expression profiles, clinical implications, functional pathways, and immune interactions in AML, leveraging multi-omics data and experimental validations. Our examination shows increased levels of LST1 expression in AML when compared to regular hematopoietic tissues, a discovery validated by RT-qPCR and Western blot analyses in a separate group. Elevated LST1 levels correlate with distinct clinicopathological features, including increased white blood cell counts, non-M3 FAB subtype, and intermediate/poor cytogenetic risk. Importantly, heightened LST1 levels predict unfavorable overall survival outcomes across various subgroups, independently of age and cytogenetic risk. We develop an integrative nomogram incorporating LST1 expression, demonstrating robust prognostic efficacy for patient survival. Transcriptomic profiling identifies 275 differentially expressed genes between LST1-high and -low AML cases, enriched in cytokine signaling, immune modulation, cell adhesion, and oncogenic pathways. Furthermore, LST1 exhibits significant associations with the infiltration of diverse immune cell subsets within the AML microenvironment, particularly myeloid cells and regulatory T cells (Tregs). In conclusion, our study establishes LST1 as a novel prognostic indicator with immunological relevance in AML, emphasizing its potential therapeutic implications. Further mechanistic elucidation of LST1 in AML pathogenesis is crucial for its clinical translation.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China.
| | - Dangui Chen
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Jia Lu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Lihong Wang
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Fei Chen
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Long Zhong
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| |
Collapse
|
11
|
Buri MC, Shoeb MR, Bykov A, Repiscak P, Baik H, Dupanovic A, David FO, Kovacic B, Hall-Glenn F, Dopa S, Urbanus J, Sippl L, Stofner S, Emminger D, Cosgrove J, Schinnerl D, Poetsch AR, Lehner M, Koenig X, Perié L, Schumacher TN, Gotthardt D, Halbritter F, Putz EM. Natural Killer Cell-Mediated Cytotoxicity Shapes the Clonal Evolution of B-cell Leukemia. Cancer Immunol Res 2025; 13:430-446. [PMID: 39642167 PMCID: PMC7617306 DOI: 10.1158/2326-6066.cir-24-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/27/2024] [Accepted: 12/04/2024] [Indexed: 12/08/2024]
Abstract
The term cancer immunoediting describes the dual role by which the immune system can suppress and promote tumor growth and is divided into three phases: elimination, equilibrium, and escape. The role of NK cells has mainly been attributed to the elimination phase. Here, we show that NK cells play a role in all three phases of cancer immunoediting. Extended co-culturing of DNA-barcoded mouse BCR/ABLp185+ B-cell acute lymphoblastic leukemia (B-ALL) cells with NK cells allowed for a quantitative measure of NK cell-mediated immunoediting. Although most tumor cell clones were efficiently eliminated by NK cells, a certain fraction of tumor cells harbored an intrinsic primary resistance. Furthermore, DNA barcoding revealed tumor cell clones with secondary resistance, which stochastically acquired resistance to NK cells. NK cell-mediated cytotoxicity put a selective pressure on B-ALL cells, which led to an outgrowth of primary and secondary resistant tumor cell clones, which were characterized by an IFNγ signature. Besides well-known regulators of immune evasion, our analysis of NK cell-resistant tumor cells revealed the upregulation of genes, including lymphocyte antigen 6 complex, locus A (Ly6a), which we found to promote leukemic cell resistance to NK cells. Translation of our findings to the human system showed that high expression of LY6E on tumor cells impaired their physical interaction with NK cells and led to worse prognosis in patients with leukemia. Our results demonstrate that tumor cells are actively edited by NK cells during the equilibrium phase and use different avenues to escape NK cell-mediated eradication.
Collapse
Affiliation(s)
- Michelle C. Buri
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Mohamed R. Shoeb
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Aleksandr Bykov
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter Repiscak
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Hayeon Baik
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Alma Dupanovic
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Faith O. David
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Boris Kovacic
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Faith Hall-Glenn
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Sara Dopa
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Sippl
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Susanne Stofner
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Dominik Emminger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Dagmar Schinnerl
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Anna R. Poetsch
- Biomedical Genomics, Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Germany
| | - Manfred Lehner
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Ton N. Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dagmar Gotthardt
- Institute of Pharmacology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Eva M. Putz
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Rakoczy K, Szymańska N, Stecko J, Kisiel M, Sleziak J, Gajewska-Naryniecka A, Kulbacka J. The Role of RAC2 and PTTG1 in Cancer Biology. Cells 2025; 14:330. [PMID: 40072059 PMCID: PMC11899714 DOI: 10.3390/cells14050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Several molecular pathways are likely involved in the regulation of cancer stem cells (CSCs) via Ras-associated C3 botulinum toxin substrate 2, RAC2, and pituitary tumor-transforming gene 1 product, PTTG1, given their roles in cellular signaling, survival, proliferation, and metastasis. RAC2 is a member of the Rho GTPase family and plays a crucial role in actin cytoskeleton dynamics, reactive oxygen species production, and cell migration, contributing to epithelial-mesenchymal transition (EMT), immune evasion, and therapy resistance. PTTG1, also known as human securin, regulates key processes such as cell cycle progression, apoptosis suppression, and EMT, promoting metastasis and enhancing cancer cell survival. This article aims to describe the molecular pathways involved in the proliferation, invasiveness, and drug response of cancer cells through RAC2 and PTTG1, aiming to clarify their respective roles in neoplastic process dependencies. Both proteins are involved in critical signaling pathways, including PI3K/AKT, TGF-β, and NF-κB, which facilitate tumor progression by modulating CSC properties, angiogenesis, and immune response. This review highlights the molecular mechanisms by which RAC2 and PTTG1 influence tumorigenesis and describes their potential and efficacy as prognostic biomarkers and therapeutic targets in managing various neoplasms.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (N.S.); (J.S.); (M.K.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
13
|
Sirit IS, Peek RM. Decoding the Ability of Helicobacter pylori to Evade Immune Recognition and Cause Disease. Cell Mol Gastroenterol Hepatol 2025; 19:101470. [PMID: 39889829 PMCID: PMC11946503 DOI: 10.1016/j.jcmgh.2025.101470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Helicobacter pylori (H pylori) successfully and chronically colonizes the gastric mucosa of approximately 43% of the world's population. Infection with this organism is the strongest known risk factor for the development of gastric cancer, and disease development is dependent on several interactive components. One H pylori determinant that augments cancer risk is the strain-specific cag type IV secretion system, which not only translocates a pro-inflammatory and oncogenic protein, CagA, into host cells but also DNA, peptidoglycan, and a lipopolysaccharide intermediate, heptose-1,7-bisphosphate. However, cognate interactions between certain microbial and host constituents can also attenuate pro-inflammatory responses, and H pylori harbors multiple effectors that function differently than the respective counterparts in other mucosal pathogens. In this review, we discuss current data related to mechanisms utilized by H pylori to evade the immune response, sustain its longevity in the host, and further disease progression, as well as implications for developing targeted, immune-based eradication strategies.
Collapse
Affiliation(s)
- Isabella S Sirit
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Molecular Pathology and Immunology Training Program, Vanderbilt University, Nashville, Tennessee
| | - Richard M Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
14
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
15
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
16
|
Dai Q, Zhu J, Yang J, Zhang CY, Yang WJ, Pan BS, Yang XR, Guo W, Wang BL. Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. Curr Stem Cell Res Ther 2025; 20:103-122. [PMID: 38561604 DOI: 10.2174/011574888x305642240327041753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.
Collapse
Grants
- 81772263, 81972000, 81872355, 82072715, 82172348 National Natural Science Foundation of China
- 82202608, 81902139 National Natural Science Foundation of China Youth Fund
- 2018ZSLC05, 2020ZSLC54, 2020ZSLC31 Specialized Fund for the clinical research of Zhongshan Hospital affiliated Fudan University
- 2021ZSCX28 Science Foundation of Zhongshan Hospital, Fudan University
- 2021ZSGG08 Excellent backbone of Zhongshan Hospital, Fudan University
- shslczdzk03302 construction project of clinical key disciplines in Shanghai
- YDZX20193502000002 Key medical and health projects of Xiamen
- BSZK-2023-A18 Shanghai Baoshan Medical Key Specialty
- 2019YFC1315800, 2019YFC1315802 National Key R&D Program of China
- 81830102 State Key Program of National Natural Science of China
- 2019CXJQ02 Shanghai Municipal Health Commission Collaborative Innovation Cluster Project
- 19441905000, 21140900300 Shanghai Science and Technology Commission
Collapse
Affiliation(s)
- Qian Dai
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Galoian K, Bilbao D, Denny C, Campos Gallego N, Roberts E, Martinez D, Temple H. Targeting cancer stem cells by TPA leads to inhibition of refractory sarcoma and extended overall survival. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200905. [PMID: 39640862 PMCID: PMC11617462 DOI: 10.1016/j.omton.2024.200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Refractory cancer recurrence in patients is a serious challenge in modern medicine. Tumor regrowth in a more aggressive and invasive drug-resistant form is caused by a specific sub-population of tumor cells defined as cancer stem cells (CSCs). While the role of CSCs in cancer relapse is recognized, the signaling pathways of CSCs-driven chemoresistance are less well understood. Moreover, there are no effective therapeutic strategies that involve specific inhibition of CSCs responsible for cancer recurrence and drug resistance. There is a clinical need to develop new therapies for patients with refractory sarcomas, particularly fibrosarcoma. These aggressive tumors, with poor overall survival, do not respond to conventional therapies. Standard systemic chemotherapy for these tumors includes doxorubicin (DOX). A Tyr peptide analog (TPA), developed in our laboratory, specifically targets CSCs by drastically reducing expression of the polycomb group protein enhancer of zester (EZH2) and its downstream targets, specifically ALDH1A1 and Nanog. In vivo experiments demonstrated that TPA inhibited tumor growth in nu/nu mice with relapsed DOX-treated fibrosarcoma 7-fold and led to improved overall (2-fold) survival. In an experimental metastatic model, the combination of TPA with DOX treatment extended overall survival 3-fold, suggesting that targeting CSC can become an effective strategy in the treatment of refractory/relapse fibrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Carina Denny
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Daniel Martinez
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - H.T. Temple
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
18
|
Huang F, Wang F, Hu Q, Li Y, Jiang D. PTGR1-mediated immune evasion mechanisms in late-stage triple-negative breast cancer: mechanisms of M2 macrophage infiltration and CD8 + T cell suppression. Apoptosis 2024; 29:2002-2024. [PMID: 39068625 DOI: 10.1007/s10495-024-01991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by metabolic dysregulation. Tumor cell immune escape plays an indispensable role in the development of TNBC tumors. Furthermore, in the abstract, we explicitly mention the techniques used and enhance the clarity and impact of our findings. "Based on bioinformatics analysis results, we utilized CRISPR/Cas9 technology to knockout the target gene and established a mouse model of breast cancer. Through experiments such as CCK8, scratch assay, and Transwell assay, we further investigated the impact of target gene knockout on the malignant behavior of tumor cells. Subsequently, we conducted immunohistochemistry and Western Blot experiments to study the expression of macrophage polarization and infiltration-related markers and evaluate the effect of the target gene on macrophage polarization. Next, through co-culture experiments, we simulated the tumor microenvironment and used immunohistochemistry staining to observe and analyze the distribution and activation status of M2 macrophages and CD8+ T cells in the co-culture system. We validated in vivo experiments the molecular mechanism by which the target gene regulates immune cell impact on TNBC progression.
Collapse
Affiliation(s)
- Fang Huang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Fuhe Wang
- Department of General surgery, Hebei Yiling Hospital, Shijiazhuang, 050000, P. R. China
| | - Qilu Hu
- Department of Radiotherapy, Heze Traditional Chinese Medicine Hospital, Heze, 274008, P. R. China
| | - Ying Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China
| | - Da Jiang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, East Campus, No.169 Tianshan Street, Shijiazhuang, 050000, Hebei Province, P. R. China.
| |
Collapse
|
19
|
Czarnogórski MC, Czernicka A, Koper K, Petrasz P, Pokrywczyńska M, Juszczak K, Kowalski F, Drewa T, Adamowicz J. Cancer stem cells and their role in metastasis. Cent European J Urol 2024; 78:40-51. [PMID: 40371432 PMCID: PMC12073518 DOI: 10.5173/ceju.2024.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 05/16/2025] Open
Abstract
Introduction Cancer, next to cardiovascular diseases, remains the primary concern of modern medicine in developed countries. Despite the unprecedented progress in targeted therapies and personalised medicine, including immunotherapy and gene therapy, we are still unable to efficiently treat many malignancies. One of the major obstacles to treating cancer is its ability to metastasise. Hence, a better understanding of cancer biology with emphasis on the metastasis formation may hold the key to further ameliorating cancer treatment. Nowadays, there is a growing body of evidence for the common denominator of neoplasia, which seems to be universal - cancer stem cells which are being found in a growing number of cancers. Material and methods We conducted a Web of Science and Medline database search using the terms "cancer stem cells", "carcinogenesis", and "stem cells" in conjunction with "metastasis", without setting time limits. Results The existence of cancer stem cells was proven both in animal models and in humans. We know beyond doubt that cancer stem cells may be found in bladder cancer, breast cancer, and colon cancer, among others. The cancer stem cells in the aforementioned cancers may initiate tumour formation ex vivo and thus theoretically lead to tumour recurrence. Their role in the formation of metastases, however, is still under investigation. Conclusions Although their exact role is yet to be identified, it is now obvious that cancer stem cells give rise to primary mass in solid tumours and differentiated cancer cells in leukaemias. However, the role of cancer stem cells in metastasis is still obscure.
Collapse
Affiliation(s)
- Michał C. Czarnogórski
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Aleksandra Czernicka
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Krzysztof Koper
- Department of Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Piotr Petrasz
- Department of Urology and Urological Oncology, Multidisciplinary Regional Hospital in Gorzow Wielkopolski, Poland
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Chair of Urology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Kajetan Juszczak
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Filip Kowalski
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Tomasz Drewa
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Jan Adamowicz
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
20
|
Schöpe PC, Torke S, Kobelt D, Kortüm B, Treese C, Dumbani M, Güllü N, Walther W, Stein U. MACC1 revisited - an in-depth review of a master of metastasis. Biomark Res 2024; 12:146. [PMID: 39580452 PMCID: PMC11585957 DOI: 10.1186/s40364-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cancer metastasis remains the most lethal characteristic of tumors mediating the majority of cancer-related deaths. Identifying key molecules responsible for metastasis, understanding their biological functions and therapeutically targeting these molecules is therefore of tremendous value. Metastasis Associated in Colon Cancer 1 (MACC1), a gene first described in 2009, is such a key driver of metastatic processes, initiating cellular proliferation, migration, invasion, and metastasis in vitro and in vivo. Since its discovery, the value of MACC1 as a prognostic biomarker has been confirmed in over 20 cancer entities. Additionally, several therapeutic strategies targeting MACC1 and its pro-metastatic functions have been developed. In this review, we will provide a comprehensive overview on MACC1, from its clinical relevance, towards its structure and role in signaling cascades as well as molecular networks. We will highlight specific biological consequences of MACC1 expression, such as an increase in stem cell properties, its immune-modulatory effects and induced therapy resistance. Lastly, we will explore various strategies interfering with MACC1 expression and/or its functions. Conclusively, this review underlines the importance of understanding the role of individual molecules in mediating metastasis.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Treese
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malti Dumbani
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nazli Güllü
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Ali LS, Attia YAM, Mourad S, Halawa EM, Abd Elghaffar NH, Shokry S, Attia OM, Makram M, Wadan AHS, Negm WA, Elekhnawy E. The missing link between cancer stem cells and immunotherapy. Curr Med Res Opin 2024; 40:1963-1984. [PMID: 39316769 DOI: 10.1080/03007995.2024.2407963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer stem cells (CSCs) are cancer cells that can self-renew and give rise to tumors. The multipotency of CSCs enables the generation of diverse cancer cell types and their potential for differentiation and resilience against chemotherapy and radiation. Additionally, specific biomarkers have been identified for them, such as CD24, CD34, CD44, CD47, CD90, and CD133. The CSC model suggests that a subset of CSCs within tumors is responsible for tumor growth. The tumor microenvironment (TME), including fibroblasts, immune cells, adipocytes, endothelial cells, neuroendocrine (NE) cells, extracellular matrix (ECM), and extracellular vesicles, has a part in shielding CSCs from the host immune response as well as protecting them against anticancer drugs. The regulation of cancer stem cell plasticity by cancer-associated fibroblasts (CAFs) occurs through specific signaling pathways that differ among various types of cancer, utilizing the IGF-II/IGF1R, FAK, and c-Met/FRA1/HEY1 signaling pathways. Due to the intricate dynamics of CSC proliferation, controlling their growth necessitates innovative approaches and much more research. Our current review speculates an outline of how the TME safeguards stem cells, their interaction with CSCs, and the involvement of the immune and inflammatory systems in CSC differentiation and maintenance. Several technologies have the ability to identify CSCs; however, each approach has limitations. We discuss how these methods can aid in recognizing CSCs in several cancer types, comprising brain, breast, liver, stomach, and colon cancer. Furthermore, we explore different immunotherapeutic strategies targeting CSCs, including stimulating cancer-specific T cells, modifying immunosuppressive TMEs, and antibody-mediated therapy targeting CSC markers.
Collapse
Affiliation(s)
- Lobna Safwat Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Esraa M Halawa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Seham Shokry
- Faculty of Science, Tanta University, Tanta, Egypt
| | - Omar M Attia
- Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha Makram
- Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Acharya SK, Shai S, Choon YF, Gunardi I, Hartanto FK, Kadir K, Roychoudhury A, Amtha R, Vincent-Chong VK. Cancer Stem Cells in Oral Squamous Cell Carcinoma: A Narrative Review on Experimental Characteristics and Methodological Challenges. Biomedicines 2024; 12:2111. [PMID: 39335624 PMCID: PMC11429394 DOI: 10.3390/biomedicines12092111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of cancer cells that are believed to initiate and drive cancer progression. In animal models, xenotransplanted CSCs have demonstrated the ability to produce tumors. Since their initial isolation in blood cancers, CSCs have been identified in various solid human cancers, including oral squamous cell carcinoma (OSCC). In addition to their tumorigenic properties, dysregulated stem-cell-related signaling pathways-Wnt family member (Wnt), neurogenic locus notch homolog protein (Notch), and hedgehog-have been shown to endow CSCs with characteristics like self-renewal, phenotypic plasticity, and chemoresistance, contributing to recurrence and treatment failure. Consequently, CSCs have become targets for new therapeutic agents, with some currently in different phases of clinical trials. Notably, small molecule inhibitors of the hedgehog signaling pathway, such as vismodegib and glasdegib, have been approved for the treatment of basal cell carcinoma and acute myeloid leukemia, respectively. Other strategies for eradicating CSCs include natural compounds, nano-drug delivery systems, targeting mitochondria and the CSC microenvironment, autophagy, hyperthermia, and immunotherapy. Despite the extensive documentation of CSCs in OSCC since its first demonstration in head and neck (HN) SCC in 2007, none of these novel pharmacological approaches have yet entered clinical trials for OSCC patients. This narrative review summarizes the in vivo and in vitro evidence of CSCs and CSC-related signaling pathways in OSCC, highlighting their role in promoting chemoresistance and immunotherapy resistance. Additionally, it addresses methodological challenges and discusses future research directions to improve experimental systems and advance CSC studies.
Collapse
Affiliation(s)
- Surendra Kumar Acharya
- Department of Oral Medicine, Radiology and Surgery, Faculty of Dentistry, Lincoln University College, Petaling Jaya 47301, Selangor, Malaysia
| | - Saptarsi Shai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Yee Fan Choon
- Department of Oral and Maxillofacial Surgical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia;
| | - Indrayadi Gunardi
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Firstine Kelsi Hartanto
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rahmi Amtha
- Oral Medicine Department, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia; (I.G.); (F.K.H.)
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
23
|
Tao K, Chen C, Xu G, Tao F, He M. Low-dose apatinib optimizes the vascular normalization and enhances the antitumor effect of PD-1 inhibitor in gastric cancer. Transl Cancer Res 2024; 13:4290-4300. [PMID: 39262493 PMCID: PMC11385532 DOI: 10.21037/tcr-23-2328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Background Apatinib is a tyrosine kinase inhibitor that has shown potential in combination with immune checkpoint inhibitors (ICIs) in gastric cancer (GC); however, its role in GC is unclear. This research aims to investigate the effect of low-dose apatinib in GC, and analyze the mechanisms of its underlying action. Methods A mouse model of GC was established, and the experimental mice were divided into different groups for different treatment: group NS (normal saline), group A (low-dose apatinib 50 mg/kg), group B (high-dose apatinib 200 mg/kg), group C [programmed cell death protein 1 (PD-1) inhibitor monotherapy], and group D (PD-1 inhibitor combined with low-dose apatinib). After 14 days of treatment, the tumor and blood samples were collected from all mice for histological and cytokine detection. Results Compared with the control group, mice in the low-dose apatinib group showed smaller tumor volumes and slower growth. CD31/α-smooth muscle actin (α-SMA) double staining revealed significantly higher coverage of perivascular cells in the low-dose apatinib group by contrast to the control and high-dose apatinib groups, suggesting that low-dose apatinib may alleviate hypoxia. Compared to the high-dose apatinib group, the expression of hypoxia inducible factor 1 alpha (HIF1α) significantly decreased in the low-dose apatinib group. Hematoxylin and eosin (HE) staining results showed a higher proportion of necrotic tumor tissues in the group of mice treated with low-dose apatinib combined with PD-1 inhibitor than in other groups. In addition, this combined treatment significantly reduced the expression of NG2 and HIF1α in mouse tumor tissues, indicating a more normalized vascular density, and also increased the proportion of CD8+ T cells. Conclusions Low-dose apatinib enhances the antitumor effect of PD-1 inhibitor by normalizing tumor-related blood vessels, alleviating intratumor hypoxia and altering immunosuppressive microenvironment (IM).
Collapse
Affiliation(s)
- Kelong Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| | - Chenyu Chen
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Guangen Xu
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| | - Meng He
- Department of Respiratory and Critical Care Medicine, Shaoxing People's Hospital (The First Affiliated Hospital of Shaoxing University), Shaoxing, China
| |
Collapse
|
24
|
Park Y, Jeong EM. Glutathione Dynamics in the Tumor Microenvironment: A Potential Target of Cancer Stem Cells and T Cells. Int J Stem Cells 2024; 17:270-283. [PMID: 38919125 PMCID: PMC11361844 DOI: 10.15283/ijsc24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Glutathione (GSH), the main cellular antioxidant, dynamically influences tumor growth, metastasis, and resistance to therapy in the tumor microenvironment (TME), which comprises cancer cells, immune cells, stromal cells, and non-cellular components, including the extracellular matrix, metabolites, hypoxia, and acidity. Cancer stem cells (CSCs) and T cells are minor but significant cell subsets of the TME. GSH dynamics influences the fate of CSCs and T cells. Here, we explored GSH dynamics in CSCs and T cells within the TME, as well as therapeutic approaches that could target these dynamics.
Collapse
Affiliation(s)
- Youngjun Park
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, Korea
| | - Eui Man Jeong
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, Korea
| |
Collapse
|
25
|
Han H, He T, Wu Y, He T, Zhou W. Multidimensional analysis of tumor stem cells: from biological properties, metabolic adaptations to immune escape mechanisms. Front Cell Dev Biol 2024; 12:1441081. [PMID: 39184916 PMCID: PMC11341543 DOI: 10.3389/fcell.2024.1441081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
As a key factor in tumorigenesis, progression, recurrence and metastasis, the biological properties, metabolic adaptations and immune escape mechanisms of CSCs are the focus of current oncological research. CSCs possess self-renewal, multidirectional differentiation and tumorigenicity, and their mechanisms of action can be elucidated by the clonal evolution, hierarchical model and the dynamic CSCs model, of which the dynamic model is widely recognized due to its better explanation of the function and origin of CSCs. The origin hypothesis of CSCs involves cell-cell fusion, horizontal gene transfer, genomic instability and microenvironmental regulation, which together shape the diversity of CSCs. In terms of classification, CSCs include primary CSCs (pri-CSCs), precancerous stem cells (pre-CSCs), migratory CSCs (mig-CSCs), and chemo-radiotherapy-resistant CSCs (cr-CSCs and rr-CSCs), with each type playing a specific role in tumor progression. Surface markers of CSCs, such as CD24, CD34, CD44, CD90, CD133, CD166, EpCAM, and LGR5, offer the possibility of identifying, isolating, and targeting CSCs, but the instability and heterogeneity of their expression increase the difficulty of treatment. CSCs have adapted to their survival needs through metabolic reprogramming, showing the ability to flexibly switch between glycolysis and oxidative phosphorylation (OXPHOS), as well as adjustments to amino acid and lipid metabolism. The Warburg effect typifies their metabolic profiles, and altered glutamine and fatty acid metabolism further contributes to the rapid proliferation and survival of CSCs. CSCs are able to maintain their stemness by regulating the metabolic networks to maintain their stemness characteristics, enhance antioxidant defences, and adapt to therapeutic stress. Immune escape is another strategy for CSCs to maintain their survival, and CSCs can effectively evade immune surveillance through mechanisms such as up-regulating PD-L1 expression and promoting the formation of an immunosuppressive microenvironment. Together, these properties reveal the multidimensional complexity of CSCs, underscoring the importance of a deeper understanding of the biology of CSCs for the development of more effective tumor therapeutic strategies. In the future, therapies targeting CSCs will focus on precise identification of surface markers, intervention of metabolic pathways, and overcoming immune escape, with the aim of improving the relevance and efficacy of cancer treatments, and ultimately improving patient prognosis.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang City, China
| | - Ting He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Yingfan Wu
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Tianmei He
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang City, China
| |
Collapse
|
26
|
Wang Y, Yao J, Zhang Z, Wei L, Wang S. Generation of novel lipid metabolism-based signatures to predict prognosis and immunotherapy response for colorectal adenocarcinoma. Sci Rep 2024; 14:17158. [PMID: 39060344 PMCID: PMC11282063 DOI: 10.1038/s41598-024-67549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid metabolism reprogramming involves in epithelial-mesenchymal transition (EMT), cancer stemness and immune checkpoints (ICs), which influence the metastasis of cancer. This study aimed to generate lipid metabolism-based signatures to predict prognosis, immunotherapy and chemotherapy response for colorectal adenocarcinoma (COAD). Transcriptome data and clinical information of COAD patients were collected from the cancer genome atlas (TCGA) database. The expression of EMT-, stem cell-, and IC-related genes were assessed between COAD and control samples. Modules and genes correlated EMT, ICs and stemness signatures were identified through weighted gene co-expression network analysis (WGCNA). Prognostic signatures were generated and then the distribution of risk genes was evaluated using single-cell RNA sequencing (scRNA-seq) data from GSE132465 dataset. COAD patients exhibited increased EMT score and stemness along with decreased ICs. Next, 12 hub genes (PIK3CG, ALOX5AP, PIK3R5, TNFAIP8L2, DPEP2, PIK3CD, PIK3R6, GGT5, ELOVL4, PTGIS, CYP7B1 and PRKD1) were found within green and yellow modules correlated with EMT, stemness and ICs. Lipid metabolism-based prognostic signatures were generated based on PIK3CG, GGT5 and PTGIS. Patients with high-risk group had poor prognosis, elevated ESTIMATEScore and StromalScore, 100% mutation rate and higher TIDE score. Samples in low-risk group had more immunogenicity on ICIs. Notably, PIK3CG was expressed in B cells, while GGT5 and PTGIS were expressed in stromal cells. This study generates lipid metabolism-based signatures correlated with EMT, stemness and ICs for predicting prognosis of COAD, and provides potential therapeutic targets for immunotherapy in COAD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215127, China
| | - Jun Yao
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Zhe Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Sheng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China.
| |
Collapse
|
27
|
Song H, Yao X, Zheng Y, Zhou L. Helicobacter pylori infection induces POU5F1 upregulation and SPP1 activation to promote chemoresistance and T cell inactivation in gastric cancer cells. Biochem Pharmacol 2024; 225:116253. [PMID: 38701869 DOI: 10.1016/j.bcp.2024.116253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.
Collapse
Affiliation(s)
- Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Xinjie Yao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Yuqi Zheng
- Department of Gastroenterology, Panjin Central Hospital, Panjin 124010, Liaoning, PR China
| | - Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
28
|
Chen W, Wang F, Yu X, Qi J, Dong H, Cui B, Zhang Q, Wu Y, An J, Ni N, Liu C, Han Y, Zhang S, Schmitt CA, Deng J, Yu Y, Du J. LncRNA MIR31HG fosters stemness malignant features of non-small cell lung cancer via H3K4me1- and H3K27Ace-mediated GLI2 expression. Oncogene 2024; 43:1328-1340. [PMID: 37950038 PMCID: PMC11065682 DOI: 10.1038/s41388-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Non-coding RNAs are responsible for oncogenesis and the development of stemness features, including multidrug resistance and metastasis, in various cancers. Expression of lncRNA MIR31HG in lung cancer tissues and peripheral sera of lung cancer patients were remarkably higher than that of healthy individuals and indicated a poor prognosis. Functional analysis showed that MIR31HG fosters stemness-associated malignant features of non-small cell lung cancer cells. Further mechanistic investigation revealed that MIR31HG modulated GLI2 expression via WDR5/MLL3/P300 complex-mediated H3K4me and H3K27Ace modification. In vivo MIR31HG repression with an antisense oligonucleotide attenuated tumor growth and distal organ metastasis, whereas MIR31HG promotion remarkably encouraged cellular invasion in lung and liver tissues. Our data suggested that MIR31HG is a potential diagnostic indicator and druggable therapeutic target to facilitate multiple strategic treatments for lung cancer patients.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Xinyuan Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jingjing Qi
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yan Wu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Na Ni
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yuchen Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria
- Charité-Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site, Berlin, Germany
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| | - Yong Yu
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| |
Collapse
|
29
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
30
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
31
|
Torke S, Walther W, Stein U. Immune Response and Metastasis-Links between the Metastasis Driver MACC1 and Cancer Immune Escape Strategies. Cancers (Basel) 2024; 16:1330. [PMID: 38611008 PMCID: PMC11010928 DOI: 10.3390/cancers16071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis remains the most critical factor limiting patient survival and the most challenging part of cancer-targeted therapy. Identifying the causal drivers of metastasis and characterizing their properties in various key aspects of cancer biology is essential for the development of novel metastasis-targeting approaches. Metastasis-associated in colon cancer 1 (MACC1) is a prognostic and predictive biomarker that is now recognized in more than 20 cancer entities. Although MACC1 can already be linked with many hallmarks of cancer, one key process-the facilitation of immune evasion-remains poorly understood. In this review, we explore the direct and indirect links between MACC1 and the mechanisms of immune escape. Therein, we highlight the signaling pathways and secreted factors influenced by MACC1 as well as their effects on the infiltration and anti-tumor function of immune cells.
Collapse
Affiliation(s)
- Sebastian Torke
- Experimental and Clinical Research Center, Charité, Medical Centre Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; (W.W.); (U.S.)
| | | | | |
Collapse
|
32
|
Knopik-Skrocka A, Sempowicz A, Piwocka O. Plasticity and resistance of cancer stem cells as a challenge for innovative anticancer therapies - do we know enough to overcome this? EXCLI JOURNAL 2024; 23:335-355. [PMID: 38655094 PMCID: PMC11036066 DOI: 10.17179/excli2024-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
According to the CSC hypothesis, cancer stem cells are pivotal in initiating, developing, and causing cancer recurrence. Since the identification of CSCs in leukemia, breast cancer, glioblastoma, and colorectal cancer in the 1990s, researchers have actively investigated the origin and biology of CSCs. However, the CSC hypothesis and the role of these cells in tumor development model is still in debate. These cells exhibit distinct surface markers, are capable of self-renewal, demonstrate unrestricted proliferation, and display metabolic adaptation. CSC phenotypic plasticity and the capacity to EMT is strictly connected to the stemness state. CSCs show high resistance to chemotherapy, radiotherapy, and immunotherapy. The plasticity of CSCs is significantly influenced by tumor microenvironment factors, such as hypoxia. Targeting the genetic and epigenetic changes of cancer cells, together with interactions with the tumor microenvironment, presents promising avenues for therapeutic strategies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Agnieszka Knopik-Skrocka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Alicja Sempowicz
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
33
|
Li Y, Jiang M, Aye L, Luo L, Zhang Y, Xu F, Wei Y, Peng D, He X, Gu J, Yu X, Li G, Ge D, Lu C. UPP1 promotes lung adenocarcinoma progression through the induction of an immunosuppressive microenvironment. Nat Commun 2024; 15:1200. [PMID: 38331898 PMCID: PMC10853547 DOI: 10.1038/s41467-024-45340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The complexity of the tumor microenvironment (TME) is a crucial factor in lung adenocarcinoma (LUAD) progression. To gain deeper insights into molecular mechanisms of LUAD, we perform an integrative single-cell RNA sequencing (scRNA-seq) data analysis of 377,574 cells from 117 LUAD patient samples. By linking scRNA-seq data with bulk gene expression data, we identify a cluster of prognostic-related UPP1high tumor cells. These cells, primarily situated at the invasive front of tumors, display a stronger association with the immunosuppressive components in the TME. Our cytokine array analysis reveals that the upregulation of UPP1 in tumor cells leads to the increased release of various immunosuppressive cytokines, with TGF-β1 being particularly prominent. Furthermore, this UPP1 upregulation also elevates the expression of PD-L1 through the PI3K/AKT/mTOR pathway, which contributes to the suppression of CD8 + T cells. Cytometry by time-of-flight (CyTOF) analysis provides additional evidence of the role of UPP1 in shaping the immunosuppressive nature of the TME. Using patient-derived organoids (PDOs), we discover that UPP1high tumors exhibit relatively increased sensitivity to Bosutinib and Dasatinib. Collectively, our study highlights the immunosuppressive role of UPP1 in LUAD, and these findings may provide insights into the molecular features of LUAD and facilitate the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Ling Aye
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Luo
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yongqi Wei
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dan Peng
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Ding G, Yu H, Jin J, Qiao X, Ma J, Zhang T, Cheng X. Reciprocal relationship between cancer stem cells and myeloid-derived suppressor cells: implications for tumor progression and therapeutic strategies. Future Oncol 2024; 20:215-228. [PMID: 38390682 DOI: 10.2217/fon-2023-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Recently, there has been an increased focus on cancer stem cells (CSCs) due to their resilience, making them difficult to eradicate. This resilience often leads to tumor recurrence and metastasis. CSCs adeptly manipulate their surroundings to create an environment conducive to their survival. In this environment, myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting epithelial-mesenchymal transition and bolstering CSCs' stemness. In response, CSCs attract MDSCs, enhancing their infiltration, expansion and immunosuppressive capabilities. This interaction between CSCs and MDSCs increases the difficulty of antitumor therapy. In this paper, we discuss the interplay between CSCs and MDSCs based on current research and highlight recent therapeutic strategies targeting either CSCs or MDSCs that show promise in achieving effective antitumor outcomes.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jason Jin
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tong Zhang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
35
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
36
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
37
|
Mukherjee S, Chakraborty S, Basak U, Pati S, Dutta A, Dutta S, Roy D, Banerjee S, Ray A, Sa G, Das T. Breast cancer stem cells generate immune-suppressive T regulatory cells by secreting TGFβ to evade immune-elimination. Discov Oncol 2023; 14:220. [PMID: 38038865 PMCID: PMC10692020 DOI: 10.1007/s12672-023-00787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/06/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer stem cells (CSCs), being the primary contributors in tumor initiation, metastasis, and relapse, ought to have seminal roles in evasion of immune surveillance. Tumor-promoting CD4+CD25+FOXP3+ T-regulatory cells (Tregs) have been described to abolish host defense mechanisms by impeding the activities of other immune cells including effector T cells. However, whether CSCs can convert effector T cells to immune-suppressive Treg subset, and if yes, the mechanism underlying CSC-induced Treg generation, are limitedly studied. In this regard, we observed a positive correlation between breast CSC and Treg signature markers in both in-silico and immunohistochemical analyses. Mirroring the conditions during tumor initiation, low number of CSCs could successfully generate CD4+CD25+FOXP3+ Treg cells from infiltrating CD4+ T lymphocytes in a contact-independent manner. Suppressing the proliferation potential as well as IFNγ production capacity of effector T cells, these Treg cells might be inhibiting antitumor immunity, thereby hindering immune-elimination of CSCs during tumor initiation. Furthermore, unlike non-stem cancer cells (NSCCs), CSCs escaped doxorubicin-induced apoptosis, thus constituting major surviving population after three rounds of chemotherapy. These drug-survived CSCs were also able to generate CD4+CD25+FOXP3+ Treg cells. Our search for the underlying mechanism further unveiled the role of CSC-shed immune-suppressive cytokine TGFβ, which was further increased by chemotherapy, in generating tumor Treg cells. In conclusion, during initiation as well as after chemotherapy, when NSCCs are not present in the tumor microenvironment, CSCs, albeit present in low numbers, generate immunosuppressive CD4+CD25+FOXP3+ Treg cells in a contact-independent manner by shedding high levels of immune-suppressive Treg-polarizing cytokine TGFβ, thus escaping immune-elimination and initiating the tumor or causing tumor relapse.
Collapse
Affiliation(s)
- Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Dia Roy
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Arpan Ray
- Department of Pathology, ESI-PGIMSR, Medical College Hospital and ODC (EZ), Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
38
|
Hu S, Yan X, Bian W, Ni B. The m6A reader IGF2BP1 manipulates BUB1B expression to affect malignant behaviors, stem cell properties, and immune resistance of non-small-cell lung cancer stem cells. Cytotechnology 2023; 75:517-532. [PMID: 37841956 PMCID: PMC10575838 DOI: 10.1007/s10616-023-00594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/03/2023] [Indexed: 10/17/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most common internal modification in eukaryotic mRNA and an important mechanism for post-transcriptional regulation of genes. This study focuses on the role of the m6A reader insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in the malignant behaviors of non-small-cell lung cancer (NSCLC) cells and especially the cancer stem cells (CSCs). We obtained IGF2BP1 as an aberrantly upregulated gene linking to poor survival of patients with NSCLC by bioinformatics, and then confirmed increased IGF2BP1 expression in NSCLC tissues and cells, especially in the enriched CSCs. Knockdown of IGF2BP1 suppressed proliferation, mobility and epithelial-mesenchymal transition activity of NSCLC cells and CSCs, and it reduced stemness, self-renewal ability, xenograft tumorigenesis and immune resistance of the CSCs. IGF2BP1 was predicted to have a positive correlation with BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), and it upregulated BUB1B expression through m6A modification. Further overexpression of BUB1B in CSCs counteracted the effects of IGF2BP1 silencing and restored the malignant phenotype, self-renewal, and immune resistance of CSCs in vitro and in vivo. Taken together, this work demonstrates that IGF2BP1 manipulates BUB1B expression to affect malignant behaviors, stem cell properties and immune resistance of NSCLC stem cells.
Collapse
Affiliation(s)
- Shuo Hu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215006 Jiangsu People’s Republic of China
| | - Xi Yan
- Physical Examination Center, Suzhou Jiulong Hospital, Shanghai Jiao Tong University, Suzhou, 215006 Jiangsu People’s Republic of China
| | - Wen Bian
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, 215006 Jiangsu People’s Republic of China
| | - Bin Ni
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Gusu District, Suzhou, 215006 Jiangsu People’s Republic of China
| |
Collapse
|
39
|
Guha A, Goswami KK, Sultana J, Ganguly N, Choudhury PR, Chakravarti M, Bhuniya A, Sarkar A, Bera S, Dhar S, Das J, Das T, Baral R, Bose A, Banerjee S. Cancer stem cell-immune cell crosstalk in breast tumor microenvironment: a determinant of therapeutic facet. Front Immunol 2023; 14:1245421. [PMID: 38090567 PMCID: PMC10711058 DOI: 10.3389/fimmu.2023.1245421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is globally one of the leading killers among women. Within a breast tumor, a minor population of transformed cells accountable for drug resistance, survival, and metastasis is known as breast cancer stem cells (BCSCs). Several experimental lines of evidence have indicated that BCSCs influence the functionality of immune cells. They evade immune surveillance by altering the characteristics of immune cells and modulate the tumor landscape to an immune-suppressive type. They are proficient in switching from a quiescent phase (slowly cycling) to an actively proliferating phenotype with a high degree of plasticity. This review confers the relevance and impact of crosstalk between immune cells and BCSCs as a fate determinant for BC prognosis. It also focuses on current strategies for targeting these aberrant BCSCs that could open avenues for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Aishwarya Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Pritha Roy Choudhury
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Pharmaceutical Technology Biotechnology National Institute of Pharmaceutical Education and Research (NIPER) Sahibzada Ajit Singh (S.A.S.) Nagar, Mohali, Punjab, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
40
|
Stouras I, Vasileiou M, Kanatas PF, Tziona E, Tsianava C, Theocharis S. Metabolic Profiles of Cancer Stem Cells and Normal Stem Cells and Their Therapeutic Significance. Cells 2023; 12:2686. [PMID: 38067114 PMCID: PMC10705308 DOI: 10.3390/cells12232686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) are a rare cancer cell population, responsible for the facilitation, progression, and resistance of tumors to therapeutic interventions. This subset of cancer cells with stemness and tumorigenic properties is organized in niches within the tumor microenvironment (TME) and presents altered regulation in a variety of metabolic pathways, including glycolysis, oxidative phosphorylation (OXPHOS), as well as lipid, amino acid, and iron metabolism. CSCs exhibit similarities as well as differences when comparedto normal stem cells, but also possess the ability of metabolic plasticity. In this review, we summarize the metabolic characteristics of normal, non-cancerous stem cells and CSCs. We also highlight the significance and implications of interventions targeting CSC metabolism to potentially achieve more robust clinical responses in the future.
Collapse
Affiliation(s)
- Ioannis Stouras
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Section of Hematology and Medical Oncology, Department of Clinical Therapeutics, General Hospital Alexandra, 11528 Athens, Greece
| | - Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Panagiotis F. Kanatas
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eleni Tziona
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Tsianava
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Rion, Greece;
| | - Stamatis Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
41
|
Hu YD, Wu K, Liu YJ, Zhang Q, Shen H, Ji J, Fang D, Xi SY. LY6/PLAUR domain containing 3 (LYPD3) maintains melanoma cell stemness and mediates an immunosuppressive microenvironment. Biol Direct 2023; 18:72. [PMID: 37924160 PMCID: PMC10623712 DOI: 10.1186/s13062-023-00424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Malignant melanoma is a highly heterogeneous skin cancer with the highest mortality rate among dermatological cancers. Catenins form functional networks in the nucleus to regulate gene expression and determine cell fate. Dysregulation of catenin expression correlates with the malignant characteristics of the tumor. We aimed to investigate the regulatory mechanisms of catenins in melanoma and to further define the function of catenin-related molecular signaling in the tumor microenvironment. METHODS In this study, a bioinformatics approach combined with experimental validation was used to explore the potential tumor biology mechanisms of catenin-related signaling. RESULTS Melanoma patients can be divided into two catenin clusters. Patients defined by high Junction Plakoglobin (JUP), Plakophilin 1 (PKP1), Plakophilin 3 (PKP3) levels (C2) had shorter survival time than other patients (C1). We demonstrated that JUP regulates Anterior Gradient 2 (AGR2)/LY6/PLAUR Domain Containing 3 (LYPD3) to maintain melanoma stemness and promotes glycolysis. We also found that LYPD3 was co-expressed with S100A9 and associated with immunosuppressive tumor microenvironment (TME). CONCLUSION The JUP/AGR2/LYPD3 signaling axis plays an important role in the malignant features of melanoma. Targeting the JUP/AGR2/LYPD3 signaling axis can help develop promising drugs.
Collapse
Affiliation(s)
- Yi-Dou Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Ke Wu
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yuan-Jie Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hui Shen
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Jin Ji
- Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Dong Fang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Song-Yang Xi
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, People's Republic of China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| |
Collapse
|
42
|
Mahanti K, Bhattacharyya S. Rough neighborhood: Intricacies of cancer stem cells and infiltrating immune cell interaction in tumor microenvironment and potential in therapeutic targeting. Transl Res 2023; 265:S1931-5244(23)00176-7. [PMID: 39491179 DOI: 10.1016/j.trsl.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Ongoing research on cellular heterogeneity of Cancer stem cells (CSCs) and its synergistic involvement with tumor milieu reveals enormous complexity, resulting in diverse hindrance in immune therapy. CSCs has captured attention for their contribution in shaping of tumor microenvironment and as target for therapeutic intervention. Recent studies have highlighted cell-extrinsic and intrinsic mechanisms of reciprocal interaction between tumor stroma constituents and CSCs. Therapeutic targeting requires an in-depth understanding of the underlying mechanisms involved with the rate limiting factors in tumor aggressiveness and pinpoint role of CSCs. Some of the major constituents of tumor microenvironment includes resident and infiltrating immune cell, both innate and adaptive. Some of these immune cells play crucial role as adjustors of tumor immune response. Tumor-adjustor immune cell interaction confer plasticity and features enabling tumor growth and metastasis in one hand and on the other hand blunts anti-tumor immunity. Detail understanding of CSC and TME resident immune cells interaction can shape new avenues for cancer immune therapy. In this review, we have tried to summarize the development of knowledge on cellular, molecular and functional interaction between CSCs and tumor microenvironment immune cells, highlighting immune-mediated therapeutic strategies aimed at CSCs. We also discussed developing a potential CSC and TME targeted therapeutic avenue.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India
| | - Sankar Bhattacharyya
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India.
| |
Collapse
|
43
|
Behnam B, Fazilaty H, Ghadyani M, Fadavi P, Taghizadeh-Hesary F. Ciliated, Mitochondria-Rich Postmitotic Cells are Immune-privileged, and Mimic Immunosuppressive Microenvironment of Tumor-Initiating Stem Cells: From Molecular Anatomy to Molecular Pathway. FRONT BIOSCI-LANDMRK 2023; 28:261. [PMID: 37919090 DOI: 10.31083/j.fbl2810261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Cancer whose major problems are metastasis, treatment resistance, and recurrence is the leading cause of death worldwide. Tumor-initiating stem cells (TiSCs) are a subset of the tumor population responsible for tumor resistance and relapse. Understanding the characteristics and shared features between tumor-initiating stem cells (TiSCs) and long-lived postmitotic cells may hold a key to better understanding the biology of cancer. Postmitotic cells have exited the cell cycle and are transitioned into a non-dividing and terminally differentiated state with a specialized function within a tissue. Conversely, a cancer cell with TiSC feature can divide and produce a variety of progenies, and is responsible for disease progression, tumor resistance to therapy and immune system and disease relapse. Surprisingly, our comprehensive evaluation of TiSCs suggests common features with long-lived post-mitotic cells. They are similar in structure (primary cilia, high mitochondrial content, and being protected by a barrier), metabolism (autophagy and senescence), and function (immunoescape and/or immune-privileged by a blood barrier). In-depth exploration showed how mitochondrial metabolism contributes to these shared features, including high energy demands arising from ciliary and microtubular functionality, increased metabolic activity, and movement. These findings can assist in decoding the remaining properties which offer insights into the biology of TiSCs, with potential implications for enhancing cancer treatment strategies and patient prognosis.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Mobina Ghadyani
- School of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Pedram Fadavi
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| |
Collapse
|
44
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
45
|
Xu L, Yang H, Yan M, Li W. Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma. Clin Exp Med 2023; 23:2065-2083. [PMID: 36169759 DOI: 10.1007/s10238-022-00897-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Hepatocellular carcinoma (HCC) remains an incurable malignancy despite the treatment methods being continually updated. Matrix metalloproteinases (MMPs) promote the progression of HCC; however, no consensus exists on which MMP plays the predominant role in HCCs. In the present study, we analyzed differentially expressed genes in HCCs, especially MMPs, compared with adjacent tissues using the Cancer Genome Atlas database. The KEGG enrichment pathway using differentially expressed genes included extracellular matrix-receptor interaction, which was correlated with MMPs. We found that among the MMP family, only MMP1, MMP3, MMP8, MMP9, MMP11, MMP12, MMP14, MMP15, MMP20, MMP21, and MMP24 significantly increased in HCCs compared with adjacent tissues. Crucially, survival and univariate analyses indicated that only MMPs 1, 9, 12, and 14 predict poor overall survival; however, multivariate Cox analysis and a nomogram demonstrated that only MMP1 is a poor prognostic biomarker for HCCs. In addition, we observed significant enrichment of uncharacterized cells but decreased macrophages in HCC tissues. Consistent with decreased macrophages in HCCs, MMP1 was negatively associated with macrophages but positively correlated with uncharacterized cells, indicating that the main producer of MMP1 is uncharacterized cells. Furthermore, MMP1 expression was negatively correlated with immune responses of HCCs. Taken together, our findings indicated that MMP1 is a poor and predominant prognostic biomarker for patients with HCC and that anti-MMP1 may be a novel therapy that is worth studying in depth.
Collapse
Affiliation(s)
- Linping Xu
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Hui Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Meimei Yan
- Department of Research and Foreign Affairs, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
46
|
Pasqualetti F, Miniati M, Gonnelli A, Gadducci G, Giannini N, Palagini L, Mancino M, Fuentes T, Paiar F. Cancer Stem Cells and Glioblastoma: Time for Innovative Biomarkers of Radio-Resistance? BIOLOGY 2023; 12:1295. [PMID: 37887005 PMCID: PMC10604498 DOI: 10.3390/biology12101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Despite countless papers in the field of radioresistance, researchers are still far from clearly understanding the mechanisms triggered in glioblastoma. Cancer stem cells (CSC) are important to the growth and spread of cancer, according to many studies. In addition, more recently, it has been suggested that CSCs have an impact on glioblastoma patients' prognosis, tumor aggressiveness, and treatment outcomes. In reviewing this new area of biology, we will provide a summary of the most recent research on CSCs and their role in the response to radio-chemotherapy in GB. In this review, we will examine the radiosensitivity of stem cells. Moreover, we summarize the current knowledge of the biomarkers of stemness and evaluate their potential function in the study of radiosensitivity.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, University of Pisa, Italy, Via Roma 67, 56100 Pisa, Italy;
| | - Alessandra Gonnelli
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Giovanni Gadducci
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Noemi Giannini
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Laura Palagini
- Department of Clinical and Experimental Medicine, University of Pisa, Italy, Via Roma 67, 56100 Pisa, Italy;
| | - Maricia Mancino
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Taiusha Fuentes
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| | - Fabiola Paiar
- Radiation Oncology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56100 Pisa, Italy; (F.P.); (A.G.); (G.G.); (N.G.); (M.M.); (T.F.); (F.P.)
| |
Collapse
|
47
|
Izadpanah A, Mohammadkhani N, Masoudnia M, Ghasemzad M, Saeedian A, Mehdizadeh H, Poorebrahim M, Ebrahimi M. Update on immune-based therapy strategies targeting cancer stem cells. Cancer Med 2023; 12:18960-18980. [PMID: 37698048 PMCID: PMC10557910 DOI: 10.1002/cam4.6520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Accumulating data reveals that tumors possess a specialized subset of cancer cells named cancer stem cells (CSCs), responsible for metastasis and recurrence of malignancies, with various properties such as self-renewal, heterogenicity, and capacity for drug resistance. Some signaling pathways or processes like Notch, epithelial to mesenchymal transition (EMT), Hedgehog (Hh), and Wnt, as well as CSCs' surface markers such as CD44, CD123, CD133, and epithelial cell adhesion molecule (EpCAM) have pivotal roles in acquiring CSCs properties. Therefore, targeting CSC-related signaling pathways and surface markers might effectively eradicate tumors and pave the way for cancer survival. Since current treatments such as chemotherapy and radiation therapy cannot eradicate all of the CSCs and tumor relapse may happen following temporary recovery, improving novel and more efficient therapeutic options to combine with current treatments is required. Immunotherapy strategies are the new therapeutic modalities with promising results in targeting CSCs. Here, we review the targeting of CSCs by immunotherapy strategies such as dendritic cell (DC) vaccines, chimeric antigen receptors (CAR)-engineered immune cells, natural killer-cell (NK-cell) therapy, monoclonal antibodies (mAbs), checkpoint inhibitors, and the use of oncolytic viruses (OVs) in pre-clinical and clinical studies. This review will mainly focus on blood malignancies but also describe solid cancers.
Collapse
Affiliation(s)
- Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Niloufar Mohammadkhani
- Department of Clinical BiochemistrySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mina Masoudnia
- Department of ImmunologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mahsa Ghasemzad
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Molecular Cell Biology‐Genetics, Faculty of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Arefeh Saeedian
- Radiation Oncology Research CenterCancer Research Institute, Tehran University of Medical SciencesTehranIran
- Department of Radiation OncologyCancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical SciencesTehranIran
| | - Hamid Mehdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Research Institute, University of CalgaryAlbertaCalgaryCanada
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of regenerative medicineCell Science research Center, Royan Institute for stem cell biology and technology, ACECRTehranIran
| |
Collapse
|
48
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
49
|
Jin ML, Jeong KW. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective. Exp Mol Med 2023; 55:1333-1347. [PMID: 37394580 PMCID: PMC10394043 DOI: 10.1038/s12276-023-01014-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 07/04/2023] Open
Abstract
The development and immune evasion of cancer stem cells (CSCs) limit the efficacy of currently available anticancer therapies. Recent studies have shown that epigenetic reprogramming regulates the expression of characteristic marker proteins and tumor plasticity associated with cancer cell survival and metastasis in CSCs. CSCs also possess unique mechanisms to evade external attacks by immune cells. Hence, the development of new strategies to restore dysregulated histone modifications to overcome cancer resistance to chemotherapy and immunotherapy has recently attracted attention. Restoring abnormal histone modifications can be an effective anticancer strategy to increase the therapeutic effect of conventional chemotherapeutic and immunotherapeutic drugs by weakening CSCs or by rendering them in a naïve state with increased sensitivity to immune responses. In this review, we summarize recent findings regarding the role of histone modifiers in the development of drug-resistant cancer cells from the perspectives of CSCs and immune evasion. In addition, we discuss attempts to combine currently available histone modification inhibitors with conventional chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Ming Li Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Republic of Korea.
| |
Collapse
|
50
|
Li L, Ni R, Zheng D, Chen L. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells. Daru 2023; 31:83-94. [PMID: 36971921 PMCID: PMC10238364 DOI: 10.1007/s40199-023-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor "seeds". EVIDENCE ACQUISITION Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar. RESULTS Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy. CONCLUSION This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Dan Zheng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
| |
Collapse
|