1
|
Taihi I, Pilon C, Cohen J, Berdal A, Gogly B, Nassif A, Fournier BP. Efficient isolation of human gingival stem cells in a new serum-free medium supplemented with platelet lysate and growth hormone for osteogenic differentiation enhancement. Stem Cell Res Ther 2022; 13:125. [PMID: 35337377 PMCID: PMC8951723 DOI: 10.1186/s13287-022-02790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The use of distant autografts to restore maxillary bone defects is clinically challenging and has unpredictable outcomes. This variation may be explained by the embryonic origin of long bone donor sites, which are derived from mesoderm, whereas maxillary bones derive from neural crest. Gingival stem cells share the same embryonic origin as maxillary bones. Their stemness potential and ease of access have been repeatedly shown. One limitation in human cell therapy is the use of foetal calf serum during cell isolation and culture. To overcome this problem, a new serum-free medium enriched with an alternative to foetal calf serum, i.e., platelet lysate, needs to be adapted to clinical grade protocols. METHODS Different serum-free media enriched with platelet lysate at various concentrations and supplemented with different growth factors were developed and compared to media containing foetal calf serum. Phenotypic markers, spontaneous DNA damage, and stem cell properties of gingival stem cells isolated in platelet lysate or in foetal calf serum were also compared, as were the immunomodulatory properties of the cells by co-culturing them with activated peripheral blood monocellular cells. T-cell proliferation and phenotype were also assessed by flow cytometry using cell proliferation dye and specific surface markers. Data were analysed with t-test for two-group comparisons, one-way ANOVA for multigroup comparisons and two-way ANOVA for repeated measures and multigroup comparisons. RESULTS Serum-free medium enriched with 10% platelet lysate and growth hormone yielded the highest expansion rate. Gingival stem cell isolation and thawing under these conditions were successful, and no significant DNA lesions were detected. Phenotypic markers of mesenchymal stem cells and differentiation capacities were conserved. Gingival stem cells isolated in this new serum-free medium showed higher osteogenic differentiation potential compared to cells isolated in foetal calf serum. The proportion of regulatory T cells obtained by co-culturing gingival stem cells with activated peripheral blood monocellular cells was similar between the two types of media. CONCLUSIONS This new serum-free medium is well suited for gingival stem cell isolation and proliferation, enhances osteogenic capacity and maintains immunomodulatory properties. It may allow the use of gingival stem cells in human cell therapy for bone regeneration in accordance with good manufacturing practice guidelines.
Collapse
Affiliation(s)
- Ihsène Taihi
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France. .,AP-HP, site hospitalier Charles Foix-Pitié Salpêtrière, 94200, Ivry, France.
| | - Caroline Pilon
- AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - José Cohen
- AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France
| | - Bruno Gogly
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - Ali Nassif
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France
| | - Benjamin Philippe Fournier
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France. .,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France.
| |
Collapse
|
2
|
Soltani L, Mahdavi AH. Role of Signaling Pathways during Cardiomyocyte Differentiation of Mesenchymal Stem Cells. Cardiology 2021; 147:216-224. [PMID: 34864735 DOI: 10.1159/000521313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 11/25/2021] [Indexed: 11/19/2022]
Abstract
Multipotent stem cells, including mesenchymal stem cells (MSCs), represent a promising source to be used by regenerative medicine. They are capable of performing myogenic, chondrogenic, osteogenic and adipogenic differentiation. Also, MSCs are characterized by the expression of multiple surface antigens, but none of them appears to be particularly expressed on MSCs. Moreover, the prospect of monitoring and controlling MSC differentiation is a scientifically crucial regulatory and clinical requirement. Different transcription factors and signaling pathways are involved in cardiomyocyte differentiation. Due to the paucity of studies exclusively focused on cardiomyocyte differentiation of MSCs, present study aims at describing the roles of various signaling pathways (FGF, TGF, Wnt, Notch, etc.) in cardiomyocytes differentiation of MSCs. Understanding the signaling pathways that control the commitment and differentiation of cardiomyocyte cells not only will expand our basic understanding of molecular mechanisms of heart development, but also will enable us to develop therapeutic means of intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Engineering, Razi University, Kermanshah, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
3
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
4
|
Navarrete F, Wong YS, Cabezas J, Riadi G, Manríquez J, Rojas D, Furlanetto Mançanares AC, Rodriguez-Alvarez L, Saravia F, Castro FO. Distinctive Cellular Transcriptomic Signature and MicroRNA Cargo of Extracellular Vesicles of Horse Adipose and Endometrial Mesenchymal Stem Cells from the Same Donors. Cell Reprogram 2020; 22:311-327. [PMID: 32991224 DOI: 10.1089/cell.2020.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Equine endometrial and adipose mesenchymal stem cells (eMSCs and aMSCs, respectively) were isolated from the same donors of thoroughbred mares. The cells displayed characteristic features of MSCs, including trilineage mesodermal and also neurogenic differentiation. We evaluated the influence of cellular origin on their transcriptome profile. Cellular RNA was isolated and sequenced and extracellular vesicles (EVs) were obtained from conditioned medium of cells cultured in medium depleted of EVs, and their microRNA (miRNA) cargo analyzed by sequencing. Differential expression of mRNAs and EV-miRNA was analyzed, as well as pathways and processes most represented in each cell origin. mRNA reads from all expressed genes clustered according to the cellular origin. A total of 125 up- and 51 downregulated genes were identified and 31 differentially expressed miRNAs. Based on mRNA sequencing, endometrial MSCs strongly upregulated genes involved in the Hippo, transforming growth factor beta, and pluripotency signaling pathways. Alongside with this, pathways involved in extracellular matrix reorganization were the most represented in the miRNA cargo of EVs secreted by eMSCs. The niche from which MSCs originated defined the transcriptomic signature of the cells, including the secretion of lineage-specific loaded EV to ensure proper communication and homeostasis. Identification and testing their biological functions can provide new tools for the therapeutic use of horse MSC.
Collapse
Affiliation(s)
- Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| | - Yat Sen Wong
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| | - Gonzalo Riadi
- Center for Bioinformatics, Simulation and Modeling (CBSM), Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
| | - José Manríquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| | - Daniela Rojas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| | | | | | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillan, Chile
| |
Collapse
|
5
|
Mançanares ACF, Cabezas J, Manríquez J, de Oliveira VC, Wong Alvaro YS, Rojas D, Navarrete Aguirre F, Rodriguez-Alvarez L, Castro FO. Edition of Prostaglandin E2 Receptors EP2 and EP4 by CRISPR/Cas9 Technology in Equine Adipose Mesenchymal Stem Cells. Animals (Basel) 2020; 10:E1078. [PMID: 32585798 PMCID: PMC7341266 DOI: 10.3390/ani10061078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023] Open
Abstract
In mesenchymal stem cells (MSCs), it has been reported that prostaglandin E2 (PGE2) stimulation of EP2 and EP4 receptors triggers processes such as migration, self-renewal, survival, and proliferation, and their activation is involved in homing. The aim of this work was to establish a genetically modified adipose (aMSC) model in which receptor genes EP2 and EP4 were edited separately using the CRISPR/Cas9 system. After edition, the genes were evaluated as to if the expression of MSC surface markers was affected, as well as the migration capacity in vitro of the generated cells. Adipose MSCs were obtained from Chilean breed horses and cultured in DMEM High Glucose with 10% fetal bovine serum (FBS). sgRNA were cloned into a linearized LentiCRISPRv2GFP vector and transfected into HEK293FT cells for producing viral particles that were used to transduce aMSCs. GFP-expressing cells were separated by sorting to obtain individual clones. Genomic DNA was amplified, and the site-directed mutation frequency was assessed by T7E1, followed by Sanger sequencing. We selected 11 clones of EP2 and 10 clones of EP4, and by Sanger sequencing we confirmed 1 clone knock-out to aMSC/EP2 and one heterozygous mutant clone of aMSC/EP4. Both edited cells had decreased expression of EP2 and EP4 receptors when compared to the wild type, and the edition of EP2 and EP4 did not affect the expression of MSC surface markers, showing the same pattern in filling the scratch. We can conclude that the edition of these receptors in aMSCs does not affect their surface marker phenotype and migration ability when compared to wild-type cells.
Collapse
Affiliation(s)
- Ana Carolina Furlanetto Mançanares
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - José Manríquez
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo 13630-000, Brazil;
| | - Yat Sen Wong Alvaro
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Daniela Rojas
- Department of Animal Pathology, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile;
| | - Felipe Navarrete Aguirre
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Lleretny Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Science, Universidad de Concepción, Campus Chillan, Chillán 3780000, Chile; (J.C.); (J.M.); (Y.S.W.A.); (F.N.A.); (L.R.-A.)
| |
Collapse
|
6
|
Navarrete F, Saravia F, Cisterna G, Rojas F, Silva PP, Rodríguez-Alvarez L, Rojas D, Cabezas J, Mançanares ACF, Castro FO. Assessment of the anti-inflammatory and engraftment potential of horse endometrial and adipose mesenchymal stem cells in an in vivo model of post breeding induced endometritis. Theriogenology 2020; 155:33-42. [PMID: 32622203 DOI: 10.1016/j.theriogenology.2020.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Horse mesenchymal stem cells (MSC) are potential anti-inflammatory tools for post-breeding induced endometritis (PBIE). In this research MSCs isolated from the endometrium or subcutaneous fat of the same donors were infused iu into mares with PBIE for assessment of their anti-inflammatory action and engraftment. PBIE was induced in nine gynecologically healthy mares by iu infusion of 500 million dead sperm in saline. Inflammatory markers were analyzed in uterine lavages and biopsies immediately before (phase I) and 3 h after infusion of sperm (phase II). Measurements: polymorph nuclear cells (PMN), proteins IL-6 and TNFα (ELISA in the lavages) and immunostaining in biopsies, transcripts of IL-1α, 6, 8, 10, TNFα and COX2 (qPCR of pelleted lavages). At 24 h after sperm deposition (phase III), mares were instilled iu with 20 ml of saline containing 2 × 107 adipose MSCs (n = 3, group 1) or endometrial MSCs (n = 3, group 2). Cells were labeled previously with carboxyfluorescein diacetate succinimidyl ester (CFDA SE). A third group (n = 3) received 20 mL of sterile saline alone. After 48 h another biopsy/lavage were done and the same parameters analyzed. For engraftment, additional biopsies were taken at days 10 and 30 of sperm infusion and analyzed by confocal microscopy. Dead sperm in saline markedly increased PMNs counts, IL-6 and TNFα expression in the ELISA (p < 0.05) and immunostaining. In phase III a significant reduction (p < 0.0001) of PMN was found in all samples, including control mares. A decrease (p < 0.05) of IL-6 and TNF-α was detected by ELISA, in the groups that received MSC, but not in control group. In the aMSC-treated group, a significant decrease was found in the expression of (IL1α, p = 0.0003; IL-6 p 0.04; IL-8, p = 0.006, TNFα p = 0.004). Expression of IL-10 and COX2 remained unchanged (p = 0.08). In the mares that received eMSC, IL-6 and 8 decreased significantly (p = 0.01), IL-10 increased (p = 0.009), while TNFα, COX2 and IL1α did not significantly change their expression. In the engraftment experiment CFDA label was found sparingly in all the samples analyzed until day 30, mainly at the stromal compartment of the endometrium. No differences in the engraftment pattern was found among cell origins. We conclude that inoculation of MSCs significantly reduced inflammation independently of the origin of the cells and that cells perform limited engraftment detectable after one month of infusion. These findings can be of help for the design of new anti-inflammatory therapies of uterine diseases in mares.
Collapse
Affiliation(s)
- Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | - Gabriela Cisterna
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | - Fernanda Rojas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | - Pedro Pablo Silva
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | - Lleretny Rodríguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | - Daniela Rojas
- Department of Pathology, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillán, Chile.
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile.
| |
Collapse
|
7
|
Echeverry DM, Asenjo PA, Rojas DM, Aguilera CJ, Rodríguez-Álvarez L, Castro FO. Characterization of mesenchymal stem cells derived from adipose tissue of a cougar ( Puma concolor). Anim Reprod 2020; 17:e20190109. [PMID: 32714450 PMCID: PMC7375862 DOI: 10.21451/1984-3143-ar2019-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adipose derived mesenchymal stem cells (AMSCs) have been isolated from domestic and wild cats. For wild cats, the isolation of AMSCs has been reported in the black-footed cats (Felis nigripes) and guigna (Leopardus guigna). Stromal vascular fraction (SVF) isolated from cougar adipose tissue have been used to restore elbow functionality in the cougar (Puma concolor) but multipotent characteristics of these cells have not been described. The present study describes for the first time the isolation and characterization of mesenchymal stem cells derived from adipose tissue of cougar. AMSCs and fibroblasts from six months female cougar were isolated and cultured in DMEM/F12, supplemented with FBS 10% + 1% Antibiotic/Antifungal + 2.4 mM L-Glutamine + 2.4 mM pyruvate up to passage 5. Expression of pluripotent and surface marker genes was evaluated at mRNA level. Mesodermal differentiation (adipogenic, osteogenic and chondrogenic) was described. AMSCs expressed mRNA of pluripotent genes Oct4, Nanog, Sox2 and Klf4 and surface markers Cd44, Cd90, Cd105 and MHCII. Fibroblasts showed similar mRNA expression with the exception of Sox2. AMSCs obtained from cougar exhibit multipotency features similar to domestic cats MSC, nevertheless, other analyses are required. AMSCs from cougar could be a source of interest for treatment of individuals that remain in captivity or arrive to wildlife rehabilitation centers.
Collapse
Affiliation(s)
- Diana Maritza Echeverry
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Pamela Alejandra Asenjo
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Daniela Michele Rojas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Constanza Javiera Aguilera
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Lleretny Rodríguez-Álvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Oliveira Spila DD, Maranhão RDPA, Ocarino NDM, de Lima JTB, Melo FG, Boeloni JN, Serakides R. Triiodothyronine Has No Enhancement Effect on the Osteogenic or Chondrogenic Differentiation of Equine Adipose Tissue Stem Cells. J Equine Vet Sci 2020; 86:102895. [PMID: 32067668 DOI: 10.1016/j.jevs.2019.102895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The effects of two concentrations of triiodothyronine (T3; 0.01 and 1,000 nM) on the osteogenic and chondrogenic differentiation abilities of equine adipose-derived mesenchymal stem cells (AD-MSCs) were evaluated. The osteogenic study evaluated the effect of T3 using alkaline phosphatase activity (ALP) assay; cell viability and density; and formation of mineralized nodules at Days 7, 14, and 21 in culture. The chondrogenic study tested the effect of T3 through ALP assay, mitochondrial metabolism, cell density, and periodic acid-Schiff-positive (PAS+) matrix percentage at Days 7 and 14. In both experiments, analysis of variance was used to compare averages through the Student-Newman-Keuls test. In the osteogenic study, no differences in any variable were detected between groups at Day 7. At Day 14, 0.01 nM T3 reduced cell density and the number of mineralized nodules despite the increase in ALP activity and mitochondrial metabolism (P < .05). ALP activity increased at 1,000 nM T3 concentration (P < .05). At Day 21, 0.01 nM T3 treatment increased ALP activity compared with control treatment (P < .05). At 1,000 nM concentration, T3 reduced mitochondrial metabolism and cell density (P < .05). In the chondrogenic study, the two T3 concentrations increased cell density compared with control treatment at Day 7. At Day 14, higher T3 concentration reduced mitochondrial metabolism, ALP activity, cell density, and PAS+ chondrogenic matrix percentage compared with control treatment (P < .05). Thus, T3 addition to equine AD-MSC cultures has no enhancement effect on osteogenic or chondrogenic differentiation and may, in fact, negatively affect cell density and matrix synthesis depending on hormone concentration and culture time.
Collapse
Affiliation(s)
- Débora de Oliveira Spila
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata de Pino Albuquerque Maranhão
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Tiburcio Barbosa de Lima
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabrício Gomes Melo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jankerle Neves Boeloni
- Departamento de Medicina Veterinária do CCA/Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Echeverry DM, Asenjo PA, Rojas DM, Aguilera CJ, Rodríguez-Álvarez L, Castro FO. Characterization of mesenchymal stem cells derived from adipose tissue of a cougar (Puma concolor). Anim Reprod 2020. [DOI: 10.1590/1984-3143-ar2019-0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
10
|
Lei X, Xu P, Cheng B. Problems and Solutions for Platelet-Rich Plasma in Facial Rejuvenation: A Systematic Review. Aesthetic Plast Surg 2019; 43:457-469. [PMID: 30327852 DOI: 10.1007/s00266-018-1256-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND In recent years, platelet-rich plasma (PRP) has been widely applied in orthopedics, maxillofacial surgery, burns, and plastic surgery, especially in facial rejuvenation. Research is ongoing into new indications and mechanisms of PRP to promote its wider, safer, and more effective use in the clinic. This article reviews the possible mechanisms of PRP in facial rejuvenation and related research. It is expected that the application of PRP in this field will increase. METHODS The use of PRP in facial rejuvenation was screened using inclusion and exclusion criteria. The relevant articles were searched through Pubmed digest database, SCI full-text database, ScienceDirect full-text database, and the CNKI full-text database. The different effects and limitations of PRP were extracted. RESULTS A total of 108 articles were obtained, including 18 articles researching PRP in cells, 10 articles on animal research using PRP, 16 articles on the clinical study of PRP, 24 articles involving signs of skin aging, and four articles on the limitations of PRP. The remaining articles were related to the preparation of PRP, the introduction of PRP, and other aspects. CONCLUSION Based on in vitro and in vivo research, PRP may play a role in promoting tissue regeneration, oxidative stress and revascularization, which form the theoretical basis for the use of PRP in the clinical treatment of facial rejuvenation. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xiaoxuan Lei
- The Graduate School of Southern Medical University, Guangzhou, 510515, China
- Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | - Pengcheng Xu
- Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, 510515, China.
- Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510010, China.
| |
Collapse
|
11
|
Azizi S, Farsinejad A, Kheirandish R, Fatemi H. Intra-articular effects of combined xenogenous serum rich in growth factors (SRGF) and vitamin C on histopathology grading and staging of osteoarthritis in rat model. Transfus Clin Biol 2018; 26:3-9. [PMID: 30193926 DOI: 10.1016/j.tracli.2018.08.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is one of the most common degenerative diseases especially in the knee joint. The definitive method for the treatment of this disease is not known. In recent years, use of platelet-derived products has been considered as a new therapeutic approach because of its low cost, easy to use, and minimum side effects. Serum rich of growth factors (SRGF) is one of the biological compounds used to healing and regeneration. Its effects may improve in combination with antioxidants such as vitamin C. This vitamin increases the synthesis of proteoglycans by chondrocytes. The present study investigated effect of xenogenous SRGF in combination with vitamin C on the monosodium iodoacetate-induction osteoarthritis in rats. METHODS Animals were randomly categorized into three groups including OA, SRGF, and vitamin C+SRGF. Treatments were performed with 3 time intra-articular injection in weekly intervals. Knee samples were taken after two weeks of the last treatment for histopathologic investigations. RESULTS In the OA group, surface fibrillation and irregularity, multiple clefts, loss of chondrocytes, proteoglycan depletion with Toluidine blue staining were detected. In the treated group with SRGF/vitamin C, the severity of degenerative lesions was decreased. Chondrocytes had proliferated and matrix proteoglycan increased in compared to the SRGF and OA groups. Also, osteoarthritis stage was markedly reduced in this group rather than two other groups. CONCLUSION The results of this study show the synergic effect of vitamin C and growth factors on accelerating articular repair.
Collapse
Affiliation(s)
- S Azizi
- Department of pathobiology,Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - A Farsinejad
- Therapy and Regenerative Medicine Comprehensive Centre, Kerman University of Medical Sciences, Kerman, Iran
| | - R Kheirandish
- Department of pathobiology,Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - H Fatemi
- Faculty of Veterinary Medicine, Shahid Bahonar university of Kerman, Kerman, Iran
| |
Collapse
|
12
|
Yan X, Zhou Z, Guo L, Zeng Z, Guo Z, Shao Q, Xu W. BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) are more effective than wild-type BMSCs in healing fractures. Exp Ther Med 2018; 16:1381-1388. [PMID: 30112066 DOI: 10.3892/etm.2018.6339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Bone fractures are a worldwide public health concern. Previous studies have demonstrated that bone morphogenetic protein-7 (BMP7) gene transfer or mesenchymal stem cells (MSCs) transplantation may be a promising novel therapeutic approach. Therefore, the aim of the present study was to observe the effect of bone BMP7 transfer to MSCs on fracture healing. Bone marrow-derived MSCs (BMSCs) from New Zealand white rabbits were isolated and identified using flow cytometry. A recombinant BMP7 overexpressing adenovirus vector (Adv) was constructed and transfected into BMSCs. The expression of BMP7 was detected by reverse transcription-polymerase chain reaction, immunofluorescence and western blotting. The present study additionally investigated the effect of BMP7 on the differentiation capacity of BMSCs. Finally, tissue-engineered bone was created with support material to verify the effect of BMP7-BMSCs on fracture healing. The results demonstrated that the expression of BMP7 was increased at the mRNA and protein levels in BMSCs following transfection with BMP7 overexpressing Adv. The results additionally demonstrated that the expression of BMP7 enhanced the differentiation capacity of bone marrow mesenchymal stem cells and had a promotional effect on fracture healing. Overall, these data suggest that Adv-BMP7 is useful for introducing foreign genes into BMSCs and will be a powerful gene therapy tool for bone regeneration and other tissue engineering applications in the future.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopedics, The 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Zhenhua Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China.,Department of Orthopedics, The 169th Hospital of PLA, Hengyang, Hunan 421002, P.R. China.,Department of Orthopedics, Xiangnan Hospital, College of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Lixin Guo
- Department of Orthopedics, The 169th Hospital of PLA, Hengyang, Hunan 421002, P.R. China.,Department of Orthopedics, Xiangnan Hospital, College of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Zhaochi Zeng
- Department of Orthopedics, The 169th Hospital of PLA, Hengyang, Hunan 421002, P.R. China.,Department of Orthopedics, Xiangnan Hospital, College of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Zhongkai Guo
- Department of Orthopedics, The 169th Hospital of PLA, Hengyang, Hunan 421002, P.R. China.,Department of Orthopedics, Xiangnan Hospital, College of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Qingdong Shao
- Department of Orthopedics, The 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Weidong Xu
- Department of Orthopedics, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
13
|
Cabezas J, Rojas D, Navarrete F, Ortiz R, Rivera G, Saravia F, Rodriguez-Alvarez L, Castro FO. Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology 2017; 106:93-102. [PMID: 29049924 DOI: 10.1016/j.theriogenology.2017.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/30/2017] [Indexed: 12/13/2022]
Abstract
Adult stromal mesenchymal stem cells (MSCs) have been postulated as responsible for cell renewal in highly and continuously regenerative tissues such as the endometrium. MSCs have been identified in the endometrium of many species including humans, rodents, pets and some farm animals, but not in horses. The objective of this work was to isolate such cells from the endometrium of mares and to compare their main biological attributes with horse adipose-derived MSCs. Here we successfully isolated and characterized endometrial MSCs (eMSCs) from mares. Said cells showed fibroblast-like morphology, grew on plastic, had doubling population times of 46.4 ± 3.38 h, underwent tri-lineage (osteo, chondro and adipogenic) differentiation after appropriate inductions, migrated toward the attraction of fetal calf serum and displayed a pattern of surface markers commonly accepted for horse MSCs. All these are properties of MSCs. Some of these attributes were shared with equine adipose-derived MSCs, but the migration pattern of eMSC at 12 and 24 h after stimulation was reduced in comparison with adipose MSCs. Also, expression of CD44, CD90 and MHCI surface markers were dramatically down-regulated in eMSCs. In conclusion, equine-derived endometrial MSC share biological attributes with adipose MSC of this species, but displayed a different surface marker phenotype and an impaired migration ability. Conceivably, this phenotype is distinctive for MSC of this origin.
Collapse
Affiliation(s)
- J Cabezas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Science, Laboratorio de Biotecnologia Animal, Chile.
| | - D Rojas
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Pathology, Chile.
| | - F Navarrete
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Science, Laboratorio de Biotecnologia Animal, Chile.
| | - R Ortiz
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Clinical Sciences, Hospital de Animales Mayores, Chile.
| | - G Rivera
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Clinical Sciences, Hospital de Animales Mayores, Chile.
| | - F Saravia
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Science, Laboratorio de Biotecnologia Animal, Chile.
| | - L Rodriguez-Alvarez
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Science, Laboratorio de Biotecnologia Animal, Chile.
| | - F O Castro
- Universidad de Concepción, Campus Chillan, Faculty of Veterinary Sciences, Department of Animal Science, Laboratorio de Biotecnologia Animal, Chile.
| |
Collapse
|
14
|
Fernandes G, Yang S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res 2016; 4:16036. [PMID: 28018706 PMCID: PMC5153571 DOI: 10.1038/boneres.2016.36] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
Presently, there is a high paucity of bone grafts in the United States and worldwide. Regenerating bone is of prime concern due to the current demand of bone grafts and the increasing number of diseases causing bone loss. Autogenous bone is the present gold standard of bone regeneration. However, disadvantages like donor site morbidity and its decreased availability limit its use. Even allografts and synthetic grafting materials have their own limitations. As certain specific stem cells can be directed to differentiate into an osteoblastic lineage in the presence of growth factors (GFs), it makes stem cells the ideal agents for bone regeneration. Furthermore, platelet-rich plasma (PRP), which can be easily isolated from whole blood, is often used for bone regeneration, wound healing and bone defect repair. When stem cells are combined with PRP in the presence of GFs, they are able to promote osteogenesis. This review provides in-depth knowledge regarding the use of stem cells and PRP in vitro, in vivo and their application in clinical studies in the future.
Collapse
Affiliation(s)
- Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther 2016; 7:71. [PMID: 27176654 PMCID: PMC4866276 DOI: 10.1186/s13287-016-0330-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yini Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaopeng Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ermei Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
16
|
The Addition of Platelet-Rich Plasma to Scaffolds Used for Cartilage Repair: A Review of Human and Animal Studies. Arthroscopy 2015; 31:1607-25. [PMID: 25823672 DOI: 10.1016/j.arthro.2015.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/15/2015] [Accepted: 01/22/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To review the available literature on studies focusing on platelet-rich plasma (PRP)-enhanced scaffolds for cartilage lesion repair in animals and to analyze the clinical outcomes of similar biologically augmented cartilage regeneration techniques in humans. METHODS We conducted a literature search and subsequent review investigating the potential of PRP to enhance articular cartilage repair using scaffolds or bioengineered implants. RESULTS Of the 14 animal model studies reviewed, 10 reported positive effects with PRP whereas only 2 showed negative overall effects. The remaining 2 studies reported no significant differences, or neutral results, with the use of PRP. With the addition of PRP, the gross appearance and histologic analysis of repair cartilage were improved or no difference was seen compared with control (11 of 12 studies that looked at this). Human studies of the knee or talar dome showed improvements in clinical assessment scores as soon as 6 months after surgery. There was great variability in the method of PRP preparation, choice of scaffold, and cell source between studies. CONCLUSIONS PRP-augmented scaffolds have been shown to be beneficial in the articular cartilage repair process in animals and humans based on macroscopic, histologic, and biochemical analysis and based on clinical outcome scores, respectively. Comparison between studies is difficult because there is great variability in PRP preparation and administration. LEVEL OF EVIDENCE Level IV, systematic review of Level III and IV studies.
Collapse
|
17
|
Chen J, He Y, Shan C, Pan Q, Li M, Xia D. Topical combined application of dexamethasone, vitamin C, and β-sodium glycerophosphate for healing the extraction socket in rabbits. Int J Oral Maxillofac Surg 2015; 44:1317-23. [PMID: 26149940 DOI: 10.1016/j.ijom.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/07/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
An osteogenic inducer (OI) consisting of dexamethasone, vitamin C, and β-sodium glycerophosphate has the capacity to induce bone formation in vitro. The aim of this study was to assess the efficacy of the application of this OI on extraction socket healing. The bilateral first mandibular premolars were extracted from 75 New Zealand rabbits. Gelatin sponges carrying OI were implanted into the sockets. Sockets undergoing implantation of gelatin sponges alone were also evaluated, as well as non-implantation sockets. Specimens from each group were evaluated radiographically, histologically, and histomorphometrically using haematoxylin-eosin staining. Results showed earlier new bone formation and higher bone quality and quantity in the OI group compared to the other groups, and the differences were significant at 2, 4, 8, and 12 weeks postoperative. The OI significantly reduced the absorption of alveolar bone in terms of height; however, changes in the width were not significantly different between the three groups (P>0.05). The OI was shown to have a positive effect on healing of the tooth extraction sockets, was inexpensive, and was convenient to use during the operational procedure; therefore this could represent a promising implant material for human clinical application.
Collapse
Affiliation(s)
- J Chen
- Orofacial Reconstruction and Regeneration Laboratory, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Luzhou, China
| | - Y He
- Orofacial Reconstruction and Regeneration Laboratory, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Luzhou, China.
| | - C Shan
- Department of Stomatology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Q Pan
- Orofacial Reconstruction and Regeneration Laboratory, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Luzhou, China
| | - M Li
- Orofacial Reconstruction and Regeneration Laboratory, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Luzhou, China
| | - D Xia
- Orofacial Reconstruction and Regeneration Laboratory, Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Luzhou Medical College, Luzhou, China
| |
Collapse
|
18
|
Ye JS, Su XS, Stoltz JF, de Isla N, Zhang L. Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes. Cell Prolif 2015; 48:157-65. [PMID: 25656979 PMCID: PMC6496737 DOI: 10.1111/cpr.12165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/01/2014] [Indexed: 12/18/2022] Open
Abstract
End‐stage liver disease can be the termination of acute or chronic liver diseases, with manifestations of liver failure; transplantation is currently an effective treatment for these. However, transplantation is severely limited due to the serious lack of donors, expense, graft rejection and requirement of long‐term immunosuppression. Mesenchymal stem cells (MSCs) have attracted considerable attention as therapeutic tools as they can be obtained with relative ease and expanded in culture, along with features of self‐renewal and multidirectional differentiation. Many scientific groups have sought to use MSCs differentiating into functional hepatocytes to be used in cell transplantation with liver tissue engineering to repair diseased organs. In most of the literature, hepatocyte differentiation refers to use of various additional growth factors and cytokines, such as hepatocyte growth factor (HGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), oncostatin M (OSM) and more, and most are involved in signalling pathway regulation and cell–cell/cell–matrix interactions. Signalling pathways have been shown to play critical roles in embryonic development, tumourigenesis, tumour progression, apoptosis and cell‐fate determination. However, mechanisms of MSCs differentiating into hepatocytes, particularly signalling pathways involved, have not as yet been completely illustrated. In this review, we have focused on progress of signalling pathways associated with mesenchymal stem cells differentiating into hepatocytes along with the stepwise differentiation procedure.
Collapse
Affiliation(s)
- Jun-Song Ye
- BRC, First Hospital of Kun Ming, Kun Ming, 650011, China; Lorraine University and CNRS UMR 7365, Medical College, Vandoeuvre-lès-Nancy, 54500, France
| | | | | | | | | |
Collapse
|
19
|
Marx C, Silveira MD, Beyer Nardi N. Adipose-derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev 2015; 24:803-13. [PMID: 25556829 DOI: 10.1089/scd.2014.0407] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells, considered one of the most promising cell types for therapeutic applications due to their capacity to secrete regenerative bioactive molecules, are present in all tissues. Stem cells derived from the adipose tissue have been increasingly used for cell therapy in humans and animals, both as freshly isolated, stromal vascular fraction (SVF) cells, or as cultivated adipose-derived stem cells (ASCs). ASCs have been characterized in different animal species for proliferation, differentiation potential, immunophenotype, gene expression, and potential for tissue engineering. Whereas canine and equine ASCs are well studied, feline cells are still poorly known. Many companies around the world offer ASC therapy for dogs, cats, and horses, although in most countries these activities are not yet controlled by regulatory agencies. This is the first study to review the characterization and clinical use of SVF and ASCs in spontaneously occurring diseases in veterinary patients. Although a relatively large number of studies investigating ASC therapy in induced lesions are available in the literature, a surprisingly small number of reports describe ASC therapy for naturally affected dogs, cats, and horses. A total of seven studies were found with dogs, only two studies in cats, and four in horses. Taken as a whole, the results do not allow a conclusion on the effect of this therapy, due to the generally small number of patients included, diversity of cell populations used, and lack of adequate controls. Further controlled studies are clearly needed to establish the real potential of ASC in veterinary medicine.
Collapse
Affiliation(s)
- Camila Marx
- 1 Laboratory of Stem Cells and Tissue Engineering, Universidade Luterana do Brasil , Canoas, RS, Brazil
| | | | | |
Collapse
|