1
|
Mahdi MMM, Fitoz A, Yıldız C, Eskiköy Bayraktepe D, Yazan Z. Electrochemical and computational studies on the interaction between calf-thymus DNA and skin whitening agent arbutin. Bioelectrochemistry 2025; 164:108923. [PMID: 39893833 DOI: 10.1016/j.bioelechem.2025.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
The interaction between double-stranded calf thymus DNA (ctDNA) and the skin whitening agent arbutin (AR) examined by applying electrochemical and computational methods for the first time in literature. A single-use pencil graphite electrode via cyclic (CV) and differential pulse voltammetry (DPV) techniques were applied to determine the kinetic and thermodynamic parameters in the absence and presence of ctDNA. To examine the interaction process, oxidation peak currents and potentials of AR were observed prior to the addition of various ctDNA concentrations. The binding constants (KAR-DNA) and Gibbs free energy (ΔG°) values for the AR-DNA complex were determined as 1.82 × 104L/mol and -24.30 kJ/mol at 298 K, respectively. Temperature evaluation of the interaction was examined using thermodynamic parameters (ΔH°: -30.30 kJ/mol and ΔS°: -0.00197 kJ/mol) applying the Van't Hoff equation. The local interaction sites in the molecule structure were determined by applying Fukui functions and second-order perturbation theory in view of potential hydrogen binding centers. The optimized structure of AR was applied with a DNA structure revealing the binding position for AR-DNA complex. Experimental and computational examinations suggested that AR-DNA binds to ctDNA through a minor groove mode via conventional hydrogen bonds, hydrophobic interactions and van der Waals forces.
Collapse
Affiliation(s)
- Maryam M M Mahdi
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Alper Fitoz
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Ceren Yıldız
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | | | - Zehra Yazan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
2
|
Mondal S, Panda R, Das S, Sultana F, Dutta S, Mondal MA. Synthesis and ct-DNA Binding Study of a Donor–π-Acceptor Dihydropyrimidinone Fluorophore. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Zhang Q, Liu L, Zhu Z, Ni Y. Functionalization of Fe 3O 4/rGO magnetic nanoparticles with resveratrol and in vitro DNA interaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121032. [PMID: 35231761 DOI: 10.1016/j.saa.2022.121032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/13/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Based on the previous research, we found that the magnetic nanocomposite Fe3O4/rGO (reduced graphene oxide) has a good drug loading effect. Therefore, in this paper, we studied the positive role of Fe3O4/rGO as a drug carrier in the interaction between resveratrol (RES) and calf-thymus DNA (ct-DNA). The fluorescence experiment is used to evaluate by the Stern-Volmer equation, the quenching constant of RES - ct-DNA system with and without Fe3O4/rGO decreases with the increasing temperature. It was found the quenching mode of RES - ct-DNA and Fe3O4/rGO - RES - ct-DNA systems were all static quenching, but the binding constant of RES -ct-DNA increased from 4.14 ± 0.21 × 104 L mol-1 to 10.12 ± 0.02 × 104 L mol-1. It was found that Fe3O4/rGO formed a ternary complex with RES and ct-DNA by ultraviolet spectrum (UV-vis), resonance light scattering experiments (RLS) and scanning electron microscope (SEM). Meanwhile, Fourier transform infrared (FT-IR) and circular dichroism (CD) experiments show that Fe3O4/rGO and Fe3O4/rGO loaded with RES have effect on the secondary structure of ct-DNA and change the conformation of ct-DNA. On the cellular level, the comet assay shows that Fe3O4/rGO and Fe3O4/rGO - RES could not cause DNA strand break to the mouse hepatocytes after 24 co-incubation. These results confirm that Fe3O4/rGO nanocomposites have good application potential, which can be used as a good drug carrier in a wide range of therapeutic methods.
Collapse
Affiliation(s)
- Qiulan Zhang
- School of Chemistry, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | - Linghong Liu
- School of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhi Zhu
- School of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yongnian Ni
- School of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties. Molecules 2022; 27:molecules27092883. [PMID: 35566236 PMCID: PMC9100673 DOI: 10.3390/molecules27092883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
A series of novel acridine N-acylhydrazone derivatives have been synthesized as potential topoisomerase I/II inhibitors, and their binding (calf thymus DNA—ctDNA and human serum albumin—HSA) and biological activities as potential anticancer agents on proliferation of A549 and CCD-18Co have been evaluated. The acridine-DNA complex 3b (-F) displayed the highest Kb value (Kb = 3.18 × 103 M−1). The HSA-derivatives interactions were studied by fluorescence quenching spectra. This method was used for the calculation of characteristic binding parameters. In the presence of warfarin, the binding constant values were found to decrease (KSV = 2.26 M−1, Kb = 2.54 M−1), suggesting that derivative 3a could bind to HSA at Sudlow site I. The effect of tested derivatives on metabolic activity of A549 cells evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay decreased as follows 3b(-F) > 3a(-H) > 3c(-Cl) > 3d(-Br). The derivatives 3c and 3d in vitro act as potential dual inhibitors of hTopo I and II with a partial effect on the metabolic activity of cancer cells A594. The acridine-benzohydrazides 3a and 3c reduced the clonogenic ability of A549 cells by 72% or 74%, respectively. The general results of the study suggest that the novel compounds show potential for future development as anticancer agents.
Collapse
|
5
|
Multifunctional novel rosin derivatives based on dehydroabietylamine with metal ion sensing and DNA/BSA binding activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Zeng G, Chen F, Lei Y, Zhou L, Yang X, Guo H, Tuo X, Guo Y. Revealing the binding properties between resorcinol and DNA. LUMINESCENCE 2021; 37:4-13. [PMID: 34499419 DOI: 10.1002/bio.4140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023]
Abstract
Resorcinol (1,3-dihydroxybenzene) is a common coupling agent in permanent hair dyes, and has arrested people's attention for its potential hazard to human health. However, the action mechanism of resorcinol and human DNA has not been elucidated. In this research, the binding properties between resorcinol and calf thymus DNA (ct-DNA) were studied for the first time through various spectral and molecular docking techniques. Spectral studies showed that the initial fluorescence quenching of resorcinol against DNA was a static one. The result of ΔH < 0 and ΔS > 0 was produced from thermodynamic experimental data, therefore it could be concluded that electrostatic force was the major driving force, while binding constant Kb was 1.56 × 104 M-1 at 298 K. The electrostatic binding network between resorcinol and ct-DNA was established explicitly through competitive substitution analysis and other spectral approaches. The results of FT-IR absorption spectra indicated that resorcinol had bound to the DNA phosphate skeleton. Molecular docking clearly revealed that binding occurred between hydroxyl groups of resorcinol and phosphorus oxygen bonds (P-O) of the DNA skeleton. These findings may deepen our understanding of the action mechanism between resorcinol and ct-DNA and provide some useful data on the effect of resorcinol on human diseases.
Collapse
Affiliation(s)
- Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yating Lei
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Like Zhou
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Yang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Ramotowska S, Ciesielska A, Makowski M. What Can Electrochemical Methods Offer in Determining DNA-Drug Interactions? Molecules 2021; 26:3478. [PMID: 34200473 PMCID: PMC8201389 DOI: 10.3390/molecules26113478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The interactions of compounds with DNA have been studied since the recognition of the role of nucleic acid in organisms. The design of molecules which specifically interact with DNA sequences allows for the control of the gene expression. Determining the type and strength of such interaction is an indispensable element of pharmaceutical studies. Cognition of the therapeutic action mechanisms is particularly important for designing new drugs. Owing to their sensitivity, simplicity, and low costs, electrochemical methods are increasingly used for this type of research. Compared to other techniques, they require a small number of samples and are characterized by a high reliability. These methods can provide information about the type of interaction and the binding strength, as well as the damage caused by biologically active molecules targeting the cellular DNA. This review paper summarizes the various electrochemical approaches used for the study of the interactions between pharmaceuticals and DNA. The main focus is on the papers from the last decade, with particular attention on the voltammetric techniques. The most preferred experimental approaches, the electrode materials and the new methods of modification are presented. The data on the detection ranges, the binding modes and the binding constant values of pharmaceuticals are summarized. Both the importance of the presented research and the importance of future prospects are discussed.
Collapse
Affiliation(s)
| | | | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (S.R.); (A.C.)
| |
Collapse
|
8
|
Koyuncu U, Metin E, Ocal N, Arsu N. Synthesis of one-component type II dithioxanthone-disulfide photoinitiator and investigation of photophysical and photochemical properties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Durães F, Silva PMA, Novais P, Amorim I, Gales L, Esteves CIC, Guieu S, Bousbaa H, Pinto M, Sousa E. Tetracyclic Thioxanthene Derivatives: Studies on Fluorescence and Antitumor Activity. Molecules 2021; 26:molecules26113315. [PMID: 34073048 PMCID: PMC8198043 DOI: 10.3390/molecules26113315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Thioxanthones are bioisosteres of the naturally occurring xanthones. They have been described for multiple activities, including antitumor. As such, the synthesis of a library of thioxanthones was pursued, but unexpectedly, four tetracyclic thioxanthenes with a quinazoline–chromene scaffold were obtained. These compounds were studied for their human tumor cell growth inhibition activity, in the cell lines A375-C5, MCF-7 and NCI-H460. Photophysical studies were also performed. Two of the compounds displayed GI50 values below 10 µM for the three tested cell lines, and structure–activity relationship studies were established. Three compounds presented similar wavelengths of absorption and emission, characteristic of dyes with a push-pull character. The structures of two compounds were elucidated by X-ray crystallography. Two tetracyclic thioxanthenes emerged as hit compounds. One of the two compounds accumulated intracellularly as a bright fluorescent dye in the green channel, as analyzed by both fluorescence microscopy and flow cytometry, making it a promising theranostic cancer drug candidate.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Patrícia M. A. Silva
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.M.A.S.); (P.N.)
| | - Pedro Novais
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.M.A.S.); (P.N.)
- Department of Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Isabel Amorim
- GreenUPorto (Sustainable Agrifood Production) Research Center, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - Luís Gales
- Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Bioengineering & Synthetic Microbiology, I3S–Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cátia I. C. Esteves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.I.C.E.); (S.G.)
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.I.C.E.); (S.G.)
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Hassan Bousbaa
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (P.M.A.S.); (P.N.)
- Correspondence: (H.B.); (E.S.)
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (H.B.); (E.S.)
| |
Collapse
|
10
|
Godzieba M, Ciesielski S. Natural DNA Intercalators as Promising Therapeutics for Cancer and Infectious Diseases. Curr Cancer Drug Targets 2021; 20:19-32. [PMID: 31589125 DOI: 10.2174/1568009619666191007112516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, the improper use of drugs, or their abuse are conducive to the increase of morbidity and mortality caused by these diseases. The imperfections of drugs currently used in therapy for these diseases and the increasing problem of drug resistance have forced a search for new substances with therapeutic potential. Throughout history, plants, animals, fungi and microorganisms have been rich sources of biologically active compounds. Even today, despite the development of chemistry and the introduction of many synthetic chemotherapeutics, a substantial part of the new compounds being tested for treatment are still of natural origin. Natural compounds exhibit a great diversity of chemical structures, and thus possess diverse mechanisms of action and molecular targets. Nucleic acids seem to be a good molecular target for substances with anticancer potential in particular, but they may also be a target for antimicrobial compounds. There are many types of interactions of small-molecule ligands with DNA. This publication focuses on the intercalation process. Intercalators are compounds that usually have planar aromatic moieties and can insert themselves between adjacent base pairs in the DNA helix. These types of interactions change the structure of DNA, leading to various types of disorders in the functioning of cells and the cell cycle. This article presents the most promising intercalators of natural origin, which have aroused interest in recent years due to their therapeutic potential.
Collapse
Affiliation(s)
- Martyna Godzieba
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45 G, 10-917 Olsztyn, Poland
| |
Collapse
|
11
|
Ozcelik Kazancioglu E, Batibay GS, Uner A, Arsu N. Thermal and morphological investigation of the effect of
POSS
‐(
PEG
2000
)
8
addition to
UV
curable
PEGMEA
/
PEGDA
formulation and simultaneously in situ formed silver nanoparticles. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Gonul S. Batibay
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| | - Ahmet Uner
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | - Nergis Arsu
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| |
Collapse
|
12
|
Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1,2,3-triazole molecular hybrids with different pharmacophores. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Almehmadi MA, Aljuhani A, Alraqa SY, Ali I, Rezki N, Aouad MR, Hagar M. Design, synthesis, DNA binding, modeling, anticancer studies and DFT calculations of Schiff bases tethering benzothiazole-1,2,3-triazole conjugates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Ma DM, Yu X, Ding A, Guo H, Qian DJ. Interfacial self-assembled thioxathone monolayers on the surfaces of silica nanoparticles as efficient heterogeneous photocatalysts for the selective oxidation of aromatic thioethers under air atmosphere. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Sukanya P, Reddy CVR. Structural investigation, DNA interactions and in vitro anticancer studies of transition metal complexes of 3-(2-(2, 4-dihydroxy benzylidene) hydrazinyl) quinoxalin-2(1H) -one. J Biomol Struct Dyn 2021; 40:6151-6162. [PMID: 33512301 DOI: 10.1080/07391102.2021.1877819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Schiff base ligand, 3-(2-(2, 4-dihydroxybenzylidene) hydrazinyl) quinoxalin-2(1H)-one (RHQO) has been synthesized and characterized by spectral and single crystal X-ray analysis. The Mn(II), Ni(II) and Cu(II) complexes of RHQO have been synthesized and characterized by FT-IR, UV-VIS, mass, EPR spectra, CHN, thermo gravimetric analysis, magnetic susceptibility and conductivity measurements. The morphology of the ligand and complexes is studied by Scanning Electron Microscopy. The metal complexes formed were found to be polymeric in nature. The abilities of the ligand and its metal complexes to interact and bind with calf thymus DNA (CT-DNA) has been studied by electronic absorption spectroscopy and their quantitative binding strength was evaluated in terms of their intrinsic binding constant (Kb). The cleavage interaction of the ligand and its metal complexes with super coiled pBR 322 DNA has been investigated by agarose gel electrophoresis. Cytotoxicity of the Cu(II) and Ni(II) complexes was evaluated using various cancer cell lines, Human cervical cancer cell line (Hela), B16 melanoma F10(B16-F10), Human ovarian cancer cell (SKOV3) and Breast cancer cell line (MCF7) by MTT assay. The results indicated that the ligand and its metal complexes bind with CT-DNA by groove binding mode and cleaved the supercoiled pBR 322 DNA in to nicked form. The Ni(II) and Cu(II) complexes exhibited anticancer activity without affecting the normal CHO-K1 cell lines. Communicated by Vsevolod Makeev.
Collapse
Affiliation(s)
- Panaganti Sukanya
- Department of Chemistry, Vasavi College of Engineering, Hyderabad, India.,Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | | |
Collapse
|
16
|
Ataci N, Kazancioglu EO, Kalındemirtas FD, Kuruca SE, Arsu N. The interaction of light-activatable 2-thioxanthone thioacetic acid with ct-DNA and its cytotoxic activity: Novel theranostic agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118491. [PMID: 32485605 DOI: 10.1016/j.saa.2020.118491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, a thioxanthone derivative, 2-Thioxanthone Thioacetic Acid (TXSCH2COOH) was used to analyze the type of binding to calf thymus DNA in a physiological buffer (Tris-HCl buffer solution, pH:7.0). Several spectroscopic techniques were employed including UV-Vis absorption and fluorescence emission spectroscopy and viscosity measurements were also used to clarify the binding mode of TXSCH2COOH to ct-DNA. The intrinsic binding constant Kb of TXSCH2COOH-ct-DNA was found as 2.5 × 103 M-1 from the absorption studies. Increasing of fluorescence emission intensity was found approximately 74.4% by adding ct-DNA to the TXSCH2COOH solution. Fluorescence microscopy was employed to display imaging of the TXSCH2COOH-ct-DNA solution. Increasing of the iodide quenching effect was observed when TXSCH2COOH was added to the double stranded DNA and the calculated quenching constants of TXSCH2COOH and TXSCH2COOH-ct-DNA were found to be 1.89 × 103 M-1 and 1.19 × 104 M-1, respectively. Additionally, the iodide quenching experiment was conducted with single stranded DNA which led to a high Ksv value. All the experimental results including the viscosity values of ct-DNA with TXSCH2COOH demonstrated that the binding of TXSCH2COOH to ct-DNA was most likely groove binding. Furthermore, TXSCH2COOH was found to be an A-T rich minor groove binder. This was confirmed by the displacement assays with Hoechst 33258 compared to Ethidium Bromide. The in vitro cytotoxic activity measurements were performed by MTT assay on HT29 cell line for 72 h. TXSCH2COOH exhibited notable cytotoxic activities compared to the standard chemotherapy drugs, fluorouracil (5-FU), cisplatin in tumorigenic HT29 cell line. The 50% growth-inhibitory concentration (IC50) for TXSCH2COOH was 19,8 μg/mL while 5-FU and cisplatin were 28.9 μg/mL, 20 μg/mL, respectively. The increase in cytotoxic effect when TXSCH2COOH is activated by light indicates the potential of being theranostic cancer drug candidate.
Collapse
Affiliation(s)
- Nese Ataci
- Yildiz Technical University, Davutpasa Campus, Department of Chemistry, 34220 Istanbul, Turkey
| | | | | | - Serap Erdem Kuruca
- Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Davutpasa Campus, Department of Chemistry, 34220 Istanbul, Turkey.
| |
Collapse
|
17
|
Ali I, Mahmood LM, Mehdar YT, Aboul-Enein HY, Said MA. Synthesis, characterization, simulation, DNA binding and anticancer activities of Co(II), Cu(II), Ni(II) and Zn(II) complexes of a Schiff base containing o-hydroxyl group nitrogen ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Gan C, Huang X, Zhan J, Liu X, Huang Y, Cui J. Study on the interactions between B-norcholesteryl benzimidazole compounds with ct-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117525. [PMID: 31703992 DOI: 10.1016/j.saa.2019.117525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The study of molecule-DNA interaction is very important for designing an improved therapeutic agent. In previous studies, we synthesized some B-norcholesteryl benzimidazole compounds, and the tests on cancer cells showed that these compounds had good in vitro anti-cancer activities. In order to further investigate mechanism of their actions, three different B-norcholesteryl benzimidazole compounds were selected and interaction of these compounds with the calf thymus DNA (ct-DNA) was monitored by using various methods including UV-Vis and fluorescence spectroscopic techniques, viscosity measurement, and circular dichroism (CD). The results proved a hypochromic effect accompanied with a slight red-shift due to the interaction of the molecules with ct-DNA. According to the UV-Vis and fluorescence spectra, the mentioned compounds were bound to DNA, preferentially through partial intercalation into the DNA helix. Moreover, the ethidium bromide (EB) and Hoechst 33258 competitive binding experiments were also used to confirm the interaction mode of the compounds with ct-DNA. In the Hoechst 33258 displacement experiment, no significant change in the fluorescence intensity was observed. Additional assays such as iodide quenching, viscosity, and CD spectroscopy further confirmed that intercalation should be the major binding mode of the selected compounds with DNA. The cytotoxicity of these three compounds was also evaluated by MTT method, and the results confirmed that binding ability of these compounds to DNA was consistent with their cytotoxicity behavior. The experimental results indicated a higher binding affinity for compound 3 compared to the other compounds. This research provided a better understanding on the molecular mechanism of the interaction between B-norcholesteryl benzimidazole compounds and tumor cells, and offered a beneficial perspective to the designation of novel B-norsteroidal anticancer compounds.
Collapse
Affiliation(s)
- Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China.
| | - Xiaotong Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Junyan Zhan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Xiaolan Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Beibu Gulf Environment Change and Resources Utilization, School of Chemistry and Material, Nanning Normal University, Nanning, 530001, PR China; Guangxi Colleges and University Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, Beibuwan University, Qinzhou, 535099, PR China.
| |
Collapse
|
19
|
Luo YJ, Wang BL, Kou SB, Lin ZY, Zhou KL, Lou YY, Shi JH. Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. J Biomol Struct Dyn 2019; 38:4210-4220. [PMID: 31581883 DOI: 10.1080/07391102.2019.1676824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The binding characteristics of calf thymus DNA (ct-DNA) with dasatinib (DSTN), a tyrosine kinase inhibitor was assessed through multi-spectroscopic methodologies and viscosity measurement combined with molecular docking as well as DFT calculation to understand the binding mechanism, affinity of DSTN onto ct-DNA, effect of DSTN on ct-DNA conformation, and among others. The results confirmed DSTN bound onto ct-DNA, leading to forming the DSTN-ct-DNA complex with the binding constant of 4.82 × 103 M-1 at 310 K. DSTN preferentially inserted to the minor groove of ct-DNA with rich A-T region, that was the binding mode of DSTN onto ct-DNA was groove binding. The enthalpic change (ΔH0) and entropic change (ΔS0) during the binding process of DSTN with ct-DNA were 128.9 kJ mol-1 and 489.2 J mol-1 K-1, respectively, confirming clearly that the association of DSTN with ct-DNA was an endothermic process and the dominative driven-force was hydrophobic interaction. Meanwhile, the results also indicated that there was a certain extent of electrostatic force and hydrogen bonding, but they maybe play an auxiliary role. The CD measurement results confirmed the alteration in the helical configuration of ct-DNA but almost no change in the base stacking after binding DSTN. The results revealed that there was the obvious change in the conformation, the dipole moment, and the atomic charge distribution of DSTN in the B-DNA complexes, compared with free DSTN, to satisfy the conformational adaptation. From the obtained fronitier molecular orbitals of DSTN, it can be inferred that the nature of DSTN alters with the change of the environment around DSTN. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yu-Jie Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Bao-Li Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Song-Bo Kou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhen-Yi Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Kai-Li Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan-Yue Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
20
|
Avcu Altiparmak E, Ozen Eroglu G, Ozcelik E, Özdemir N, Erdem Kuruca S, Arsu N, Ülküseven B, Bal‐Demirci T. The formation of a metallosupramolecular porous helicate through salicylaldehydethiosemicarbazone: Synthesis, Characterization, Cytotoxic activity, DNA binding and DFT calculations. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elif Avcu Altiparmak
- Department of Chemistry, Engineering FacultyIstanbul University‐Cerrahpaşa 34320 Istanbul Turkey
| | - Guneş Ozen Eroglu
- Department of Molecular MedicineAziz Sancar Institute of Experimental Medicine, Istanbul University 34093 Istanbul Turkey
| | - Elif Ozcelik
- Chemistry DepartmentYildiz Technical University Davutpasa Campus 34220 Esenler, Istanbul Turkey
| | - Namık Özdemir
- Department of Mathematics and Science Education, Faculty of EducationOndokuz Mayıs University 55139 Samsun Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Faculty of MedicineIstanbul University 34093 Istanbul Turkey
| | - Nergis Arsu
- Chemistry DepartmentYildiz Technical University Davutpasa Campus 34220 Esenler, Istanbul Turkey
| | - Bahri Ülküseven
- Department of Chemistry, Engineering FacultyIstanbul University‐Cerrahpaşa 34320 Istanbul Turkey
| | - Tulay Bal‐Demirci
- Department of Chemistry, Engineering FacultyIstanbul University‐Cerrahpaşa 34320 Istanbul Turkey
| |
Collapse
|
21
|
Yang H, Zeng Q, He Z, Wu D, Li H. Determination of the DNA binding properties of a novel PARP inhibitor MK-4827 with calf-thymus DNA by molecular simulations and detailed spectroscopic investigations. NEW J CHEM 2019. [DOI: 10.1039/c9nj00667b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding interaction of niraparib (MK-4827), a poly(ADP-ribose) polymerase inhibitor, with calf thymus deoxyribonucleic acid (ctDNA) has been explored by various theoretical and experimental techniques.
Collapse
Affiliation(s)
- Hongqin Yang
- College of Materials and Chemistry & Chemical Engineering
- Chengdu University of Technology
- Chengdu
- China
| | - Qingle Zeng
- College of Materials and Chemistry & Chemical Engineering
- Chengdu University of Technology
- Chengdu
- China
| | - Ze He
- College of Materials and Chemistry & Chemical Engineering
- Chengdu University of Technology
- Chengdu
- China
| | - Di Wu
- Key Laboratory of Meat Processing of Sichan
- College of Pharmacy and Biological Engineering
- Chengdu University
- Chengdu 610106
- China
| | - Hui Li
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
22
|
Abstract
To assess the potential cytostatic properties of the thulium(III)-arsenazo III complex as a probe of rare earth complex antitumor drugs, the interaction information of the thulium(III)-arsenazo III complex with DNA was obtained by using spectroscopy, viscosity measurements, and voltammetric methods. The thermodynamic functions demonstrated that the binding constants of the thulium(III)-arsenazo III complex with DNA were Kθ298.15K = 4.84 × 106 L·mol−1 and Kθ308.15K = 4.48 × 106 L·mol−1, and the binding process was enthalpy driven. The increase in relative viscosity of DNA with the addition of the thulium(III)-arsenazo III complex and the results from Scatchard and voltammetric methods showed that the interaction mode between the thulium(III)-arsenazo III complex and DNA was groove binding along with weak intercalative binding.
Collapse
|