1
|
Li Z, Zhou L, Zhang Q, Fan Z, Xiao C. Different effects of air pollutant concentrations on influenza A and B in Sichuan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116923. [PMID: 39213756 DOI: 10.1016/j.ecoenv.2024.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The detrimental effects of air pollution on the respiratory system are well documented. Previous research has established a correlation between air pollutant concentration and the frequency of outpatient visits for influenza-like illness. However, studies investigating the variations in infection among different influenza subtypes remain sparse. We aimed to determine the correlation between air pollutant levels and different influenza subtypes in Sichuan Province, China. METHODS A generalized additive model and distributed lag nonlinear model were employed to assess the association between air pollutants and influenza subtypes, utilizing daily influenza data obtained from 30 hospitals across 21 cities in Sichuan Province. The analysis considered the temporal effects and meteorological factors. The study spanned from January 1, 2017, to December 31, 2019. To provide a more precise evaluation of the actual impact of air pollution on different subtypes of influenza, we also performed subgroup analyses based on factors such as gender, age, and geography within the population. RESULTS During the investigation, 17,462 specimens from Sichuan Province tested positive for influenza. Among these, 12,607 and 4855 were diagnosed with Flu A and B, respectively. The related risk of influenza A infection significantly increased following exposure to PM2.5 on Lag2 days (RR=1.008, 95 % confidence interval [CI]: 1.000-1.016), SO2 and CO on Lag1 days (RR=1.121, 95 % CI: 1.032-1.219; RR=1.151, 95 % CI: 1.030-1.289), and NO2 on Lag0 day (RR=1.089, 95 % CI: 1.035-1.145). PM10 and SO2 levels on Lag0 day, PM2.5 levels on Lag1 day, and CO levels on Lag6 day, with a reduced risk of influenza B (RR=0.987, 95 % CI: 0.976-0.997; RR=0.817, 95 % CI: 0.676-0.987; RR=0.979, 95 % CI: 0.970-0.989; RR=0.814, 95 % CI: 0.561-0.921). CONCLUSION The findings from the overall population and subgroup analyses indicated that the impact of air pollutant concentrations on influenza A and B is inconsistent, with influenza A demonstrating greater susceptibility to these pollutants. Minimizing the levels of SO2, CO, NO2, and PM2.5 can significantly decrease the likelihood of contracting influenza A. Analyzing the influence of environmental contaminants on different influenza subtypes can provide insights into seasonal influenza trends and guide the development of preventive and control strategies.
Collapse
Affiliation(s)
- Zhirui Li
- Department of Disease Control and Prevention, Sichuan provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, PR China
| | - Lijun Zhou
- Department of Disease Control and Prevention, Sichuan provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, PR China
| | - Qian Zhang
- Department of Oncology, Xiamen Fifth Hospital, Min'an Road, Maxiang Street, Xiang 'an District, Xiamen, Fujian 361000, PR China
| | - Zixuan Fan
- School of Health Policy and Management, Peking Union Medical College, Beijing 100730, PR China
| | - Chongkun Xiao
- Department of Disease Control and Prevention, Sichuan provincial Center for Disease Control and Prevention, Chengdu, Sichuan 610000, PR China.
| |
Collapse
|
2
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
3
|
Wang G, Umstead TM, Hu S, Mikerov AN, Phelps DS, Floros J. Differential Effects of Human SP-A1 and SP-A2 on the BAL Proteome and Signaling Pathways in Response to Klebsiella pneumoniae and Ozone Exposure. Front Immunol 2019; 10:561. [PMID: 30972061 PMCID: PMC6443908 DOI: 10.3389/fimmu.2019.00561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein A (SP-A) plays critical roles in host defense, regulation of inflammation and surfactant metabolism in the lung. The human SP-A locus consists of two functional genes, SFTPA1 and SFTPA2 encoding surfactant proteins SP-A1 and SP-A2, respectively. Structural and functional differences exist between SP-A1 and SP-A2 in vitro and in vivo. Ozone is a major air pollutant with a negative impact on many biological processes. In this study we used humanized transgenic (hTG) SP-A1 and SP-A2 mice, and SP-A KO mice to study in vivo effects of SP-A1 and SP-A2 on the bronchoalveolar lavage (BAL) proteomic profile and associated signaling pathways in response to ozone or filtered air (FA) exposure and Klebsiella pneumoniae infection. The BAL samples were harvested 24 h after ozone (2 ppm for 3 h) or FA exposure and infection and analyzed by two-dimensional difference gel electrophoresis (2D-DIGE) and MALDI-ToF/ToF. We found: that (1) Ozone exposure, but not infection, is a major factor for increases in total BAL protein content. (2) A total of 36 proteins were identified, accounting for 89.62% of the BAL proteins resolved by the 2D-DIGE system. (3) The number of proteins in which levels were altered more than 25% following infection and FA exposure was: SP-A2 > SP-A1 > KO for male mice, and SP-A2 ≈ SP-A1 > KO for female mice. (4) The number of proteins with more than 25% increase/decrease after ozone exposure and infection was: SP-A2 > SP-A1 ≈ KO, with the majority being increases in male mice and decreases in female mice. (5) Eleven out of the 36 proteins, including annexin A5, glutathione S-transferase A4, SP-A1/SP-A2, and 14-3-3 zeta protein, exhibited significant differences among SP-A genotypes. The acute phase response (APR) that includes the NF-kB signaling pathway plays a critical role, followed by Nrf2-mediated oxidative response, and others. These associated with SP-A genotype, sex, and ozone-induced oxidative stress in response to infection. We concluded that human SP-A2 and SP-A1 exhibit differential genotype-and sex-dependent innate immune responses to microbial pathogens and/or ozone-induced oxidative stress by modulating proteomic patterns and signaling pathways in the lung.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Todd M Umstead
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Sanmei Hu
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Anatoly N Mikerov
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David S Phelps
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Ward WO, Ledbetter AD, Schladweiler MC, Kodavanti UP. Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats. Inhal Toxicol 2016; 27 Suppl 1:80-92. [PMID: 26667333 DOI: 10.3109/08958378.2014.954172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute ozone-induced pulmonary injury and inflammation are well characterized in rats; however, mechanistic understanding of the pathways involved is limited. We hypothesized that acute exposure of healthy rats to ozone will cause transcriptional alterations, and comprehensive analysis of these changes will allow us to better understand the mechanism of pulmonary injury and inflammation. Male Wistar Kyoto rats (10-12 week) were exposed to air, or ozone (0.25, 0.5 or 1.0 ppm) for 4 h and pulmonary injury and inflammation were assessed at 0-h or 20-h (n = 8/group). Lung gene expression profiling was assessed at 0-h (air and 1.0 ppm ozone, n = 3-4/group). At 20-h bronchoalveolar lavage, fluid protein and neutrophils increased at 1 ppm ozone. Numerous genes involved in acute inflammatory response were up-regulated along with changes in genes involved in cell adhesion and migration, steroid metabolism, apoptosis, cell cycle control and cell growth. A number of NRF2 target genes were also induced after ozone exposure. Based on expression changes, Rela, SP1 and TP3-mediated signaling were identified to be mediating downstream changes. Remarkable changes in the processes of endocytosis provide the insight that ozone-induced lung injury and inflammation are likely initiated by changes in cell membrane components and receptors likely from oxidatively modified lung lining lipids and proteins. In conclusion, ozone-induced injury and inflammation are preceded by changes in gene targets for cell adhesion/migration, apoptosis, cell cycle control and growth regulated by Rela, SP1 and TP53, likely mediated by the process of endocytosis and altered steroid receptor signaling.
Collapse
Affiliation(s)
| | - Allen D Ledbetter
- b Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Mette C Schladweiler
- b Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Urmila P Kodavanti
- b Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
5
|
Szyszkowicz M, Kousha T, Kingsbury M, Colman I. Air Pollution and Emergency Department Visits for Depression: A Multicity Case-Crossover Study. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:155-61. [PMID: 27597809 PMCID: PMC5006648 DOI: 10.4137/ehi.s40493] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND The aim of this study was to investigate the associations between ambient air pollution and emergency department (ED) visits for depression. METHODS Health data were retrieved from the National Ambulatory Care Reporting System. ED visits for depression were retrieved from the National Ambulatory Care Reporting System using the International Classification of Diseases (ICD-10), Tenth revision codes; ICD-10: F32 (mild depressive episode) and ICD-10: F33 (recurrent depressive disorder). A case-crossover design was employed for this study. Conditional logistic regression models were used to estimate odds ratios. RESULTS For females, exposure to ozone was associated with increased risk of an ED visit for depression between 1 and 7 days after exposure, for males, between 1 and 5, and 8 days after exposure, with odds ratios ranging between 1.02 and 1.03. CONCLUSIONS These findings suggest that, as hypothesized, there is a positive association between exposure to air pollution and ED visits for depression.
Collapse
Affiliation(s)
| | - Termeh Kousha
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| | - Mila Kingsbury
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ian Colman
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Kousha T, Valacchi G. The air quality health index and emergency department visits for urticaria in Windsor, Canada. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:524-533. [PMID: 25849769 DOI: 10.1080/15287394.2014.991053] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ambient air pollution exposure has been associated with several health conditions, limited not only to respiratory and cardiovascular systems but also to cutaneous tissues. However, few epidemiological studies examined pollution exposure on skin problems. Basically, the common mechanism by which pollution may affect skin physiology is by induction of oxidative stress and inflammation. Urticaria is among the skin pathologies that have been associated with pollution. Based on the combined effects of three ambient air pollutants, ozone (O₃), nitrogen dioxide (NO₂), and fine particulate matter (PM) with a median aerodynamic diameter of less than 2.5 μm (PM(2.5)), on mortality, the Air Quality Health Index (AQHI) in Canada was developed. The aim of this study was to examine the associations of short-term changes in AQHI with emergency department (ED) visits for urticaria in Windsor-area hospitals in Canada. Diagnosed ED visits were retrieved from the National Ambulatory Care Reporting System (NACRS). A time-stratified case-crossover design was applied to 2905 ED visits (males = 1215; females = 1690) for urticaria from April 2004 through December 2010. Odds ratios (OR) and their corresponding 95% confidence intervals (95%CI) for ED visits associated with increase by one unit of risk index were calculated employing conditional logistic regression. Positive and significant results were observed between AQHI levels and OR for ED visits for urticaria in Windsor for lags 2 and 3 days. A distributed lag nonlinear model technique was applied to daily counts of ED visits for lags 0 to 10 and significant results were obtained from lag 2 to lag 5 and for lag 9. These findings demonstrated associations between ambient air pollution and urticarial confirming that air pollution affects skin conditions.
Collapse
Affiliation(s)
- Termeh Kousha
- a Department of Mathematics and Statistics , University of Ottawa , Ottawa , Ontario , Canada
| | | |
Collapse
|
7
|
Wendt JK, Symanski E, Stock TH, Chan W, Du XL. Association of short-term increases in ambient air pollution and timing of initial asthma diagnosis among Medicaid-enrolled children in a metropolitan area. ENVIRONMENTAL RESEARCH 2014; 131:50-8. [PMID: 24657516 PMCID: PMC4502952 DOI: 10.1016/j.envres.2014.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 05/22/2023]
Abstract
OBJECTIVE We investigated associations of short-term changes in ambient ozone (O3), fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations and the timing of new-onset asthma, using a large, high-risk population in an area with historically high ozone levels. METHODS The study population included 18,289 incident asthma cases identified among Medicaid-enrolled children in Harris County Texas between 2005-2007, using Medicaid Analytic Extract enrollment and claims files. We used a time-stratified case-crossover design and conditional logistic regression to assess the effect of increased short-term pollutant concentrations on the timing of asthma onset. RESULTS Each 10 ppb increase in ozone was significantly associated with new-onset asthma during the warm season (May-October), with the strongest association seen when a 6-day cumulative average period was used as the exposure metric (odds ratio [OR]=1.05, 95% confidence interval [CI], 1.02-1.08). Similar results were seen for NO2 and PM2.5 (OR=1.07, 95% CI, 1.03-1.11 and OR=1.12, 95% CI, 1.03-1.22, respectively), and PM2.5 also had significant effects in the cold season (November-April), 5-day cumulative lag (OR=1.11. 95% CI, 1.00-1.22). Significantly increased ORs for O3 and NO2 during the warm season persisted in co-pollutant models including PM2.5. Race and age at diagnosis modified associations between ozone and onset of asthma. CONCLUSION Our results indicate that among children in this low-income urban population who developed asthma, their initial date of diagnosis was more likely to occur following periods of higher short-term ambient pollutant levels.
Collapse
Affiliation(s)
- Judy K Wendt
- Southwest Center for Occupational and Environmental Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA; Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA
| | - Elaine Symanski
- Southwest Center for Occupational and Environmental Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA; Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA.
| | - Thomas H Stock
- Southwest Center for Occupational and Environmental Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA; Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA
| | - Wenyaw Chan
- Southwest Center for Occupational and Environmental Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA; Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA
| | - Xianglin L Du
- Southwest Center for Occupational and Environmental Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA; Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, 1200 Herman Pressler Dr., Houston, TX 77030, USA
| |
Collapse
|
8
|
Sloan C, Moore ML, Hartert T. Impact of pollution, climate, and sociodemographic factors on spatiotemporal dynamics of seasonal respiratory viruses. Clin Transl Sci 2011; 4:48-54. [PMID: 21348956 DOI: 10.1111/j.1752-8062.2010.00257.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Seasonal viruses present a major cause of morbidity and mortality in temperate climates. Through major pandemics and smaller annual epidemics, viruses such as influenza, respiratory syncytial virus (RSV) and human rhinovirus (HRV) result in lost school and work days for most that are infected and more serious complications for the immunocompromised. The reasons for these viruses showing strict seasonality include but are not limited to the influence of cold weather and humidity on virus particles, human physiology, and human behavior. The relative importance of each is dependent on what geographic scale is being explored as well as the individual region and time period. Theoretical mathematics has also revealed that climatic changes are likely not the only reasons for strong seasonal cycles, but these are also based in periodic resonance with the natural cycles of immunity and antigenic variance, as well as nationwide synchrony through transportation networks. Investigations of seasonality will aid in understanding disease transmission, and thereby effective prevention strategies. The authors present a review of the literature on seasonal viruses, their annual diffusion through populations, and factors that reduce or enhance their seasonal spread. They also offer suggestions for targeted interventions to reduce the disease burden from seasonal viruses.
Collapse
Affiliation(s)
- Chantel Sloan
- Vanderbilt University Medical Center, Tennessee, USA Emory University School of Medicine, Georgia, USA.
| | | | | |
Collapse
|
9
|
Impact of heat and pollution on oxidative stress and CC16 secretion after 8 km run. Eur J Appl Physiol 2011; 111:2089-97. [DOI: 10.1007/s00421-011-1839-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022]
|
10
|
Szyszkowicz M, Porada E, Kaplan GG, Rowe BH. Ambient ozone and emergency department visits for cellulitis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:4078-88. [PMID: 21139878 PMCID: PMC2996226 DOI: 10.3390/ijerph7114078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 01/22/2023]
Abstract
Objectives were to assess and estimate an association between exposure to ground-level ozone and emergency department (ED) visits for cellulitis. All ED visits for cellulitis in Edmonton, Canada, in the period April 1992-March 2002 (N = 69,547) were examined. Case-crossover design was applied to estimate odds ratio (OR, and 95% confidence interval) per one interquartile range (IQR) increase in ozone concentration (IQR = 14.0 ppb). Delay of ED visit relating to exposure was probed using 0- to 5-day exposure lags. For all patients in the all months (January-December) and lags 0 to 2 days, OR = 1.05 (1.02, 1.07). For male patients during the cold months (October-March): OR = 1.05 (1.02, 1.09) for lags 0 and 2 and OR = 1.06 (1.02, 1.10) for lag 3. For female patients in the warm months (April-September): OR = 1.12 (1.06, 1.18) for lags 1 and 2. Cellulitis developing on uncovered (more exposed) skin was analyzed separately, observed effects being stronger. Cellulitis may be associated with exposure to ambient ground level ozone; the exposure may facilitate cellulitis infection and aggravate acute symptoms.
Collapse
Affiliation(s)
- Mieczysław Szyszkowicz
- Population Studies Division, Health Canada, 269 Laurier Avenue, Ottawa, ON K1A 0K9, Canada; E-Mail: (E.P.)
| | - Eugeniusz Porada
- Population Studies Division, Health Canada, 269 Laurier Avenue, Ottawa, ON K1A 0K9, Canada; E-Mail: (E.P.)
| | - Gilaad G. Kaplan
- Departments of Medicine and Community Health Sciences, University of Calgary, 2500 University Drive, Calgary, AB T2N 1N4, Canada; E-Mail: (G.K.)
| | - Brian H. Rowe
- Department of Emergency Medicine, University of Alberta, 8440-112 Street, Edmonton, AB T6G 2B7, Canada; E-Mail: (B.R.)
- School of Public Health, University of Alberta, 8440-112 Street, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
11
|
Haque R, Umstead TM, Freeman WM, Floros J, Phelps DS. The impact of surfactant protein-A on ozone-induced changes in the mouse bronchoalveolar lavage proteome. Proteome Sci 2009; 7:12. [PMID: 19323824 PMCID: PMC2666657 DOI: 10.1186/1477-5956-7-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/26/2009] [Indexed: 12/22/2022] Open
Abstract
Background Ozone is a major component of air pollution. Exposure to this powerful oxidizing agent can cause or exacerbate many lung conditions, especially those involving innate immunity. Surfactant protein-A (SP-A) plays many roles in innate immunity by participating directly in host defense as it exerts opsonin function, or indirectly via its ability to regulate alveolar macrophages and other innate immune cells. The mechanism(s) responsible for ozone-induced pathophysiology, while likely related to oxidative stress, are not well understood. Methods We employed 2-dimensional difference gel electrophoresis (2D-DIGE), a discovery proteomics approach, coupled with MALDI-ToF/ToF to compare the bronchoalveolar lavage (BAL) proteomes in wild type (WT) and SP-A knockout (KO) mice and to assess the impact of ozone or filtered air on the expression of BAL proteins. Using the PANTHER database and the published literature most identified proteins were placed into three functional groups. Results We identified 66 proteins and focused our analysis on these proteins. Many of them fell into three categories: defense and immunity; redox regulation; and protein metabolism, modification and chaperones. In response to the oxidative stress of acute ozone exposure (2 ppm; 3 hours) there were many significant changes in levels of expression of proteins in these groups. Most of the proteins in the redox group were decreased, the proteins involved in protein metabolism increased, and roughly equal numbers of increases and decreases were seen in the defense and immunity group. Responses between WT and KO mice were similar in many respects. However, the percent change was consistently greater in the KO mice and there were more changes that achieved statistical significance in the KO mice, with levels of expression in filtered air-exposed KO mice being closer to ozone-exposed WT mice than to filtered air-exposed WT mice. Conclusion We postulate that SP-A plays a role in reactive oxidant scavenging in WT mice and that its absence in the KO mice in the presence or absence of ozone exposure results in more pronounced, and presumably chronic, oxidative stress.
Collapse
Affiliation(s)
- Rizwanul Haque
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and the Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and the Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Willard M Freeman
- The Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Joanna Floros
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and the Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.,The Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, PA, USA
| | - David S Phelps
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and the Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
12
|
|
13
|
|