1
|
Islam MT, Das SK, Nahim MAM, Karim MR, Kundu R, Khan MAR, Rahman S, Al-Gawati M, Alodhayb AN, Ahsan HM. A highly selective colorimetric sensor of mercury(ii) ions and hydrogen peroxide by biosynthesized silver nanoparticles in water and investigations of the interaction between silver and mercury. RSC Adv 2025; 15:10074-10084. [PMID: 40176822 PMCID: PMC11962719 DOI: 10.1039/d5ra01733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Silver nanoparticles (AgNPs) are promising for their exceptional properties for various applications. This study applied a facile and green method to synthesize AgNPs in an aqueous medium using Averrhoa bilimbi fruit extract as a reducing and stabilizing agent. The formation of AgNPs was confirmed by using UV-visible spectroscopy, X-ray diffraction pattern (XRD), and High-resolution transmission electron microscopy (HRTEM). The synthesized AgNPs consist of face-centered cubic crystals and exhibit homogeneous spherical morphology with an average size of 11 nm. Heavy metals like mercury contamination in water and food pose global health risks, leading to disability issues, even at trace levels. Beside, H2O2 is a reactive oxygen species. Thus, elevated H2O2 levels can harm cell membranes, proteins, and DNA in aquatic creatures, resulting in oxidative stress that may affect physiological processes. Therefore, there is an urgent need for effective monitoring and prevention. The synthesized AgNPs were utilized as a colorimetric probe for the detection of mercury (Hg2+) ions in water at room temperature and found to be highly sensitive and selective with a limit of detection (LOD) of 1.58 μM and a limit of quantification (LOQ) of 5.27 μM. Furthermore, the detection of Hg2+ was unaffected in the presence of other pertinent metal ions. The prepared AgNPs probe can also enable detection of Hg2+ with the naked eye. In addition, the AgNPs probe was investigated for detecting Hg2+ ions in real water samples, which offered satisfying recovery rates ranging from 90.60 ± 2.60 to 96.73 ± 2.83%, confirming the probe's practicability. The capping agent stabilized on the surface of AgNPs can effectively pre-concentrate Hg2+ ions through the chemical interaction between AgNPs and Hg2+ ions to form Ag-Hg amalgam. This leads to a decrease in the SPR peak from AgNPs. The interaction between Ag and Hg was investigated using synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS). In addition, the AgNPs probe effectively detected hydrogen peroxide (H2O2) in an aqueous medium with a LOD of 3.21 μM and LOQ of 10.70 μM. This study aimed to develop a rapid, easy-to-use, eco-friendly, and reliable colorimetric sensor that may quickly identify dangerous pollutants in aqueous samples.
Collapse
Affiliation(s)
| | | | | | - Md Rabiul Karim
- Department of Chemistry, University of Rajshahi Rajshahi-6205 Bangladesh
| | - Rumpa Kundu
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University Sendai Japan
| | - Md Abu Rayhan Khan
- Department of Chemistry, Mississippi State University 310 President Cir Mississippi State USA
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
| | - Mahmoud Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
| | - Abdullah N Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Habib Md Ahsan
- Chemistry Discipline, Khulna University Khulna-9208 Bangladesh
| |
Collapse
|
2
|
Ahmed AKR, Gajendhiran R, Mithra S, Majeed SA, Hameed ASS, Paulpandiyan R, Maniyammai S, Senthil Andavan GT, NizamMohideen M, Rahiman AK. Salicylidene-based dual-responsive 'turn on' fluorometric chemosensors for the selective detection of Zn 2+, Al 3+ and F - ions: theoretical investigation and applications in the live cell imaging of zebrafish larvae and molecular logic gate operation. J Mater Chem B 2025; 13:622-641. [PMID: 39601190 DOI: 10.1039/d4tb01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Four salicylidene-based dual-responsive chemosensors 1,5-bis(5-bromosalicylaldehyde)carbohydrazone (R1), 1,5-bis(5-bromosalicylaldehyde)thiocarbohydrazone (R2), 1,5-bis(3-ethoxysalicylaldehyde)carbohydrazone (R3) and 1,5-bis(3-ethoxysalicylaldehyde)thiocarbohydrazone (R4) were synthesized and characterized. The molecular structures of R1 and R3 were confirmed by single crystal X-ray diffraction technique, which crystallized in the orthorhombic Pbcn and monoclinic P21/n space groups, respectively. The chemosensor molecules were investigated for their recognition properties against the selected cations (K+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Fe3+ and Al3+) and anions (F-, Cl-, Br-, I-, HSO4-, H2PO4-, ClO4-, N3- and NO3-) by colorimetry, absorption spectroscopy, fluorescence spectroscopy, 1H NMR spectroscopy and theoretical studies. The sensor molecules showed colorimetric responses for the Co2+, Ni2+, Cu2+ and Fe3+ cations and the F- anion. Interestingly, the Zn2+ and Al3+ cations showed only the 'turn on' fluorometric response, whereas the F- anion showed both colorimetric and fluorometric responses. The binding constants were determined using the Benesi-Hildebrand (B-H) equation from the fluorescence titrations and found to be higher for R3 towards the Al3+ cation (2.03 × 106 M-1) with a low limit of detection (1.79 μM) and for R4 towards the F- anion (5.13 × 105 M-1) with a low limit of detection (5.23 μM). The chemosensors established 1 : 2 and 1 : 1 binding stoichiometries with the sensed cations and anion, respectively, as confirmed by Job's plots. The computational studies show a lower band gap of HOMO-LUMO when the chemosensors bind with the sensed inorganic ions compared to the free chemosensors. Furthermore, the observed fluorescent behaviour of the Zn2+ and Al3+ cations have motivated us to investigate the practical applications in the live cell-imaging of zebrafish larvae as well as in the development of a molecular logic gate.
Collapse
Affiliation(s)
- Abbas Khaja Raees Ahmed
- Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai - 600 014, India.
| | - Ramalingam Gajendhiran
- Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai - 600 014, India.
| | - Sivaraj Mithra
- Department of Zoology and Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam - 632 509, India
| | - Seepoo Abdul Majeed
- Department of Zoology and Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam - 632 509, India
| | - Azeez Sait Sahul Hameed
- Department of Zoology and Aquatic Animal Health Laboratory, C. Abdul Hakeem College, Melvisharam - 632 509, India
| | | | - Subbaiah Maniyammai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603 203, India
| | | | - MohamedHanifa NizamMohideen
- Post-Graduate and Research Department of Physics, The New College, University of Madras, Chennai - 600 014, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai - 600 014, India.
| |
Collapse
|
3
|
Zhu D, Yao W, Ren A. A Reaction-Based ESIPT Fluorescent Probe for the Detection of Hg 2+ with Large Stokes Shift. J Fluoresc 2025; 35:81-88. [PMID: 37987982 DOI: 10.1007/s10895-023-03508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
A novel reaction-based fluorescent probe 1 for Hg2+ was designed and synthesized. 1 was almost nonfluoresent due to inhibition of the ESIPT process between hydroxy group and imid carbonyl oxygen by diphenylphosphinothioate group. After reacting with Hg2+, the fluorescence intensity of 1 exhibited significant enhancement owing to recovery of the ESIPT process via Hg2+-promoted desulfurization-hydrolysis of the diphenylphosphinothioate moiety and cleavage of the P-O bond. 1 not only showed rapid response, high sensitivity, excellent selectivity for Hg2+ over other metal ions, but also could detect Hg2+ with large Stokes shift (165 nm), which was attributed to the ESIPT process. Moreover, the reaction mechanism was fully validated by absorption spectra, fluorescence spectra, fluorescence color as well as ESI-MS analysis.
Collapse
Affiliation(s)
- Dongjian Zhu
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Wenqin Yao
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545005, People's Republic of China
| | - Aishan Ren
- Guangxi Key Laboratory of Health Care Food Science and Technology, College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| |
Collapse
|
4
|
Kim SH, Kim Y, Kim S, Lee ES, Cha BS, Park KS. MNAzyme-Assisted Nucleic Acid Lateral Flow Assay for Cost-Effective, On-Site Mercury Detection. BIOSENSORS 2024; 14:454. [PMID: 39451668 PMCID: PMC11505659 DOI: 10.3390/bios14100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Mercury ions (Hg2+) are toxic heavy metals present in the environment that pose significant health risks. An advanced detection system could allow for a prompt response and alleviate serious damage to humans. In this study, we developed a cost-effective, on-site detection method for Hg2+ using a multicomponent nucleic acid enzyme (MNAzyme)-assisted nucleic acid lateral flow assay (NALFA). The MNAzyme, which was engineered to contain thymine-thymine mismatches, is responsive only to the presence of Hg2+ and exerts efficient cleavage activity on substrates that can be captured by the NALFA strip, and thus the proposed system enables the visual detection of Hg2+ in the NALFA strip. Our assay demonstrated sufficient detection sensitivity and specificity to meet the WHO standards, offering a good practical alternative for rapid environmental and public health monitoring.
Collapse
Affiliation(s)
| | | | | | | | | | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (S.H.K.); (Y.K.); (S.K.); (E.S.L.); (B.S.C.)
| |
Collapse
|
5
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Alwael H, Al-Raimi DS, Al-Ahmary KM, Nasef HA, Alharthi AS, Abduljabbar TN, Mujawar LH, Danish EY, Soomro MT, El-Shahawi MS. An Eco-Friendly, Interference, and Solvent Free Surfactant-Assisted Dual-Wavelength β-CorrectionSpectrometric Method for Total Determination and Speciation of Cu 2+ Ions in Water. Int J Anal Chem 2023; 2023:5001869. [PMID: 37954135 PMCID: PMC10640129 DOI: 10.1155/2023/5001869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023] Open
Abstract
Spectral interference through the presence of uninformative variables, excess reagents, and complications in the refinement of the analyte signal is common in the quest to identify complex species in real samples. Therefore, an economical green, facile, and sensitive strategy has been developed for Cu2+ detection using the anionic surfactant sodium dodecylsulphate- (SDS-) assisted dual-wavelength β-correction spectrophotometric strategy combined with the chromogenic reagent zincon (ZI). The low limits of detection (LOD) and quantification (LOQ) of Cu2+ using ordinary (single wavelength) spectrophotometry were 0.19 (3.02) and 0.63 (10.0) μgmL-1, and these values were improved to 0.08 (1.27) and 0.26 μgmL-1 (4.12 μM)) using β-correction (dual wavelength) spectrophotometry, respectively. The LOD and LOQ were improved from 0.08 (1.27) and 0.26 (4.12) μgmL-1 to 0.02 (0.32) and 0.08 μgmL-1 (1.27 μM) using SDS-assisted dual-β-correction spectrometry, respectively. Ringbom, s, and the corrected absorbance (Ac) versus Cu2+ concentration plots were linear over the concentration range 1.10-2.4 (17.4-38.1) and 0.50-2.40 μgmL-1 (7.94-38.1 μM), respectively. Sandell's sensitivity index of 3.0 × 10-3 μg/cm2 was achieved. The selectivity was further confirmed via monitoring the impact of common diverse ions and surfactants on the corrected absorbance. Total determination and Cu2+ speciation in water were favorably implemented and validated by ICP-OES at 95% (P=0.05). Satisfactory Cu2+ recoveries in tap (92.2-98.0%) and mineral (105-111.0%) water samples were achieved. The sensing system is simple, reliable, sensitive, and selective for Cu2+ detection.
Collapse
Affiliation(s)
- Hassan Alwael
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Doaa S. Al-Raimi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khairia M. Al-Ahmary
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hany A. Nasef
- Department of Basic Sciences, ta Higher Institute for Engineering and Technology, Mansoura 35111, Egypt
| | - Amal S. Alharthi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Tharawat N. Abduljabbar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Liyakat H. Mujawar
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Ekram Y. Danish
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammad T. Soomro
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Mohammad S. El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Determination of Ultra-Trace Amounts of Copper in Environmental Water Samples by Dispersive Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A new method of dispersive liquid-liquid microextraction (DLLME) combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for the determination of ultra-trace copper. It was based on the reaction of Cu(II) with the laboratory-prepared chelating agent 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a HAc-NaAc buffer solution at pH 5.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME with chlorobenzene (C6H5Cl) and acetonitrile (CH3CN) as extraction and disperser solvents, respectively. The sedimented phase containing the chelates was then determined with GFAAS. Various operating variables that may be affected by the extraction process such as the pH of the solution, the concentration of the chelating agent 5-Br-PADMA, the types and volumes of extraction and disperser solvents, the extraction time, and the centrifugation time were investigated. Under optimum conditions, the calibration curve was linear in the range from 0.02 ng/mL to 0.16 ng/mL of copper with a correlation coefficient of r = 0.9961, and the detection limit was 0.01 ng/mL based on 3Sb. The relative standard deviation for six replicate measurements of 0.05 ng /mL of copper was 3.9%. An enrichment factor (EF) of 110 was obtained. The method has the advantages of low detection limit, high sensitivity, simple operation, less consumption of organic solvents, higher enrichment factor, and environmental friendliness and was applied to the determination of trace copper in environmental water samples with satisfactory results.
Collapse
|
8
|
Wen L, Dong J, Yang H, Zhao J, Hu Z, Han H, Hou C, Luo X, Huo D. A novel electrochemical sensor for simultaneous detection of Cd 2+ and Pb 2+ by MXene aerogel-CuO/carbon cloth flexible electrode based on oxygen vacancy and bismuth film. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158325. [PMID: 36041599 DOI: 10.1016/j.scitotenv.2022.158325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Herein, a novel MXene aerogel-CuO/carbon cloth (MXA-CuO/CC) electrochemical sensor was constructed, and the synergistic adsorption of heavy metal ions by oxygen vacancies and Bi (III) was investigated with Cd2+ and Pb2+ as detection targets. The oxygen vacancies of CuO have a strong affinity for heavy metal ions, which promoted the adsorption of Cd2+ and Pb2+ on the electrode surface. In addition, the introduced Bi (III) can form alloys with heavy metal ions, which effectively enhanced the adsorption capacity of sensing electrodes for Cd2+ and Pb2+. Differential pulse anodic stripping voltammetry (DPASV) was used to study the performance of MXA-CuO/CC sensitive electrode for the detection of Cd2+ and Pb2+ separately and simultaneously. The constructed sensing electrode has excellent detection performance, and can detect Cd2+ (4 μg L-1- 800 μg L-1) and Pb2+ (4 μg L-1- 1200 μg L-1) simultaneously with detection limits of 0.3 μg L-1 (Cd2+) and 0.2 μg L-1 (Pb2+), respectively. The proposed sensor electrode also has good anti-interference performance, excellent stability and reproducibility. It is worth mentioning that the proposed method can accurately detect Cd2+ and Pb2+ in food and water samples, which is consistent with the detection results of inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS).
Collapse
Affiliation(s)
- Li Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jiaying Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Zhikun Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Haiyan Han
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
9
|
Shaji LK, Ashok Kumar S. Antipyrine derived Schiff's base as a colorimetric probe for the rapid and selective detection of Cu2+ions. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Gonzalez A, van Lier JB, de Kreuk MK. The role of growth media on composition, bioconversion and susceptibility for mild thermal pre-treatment of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113491. [PMID: 34375922 DOI: 10.1016/j.jenvman.2021.113491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The highly variable characteristics of waste activated sludge (WAS) hinder the comparison of experimental results on WAS bioconversion between the different studies that use excess sludge from different origin. Sludge grown under laboratory conditions with synthetic wastewater as feed showed high resistance to commonly applied pre-treatment techniques, such as thermal pre-treatment. However, a distinctly higher bioconversion of this sludge was recorded compared to WAS from a full-scale wastewater treatment plant (WWTP). The observed results casted concern on the suitability of the experimental laboratory-based data for practice. The physicochemical and biochemical characteristics of both WAS and lab-grown sludge are dependent on the wastewater characteristics or growth media on which the sludges were grown. The objective of this study was to formulate a growth medium that results into a lab-grown sludge which shows high similarity to the WAS coming from a specific full-scale WWTP in response to a pre-treatment technique. More specifically, in this study we targeted the formation of slowly-biodegradable lab-grown sludge that is similarly responsive to mild thermal pre-treatment with H2O2 addition. By comparing real and synthetic wastewaters, we discussed the various wastewater constituents that may lead to a higher degree of recalcitrance of the produced sludge. We then formulated a growth medium, which was fed to a lab-scale activated sludge reactor and evaluated the nutrient removal capacity, as well as the characteristics of the cultivated sludge before and after pre-treatment. Finally, the growth medium was modified to provoke a change in both the bioconversion and in the response to mild thermal pre-treatment. The growth medium proposed in this study resulted in a slowly-biodegradable sludge (195 ± 3.7 NLCH4/kgVSadded) that after thermal pre-treatment resulted in an increase in methane production of 9 %, which was similar to the WAS coming from the full-scale WWTP. It was concluded that not only the bioconversion but also the response to mild thermal pre-treatment of lab-grown sludge was determined by the composition of the growth media.
Collapse
Affiliation(s)
- Adrian Gonzalez
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands.
| | - Jules B van Lier
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| | - Merle K de Kreuk
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Sanitary Engineering Section, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, the Netherlands
| |
Collapse
|
11
|
Cloud point extraction combined with flame atomic absorption spectrometry for the determination of copper, iron and zinc using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol-tetraphenylborate ion-pairing agent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01765-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zhao RX, Liu AY, Wen QL, Wu BC, Wang J, Hu YL, Pu ZF, Ling J, Cao Q. Glutathione stabilized green-emission gold nanoclusters for selective detection of cobalt ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119628. [PMID: 33706115 DOI: 10.1016/j.saa.2021.119628] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
A glutathione stabilized Au nanoclusters (GSH-Au NCs) was synthesized here and used to selective detection of cobalt ion. The as-prepared GSH-Au NCs had strong green light emission around 500 nm, and the features of the NCs have been systematically characterized by UV-vis absorption, X-ray photoelectronic spectroscopic, Fourier transform infrared spectroscopy and transmission electron microscope characterization. The interactions between the GSH-Au NCs and metal ions was studied, and the results indicated that the fluorescence of the GSH-Au NCs could be quenched in the presence of Co2+ ion at pH of 6.0. The quenching ratio was linear with the concentration of Co2+ ions, and the calibration curve was I0/I = 0.1187cco + 0.6085 in the Co2+ concentration ranges from 2.0 to 50.0 μM with correlation coefficient (R2) of 0.9950 and the limit of detection (LOD, 3σ) of 0.124 μM. In addition, we collected environmental water samples to test the reliability of the method and demonstrated this method is simple, rapid, and selective.
Collapse
Affiliation(s)
- Rui-Xian Zhao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - An-Yong Liu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qiu-Lin Wen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Bi-Chao Wu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jun Wang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yi-Lin Hu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zheng-Fen Pu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qiue Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| |
Collapse
|
13
|
Demir C, Öner M, Bodur S, Er EÖ, Bakırdere S. A Simple and Efficient Extraction Method for the Preconcentration of Copper in Tap Water and Linden Tea Samples Prior to FAAS Measurement. ChemistrySelect 2021. [DOI: 10.1002/slct.202100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cansu Demir
- Yıldız Technical University Department of Chemistry 34220 İstanbul Turkey
| | - Miray Öner
- Yıldız Technical University Department of Chemistry 34220 İstanbul Turkey
| | - Süleyman Bodur
- Yıldız Technical University Department of Chemistry 34220 İstanbul Turkey
| | - Elif Öztürk Er
- Yıldız Technical University Chemical Engineering Department 34210 İstanbul Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University Department of Chemistry 34220 İstanbul Turkey
- Turkish Academy of Sciences (TÜBA) Piyade Street No: 27, Çankaya 06690 Ankara Turkey
| |
Collapse
|
14
|
Hayati M, Ramezani M, Rezanejade Bardajee G, Momeni Isfahani T. Application of robust syringe-to-syringe dispersive liquid-phase microextraction method for preconcentration and determination of mercury with the aid of an experimental design. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1899219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marziyeh Hayati
- Department of Chemistry Arak Branch, Islamic Azad University, Arak, Iran
| | - Majid Ramezani
- Department of Chemistry Arak Branch, Islamic Azad University, Arak, Iran
| | | | | |
Collapse
|
15
|
Lu W, Shi J, Chen J, Sun L, Shao L, Ren H, Huang M, Wang Y, Yang S, Li X. A coumarin-based reversible fluorescent probe for Cu 2+ and S 2− and its applicability in vivo and for organism imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj01951a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly selective fluorescent probe was designed to detect Cu2+ and S2− in HeLa cells, zebrafish, and soybean root tissue.
Collapse
Affiliation(s)
- Wen Lu
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Jiuzhou Shi
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Jichao Chen
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Lu Sun
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Lingcen Shao
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Hongyu Ren
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Mengmeng Huang
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Yanqin Wang
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| | - Shilong Yang
- Advanced Analysis and Testing Center
- Nanjing Forestry University
- Nanjing
- China
| | - Xu Li
- College of Science
- Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|
16
|
Yeliz Camcı, Bişgin AT, Sürme Y, Uçan M, Narin İ. Micelle Mediated Extraction and Flame Atomic Absorption Spectrometric Determination of Trace Amounts of Copper in Different Mushroom Species. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820090166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Development of green vortex-assisted supramolecular solvent-based liquid–liquid microextraction for preconcentration of mercury in environmental and biological samples prior to spectrophotometric determination. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Zhang H, Zhong T, Jiang N, Zhang Z, Gong X, Wang G. Study on the photochromism, photochromic fluorescence switch, fluorescent and colorimetric sensing for Cu 2+ of naphthopyran-diaminomaleonitrile dyad and recognition Cu 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118191. [PMID: 32135501 DOI: 10.1016/j.saa.2020.118191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 05/21/2023]
Abstract
A well-designed naphthopyran-diaminomaleonitrile dyad (sensor 1) has been synthesized successfully, its molecular structure was well characterized by NMR and mass spectrometry. Sensor 1 exhibits excellent photochromic and photochromic fluorescence switch performance with reversible color change and good fatigue resistance upon alternating ultraviolet irradiation and thermal bleaching. In addition, sensor 1 displayed excellent fluorescent and colorimetric sensing ability towards Cu2+ ions with high selectivity and sensitivity. The addition of 5.0 equiv. of Cu2+ ions into sensor 1 (1 × 10-5) in CH3CN solution significantly quenched the fluorescence of sensor 1 by 80.0%. Furthermore, the addition of Cu2+ ions also caused the complete disappearance of the absorbance band at 350-450 nm in absorbance spectra of sensor 1 and accompanied by the distinct color change form yellow to colorless. Job's plot, mass spectrometry, 1H NMR titration and DFT calculations proved that sensing performance was attributed to the formation of 1:1 sensor 1-Cu2+complexes. Sensor 1 can monitor the existence of Cu2+ ions in living cells via the fluorescence images. Sensor 1 showed great potential applications as chemosensor and photochromic materials.
Collapse
Affiliation(s)
- Heyang Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Tianyuan Zhong
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Nan Jiang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zhuo Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xue Gong
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Guang Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
19
|
Qadri T, Ali I, Hussain M, Ahmed F, Shah MR, Hussain Z. Synthesis of New Tetra Triazole Functionalized Calix[4]resorcinarene and Chemosensing of Copper Ions in Aqueous Medium. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new tetra triazole functionalized calix[4]resorcinarene macrocycle (5) is synthesized
and utilized for the detection of copper ions in the aqueous medium. The photophysical
potential of compound (5) is examined by a range of cations (Ba2+, Ca2+, Co2+,
Hg2+, K+, Mg2+, Mn2+, Na+, NH4
+ and Pd2+). The triazole based calix[4]resorcinarene macrocycle
(5) has interacted with Cu2+ ion in preference of other cations. A significant
quenching has been observed after the addition of 15 μM Cu2+ ion solution, which produced
4.2 folds drift in the absorption intensity of compound (5). Tetra triazole functionalized
calix[4]resorcinarene macrocycle showed high selectivity towards copper ion chemosensing
without any interference in competitive studies. The pH studies of compound
(5) with Cu2+ indicated the maximum chelation between 7- 7.5 pH. The compound (5) is
capable to recognize Cu2+ at 1 μM detectable limit. Copper ion was detected in tap water with 15 μM concentration.
Job’s plot showed 1:2 binding ratio between macrocycle (5) and Cu2+.
Collapse
Affiliation(s)
- Tahir Qadri
- Department of Chemistry, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Imdad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Farid Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Muhammad R. Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Sindh, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi-75270, Sindh, Pakistan
| |
Collapse
|
20
|
Borahan T, Unutkan T, Zaman BT, Bakırdere EG, Bakırdere S. Determination of Copper in Quince Samples with a Matrix Matching Strategy Using Vortex Assisted Deep Eutectic Solvent-Based Emulsification Liquid Phase Microextraction – Slotted Quartz Tube – Flame Atomic Absorption Spectrometry. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1757689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Tülay Borahan
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Tuğçe Unutkan
- Department of Chemical Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Buse Tuğba Zaman
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| | - Emine Gülhan Bakırdere
- Faculty of Education, Department of Science Education, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
21
|
Lei L, Li M, Wu S, Xu Z, Geng P, Tian Y, Fu Y, Zhang W. Noninvasive In Situ Ratiometric Imaging of Biometals Based on Self-Assembled Peptide Nanoribbon. Anal Chem 2020; 92:5838-5845. [PMID: 32237737 DOI: 10.1021/acs.analchem.9b05490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of probes for accurate sensing and imaging of biometals in situ is still a growing interest owing to their crucial roles in cellular metabolism, neurotransmission, and apoptosis. Among them, Zn2+ and Cu2+ are two important cooperative biometals closely related to Alzheimer's disease (AD). Herein, we developed a multifunctional probe based on self-assembling peptide nanoribbon for ratiometric sensing of Zn2+, Cu2+, or Zn2+ and Cu2+ simultaneously. Uniform peptide nanoribbon (AQZ@NR) was rationally designed by coassembling a Zn2+-specific ligand AQZ-modified peptide (AQZKL-7) with peptide KL-7. The nanoribbon further combined with Cu2+-sensitive near-infrared quantum dots (NIR QDs) and Alexa Fluor 633 as an inner reference molecule, which was endowed with the capability for ratiometric Zn2+ and Cu2+ imaging at the same time. The peptide-based probe exhibited good specificity to Zn2+ and Cu2+ without interference from other ions. Importantly, the nanoprobe was successfully applied for noninvasive Zn2+ and Cu2+ monitoring in both living cells and zebrafish via multicolor fluorescence imaging. This gives insights into the dynamic Zn2+ and Cu2+ distribution in an intracellular and in vivo mode, as well as understanding the neurotoxicity of high concentration of Zn2+ and Cu2+. Therefore, the self-assembled nanoprobe shows great promise in multiplexed detection of many other biometals and biomolecules, which will benefit the diagnosis and treatment of AD in clinical applications.
Collapse
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Min Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Sufen Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ping Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
22
|
Bhaskar R, Sarveswari S. Thiocarbohydrazide based Schiff Base as a Selective Colorimetric and Fluorescent Chemosensor for Hg
2+
with “Turn‐Off” Fluorescence Responses. ChemistrySelect 2020. [DOI: 10.1002/slct.202000652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- R. Bhaskar
- Centre for Organic and Medicinal Chemistry, School of Advanced SciencesVIT University Vellore-632014 Tamil Nadu India
| | - S. Sarveswari
- Centre for Organic and Medicinal Chemistry, School of Advanced SciencesVIT University Vellore-632014 Tamil Nadu India
| |
Collapse
|
23
|
He K, Zhan X, Liu L, Ruan X, Wu Y. Ratiometric Fluorescent Paper-Based Sensor Based on CdTe Quantum Dots and Graphite Carbon Nitride Hybrid for Visual and Rapid Determination of Cu 2+ in Drinks. Photochem Photobiol 2020; 96:1154-1160. [PMID: 32242937 DOI: 10.1111/php.13271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
A simple and effective ratiometric fluorescence sensor of CdTe QDs/GCNNs for on-site and rapid analysis of Cu2+ has been established by mixing physically CdTe QDs and graphite carbon nitride (GCNNs). Two emissions peaks of CdTe QDs at 572 nm and GCNNs at 436 nm are both excitated at 340 nm. Under a UV lamp, fluorescent of traffic yellow CdTe QDs is linearly quenched by Cu2+ (as the detection signal), while blue GCNNs remains unchanged (as the reference), resulting in a distinguishable color change gradually from pink yellow to blue. The limit of detection (LOD) of this new sensor for Cu2+ is as low as 0.47 ng mL-1 with 1.4 % RSD. The established method has been successfully applied to detection of Cu2+ in various drinks with satisfactory results. Moreover, a paper-based sensor, which has been prepared by soaking cellulose acetate membrane in CdTe QDs/GCNNs sensor solution, has a wide semiquantitative detection range for Cu2+ (0.01 ~ 5.0 μg mL-1 ). It has realized successfully on-site and rapid determination of Cu2+ in red wine without any pretreatment procedure and is of great promotion and application value in determination of Cu2+ in liquid samples.
Collapse
Affiliation(s)
- Kaili He
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Lian Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xiaohong Ruan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Institute for Advanced Materials, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
24
|
Yuan Y, Wu Y, Wang H, Tong Y, Sheng X, Sun Y, Zhou X, Zhou Q. Simultaneous enrichment and determination of cadmium and mercury ions using magnetic PAMAM dendrimers as the adsorbents for magnetic solid phase extraction coupled with high performance liquid chromatography. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121658. [PMID: 31740318 DOI: 10.1016/j.jhazmat.2019.121658] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
In present study, a sensitive and efficient method based on magnetic PAMAM dendrimers as the sorbents for magnetic solid-phase extraction (MSPE) coupled with high performance liquid-phase chromatography and ultraviolet variable wavelength detector (HPLC-VWD) was developed for simultaneous determination of trace cadmium and mercury ions. Sodium diethyldithiocarbamate (DDTC-Na) was used as the chelating agent during the elution process. Parameters that would affect the extraction efficiency including PAMAM generation, adsorbent dosage, adsorption time, elution time and volume, pH and coexisting ions were investigated to achieve the best adsorption efficiency. Under the optimal conditions, good linear relationship was obtained in the range of 0.05-200 μg L-1 for Cd2+ and 0.1-200 μg L-1 for Hg2+, and the limits of detection were 0.016 and 0.040 μg L-1, respectively. The spiked recoveries of Cd2+ and Hg2+ were satisfied in the range of 91.5-105% (n = 3). The proposed method was proved to be an alternative and reliable method to determine trace Cd2+ and Hg2+ in water samples.
Collapse
Affiliation(s)
- Yongyong Yuan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Hongyuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Xianqi Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum Beijing, Beijing 102249, China.
| |
Collapse
|
25
|
Kaewprom C, Areerob Y, Oh WC, Ameta KL, Chanthai S. Simultaneous determination of Hg(II) and Cu(II) in water samples using fluorescence quenching sensor of N-doped and N,K co-doped graphene quantum dots. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
A Novel Biosorbent for Preconcentrations of Co(II) and Hg(II) in Real Samples. Sci Rep 2020; 10:455. [PMID: 31949208 PMCID: PMC6965309 DOI: 10.1038/s41598-019-57401-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022] Open
Abstract
A new biosorbent, composed of Amberlite XAD-4 loaded with Anoxybacillus kestanboliensis, was developed and surface morphologies were investigated by SEM and FT-IR. It was used for solid phase column preconcentrations of Co(II) and Hg(II) before their measurements by ICP-OES. LODs were calculated as 0.04 and 0.06 ng mL−1 for Co(II) and Hg(II) respectively. The maximum biosorption capacities were determined as 24.3 and 27.8 mg g−1 for Co(II) and Hg(II) respectively. Preconcentration factors were achieved for Co(II) and Hg(II) as 80. The method validation was performed by analyzing certified reference materials. The new process was successfully utilized for the preconcentration of these metals in various food samples. It should be highlighted that the sensitivity of ICP-OES was critically improved by applying developed method. Hence, ICP-OES could be an effective alternative for ICP-MS and/or GF-AAS.
Collapse
|
27
|
Marinho OR, Lima MJA, Reis BF. Automatic multicommuted flow-batch setup for photometric determination of mercury in drinking water at ppb level. Talanta 2020; 206:120207. [PMID: 31514857 DOI: 10.1016/j.talanta.2019.120207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022]
Abstract
Herein, a multicommuted flow-batch setup and a photometric procedure for the determination of mercury at the ppb level in aqueous samples are described. The setup was designed to implement a versatile solvent extraction and pre-concentration strategy by combining flow-batch and multicommuted flow analysis approaches. The photometric method was based on Hg(II) reaction with dithizone in a chloroform medium, which was also used as the extracting organic solvent. The flow analysis system was composed of a homemade syringe pump module, a set of solenoid valves, two Aquarius mini-pumps, and a flow-batch chamber. The homemade photometer was comprised of a light emitting diode (LED), photodiode, and homemade flow cell (50 mm length). The flow system and photometer were controlled using an Arduino Due board, running custom-written software. After optimizing the operational conditions, the effectiveness of the developed system was evaluated for the determination of the mercury concentration in drinking water. For accuracy assessment, samples were analyzed using a spiking methodology and an independent method, yielding a recovery ranging from 92% to 108%. Other important characteristics of the proposed method were found as follows: linear response range, 0.5-10.0 μg L-1 (r = 0.9984); limit of detection 0.38 μg L-1 Hg(II); consumption of dithizone and chloroform, 1.85 μg L-1 and 0.8 mL per analysis, respectively; coefficient of variation, 2% (n = 10); sampling throughput, 20 determinations per h.
Collapse
Affiliation(s)
- Oziel R Marinho
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13560-970, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil.
| | - Manoel J A Lima
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil.
| | - Boaventura F Reis
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil.
| |
Collapse
|
28
|
Lei Y, Zhang F, Guan P, Guo P, Wang G. Rapid and selective detection of Hg(ii) in water using AuNP in situ-modified filter paper by a head-space solid phase extraction Zeeman atomic absorption spectroscopy method. NEW J CHEM 2020. [DOI: 10.1039/d0nj02294b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AuNPs modified filter paper as sensitive mercury sensor was applied in the head-space solid phase extraction (HS-SPE) of Hg(ii). With negative pressure sampling, it can achieve in situ sampling and detection rapidly in a complex environment.
Collapse
Affiliation(s)
- Yongqian Lei
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Peng Guan
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering & Technological Research Center of Online Monitoring for Water Environmental Pollution
- Guangdong Institute of Analysis
- Guangdong Academy of Sciences
- Guangzhou 510070
- China
| | - Guanhua Wang
- College of Veterinary Medicine
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
29
|
Ardeshir Shokrollahi, Foroogh Ebrahimi. Simultaneous Determination of Brilliant Green and Basic Fuchsin by Cloud Point Extraction–scanometry. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Şenkuytu E, Bingul M, Saglam MF, Kandemir H, Sengul IF. Synthesis of a novel N,N',N'-tetraacetyl-4,6-dimethoxyindole-based dual chemosensor for the recognition of Fe3+ and Cu2+ ions. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper(II) and cobalt(II), and their use in a test strip. Mikrochim Acta 2019; 186:373. [DOI: 10.1007/s00604-019-3428-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/10/2019] [Indexed: 02/03/2023]
|
32
|
Guo Z, Niu Q, Li T, Sun T, Chi H. A fast, highly selective and sensitive colorimetric and fluorescent sensor for Cu 2+ and its application in real water and food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:97-103. [PMID: 30684885 DOI: 10.1016/j.saa.2019.01.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/20/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
A new oligothiophene functionalized Schiff base sensor 3TDC has been successfully designed and synthesized. Sensor 3TDC exhibited "naked-eye" colorimetric and selective "on-off" fluorescence response toward Cu2+ with high selectivity and sensitivity within a wide pH range. The binding ratio of the sensor 3TDC and Cu2+ was determined to be 1:1 through fluorescence titration, Job's plot, 1H NMR titration, FTIR and DFT studies. The detection limit is calculated to be as low as 2.81 × 10-8 M, which is much lower than the allowable level of Cu2+ in drinking water set by U.S. Environmental Protection Agency (~20 μM) and the World Health Organization (~30 μM). The binding constant (Ka) of Cu2+ to sensor 3TDC was found to be 2.52 × 104 M-1. Sensor 3TDC for Cu2+ detection exhibited fast fluorescence response within 30 s and high anti-interference performance. Moreover, sensor 3TDC could be used as an effective fluorescent sensor for detecting Cu2+ ions in various real water and food samples with good accuracy and high precision.
Collapse
Affiliation(s)
- Zongrang Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| | - Tianduo Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Tao Sun
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| |
Collapse
|
33
|
Memon NA, Memon FN, KARA HK, KARA H, Sherazi STH, Memon AA, Memon S, Leghari MK. Selective online solid-phase extraction of copper using p-morpholino-methylcalix[4]arene appended silica-based column. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1600551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Naeem A. Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Fakhar N. Memon
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Hatice K. KARA
- Department of Chemistry, Selçuk University, Konya, Turkey
| | - Hüseyin KARA
- Department of Chemistry, Selçuk University, Konya, Turkey
| | - Sayed T. H. Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Ayaz A. Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Shahabuddin Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Muhammad K. Leghari
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
34
|
Yu Y, Yu C, Gao R, Chen J, Zhong H, Wen Y, Ji X, Wu J, He J. Dandelion-like CuO microspheres decorated with Au nanoparticle modified biosensor for Hg 2+ detection using a T-Hg 2+-T triggered hybridization chain reaction amplification strategy. Biosens Bioelectron 2019; 131:207-213. [PMID: 30844597 DOI: 10.1016/j.bios.2019.01.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 01/13/2023]
Abstract
We fabricate a novel electrochemical biosensor based on the specific thymine-Hg2+-thymine (T-Hg2+-T) base pair for the highly sensitive detection of mercury ions (Hg2+) and utilize toluidine blue (TB) as a redox indicator that is combined with a hybridization chain reaction (HCR) for signal amplification. The dandelion-like CuO (D-CuO) microspheres that were assembled using Au nanoparticles were first introduced as support materials, which produced more active sites for the thiolated probe (P1) combination. Then, the presence of Hg2+ induced P1 to hybridize with the other oligonucleotide (P2) through Hg2+-mediated T-Hg2+-T complexes. In addition, the partial sequence of P2 acted as an initiator sequence, which led the two hairpin DNA (H1 and H2) strands to collectively form the extended double-strand DNA through the HCR process on the electrode surface. TB was employed to interact with the double strands and produce an efficient electrochemical signal. The proposed strategy combined the amplification of the HCR and the inherent redox activity of TB and utilized D-CuO/Au composites, which exhibited high sensitivity for Hg2+ determination. Under the optimum conditions, the proposed biosensor showed a prominent response for Hg2+, including a linear range from 1 pM to 100 nM and a detection limit of 0.2 pM (S/N = 3). Moreover, the new biosensor proved its potential application for trace Hg2+ determination in environmental water samples.
Collapse
Affiliation(s)
- Yujie Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jun Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hangtian Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xingduo Ji
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Jiahao Wu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
35
|
Xu Y, Hou Y, Wang Y, Wang Y, Li T, Song C, Wei N, Wang Q. Sensitive and selective detection of Cu 2+ ions based on fluorescent Ag nanoparticles synthesized by R-phycoerythrin from marine algae Porphyra yezoensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:356-362. [PMID: 30391840 DOI: 10.1016/j.ecoenv.2018.10.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/01/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
In this study, using a natural and green protein R-phycoerythrin (R-PE) extracted from marine Porphyra yezoensis as the stabilizer and reducer, silver nanoparticles (AgNPs) were synthesized. Based on this, a highly sensitive and selective method for the detection of Cu2+ ions was developed using R-PE-AgNPs as fluorescent probe. The interactions between R-PE-AgNPs and Cu2+ ions were systematically characterized by fluorescence spectroscopy, transmission electron microscopy (TEM), elemental mapping and Fourier transform infrared (FTIR). It was found that Cu2+ ions could cause aggregation of the R-PE-AgNPs, accompanied by the greatly increased particle size. Importantly, the method offered a wide linear detection range from 0 μM to 100.0 μM with a detection limit of 0.0190 μM. Moreover, the proposed method was successfully applied to analyze Cu2+ ions in tap water and lake water samples, acquiring satisfactory recovery between 91.6% and 102.2%. Such a green, fast and cost-effective fluorimetric method of the R-PE-AgNPs probe has great potential for tracing Cu2+ ions in diverse aqueous media.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yanhua Hou
- School of Marine and Technology, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yatong Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yifan Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tong Li
- School of Marine and Technology, Harbin Institute of Technology, Weihai 264209, PR China
| | - Chi Song
- School of Marine and Technology, Harbin Institute of Technology, Weihai 264209, PR China
| | - Nana Wei
- School of Marine and Technology, Harbin Institute of Technology, Weihai 264209, PR China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Marine and Technology, Harbin Institute of Technology, Weihai 264209, PR China.
| |
Collapse
|
36
|
A traffic light-type sensitive visual detection of mercury by golden nanoclusters mixed with fluorescein. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Wang L, Bing Q, Li J, Wang G. A new “ON-OFF” fluorescent and colorimetric chemosensor based on 1,3,4-oxadiazole derivative for the detection of Cu2+ ions. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Sakunkaewkasem S, Petdum A, Panchan W, Sirirak J, Charoenpanich A, Sooksimuang T, Wanichacheva N. Dual-Analyte Fluorescent Sensor Based on [5]Helicene Derivative with Super Large Stokes Shift for the Selective Determinations of Cu 2+ or Zn 2+ in Buffer Solutions and Its Application in a Living Cell. ACS Sens 2018; 3:1016-1023. [PMID: 29733581 DOI: 10.1021/acssensors.8b00158] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new fluorescent sensor, M201-DPA, based on [5]helicene derivative was utilized as dual-analyte sensor for determination of Cu2+ or Zn2+ in different media and different emission wavelengths. The sensor could provide selective and bifunctional determination of Cu2+ in HEPES buffer containing Triton-X100 and Zn2+ in Tris buffer/methanol without interference from each other and other ions. In HEPES buffer, M201-DPA demonstrated the selective ON-OFF fluorescence quenching at 524 nm toward Cu2+. On the other hand, in Tris buffer/methanol, M201-DPA showed the selective OFF-ON fluorescence enhancement upon the addition of Zn2+, which was specified by the hypsochromic shift at 448 nm. Additionally, M201-DPA showed extremely large Stokes shifts up to ∼150 nm. By controlling the concentration of Zn2+ and Cu2+ in a living cell, the imaging of a HepG2 cellular system was performed, in which the fluorescence of M201-DPA in the blue channel was decreased upon addition of Cu2+ and was enhanced in UV channel upon addition of Zn2+. The detection limits of M201-DPA for Cu2+ and Zn2+ in buffer solutions were 5.6 and 3.8 ppb, respectively. Importantly, the Cu2+ and Zn2+ detection limits of the developed sensors were significantly lower than permitted Cu2+ and Zn2+ concentrations in drinking water as established by the U.S. EPA and WHO.
Collapse
Affiliation(s)
- Siwakorn Sakunkaewkasem
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Anuwut Petdum
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
39
|
Bandara GC, Heist CA, Remcho VT. Chromatographic Separation and Visual Detection on Wicking Microfluidic Devices: Quantitation of Cu 2+ in Surface, Ground, and Drinking Water. Anal Chem 2018; 90:2594-2600. [PMID: 29333859 DOI: 10.1021/acs.analchem.7b04087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper is widely applied in industrial and technological applications and is an essential micronutrient for humans and animals. However, exposure to high environmental levels of copper, especially through drinking water, can lead to copper toxicity, resulting in severe acute and chronic health effects. Therefore, regular monitoring of aqueous copper ions has become necessary as recent anthropogenic activities have led to elevated environmental concentrations of copper. On-site monitoring processes require an inexpensive, simple, and portable analytical approach capable of generating reliable qualitative and quantitative data efficiently. Membrane-based lateral flow microfluidic devices are ideal candidates as they facilitate rapid, inexpensive, and portable measurements. Here we present a simple, chromatographic separation approach in combination with a visual detection method for Cu2+ quantitation, performed in a lateral flow microfluidic channel. This method appreciably minimizes interferences by incorporating a nonspecific polymer inclusion membrane (PIM) based assay with a "dot-counting" approach to quantification. In this study, hydrophobic polycaprolactone (PCL)-filled glass microfiber (GMF) membranes were used as the base substrate onto which the PIM was evenly dispensed as an array of dots. The devices thus prepared were then selectively exposed to oxygen radicals through a mask to generate a hydrophilic surface path along which the sample was wicked. Using this approach, copper concentrations from 1 to 20 ppm were quantified from 5 μL samples using only visual observation of the assay device.
Collapse
Affiliation(s)
- Gayan C Bandara
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| | - Christopher A Heist
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| | - Vincent T Remcho
- Department of Chemistry, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
40
|
Yin J, Bing Q, Wang L, Wang G. Ultrasensitive and highly selective detection of Cu 2+ ions based on a new carbazole-Schiff. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:495-501. [PMID: 28846978 DOI: 10.1016/j.saa.2017.08.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/06/2017] [Accepted: 08/19/2017] [Indexed: 06/07/2023]
Abstract
A new chemosensor for Cu2+ based on Schiff base with high sensitivity and selectivity was designed and synthesized. The fluorescence intensity of the chemosensor in CH3CN solution was enhanced 160-fold after the addition of 10 equiv. Cu2+ over other metal ions. In addition, it also facilitates colorimetric detection for Cu2+ in CH3CN solution. The chemosensor displayed low detection limit and fast response time to Cu2+.
Collapse
Affiliation(s)
- Jun Yin
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Qijing Bing
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Lin Wang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Guang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
41
|
Rasheed T, Li C, Nabeel F, Qi M, Zhang Y, Yu C. Real-time probing of mercury using an efficient “turn-on” strategy with potential as in-field mapping kit and in live cell imaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj01746h] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a rhodamine scaffold as a fluorophore and 2-aminothiazole as a receptor, we present a highly selective and sensitive sensor (TS).
Collapse
Affiliation(s)
- Tahir Rasheed
- The School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Chuanlong Li
- The School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Faran Nabeel
- The School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Meiwei Qi
- The School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yinglin Zhang
- The School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Chunyang Yu
- The School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
42
|
Mirabi A, Rad AS, Divsalar F, Karimi-Maleh H. Application of SBA-15/Diphenyl Carbazon/SDS Nanocomposite as Solid-Phase Extractor for Simultaneous Determination of Cu(II) and Zn(II) Ions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-3025-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Saeedi Z, Lotfi A, Hassanzadeh J, Bagheri N. Highly sensitive determination of copper (II) ions using fluorescence and chemiluminescence emissions of modified CdS quantum dots after it’s preconcentration by dispersive liquid–liquid microextraction. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two highly sensitive and selective methods based on fluorescence (FL) and chemiluminescence (CL) emissions of 8-mercaptoquinoline-capped CdS quantum dots (MCQ-CdS QDs) were described for the determination of copper (II) after it’s preconcentration. High fluorescent CdS QDs, synthesized in an aqueous medium, generated a relatively intense CL emission in the presence of potassium permanganate as an oxidant. Furthermore, low quantities of copper (II) ions showed a remarkable quenching effect on both of the CL and FL emissions of MCQ-CdS QDs. Based on this effect, two selective and simple methods were established for Cu2+, and the detection limits of 0.28 and 0.026 ng mL−1 were obtained for the FL and CL methods, respectively. Also, due to the high propensity of MCQ to Cu2+, good selectivity was obtained and no sensible interfering effects from other metal ions were observed. To more sensitize the developed method, an efficient preconcentration process was designed based on the high-yield ultrasound-assisted temperature-controlled ionic liquid dispersive liquid–liquid microextraction (UA-TIL-DLLME) method. Under the optimum conditions, the extracted Cu2+ showed a suppressing effect on the FL and CL emissions of CdS QDs proportional to its initial concentration over the ranges of 0.008–1.4 and 0.001–1.4 ng mL−1, respectively. The limits of detection of 3.7 and 0.37 pg mL−1, respectively, were also achieved. The established methods showed great features and were satisfactorily applied to the monitoring of ultratrace Cu2+ in some different environmental samples.
Collapse
Affiliation(s)
- Zohreh Saeedi
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Lotfi
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Javad Hassanzadeh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nafiseh Bagheri
- Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
44
|
Niu Y, Wang J, Zhang C, Chen Y. Rapid determination of trace copper in animal feed based on micro-plate colorimetric reaction and statistical partitioning correction. Food Chem 2017; 221:1406-1414. [DOI: 10.1016/j.foodchem.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
|
45
|
Limchoowong N, Sricharoen P, Techawongstien S, Chanthai S. Using bio-dispersive solution of chitosan for green dispersive liquid-liquid microextraction of trace amounts of Cu(II) in edible oils prior to analysis by ICP-OES. Food Chem 2017; 230:398-404. [PMID: 28407927 DOI: 10.1016/j.foodchem.2017.03.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/21/2017] [Accepted: 03/11/2017] [Indexed: 11/18/2022]
Abstract
A green approach using chitosan solution as a novel bio-dispersive agent for the dispersive liquid-liquid microextraction (DLLME) of trace amounts of Cu(II) in edible oils is presented. An emulsion was formed by mixing the oil sample with 300µL of 0.25% (w/v) chitosan solution containing 200µL of 6molL-1 HCl. Deionized water was used to induce emulsion breaking without centrifugation. The centrifuged Cu(II) extract was collected and analyzed using an inductively coupled plasma-optical emission spectrometer. The detection and quantitation limits were 2.1 and 6.8µgL-1, respectively. Trace amounts of Cu(II) in six edible oil samples were tested under optimum conditions for DLLME, with a recovery ranging from 90.3% to 109.3%. Therefore, the new dispersive agent in DLLME offers superior performance owing to the non-toxic nature of the solvent, short extraction time, high sensitivity, and easy operation.
Collapse
Affiliation(s)
- Nunticha Limchoowong
- Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phitchan Sricharoen
- Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchila Techawongstien
- Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Saksit Chanthai
- Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
46
|
CHEN T, TAN S, LI W, ZHU Y. Amplified Fluorescent Detection of Mercuric Ions by Conjugation of the ThT-induced G-Quadruplex Based Hybridization Chain Reaction. ANAL SCI 2017; 33:1333-1337. [DOI: 10.2116/analsci.33.1333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tianxiao CHEN
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Shuzhen TAN
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Wei LI
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| | - Yuqing ZHU
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
| |
Collapse
|
47
|
Li C, Yin FF, Zhu WJ, Fang M, Wu ZY, Xu Y, Wang HL, Wang Y. A New Fluorescence Chemosensor for Hg2+ Based on Carbazole and Thiourea. HETEROCYCLES 2017. [DOI: 10.3987/com-15-13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Gong T, Liu J, Liu X, Liu J, Xiang J, Wu Y. A sensitive and selective sensing platform based on CdTe QDs in the presence of l -cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem 2016; 213:306-312. [DOI: 10.1016/j.foodchem.2016.06.091] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/14/2016] [Accepted: 06/26/2016] [Indexed: 01/20/2023]
|
49
|
Inhibition of rhodamine B–ferricyanide chemiluminescence by Au nanoparticles toward the sensitive determination of mercury (II) ions. Microchem J 2016. [DOI: 10.1016/j.microc.2015.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Wang L, Cao P, Li W, Tong P, Zhang X, Du Y. Simultaneous detection of trace metal ions in water by solid phase extraction spectroscopy combined with multivariate calibration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:151-156. [PMID: 26845581 DOI: 10.1016/j.saa.2016.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/15/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Solid Phase Extraction Spectroscopy (SPES) developed in this paper is a technique to measure spectrum directly on the solid phase material where the analytes are concentrated in SPE process. Membrane enrichment and UV-Visible spectroscopy were utilized to fulfill SPES, and multivariate calibration method of partial least squares (PLS) was used to simultaneously detect the concentrations of trace cobalt (II) and zinc (II) in water samples. The proposed method is simple, sensitive and selective. The complexes of analyte ions were collected on the cellulose acetate membranes via membrane filtration after the complexation reaction with 1-2-pyridylazo 2-naphthol (PAN). The spectra of the membranes which contained the complexes of metal ions and PAN were measured directly without eluting. The analytical conditions including pH, reaction time, sample volume, the amount of PAN, and flow rates were optimized. Nonionic surfactant Brij-30 was absorbed on the membranes prior to SPES to modify the membranes for improving the enrichment and spectrum measurement. The interference from other ions to the determination was investigated. Under the optimal condition, the absorbance was linearly related to the concentration at the range of 0.1-3.0 μg/L and 0.1-2.0 μg/L, with the correlation coefficients (R(2)) of 0.9977 and 0.9951 for Co (II) and Zn (II), respectively. The limits of detection were 0.066 μg/L for cobalt (II) and 0.104 μg/L for zinc (II). PLS regression with leave-one-out cross-validation was utilized to build models to detect cobalt (II) and zinc (II) in drinking water samples simultaneously. The correlation coefficient between ion concentration and spectrum of calibration set and independent prediction set were 1.0000 and 0.9974 for cobalt (II) and 1.0000 and 0.9956 for zinc (II). For cobalt (II) and zinc (II), the errors of the prediction set were in the range 0.0406-0.1353 μg/L and 0.0025-0.1884 μg/L.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test, East China University of Science and Technology, Meilong Rd 130, Shanghai 200237, China
| | - Peng Cao
- Yantai Entry-Exit Inspection and Quarantine Bureau, Beima Rd 66, Yantai 264000, China
| | - Wei Li
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test, East China University of Science and Technology, Meilong Rd 130, Shanghai 200237, China
| | - Peijin Tong
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test, East China University of Science and Technology, Meilong Rd 130, Shanghai 200237, China
| | - Xiaofang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test, East China University of Science and Technology, Meilong Rd 130, Shanghai 200237, China
| | - Yiping Du
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Center of Analysis and Test, East China University of Science and Technology, Meilong Rd 130, Shanghai 200237, China.
| |
Collapse
|