1
|
Guo Z, Smutok O, Ronacher C, Aguiar Rocha R, Walden P, Mureev S, Cui Z, Katz E, Scott C, Alexandrov K. Lanthanide-Controlled Protein Switches: Development and In Vitro and In Vivo Applications. Angew Chem Int Ed Engl 2025; 64:e202411584. [PMID: 39856018 PMCID: PMC11848957 DOI: 10.1002/anie.202411584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β-lactamase-lanmodulin chimeras that function as lanthanide-controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000-fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays. E.coli cells expressing such chimeras grow on β-lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide-controlled protein switches represent a novel platform for engineering metal-binding proteins for biosensing and microbial engineering.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic BiologyAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular ScienceClarkson University8 Clarkson Ave.PotsdamNY13699USA
| | - Chantal Ronacher
- School of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of Technology100 44StockholmSweden
| | - Raquel Aguiar Rocha
- ARC Centre of Excellence in Synthetic BiologyAustralia
- CSIRO Advanced Engineering Biology Future Science PlatformBlack Mountain Research & Innovation ParkClunies Ross RoadCanberraACT2601Australia
| | - Patricia Walden
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Sergey Mureev
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Zhenling Cui
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University8 Clarkson Ave.PotsdamNY13699USA
| | - Colin Scott
- ARC Centre of Excellence in Synthetic BiologyAustralia
- CSIRO Advanced Engineering Biology Future Science PlatformBlack Mountain Research & Innovation ParkClunies Ross RoadCanberraACT2601Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic BiologyAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| |
Collapse
|
2
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Coyote-Maestas W, Nedrud D, Suma A, He Y, Matreyek KA, Fowler DM, Carnevale V, Myers CL, Schmidt D. Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nat Commun 2021; 12:7114. [PMID: 34880224 PMCID: PMC8654947 DOI: 10.1038/s41467-021-27342-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Protein domains are the basic units of protein structure and function. Comparative analysis of genomes and proteomes showed that domain recombination is a main driver of multidomain protein functional diversification and some of the constraining genomic mechanisms are known. Much less is known about biophysical mechanisms that determine whether protein domains can be combined into viable protein folds. Here, we use massively parallel insertional mutagenesis to determine compatibility of over 300,000 domain recombination variants of the Inward Rectifier K+ channel Kir2.1 with channel surface expression. Our data suggest that genomic and biophysical mechanisms acted in concert to favor gain of large, structured domain at protein termini during ion channel evolution. We use machine learning to build a quantitative biophysical model of domain compatibility in Kir2.1 that allows us to derive rudimentary rules for designing domain insertion variants that fold and traffic to the cell surface. Positional Kir2.1 responses to motif insertion clusters into distinct groups that correspond to contiguous structural regions of the channel with distinct biophysical properties tuned towards providing either folding stability or gating transitions. This suggests that insertional profiling is a high-throughput method to annotate function of ion channel structural regions.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Nedrud
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455 USA
| | - Antonio Suma
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Yungui He
- grid.17635.360000000419368657Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kenneth A. Matreyek
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Douglas M. Fowler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98115 USA ,grid.34477.330000000122986657Department of Bioengineering, University of Washington, Seattle, WA 98115 USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Department of Chemistry, Temple University, Philadelphia, PA 19122 USA
| | - Chad L. Myers
- grid.17635.360000000419368657Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Daniel Schmidt
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM. Biosensors based on peptide exposure show single molecule conformations in live cells. Cell 2021; 184:5670-5685.e23. [PMID: 34637702 PMCID: PMC8556369 DOI: 10.1016/j.cell.2021.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022]
Abstract
We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.
Collapse
Affiliation(s)
- Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Orrin J Stone
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Pablo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Cody Herron
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Onur Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan B Grimm
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, The Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Wells PK, Smutok O, Melman A, Katz E. Switchable Biocatalytic Reactions Controlled by Interfacial pH Changes Produced by Orthogonal Biocatalytic Processes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33830-33839. [PMID: 34264645 DOI: 10.1021/acsami.1c07393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enzymes immobilized on a nano-structured surface were used to switch the activity of one enzyme by a local pH change produced by another enzyme. Immobilized amyloglucosidase (AMG) and trypsin were studied as examples of the pH-dependent switchable "target enzymes." The reactions catalyzed by co-immobilized urease or esterase were increasing or decreasing the local pH, respectively, thus operating as "actuator enzymes." Both kinds of the enzymes, producing local pH changes and changing biocatalytic activity with the pH variation, were orthogonal in terms of the biocatalytic reactions; however, their operation was coupled with the local pH produced near the surface with the immobilized enzymes. The "target enzymes" (AMG and trypsin) were changed reversibly between the active and inactive states by applying input signals (urea or ester, substrates for the urease or esterase operating as the "actuator enzymes") and washing them out with a new portion of the background solution. The developed approach can potentially lead to switchable operation of several enzymes, while some of them are inhibited when the others are activated upon receiving external signals processed by the "actuator enzymes." More complex systems with branched biocatalytic cascades can be controlled by orthogonal biocatalytic reactions activating selected pathways and changing the final output.
Collapse
Affiliation(s)
- Paulina K Wells
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
6
|
Szekeres K, Bollella P, Kim Y, Minko S, Melman A, Katz E. Magneto-Controlled Enzyme Activity with Locally Produced pH Changes. J Phys Chem Lett 2021; 12:2523-2527. [PMID: 33682408 DOI: 10.1021/acs.jpclett.1c00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biocatalytic activity of amyloglucosidase (AMG), immobilized on superparamagnetic nanoparticles, is dynamically and reversibly activated or inhibited by applying a magnetic field. The magnetic field triggers aggregation/deaggregation of magnetic particles that are also functionalized with urease or esterase enzymes. These enzymes produce a local pH change in the vicinity of the particles changing the AMG activity.
Collapse
Affiliation(s)
- Krisztina Szekeres
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Electrochemistry and Electroanalytical Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Yongwook Kim
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
7
|
Bissonnette S, Del Grosso E, Simon AJ, Plaxco KW, Ricci F, Vallée-Bélisle A. Optimizing the Specificity Window of Biomolecular Receptors Using Structure-Switching and Allostery. ACS Sens 2020; 5:1937-1942. [PMID: 32297508 DOI: 10.1021/acssensors.0c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To ensure maximum specificity (i.e., minimize cross-reactivity with structurally similar analogues of the desired target), most bioassays invoke "stringency", the careful tuning of the conditions employed (e.g., pH, ionic strength, or temperature). Willingness to control assay conditions will fall, however, as quantitative, single-step biosensors begin to replace multistep analytical processes. This is especially true for sensors deployed in vivo, where the tuning of such parameters is not just inconvenient but impossible. In response, we describe here the rational adaptation of two strategies employed by nature to tune the affinity of biomolecular receptors so as to optimize the placement of their specificity "windows" without the need to alter measurement conditions: structure-switching and allosteric control. We quantitatively validate these approaches using two distinct, DNA-based receptors: a simple, linear-chain DNA suitable for detecting a complementary DNA strand and a structurally complex DNA aptamer used for the detection of a small-molecule drug. Using these models, we show that, without altering assay conditions, structure-switching and allostery can tune the concentration range over which a receptor achieves optimal specificity over orders of magnitude, thus optimally matching the specificity window with the range of target concentrations expected to be seen in a given application.
Collapse
Affiliation(s)
- Stéphanie Bissonnette
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Erica Del Grosso
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
| | | | | | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
8
|
Bollella P, Edwardraja S, Guo Z, Katz E. Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals. J Phys Chem Lett 2020; 11:5549-5554. [PMID: 32602718 DOI: 10.1021/acs.jpclett.0c01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The construction of allosteric protein switches is a key goal of synthetic biology. Such switches can be compiled into signaling systems mimicking information and energy processing systems of living organisms. Here we demonstrate construction of a biocatalytic electrode functionalized with a recombinant chimeric protein between pyrroloquinoline quinone-dependent glucose dehydrogenase and calmodulin. This electrode could be activated by calmodulin-binding peptide and showed a high bioelectrocatalytic current (ca. 300 μA) due to efficient direct electron transfer. In order to expand the types of inputs that can be used to activate the developed electrode, we constructed a caged version of calmodulin-binding peptide that could be proteolytically uncaged using a protease of choice. Finally, the complexity of the switchable bioelectrochemical system was further increased by the use of almost any kind of molecule/biomolecule or electronic signal, unequivocally proving the orthogonality of the aforementioned system.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
9
|
Edwardraja S, Guo Z, Whitfield J, Lantadilla IR, Johnston WA, Walden P, Vickers CE, Alexandrov K. Caged Activators of Artificial Allosteric Protein Biosensors. ACS Synth Biol 2020; 9:1306-1314. [PMID: 32339455 DOI: 10.1021/acssynbio.9b00500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability of proteins to interconvert unrelated biochemical inputs and outputs underlays most energy and information processing in biology. A common conversion mechanism involves a conformational change of a protein receptor in response to a ligand binding or a covalent modification, leading to allosteric activity modulation of the effector domain. Designing such systems rationally is a central goal of synthetic biology and protein engineering. A two-component sensory system based on the scaffolding of modules in the presence of an analyte is one of the most generalizable biosensor architectures. An inherent problem of such systems is dependence of the response on the absolute and relative concentrations of the components. Here we use the example of two-component sensory systems based on calmodulin-operated synthetic switches to analyze and address this issue. We constructed "caged" versions of the activating domain thereby creating a thermodynamic barrier for spontaneous activation of the system. We demonstrate that the caged biosensor architectures could operate at concentrations spanning 3 orders of magnitude and are applicable to electrochemical, luminescent, and fluorescent two-component biosensors. We analyzed the activation kinetics of the caged biosensors and determined that the core allosteric switch is likely to be the rate limiting component of the system. These findings provide guidance for predictable engineering of robust sensory systems with inputs and outputs of choice.
Collapse
Affiliation(s)
- Selvakumar Edwardraja
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jason Whitfield
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland 4001, Australia
| | | | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Queensland 4001, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
10
|
Lee YT, He L, Zhou Y. Expanding the Chemogenetic Toolbox by Circular Permutation. J Mol Biol 2020; 432:3127-3136. [PMID: 32277990 DOI: 10.1016/j.jmb.2020.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
To expand the repertoire of chemogenetic tools tailored for molecular and cellular engineering, we describe herein the design of cpRAPID as a circularly permuted rapamycin-inducible dimerization system composed of the canonical FK506-binding protein (FKBP) and circular permutants of FKBP12-rapamycin binding domain (cpFRB). By permuting the topology of the four helices within FRB, we have created cpFRB-FKBP pairs that respond to ligand with varying activation kinetics and dynamics. The cpRAPID system enables chemical-controllable subcellular redistribution of proteins, as well as inducible transcriptional activation when coupled with the CRISPR activation (CRISPRa) technology to induce a GFP reporter and endogenous gene expression. We have further demonstrated the use of cpRAPID to generate chemically switchable split nanobody (designated Chessbody) for ligand-gated antigen recognition in living cells. Collectively, the circular permutation approach offers a powerful means for diversifying the chemogenetics toolbox to benefit the burgeoning synthetic biology field.
Collapse
Affiliation(s)
- Yi-Tsang Lee
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Coyote-Maestas W, Nedrud D, Okorafor S, He Y, Schmidt D. Targeted insertional mutagenesis libraries for deep domain insertion profiling. Nucleic Acids Res 2020; 48:e11. [PMID: 31745561 PMCID: PMC6954442 DOI: 10.1093/nar/gkz1110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/22/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Domain recombination is a key principle in protein evolution and protein engineering, but inserting a donor domain into every position of a target protein is not easily experimentally accessible. Most contemporary domain insertion profiling approaches rely on DNA transposons, which are constrained by sequence bias. Here, we establish Saturated Programmable Insertion Engineering (SPINE), an unbiased, comprehensive, and targeted domain insertion library generation technique using oligo library synthesis and multi-step Golden Gate cloning. Through benchmarking to MuA transposon-mediated library generation on four ion channel genes, we demonstrate that SPINE-generated libraries are enriched for in-frame insertions, have drastically reduced sequence bias as well as near-complete and highly-redundant coverage. Unlike transposon-mediated domain insertion that was severely biased and sparse for some genes, SPINE generated high-quality libraries for all genes tested. Using the Inward Rectifier K+ channel Kir2.1, we validate the practical utility of SPINE by constructing and comparing domain insertion permissibility maps. SPINE is the first technology to enable saturated domain insertion profiling. SPINE could help explore the relationship between domain insertions and protein function, and how this relationship is shaped by evolutionary forces and can be engineered for biomedical applications.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Dept. of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Nedrud
- Dept. of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steffan Okorafor
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungui He
- Dept. of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Schmidt
- Dept. of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Magneto-controlled enzyme reactions. Methods Enzymol 2020. [PMID: 31931981 DOI: 10.1016/bs.mie.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Various approaches to magneto-controlled biocatalytic enzyme reactions are discussed with specific example systems. Magnetic nano- and micro-size particles functionalized with enzymes or cofactors/electron transfer mediators have been used to translocate the components of the biocatalytic processes and to activate/inhibit their reactions. Magneto-induced deposition of the functionalized particles on an electrode surface resulted in activation of bioelectrocatalytic reactions. On the other hand, magneto-induced removal of the particles from the electrode surface resulted in the inhibition of the electrochemical reactions. Aggregation/disaggregation of enzyme-modified magnetic nanoparticles resulted in different mechanisms of biocatalytic cascades, changing them reversibly between substrate diffusion and substrate channeling processes. Magnetohydrodynamic activation of bioelectrocatalytic processes allowed enhancement of a biofuel cell operation. Overall, a large variety of possible magneto-controlled enzyme reactions is briefly discussed, particularly emphasizing their applications in different bioelectronic systems.
Collapse
|
13
|
Bollella P, Edwardraja S, Guo Z, Alexandrov K, Katz E. Control of allosteric electrochemical protein switch using magnetic signals. Chem Commun (Camb) 2020; 56:9206-9209. [PMID: 32662462 DOI: 10.1039/d0cc04284f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The artificial chimeric enzyme with allosteric features was activated with a magnetic field applied at a distance.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance
- ARC Centre of Excellence in Synthetic Biology
- Centre for Agriculture and the Bioeconomy
- Institute of Health and Biomedical Innovation
- Institute for Future Environments
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
14
|
Ghanbarpour A, Pinger C, Esmatpour Salmani R, Assar Z, Santos EM, Nosrati M, Pawlowski K, Spence D, Vasileiou C, Jin X, Borhan B, Geiger JH. Engineering the hCRBPII Domain-Swapped Dimer into a New Class of Protein Switches. J Am Chem Soc 2019; 141:17125-17132. [PMID: 31557439 DOI: 10.1021/jacs.9b04664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein conformational switches or allosteric proteins play a key role in the regulation of many essential biological pathways. Nonetheless, the implementation of protein conformational switches in protein design applications has proven challenging, with only a few known examples that are not derivatives of naturally occurring allosteric systems. We have discovered that the domain-swapped (DS) dimer of hCRBPII undergoes a large and robust conformational change upon retinal binding, making it a potentially powerful template for the design of protein conformational switches. Atomic resolution structures of the apo- and holo-forms illuminate a simple, mechanical movement involving sterically driven torsion angle flipping of two residues that drive the motion. We further demonstrate that the conformational "readout" can be altered by addition of cross-domain disulfide bonds, also visualized at atomic resolution. Finally, as a proof of principle, we have created an allosteric metal binding site in the DS dimer, where ligand binding results in a reversible 5-fold loss of metal binding affinity. The high resolution structure of the metal-bound variant illustrates a well-formed metal binding site at the interface of the two domains of the DS dimer and confirms the design strategy for allosteric regulation.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Cody Pinger
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Rahele Esmatpour Salmani
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Zahra Assar
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Elizabeth M Santos
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Meisam Nosrati
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Kathryn Pawlowski
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Dana Spence
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Chrysoula Vasileiou
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Xiangshu Jin
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Babak Borhan
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - James H Geiger
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
15
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
16
|
Dagliyan O, Dokholyan NV, Hahn KM. Engineering proteins for allosteric control by light or ligands. Nat Protoc 2019; 14:1863-1883. [PMID: 31076662 PMCID: PMC6648709 DOI: 10.1038/s41596-019-0165-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/12/2019] [Indexed: 01/02/2023]
Abstract
Control of protein activity in living cells can reveal the role of spatiotemporal dynamics in signaling circuits. Protein analogs with engineered allosteric responses can be particularly effective in the interrogation of protein signaling, as they can replace endogenous proteins with minimal perturbation of native interactions. However, it has been a challenge to identify allosteric sites in target proteins where insertion of responsive domains produces an allosteric response comparable to the activity of native proteins. Here, we describe a detailed protocol to generate genetically encoded analogs of proteins that can be allosterically controlled by either rapamycin or blue light, as well as experimental procedures to produce and test these analogs in vitro and in mammalian cell lines. We describe computational methods, based on crystal structures or homology models, to identify effective sites for insertion of either an engineered rapamycin-responsive (uniRapR) domain or the light-responsive light-oxygen-voltage 2 (LOV2) domain. The inserted domains allosterically regulate the active site, responding to rapamycin with irreversible activation, or to light with reversible inactivation at higher spatial and temporal resolution. These strategies have been successfully applied to catalytic domains of protein kinases, Rho family GTPases, and guanine exchange factors (GEFs), as well as the binding domain of a GEF Vav2. Computational tasks can be completed within a few hours, followed by 1-2 weeks of experimental validation. We provide protocols for computational design, cloning, and experimental testing of the engineered proteins, using Src tyrosine kinase, GEF Vav2, and Rho GTPase Rac1 as examples.
Collapse
Affiliation(s)
- Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology and of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Klaus M Hahn
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Wright RC, Nemhauser J. Plant Synthetic Biology: Quantifying the "Known Unknowns" and Discovering the "Unknown Unknowns". PLANT PHYSIOLOGY 2019; 179:885-893. [PMID: 30630870 PMCID: PMC6393784 DOI: 10.1104/pp.18.01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 05/03/2023]
Abstract
Biosensors, advanced microscopy, and single- cell transcriptomics are advancing plant synthetic biology.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
18
|
Gamella M, Guo Z, Alexandrov K, Katz E. Bioelectrocatalytic Electrodes Modified with PQQ‐Glucose Dehydrogenase‐Calmodulin Chimera Switchable by Peptide Signals: Pathway to Generic Bioelectronic Systems Controlled by Biomolecular Inputs. ChemElectroChem 2019. [DOI: 10.1002/celc.201801095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria Gamella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| | - Zhong Guo
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
19
|
Filipov Y, Zakharchenko A, Minko S, Katz E. Magneto‐Controlled Biocatalytic Cascades with Logically Processed Input Signals – Substrate Channeling versus Free Diffusion. Chemphyschem 2018; 19:3035-3043. [DOI: 10.1002/cphc.201800851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Yaroslav Filipov
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| | | | - Sergiy Minko
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| |
Collapse
|
20
|
Xing C, Huang Y, Dai J, Zhong L, Wang H, Lin Y, Li J, Lu CH, Yang HH. Spatial Regulation of Biomolecular Interactions with a Switchable Trident-Shaped DNA Nanoactuator. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32579-32587. [PMID: 30156821 DOI: 10.1021/acsami.8b10761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
DNA nanostructures with controllable motions and functions have been used as flexible scaffolds to precisely and spatially organize molecular reactions at the nanoscale. The construction of dynamic DNA nanostructures with site-specifically incorporated functional elements is a critical step toward building nanomachines. Artificial self-assembled DNA nanostructures have also been developed to mimic key biological processes like various small biomolecule- and protein-based functional biochemistry pathways. Here, we report a self-assembled dynamic trident-shaped DNA (TS DNA) nanoactuator, in which biomolecules can be tethered to the three "arms" of the TS DNA nanoactuator. The TS DNA nanoactuator is implemented as the mechanical scaffold for the reconfiguration of fluorescent/quenching molecules and the assembly of gold nanoparticles, which exhibit controlled spatial separation. Furthermore, two enzymes (glucose oxidase and horseradish peroxidase) are attached to the two outer arms of the TS DNA nanoactuator, which show an enhanced cascade reaction efficiency compared to free enzymes. The efficiency of the two-enzyme cascade reaction can be spatially regulated by switching the TS DNA nanoactuator between opened, semiopened, and closed states through adding the "thermodynamic drivers" (fuels or antifuels). This is the first report to precisely modulate the relative position of coupled enzyme with multiple states and only based on one dynamic DNA scaffold. The present TS DNA nanoactuator with multistage conformational transition functionality could be applied as a potential platform to precisely and dynamically control the multienzyme pathways and would broaden the scope of DNA nanostructures in single-molecule biology applications.
Collapse
Affiliation(s)
- Chao Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yuqing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Lin Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Huimeng Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yuhong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Chun-Hua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| |
Collapse
|
21
|
Wang T, Fan X, Hou C, Liu J. Design of artificial enzymes by supramolecular strategies. Curr Opin Struct Biol 2018. [DOI: 10.1016/j.sbi.2018.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
23
|
Koushanpour A, Gamella M, Guo Z, Honarvarfard E, Poghossian A, Schöning MJ, Alexandrov K, Katz E. Ca2+-Switchable Glucose Dehydrogenase Associated with Electrochemical/Electronic Interfaces: Applications to Signal-Controlled Power Production and Biomolecular Release. J Phys Chem B 2017; 121:11465-11471. [DOI: 10.1021/acs.jpcb.7b11151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashkan Koushanpour
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Maria Gamella
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Zhong Guo
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Elham Honarvarfard
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | - Arshak Poghossian
- Institute
of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mußmann-Str.
1, D-52428 Jülich, Germany
- Institute
of Complex Systems (ICS-8), Research Centre Jülich GmbH, D-52425 Jülich, Germany
| | - Michael J. Schöning
- Institute
of Nano- and Biotechnologies, FH Aachen, Aachen University of Applied Sciences, Campus Jülich, Heinrich-Mußmann-Str.
1, D-52428 Jülich, Germany
- Institute
of Complex Systems (ICS-8), Research Centre Jülich GmbH, D-52425 Jülich, Germany
| | - Kirill Alexandrov
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Evgeny Katz
- Department
of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| |
Collapse
|
24
|
Dagliyan O, Tarnawski M, Chu PH, Shirvanyants D, Schlichting I, Dokholyan NV, Hahn KM. Engineering extrinsic disorder to control protein activity in living cells. Science 2017; 354:1441-1444. [PMID: 27980211 DOI: 10.1126/science.aah3404] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/16/2016] [Indexed: 11/03/2022]
Abstract
Optogenetic and chemogenetic control of proteins has revealed otherwise inaccessible facets of signaling dynamics. Here, we use light- or ligand-sensitive domains to modulate the structural disorder of diverse proteins, thereby generating robust allosteric switches. Sensory domains were inserted into nonconserved, surface-exposed loops that were tight and identified computationally as allosterically coupled to active sites. Allosteric switches introduced into motility signaling proteins (kinases, guanosine triphosphatases, and guanine exchange factors) controlled conversion between conformations closely resembling natural active and inactive states, as well as modulated the morphodynamics of living cells. Our results illustrate a broadly applicable approach to design physiological protein switches.
Collapse
Affiliation(s)
- Onur Dagliyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Pei-Hsuan Chu
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Shirvanyants
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nikolay V Dokholyan
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Klaus M Hahn
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Jones AM, Atkinson JT, Silberg JJ. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries. Methods Mol Biol 2017; 1498:295-308. [PMID: 27709583 DOI: 10.1007/978-1-4939-6472-7_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.
Collapse
Affiliation(s)
- Alicia M Jones
- Biosciences Department, Rice University, MS-140, 6100 Main Street, Houston, TX, 77005, USA
| | - Joshua T Atkinson
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main MS-180, Houston, TX, 77005, USA
| | - Jonathan J Silberg
- Biosciences Department, Rice University, MS-140, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|
26
|
Influence of Secondary-Structure Folding on the Mutually Exclusive Folding Process of GL5/I27 Protein: Evidence from Molecular Dynamics Simulations. Int J Mol Sci 2016; 17:ijms17111962. [PMID: 27886109 PMCID: PMC5133956 DOI: 10.3390/ijms17111962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/22/2016] [Accepted: 11/16/2016] [Indexed: 01/04/2023] Open
Abstract
Mutually exclusive folding proteins are a class of multidomain proteins in which the host domain remains folded while the guest domain is unfolded, and both domains achieve exchange of their folding status by a mutual exclusive folding (MEF) process. We carried out conventional and targeted molecular dynamics simulations for the mutually exclusive folding protein of GL5/I27 to address the MEF transition mechanisms. We constructed two starting models and two targeted models, i.e., the starting models GL5/I27-S and GL5/I27-ST in which the first model involves the host domain GL5 and the secondary-structure unfolded guest domain I27-S, while the second model involves the host domain GL5 and the secondary/tertiary-structure extending guest domain I27-ST, and the target models GL5-S/I27 and GL5-ST/I27 in which GL5-S and GL5-ST represent the secondary-structure unfolding and the secondary/tertiary-structure extending, respectively. We investigated four MEF transition processes from both starting models to both target models. Based on structural changes and the variations of the radius of gyration (Rg) and the fractions of native contacts (Q), the formation of the secondary structure of the I27-guest domain induces significant extending of the GL5-host domain; but the primary shrinking of the tertiary structure of the I27-guest domain causes insignificant extending of the GL5-host domain during the processes. The results indicate that only formation of the secondary structure in the I27-guest domain provides the main driving force for the mutually exclusive folding/unfolding between the I27-guest and GL5-host domains. A special structure as an intermediate with both host and guest domains being folded at the same time was found, which was suggested by the experiment. The analysis of hydrogen bonds and correlation motions supported the studied transition mechanism with the dynamical "tug-of-war" phenomenon.
Collapse
|
27
|
Pandey N, Kuypers BE, Nassif B, Thomas EE, Alnahhas RN, Segatori L, Silberg JJ. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation. Biochemistry 2016; 55:3763-73. [PMID: 27304983 DOI: 10.1021/acs.biochem.6b00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.
Collapse
Affiliation(s)
- Naresh Pandey
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Biochemistry and Cell Biology Graduate Program, Rice University , Houston, Texas 77005, United States
| | - Brianna E Kuypers
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University , Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University , Houston, Texas 77005, United States
| | - Barbara Nassif
- Department of Biosciences, Rice University , Houston, Texas 77005, United States
| | - Emily E Thomas
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Biochemistry and Cell Biology Graduate Program, Rice University , Houston, Texas 77005, United States
| | - Razan N Alnahhas
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Biochemistry and Cell Biology Graduate Program, Rice University , Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University , Houston, Texas 77005, United States.,Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of Biosciences, Rice University , Houston, Texas 77005, United States.,Department of Bioengineering, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
28
|
Choi JH, Xiong T, Ostermeier M. The interplay between effector binding and allostery in an engineered protein switch. Protein Sci 2016; 25:1605-16. [PMID: 27272021 DOI: 10.1002/pro.2962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023]
Abstract
The protein design rules for engineering allosteric regulation are not well understood. A fundamental understanding of the determinants of ligand binding in an allosteric context could facilitate the design and construction of versatile protein switches and biosensors. Here, we conducted extensive in vitro and in vivo characterization of the effects of 285 unique point mutations at 15 residues in the maltose-binding pocket of the maltose-activated β-lactamase MBP317-347. MBP317-347 is an allosteric enzyme formed by the insertion of TEM-1 β-lactamase into the E. coli maltose binding protein (MBP). We find that the maltose-dependent resistance to ampicillin conferred to the cells by the MBP317-347 switch gene (the switch phenotype) is very robust to mutations, with most mutations slightly improving the switch phenotype. We identified 15 mutations that improved switch performance from twofold to 22-fold, primarily by decreasing the catalytic activity in the absence of maltose, perhaps by disrupting interactions that cause a small fraction of MBP in solution to exist in a partially closed state in the absence of maltose. Other notable mutations include K15D and K15H that increased maltose affinity 30-fold and Y155K and Y155R that compromised switching by diminishing the ability of maltose to increase catalytic activity. The data also provided insights into normal MBP physiology, as select mutations at D14, W62, and F156 retained high maltose affinity but abolished the switch's ability to substitute for MBP in the transport of maltose into the cell. The results reveal the complex relationship between ligand binding and allostery in this engineered switch.
Collapse
Affiliation(s)
- Jay H Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Tina Xiong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| |
Collapse
|
29
|
Reuel NF, McAuliffe JC, Becht GA, Mehdizadeh M, Munos JW, Wang R, Delaney WJ. Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Joseph C. McAuliffe
- Industrial
Biosciences, E. I. du Pont de Nemours and Company, Palo Alto, California 94304, United States
| | | | | | - Jeffrey W. Munos
- Industrial
Biosciences, E. I. du Pont de Nemours and Company, Palo Alto, California 94304, United States
| | | | | |
Collapse
|
30
|
Choi JH, Zayats M, Searson PC, Ostermeier M. Electrochemical activation of engineered protein switches. Biotechnol Bioeng 2015; 113:453-6. [PMID: 26241391 DOI: 10.1002/bit.25720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022]
Abstract
Engineered protein switches have a large dynamic range, high specificity for the activating ligand, and a modular architecture, and have been explored for a wide range of applications including biosensors and therapeutics. The ability to externally control switch function is important in extending applications for protein switches. We recently demonstrated that the on/off state could be controlled by the redox state of disulfide bonds introduced into the switches at select locations. Here, we demonstrate that an electrochemical signal can be used as an exogenous input to control switch function via reduction of the engineered disulfide bonds. This study suggests that disulfide-containing protein switch is a potentially useful platform for bioelectronic sensors with remote control of the sensing ability.
Collapse
Affiliation(s)
- Jay H Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218
| | - Maya Zayats
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218.
| | - Peter C Searson
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218
| |
Collapse
|
31
|
Schena A, Griss R, Johnsson K. Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nat Commun 2015. [PMID: 26198003 PMCID: PMC4525150 DOI: 10.1038/ncomms8830] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The possibility to design proteins whose activities can be switched on and off by unrelated effector molecules would enable applications in various research areas, ranging from biosensing to synthetic biology. We describe here a general method to modulate the activity of a protein in response to the concentration of a specific effector. The approach is based on synthetic ligands that possess two mutually exclusive binding sites, one for the protein of interest and one for the effector. Tethering such a ligand to the protein of interest results in an intramolecular ligand–protein interaction that can be disrupted through the presence of the effector. Specifically, we introduce a luciferase controlled by another protein, a human carbonic anhydrase whose activity can be controlled by proteins or small molecules in vitro and on living cells, and novel fluorescent and bioluminescent biosensors. Designing proteins whose activities can be switched on and off by effector molecules is a central challenge in protein engineering. Here, the authors use tethered chemical ligands with two mutually exclusive binding sites as a general method to modulate protein activity in response to specific effectors.
Collapse
Affiliation(s)
- Alberto Schena
- 1] École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland [2] École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland [3] National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland
| | - Rudolf Griss
- 1] École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland [2] École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland [3] National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland
| | - Kai Johnsson
- 1] École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Avenue Forel 2, EPFL SB ISIC LIP BCH-4303, CH-1015 Lausanne, Switzerland [2] École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, CH-1015 Lausanne, Switzerland [3] National Centre of Competence in Research in Chemical Biology, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Intracellular caspase-modulating chimeric antigen receptor. Drug Discov Today 2015; 20:629-34. [DOI: 10.1016/j.drudis.2015.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 11/21/2022]
|
33
|
Barbany M, Meyer T, Hospital A, Faustino I, D'Abramo M, Morata J, Orozco M, de la Cruz X. Molecular dynamics study of naturally existing cavity couplings in proteins. PLoS One 2015; 10:e0119978. [PMID: 25816327 PMCID: PMC4376744 DOI: 10.1371/journal.pone.0119978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Couplings between protein sub-structures are a common property of protein dynamics. Some of these couplings are especially interesting since they relate to function and its regulation. In this article we have studied the case of cavity couplings because cavities can host functional sites, allosteric sites, and are the locus of interactions with the cell milieu. We have divided this problem into two parts. In the first part, we have explored the presence of cavity couplings in the natural dynamics of 75 proteins, using 20 ns molecular dynamics simulations. For each of these proteins, we have obtained two trajectories around their native state. After applying a stringent filtering procedure, we found significant cavity correlations in 60% of the proteins. We analyze and discuss the structure origins of these correlations, including neighbourhood, cavity distance, etc. In the second part of our study, we have used longer simulations (≥100 ns) from the MoDEL project, to obtain a broader view of cavity couplings, particularly about their dependence on time. Using moving window computations we explored the fluctuations of cavity couplings along time, finding that these couplings could fluctuate substantially during the trajectory, reaching in several cases correlations above 0.25/0.5. In summary, we describe the structural origin and the variations with time of cavity couplings. We complete our work with a brief discussion of the biological implications of these results.
Collapse
Affiliation(s)
- Montserrat Barbany
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Tim Meyer
- Theoretische und computergestützte Biophysik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Adam Hospital
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Ignacio Faustino
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
| | - Marco D'Abramo
- Department of Chemistry, Università degli Studi di Roma "La Sapienza", Roma, Italy
| | - Jordi Morata
- Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
| | - Modesto Orozco
- Joint IRB (Institute for Research in Biomedicine)—BSC (Barcelona Supercomputing Center) Program on Computational Biology, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Translational Bioinformatics in Neurosciences, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Hu Y, Wang F, Lu CH, Girsh J, Golub E, Willner I. Switchable Enzyme/DNAzyme Cascades by the Reconfiguration of DNA Nanostructures. Chemistry 2014; 20:16203-9. [DOI: 10.1002/chem.201404122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 01/16/2023]
|
35
|
Abstract
Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson-Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming.
Collapse
Affiliation(s)
- Fei Zhang
- Center for Molecular Design and Biomimicry, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | |
Collapse
|
36
|
Zhang F, Nangreave J, Liu Y, Yan H. Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 2014; 136:11198-211. [PMID: 25029570 PMCID: PMC4140475 DOI: 10.1021/ja505101a] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 12/12/2022]
Abstract
Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson-Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming.
Collapse
Affiliation(s)
- Fei Zhang
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| | - Jeanette Nangreave
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| | - Yan Liu
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| | - Hao Yan
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| |
Collapse
|
37
|
Design of catalytically amplified sensors for small molecules. Biomolecules 2014; 4:402-18. [PMID: 24970222 PMCID: PMC4101489 DOI: 10.3390/biom4020402] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/21/2014] [Accepted: 03/26/2014] [Indexed: 01/15/2023] Open
Abstract
Catalytically amplified sensors link an allosteric analyte binding site with a reactive site to catalytically convert substrate into colored or fluorescent product that can be easily measured. Such an arrangement greatly improves a sensor’s detection limit as illustrated by successful application of ELISA-based approaches. The ability to engineer synthetic catalytic sites into non-enzymatic proteins expands the repertoire of analytes as well as readout reactions. Here we review recent examples of small molecule sensors based on allosterically controlled enzymes and organometallic catalysts. The focus of this paper is on biocompatible, switchable enzymes regulated by small molecules to track analytes both in vivo and in the environment.
Collapse
|
38
|
A DNA tweezer-actuated enzyme nanoreactor. Nat Commun 2013; 4:2127. [PMID: 23820332 DOI: 10.1038/ncomms3127] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/07/2013] [Indexed: 12/23/2022] Open
Abstract
The functions of regulatory enzymes are essential to modulating cellular pathways. Here we report a tweezer-like DNA nanodevice to actuate the activity of an enzyme/cofactor pair. A dehydrogenase and NAD(+) cofactor are attached to different arms of the DNA tweezer structure and actuation of enzymatic function is achieved by switching the tweezers between open and closed states. The enzyme/cofactor pair is spatially separated in the open state with inhibited enzyme function, whereas in the closed state, enzyme is activated by the close proximity of the two molecules. The conformational state of the DNA tweezer is controlled by the addition of specific oligonucleotides that serve as the thermodynamic driver (fuel) to trigger the change. Using this approach, several cycles of externally controlled enzyme inhibition and activation are successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.
Collapse
|
39
|
Idili A, Plaxco KW, Vallée-Bélisle A, Ricci F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS NANO 2013; 7:10863-9. [PMID: 24219761 PMCID: PMC4281346 DOI: 10.1021/nn404305e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.
Collapse
Affiliation(s)
- Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
| | - Kevin W. Plaxco
- Center for Bioengineering & Department of Chemistry and Biochemistry, University of California, Santa Barbara CA 93106 USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara CA 93106 USA
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors and Nanomachines, Département de Chimie, Université de Montréal, Québec, Canada
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
| |
Collapse
|
40
|
Banala S, Aper SJ, Schalk W, Merkx M. Switchable reporter enzymes based on mutually exclusive domain interactions allow antibody detection directly in solution. ACS Chem Biol 2013; 8:2127-32. [PMID: 23941162 DOI: 10.1021/cb400406x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Detection of antibodies is essential for the diagnosis of many diseases including infections, allergies, and autoimmune diseases. Current heterogeneous immunoassays require multiple time-consuming binding and washing steps, which limits their application in point-of-care diagnostics and high-throughput screening. Here, we report switchable reporter enzymes that allow simple colorimetric detection of antibodies directly in solution. Our approach is based on the antibody-induced disruption of an intramolecular interaction between TEM1 β-lactamase and its inhibitor protein BLIP. Using the HIV1-p17 antibody as an initial target, the interaction between enzyme and inhibitor was carefully tuned to yield a reporter enzyme whose activity increased 10-fold in the presence of pM antibody concentrations. Reporter enzymes for two other antibodies (HA-tag and Dengue virus type I) were obtained by simply replacing the epitope sequences. This new sensor design represents a modular and generic approach to construct antibody reporter enzymes without the cumbersome optimization required by previous engineering strategies.
Collapse
Affiliation(s)
- Sambashiva Banala
- Laboratory of Chemical Biology, Department
of Biomedical
Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Stijn J.A. Aper
- Laboratory of Chemical Biology, Department
of Biomedical
Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Werner Schalk
- Laboratory of Chemical Biology, Department
of Biomedical
Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department
of Biomedical
Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
41
|
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev 2013; 113:6114-78. [DOI: 10.1021/cr300179f] [Citation(s) in RCA: 847] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wiktor Szymański
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - John M. Beierle
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Hans A. V. Kistemaker
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Willem A. Velema
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| |
Collapse
|
42
|
Rational design of a ligand-controlled protein conformational switch. Proc Natl Acad Sci U S A 2013; 110:6800-4. [PMID: 23569285 DOI: 10.1073/pnas.1218319110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Design of a regulatable multistate protein is a challenge for protein engineering. Here we design a protein with a unique topology, called uniRapR, whose conformation is controlled by the binding of a small molecule. We confirm switching and control ability of uniRapR in silico, in vitro, and in vivo. As a proof of concept, uniRapR is used as an artificial regulatory domain to control activity of kinases. By activating Src kinase using uniRapR in single cells and whole organism, we observe two unique phenotypes consistent with its role in metastasis. Activation of Src kinase leads to rapid induction of protrusion with polarized spreading in HeLa cells, and morphological changes with loss of cell-cell contacts in the epidermal tissue of zebrafish. The rational creation of uniRapR exemplifies the strength of computational protein design, and offers a powerful means for targeted activation of many pathways to study signaling in living organisms.
Collapse
|
43
|
Reprogramming EF-hands for design of catalytically amplified lanthanide sensors. J Biol Inorg Chem 2013; 18:411-8. [PMID: 23420322 DOI: 10.1007/s00775-013-0985-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/30/2013] [Indexed: 01/12/2023]
Abstract
We recently reported that a computationally designed catalyst nicknamed AlleyCat facilitates C-H proton abstraction in Kemp elimination at neutral pH in a selective and calcium-dependent fashion by a factor of approximately 100,000 (Korendovych et al. in Proc. Natl. Acad. Sci. USA 108:6823, 2011). Kemp elimination produced a colored product that can be easily read out, thus making AlleyCat a catalytically amplified metal sensor for calcium. Here we report that metal-binding EF-hand motifs in AlleyCat could be redesigned to incorporate trivalent metal ions without significant loss of catalytic activity. Mutation of a single neutral residue at position 9 of each of the EF-hands to glutamate results in almost a two orders of magnitude improvement of selectivity for trivalent metal ions over calcium. Development of this new lanthanide-dependent switchable Kemp eliminase, named CuSeCat EE, provides the foundation for further selectivity improvement and broadening the scope of the repertoire of metals for sensing. A concerted effort in the design of switchable enzymes has many environmental, sensing, and metal ion tracking applications.
Collapse
|
44
|
Kanuru M, Raman R, Aradhyam GK. Serine protease activity of calnuc: regulation by Zn2+ and G proteins. J Biol Chem 2012. [PMID: 23195954 DOI: 10.1074/jbc.m112.382846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functions of calnuc, a novel Ca(2+)-binding protein with multiple structural domains and diverse interacting partners, are yet unknown. We demonstrate unknown facets of calnuc, which is a serine protease in which Ser-378 of GXSXG motif, Asp-328 of DTG motif, and His-339 form the "catalytic triad," locating the enzyme active site in the C-terminal region. Analogous to the active site of Zn(2+) carboxypeptidases, calnuc has two high affinity (K(d) ∼ 20 nm), well conserved Zn(2+)-binding sites near its N terminus, although it is inactive as a peptidase. Zn(2+) binding allosterically and negatively regulates the serine protease activity of calnuc, inhibition being caused by an "open to close" change in its conformation not seen upon Ca(2+) binding. Most strikingly, interaction with G protein α subunit completely inhibits the enzymatic activity of calnuc. We thus illustrate that G proteins and Zn(2+) act as two "keys" that control enzymatic activity of calnuc, arresting it in "locked" state. Calnuc, therefore, exists dynamically in two different forms, (i) as a Ca(2+)-binding protein in Zn(2+)-bound form and (ii) as a protease in Zn(2+)-free form, commissioning it to perform multiple functions.
Collapse
Affiliation(s)
- Madhavi Kanuru
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
45
|
Peng Q, Kong N, Wang HCE, Li H. Designing redox potential-controlled protein switches based on mutually exclusive proteins. Protein Sci 2012; 21:1222-30. [PMID: 22733630 DOI: 10.1002/pro.2109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synthetic/artificial protein switches provide an efficient means of controlling protein functions using chemical signals and stimuli. Mutually exclusive proteins, in which only the host or guest domain can remain folded at a given time owing to conformational strain, have been used to engineer novel protein switches that can switch enzymatic functions on and off in response to ligand binding. To further explore the potential of mutually exclusive proteins as protein switches and sensors, we report here a new redox-based approach to engineer a mutually exclusive folding-based protein switch. By introducing a disulfide bond into the host domain of a mutually exclusive protein, we demonstrate that it is feasible to use redox potential to switch the host domain between its folded and unfolded conformations via the mutually exclusive folding mechanism, and thus switching the functionality of the host domain on and off. Our study opens a new and potentially general avenue that uses mutually exclusive proteins to design novel switches able to control the function of a variety of proteins.
Collapse
Affiliation(s)
- Qing Peng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
46
|
Wang P. Nanoscale Engineering for Smart Biocatalysts with Fine-Tuned Properties and Functionalities. Top Catal 2012. [DOI: 10.1007/s11244-012-9904-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Shapiro MG, Frazier SJ, Lester HA. Unparalleled control of neural activity using orthogonal pharmacogenetics. ACS Chem Neurosci 2012; 3:619-29. [PMID: 22896806 DOI: 10.1021/cn300053q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022] Open
Abstract
Studying the functional architecture of the brain requires technologies to precisely measure and perturb the activity of specific neural cells and circuits in live animals. Substantial progress has been made in recent years to develop and apply such tools. In particular, technologies that provide precise control of activity in genetically defined populations of neurons have enabled the study of causal relationships between and among neural circuit elements and behavioral outputs. Here, we review an important subset of such technologies, in which neurons are genetically engineered to respond to specific chemical ligands that have no interfering pharmacological effect in the central nervous system. A rapidly expanding set of these "orthogonal pharmacogenetic" tools provides a unique combination of genetic specificity, functional diversity, spatiotemporal precision, and potential for multiplexing. We review the main classes of orthogonal pharmacogenetic technologies, including neuroreceptors to control neuronal excitability, systems to control gene transcription and translation, and general constructs to control protein-protein interactions, enzymatic function, and protein stability. We describe the key performance characteristics informing the use of these technologies in the brain, and potential directions for improvement and expansion of the orthogonal pharmacogenetics toolkit to enable more sophisticated systems neuroscience.
Collapse
Affiliation(s)
- Mikhail G. Shapiro
- Miller Research Institute, Department
of Bioengineering, and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California
94720, United States
| | | | | |
Collapse
|
48
|
Arpino JAJ, Czapinska H, Piasecka A, Edwards WR, Barker P, Gajda MJ, Bochtler M, Jones DD. Structural basis for efficient chromophore communication and energy transfer in a constructed didomain protein scaffold. J Am Chem Soc 2012; 134:13632-40. [PMID: 22822710 DOI: 10.1021/ja301987h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The construction of useful functional biomolecular components not currently part of the natural repertoire is central to synthetic biology. A new light-capturing ultra-high-efficiency energy transfer protein scaffold has been constructed by coupling the chromophore centers of two normally unrelated proteins: the autofluorescent protein enhanced green fluorescent protein (EGFP) and the heme-binding electron transfer protein cytochrome b(562) (cyt b(562)). Using a combinatorial domain insertion strategy, a variant was isolated in which resonance energy transfer from the donor EGFP to the acceptor cyt b(562) was close to 100% as evident by virtually full fluorescence quenching on heme binding. The fluorescence signal of the variant was also sensitive to the reactive oxygen species H(2)O(2), with high signal gain observed due to the release of heme. The structure of oxidized holoprotein, determined to 2.75 Å resolution, revealed that the two domains were arranged side-by-side in a V-shape conformation, generating an interchromophore distance of ~17 Å (14 Å edge-to-edge). Critical to domain arrangement is the formation of a molecular pivot point between the two domains as a result of different linker sequence lengths at each domain junction and formation of a predominantly polar interdomain interaction surface. The retrospective structural analysis has provided an explanation for the basis of the observed highly efficient energy transfer through chromophore arrangement in the directly evolved protein scaffold and provides an insight into the molecular principles by which to design new proteins with coupled functions.
Collapse
Affiliation(s)
- James A J Arpino
- School of Biosciences, Main Building, Park Place, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Olson EJ, Tabor JJ. Post-translational tools expand the scope of synthetic biology. Curr Opin Chem Biol 2012; 16:300-6. [PMID: 22766485 DOI: 10.1016/j.cbpa.2012.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 05/29/2012] [Accepted: 06/04/2012] [Indexed: 12/26/2022]
Abstract
Synthetic biology is improving our understanding of and ability to control living organisms. To date, most progress has been made by engineering gene expression. However, computational and genetically encoded tools that allow protein activity and protein-protein interactions to be controlled on their natural time and length scales are emerging. These technologies provide a basis for the construction of post-translational circuits, which are capable of fast, robust and highly spatially resolved signal processing. When combined with their transcriptional and translational counterparts, synthetic post-translational circuits will allow better analysis and control of otherwise intractable biological processes such as cellular differentiation and the growth of tissues.
Collapse
Affiliation(s)
- Evan J Olson
- Graduate Program in Applied Physics, Rice University, Houston, TX 77005, United States
| | | |
Collapse
|
50
|
Abstract
Protein conformational switches alter their shape upon receiving an input signal, such as ligand binding, chemical modification, or change in environment. The apparent simplicity of this transformation--which can be carried out by a molecule as small as a thousand atoms or so--belies its critical importance to the life of the cell as well as its capacity for engineering by humans. In the realm of molecular switches, proteins are unique because they are capable of performing a variety of biological functions. Switchable proteins are therefore of high interest to the fields of biology, biotechnology, and medicine. These molecules are beginning to be exploited as the core machinery behind a new generation of biosensors, functionally regulated enzymes, and "smart" biomaterials that react to their surroundings. As inspirations for these designs, researchers continue to analyze existing examples of allosteric proteins. Recent years have also witnessed the development of new methodologies for introducing conformational change into proteins that previously had none. Herein we review examples of both natural and engineered protein switches in the context of four basic modes of conformational change: rigid-body domain movement, limited structural rearrangement, global fold switching, and folding-unfolding. Our purpose is to highlight examples that can potentially serve as platforms for the design of custom switches. Accordingly, we focus on inducible conformational changes that are substantial enough to produce a functional response (e.g., in a second protein to which it is fused), yet are relatively simple, structurally well-characterized, and amenable to protein engineering efforts.
Collapse
Affiliation(s)
| | - Stewart N. Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (USA), Tel: (315)464-8731, Fax: (315)464-8750
| |
Collapse
|