1
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
2
|
Beck IN, Arrowsmith TJ, Grobbelaar MJ, Bromley EC, Marles-Wright J, Blower TR. Toxin release by conditional remodelling of ParDE1 from Mycobacterium tuberculosis leads to gyrase inhibition. Nucleic Acids Res 2024; 52:1909-1929. [PMID: 38113275 PMCID: PMC10899793 DOI: 10.1093/nar/gkad1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a growing threat to global health, with recent efforts towards its eradication being reversed in the wake of the COVID-19 pandemic. Increasing resistance to gyrase-targeting second-line fluoroquinolone antibiotics indicates the necessity to develop both novel therapeutics and our understanding of M. tuberculosis growth during infection. ParDE toxin-antitoxin systems also target gyrase and are regulated in response to both host-associated and drug-induced stress during infection. Here, we present microbiological, biochemical, structural, and biophysical analyses exploring the ParDE1 and ParDE2 systems of M. tuberculosis H37Rv. The structures reveal conserved modes of toxin-antitoxin recognition, with complex-specific interactions. ParDE1 forms a novel heterohexameric ParDE complex, supported by antitoxin chains taking on two distinct folds. Curiously, ParDE1 exists in solution as a dynamic equilibrium between heterotetrameric and heterohexameric complexes. Conditional remodelling into higher order complexes can be thermally driven in vitro. Remodelling induces toxin release, tracked through concomitant inhibition and poisoning of gyrase activity. Our work aids our understanding of gyrase inhibition, allowing wider exploration of toxin-antitoxin systems as inspiration for potential therapeutic agents.
Collapse
Affiliation(s)
- Izaak N Beck
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | | | | | - Jon Marles-Wright
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
3
|
Xu X, Usher B, Gutierrez C, Barriot R, Arrowsmith TJ, Han X, Redder P, Neyrolles O, Blower TR, Genevaux P. MenT nucleotidyltransferase toxins extend tRNA acceptor stems and can be inhibited by asymmetrical antitoxin binding. Nat Commun 2023; 14:4644. [PMID: 37591829 PMCID: PMC10435456 DOI: 10.1038/s41467-023-40264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for human tuberculosis, has a genome encoding a remarkably high number of toxin-antitoxin systems of largely unknown function. We have recently shown that the M. tuberculosis genome encodes four of a widespread, MenAT family of nucleotidyltransferase toxin-antitoxin systems. In this study we characterize MenAT1, using tRNA sequencing to demonstrate MenT1 tRNA modification activity. MenT1 activity is blocked by MenA1, a short protein antitoxin unrelated to the MenA3 kinase. X-ray crystallographic analysis shows blockage of the conserved MenT fold by asymmetric binding of MenA1 across two MenT1 protomers, forming a heterotrimeric toxin-antitoxin complex. Finally, we also demonstrate tRNA modification by toxin MenT4, indicating conserved activity across the MenT family. Our study highlights variation in tRNA target preferences by MenT toxins, selective use of nucleotide substrates, and diverse modes of MenA antitoxin activity.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
4
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
5
|
Yang WT, Yi YJ, Xia B. Unveiling the duality of Pantoea dispersa: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162320. [PMID: 36801414 DOI: 10.1016/j.scitotenv.2023.162320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pantoea dispersa is a Gram-negative bacterium that exists in a variety of environments and has potential in many commercial and agricultural applications, such as biotechnology, environmental protection, soil bioremediation, and plant growth stimulation. However, P. dispersa is also a harmful pathogen to both humans and plants. This "double-edged sword" phenomenon is not uncommon in nature. To ensure survival, microorganisms respond to both environmental and biological stimuli, which could be beneficial or detrimental to other species. Therefore, to harness the full potential of P. dispersa, while minimizing potential harm, it is imperative to unravel its genetic makeup, understand its ecological interactions and underlying mechanisms. This review aims to provide a comprehensive and up-to-date overview of the genetic and biological characteristics of P. dispersa, in addition to potential impacts on plants and humans, as well as to provide insights into potential applications.
Collapse
Affiliation(s)
- Wen-Tao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - You-Jin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha 410128, Hunan, China.
| |
Collapse
|
6
|
Kelly A, Arrowsmith TJ, Went SC, Blower TR. Toxin-antitoxin systems as mediators of phage defence and the implications for abortive infection. Curr Opin Microbiol 2023; 73:102293. [PMID: 36958122 DOI: 10.1016/j.mib.2023.102293] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/25/2023]
Abstract
Bacteria have evolved a broad range of defence mechanisms to protect against infection by their viral parasites, bacteriophages (phages). Toxin-antitoxin (TA) systems are small loci found throughout bacteria and archaea that in some cases provide phage defence. The recent explosion in phage defence system discovery has identified multiple novel TA systems with antiphage activity. Due to inherent toxicity, TA systems are thought to mediate abortive infection (Abi), wherein the host cell dies in response to phage infection, removing the phage, and protecting clonal siblings. Recent studies, however, have uncovered molecular mechanisms by which TA systems are activated by phages, how they mediate toxicity, and how phages escape the defences. These new models reveal dazzling complexity in phage-host interactions and provide further evidence that TA systems do not in all cases inherently perform classic Abi, suggesting an evolved conceptual definition is required.
Collapse
Affiliation(s)
- Abigail Kelly
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
| |
Collapse
|
7
|
Luyten Y, Hausman DE, Young JC, Doyle L, Higashi K, Ubilla-Rodriguez N, Lambert AR, Arroyo CS, Forsberg K, Morgan R, Stoddard B, Kaiser B. Identification and characterization of the WYL BrxR protein and its gene as separable regulatory elements of a BREX phage restriction system. Nucleic Acids Res 2022; 50:5171-5190. [PMID: 35511079 PMCID: PMC9122589 DOI: 10.1093/nar/gkac311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophage exclusion ('BREX') phage restriction systems are found in a wide range of bacteria. Various BREX systems encode unique combinations of proteins that usually include a site-specific methyltransferase; none appear to contain a nuclease. Here we describe the identification and characterization of a Type I BREX system from Acinetobacter and the effect of deleting each BREX ORF on growth, methylation, and restriction. We identified a previously uncharacterized gene in the BREX operon that is dispensable for methylation but involved in restriction. Biochemical and crystallographic analyses of this factor, which we term BrxR ('BREX Regulator'), demonstrate that it forms a homodimer and specifically binds a DNA target site upstream of its transcription start site. Deletion of the BrxR gene causes cell toxicity, reduces restriction, and significantly increases the expression of BrxC. In contrast, the introduction of a premature stop codon into the BrxR gene, or a point mutation blocking its DNA binding ability, has little effect on restriction, implying that the BrxR coding sequence and BrxR protein play independent functional roles. We speculate that elements within the BrxR coding sequence are involved in cis regulation of anti-phage activity, while the BrxR protein itself plays an additional regulatory role, perhaps during horizontal transfer.
Collapse
Affiliation(s)
- Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Deanna E Hausman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Juliana C Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Kerilyn M Higashi
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Natalia C Ubilla-Rodriguez
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Abigail R Lambert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Corina S Arroyo
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Kevin J Forsberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Brett K Kaiser
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| |
Collapse
|
8
|
Rapid growth inhibitory activity of a YafQ-family endonuclease toxin of the Helicobacter pylori tfs4 integrative and conjugative element. Sci Rep 2020; 10:18171. [PMID: 33097748 PMCID: PMC7584586 DOI: 10.1038/s41598-020-72063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Prokaryotic and archaeal chromosomes encode a diversity of toxin–antitoxin (TA) systems that contribute to a variety of stress-induced cellular processes in addition to stability and maintenance of mobile elements. Here, we find DinJ-YafQ family TA systems to be broadly distributed amongst diverse phyla, consistent with other ParE/RelE superfamily TAs, but more unusually occurring as a multiplicity of species-specific subtypes. In the gastric pathogen Helicobacter pylori we identify six distinct subtypes, of which three are predominantly associated with the mobilome, including the disease-associated integrative and conjugative element (ICE), tfs4. Whereas, the ICE-encoded proteins have characteristic features of DinJ-YafQ family Type II TA systems in general, the toxin component is distinguished by a broad metal-ion-dependent endonuclease activity with specificity for both RNA and DNA. We show that the remarkably rapid growth inhibitory activity of the ICE toxin is a correlate of a C-terminal lysine doublet which likely augments catalytic activity by increasing the positive electrostatic potential in the vicinity of the conserved active site. Our collective results reveal a structural feature of an ICE TA toxin that influences substrate catalysis and toxin function which may be relevant to specific TA-mediated responses in diverse genera of bacteria.
Collapse
|
9
|
Cauduro GP, Leal AL, Lopes TF, Marmitt M, Valiati VH. Differential Expression and PAH Degradation: What Burkholderia vietnamiensis G4 Can Tell Us? Int J Microbiol 2020; 2020:8831331. [PMID: 32908529 PMCID: PMC7474390 DOI: 10.1155/2020/8831331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.
Collapse
Affiliation(s)
| | - Ana Lusia Leal
- Companhia Riograndense de Saneamento, Biology Laboratory, Triunfo, RS, Brazil
| | - Tiago Falcón Lopes
- Centro de Terapia Gênica, Centro de Pesquisa Experimental, Hospital de Clínicas, Porto Alegre, RS, Brazil
| | - Marcela Marmitt
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| | - Victor Hugo Valiati
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| |
Collapse
|
10
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
11
|
Ames JR, Muthuramalingam M, Murphy T, Najar FZ, Bourne CR. Expression of different ParE toxins results in conserved phenotypes with distinguishable classes of toxicity. Microbiologyopen 2019; 8:e902. [PMID: 31309747 PMCID: PMC6813445 DOI: 10.1002/mbo3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are found on both chromosomes and plasmids. These systems are unique in that they can confer both fatal and protective effects on bacterial cells—a quality that could potentially be harnessed given further understanding of these TA mechanisms. The current work focuses on the ParE subfamily, which is found throughout proteobacteria and has a sequence identity on average of approximately 12% (similarity at 30%–80%). Our aim is to evaluate the equivalency of chromosomally derived ParE toxin activity depending on its bacterial species of origin. Nine ParE toxins were analyzed, originating from six different bacterial species. Based on the resulting toxicity, three categories can be established: ParE toxins that do not exert toxicity under the experimental conditions, toxins that exert toxicity within the first four hours, and those that exert toxicity only after 10–12 hr of exposure. All tested ParE toxins produce a cellular morphologic change from rods to filaments, consistent with disruption of DNA topology. Analysis of the distribution of filamented cells within a population reveals a correlation between the extent of filamentation and toxicity. No membrane septation is visible along the length of the cell filaments, whereas aberrant lipid blebs are evident. Potent ParE‐mediated toxicity is also correlated with a hallmark signature of abortive DNA replication, consistent with the inhibition of DNA gyrase.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
12
|
Structure and allosteric coupling of type Ⅱ antitoxin CopA SO. Biochem Biophys Res Commun 2019; 514:1122-1127. [PMID: 31101334 DOI: 10.1016/j.bbrc.2019.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Toxin-antitoxin (TA) systems play critical roles in the environment adaptation of bacteria. Allosteric coupling between the N-terminal DNA-binding domain and the C-terminal toxin-binding domain of antitoxins contributes to conditional cooperativity in the functioning of type II TA. Herein, using circular dichroism (CD), nuclear magnetic resonance (NMR), X-ray crystallography, and size exclusion chromatography (SEC), the structure and DNA binding of CopASO, a newly identified type II antitoxin in Shewanella oneidensis, were investigated. Our data show that CopASO is a typical RHH antitoxin with an ordered N-terminal domain and a disordered C-terminal domain, and furthermore indicate that the C-terminal domain facilitates DNA binding of the N-terminal domain, which in turn induces the C-terminal domain to fold and associate.
Collapse
|
13
|
Yoon WS, Seok SH, Won HS, Cho T, Lee SJ, Seo MD. Structural changes of antitoxin HigA from Shigella flexneri by binding of its cognate toxin HigB. Int J Biol Macromol 2019; 130:99-108. [PMID: 30797012 DOI: 10.1016/j.ijbiomac.2019.02.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
Abstract
In toxin-antitoxin systems, many antitoxin proteins that neutralize their cognate toxin proteins also bind to DNA to repress transcription, and the DNA-binding affinity of the antitoxin is affected by its toxin. We solved crystal structures of the antitoxin HigA (apo-SfHigA) and its complex with the toxin HigB (SfHigBA) from Shigella flexneri. The apo-SfHigA shows a distinctive V-shaped homodimeric conformation with sequestered N-domains having a novel fold. SfHigBA appears as a heterotetramer formed by N-terminal dimerization of SfHigB-bound SfHigA molecules. The conformational change in SfHigA upon SfHigB binding is mediated by rigid-body movements of its C-domains, which accompanied an overall conformational change from wide V-shaped to narrow V-shaped dimer. Consequently, the two putative DNA-binding helices (α7 in each subunit) are repositioned to a conformation more compatible with canonical homodimeric DNA-binding proteins containing HTH motifs. Collectively, this study demonstrates a conformational change in an antitoxin protein, which occurs upon toxin binding and is responsible for regulating antitoxin DNA binding.
Collapse
Affiliation(s)
- Won-Su Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical & Health Science, Konkuk University, Chungju, Chungbuk 27478, Republic of Korea
| | - Taehwan Cho
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi 16499, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi 16499, Republic of Korea.
| |
Collapse
|
14
|
Tandon H, Sharma A, Sandhya S, Srinivasan N, Singh R. Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Sci Rep 2019; 9:1163. [PMID: 30718534 PMCID: PMC6362051 DOI: 10.1038/s41598-018-37473-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitously existing addiction modules with essential roles in bacterial persistence and virulence. The genome of Mycobacterium tuberculosis encodes approximately 79 TA systems. Through computational and experimental investigations, we report for the first time that Rv0366c-Rv0367c is a non-canonical PezAT-like toxin-antitoxin system in M. tuberculosis. Homology searches with known PezT homologues revealed that residues implicated in nucleotide, antitoxin-binding and catalysis are conserved in Rv0366c. Unlike canonical PezA antitoxins, the N-terminal of Rv0367c is predicted to adopt the ribbon-helix-helix (RHH) motif for deoxyribonucleic acid (DNA) recognition. Further, the modelled complex predicts that the interactions between PezT and PezA involve conserved residues. We performed a large-scale search in sequences encoded in 101 mycobacterial and 4500 prokaryotic genomes and show that such an atypical PezAT organization is conserved in 20 other mycobacterial organisms and in families of class Actinobacteria. We also demonstrate that overexpression of Rv0366c induces bacteriostasis and this growth defect could be restored upon co-expression of cognate antitoxin, Rv0367c. Further, we also observed that inducible expression of Rv0366c in Mycobacterium smegmatis results in decreased cell-length and enhanced tolerance against a front-line tuberculosis (TB) drug, ethambutol. Taken together, we have identified and functionally characterized a novel non-canonical TA system from M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Sharma
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO Box #4, Faridabad, Haryana, 121001, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO Box #4, Faridabad, Haryana, 121001, India.
| |
Collapse
|
15
|
Graf JS, Mayr MJ, Marchant HK, Tienken D, Hach PF, Brand A, Schubert CJ, Kuypers MMM, Milucka J. Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake. Environ Microbiol 2018; 20:2598-2614. [PMID: 29806730 DOI: 10.1111/1462-2920.14285] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
Methanotrophic bacteria represent an important biological filter regulating methane emissions into the atmosphere. Planktonic methanotrophic communities in freshwater lakes are typically dominated by aerobic gamma-proteobacteria, with a contribution from alpha-proteobacterial methanotrophs and the NC10 bacteria. The NC10 clade encompasses methanotrophs related to 'Candidatus Methylomirabilis oxyfera', which oxidize methane using a unique pathway of denitrification that tentatively produces N2 and O2 from nitric oxide (NO). Here, we describe a new species of the NC10 clade, 'Ca. Methylomirabilis limnetica', which dominated the planktonic microbial community in the anoxic depths of the deep stratified Lake Zug in two consecutive years, comprising up to 27% of the total bacterial population. Gene transcripts assigned to 'Ca. M. limnetica' constituted up to one third of all metatranscriptomic sequences in situ. The reconstructed genome encoded a complete pathway for methane oxidation, and an incomplete denitrification pathway, including two putative nitric oxide dismutase genes. The genome of 'Ca. M. limnetica' exhibited features possibly related to genome streamlining (i.e. less redundancy of key metabolic genes) and adaptation to its planktonic habitat (i.e. gas vesicle genes). We speculate that 'Ca. M. limnetica' temporarily bloomed in the lake during non-steady-state conditions suggesting a niche for NC10 bacteria in the lacustrine methane and nitrogen cycle.
Collapse
Affiliation(s)
- Jon S Graf
- Max-Planck-Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Magdalena J Mayr
- Eawag, Surface Waters-Research and Management, Kastanienbaum, Switzerland.,ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland
| | - Hannah K Marchant
- Max-Planck-Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Daniela Tienken
- Max-Planck-Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Philipp F Hach
- Max-Planck-Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Andreas Brand
- Eawag, Surface Waters-Research and Management, Kastanienbaum, Switzerland.,ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich, Switzerland
| | - Carsten J Schubert
- Eawag, Surface Waters-Research and Management, Kastanienbaum, Switzerland
| | - Marcel M M Kuypers
- Max-Planck-Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| | - Jana Milucka
- Max-Planck-Institute for Marine Microbiology, Department of Biogeochemistry, Bremen, Germany
| |
Collapse
|
16
|
Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol Cell 2018; 70:768-784. [PMID: 29398446 DOI: 10.1016/j.molcel.2018.01.003] [Citation(s) in RCA: 448] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 01/02/2018] [Indexed: 12/01/2022]
Abstract
Bacterial toxin-antitoxin (TA) modules are abundant genetic elements that encode a toxin protein capable of inhibiting cell growth and an antitoxin that counteracts the toxin. The majority of toxins are enzymes that interfere with translation or DNA replication, but a wide variety of molecular activities and cellular targets have been described. Antitoxins are proteins or RNAs that often control their cognate toxins through direct interactions and, in conjunction with other signaling elements, through transcriptional and translational regulation of TA module expression. Three major biological functions of TA modules have been discovered, post-segregational killing ("plasmid addiction"), abortive infection (bacteriophage immunity through altruistic suicide), and persister formation (antibiotic tolerance through dormancy). In this review, we summarize the current state of the field and highlight how multiple levels of regulation shape the conditions of toxin activation to achieve the different biological functions of TA modules.
Collapse
Affiliation(s)
- Alexander Harms
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ditlev Egeskov Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Namiko Mitarai
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Niels Bohr Institute, Department of Physics, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenn Gerdes
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
17
|
Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2016; 2:16183. [PMID: 27723728 PMCID: PMC5325307 DOI: 10.1038/nmicrobiol.2016.183] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022]
Abstract
The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here, we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralized during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent on a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization, and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted, whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins, most probably to protect themselves from the toxic activity of EsaD secreted by esaD+ strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that the T7SS may play unexpected and key roles in bacterial competitiveness.
Collapse
Affiliation(s)
- Zhenping Cao
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - M Guillermina Casabona
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James D Chalmers
- Division of Cardiovascular &Diabetes Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
18
|
Burbank LP, Stenger DC. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection. PHYTOPATHOLOGY 2016; 106:928-936. [PMID: 27088393 DOI: 10.1094/phyto-02-16-0097-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave., Parlier, CA 93648-9757
| |
Collapse
|
19
|
Yakimov MM, Crisafi F, Messina E, Smedile F, Lopatina A, Denaro R, Pieper DH, Golyshin PN, Giuliano L. Analysis of defence systems and a conjugative IncP-1 plasmid in the marine polyaromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:508-519. [PMID: 27345842 DOI: 10.1111/1758-2229.12424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/24/2016] [Indexed: 06/06/2023]
Abstract
Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities.
Collapse
Affiliation(s)
- Michail M Yakimov
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Enzo Messina
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Anna Lopatina
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Renata Denaro
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig, D-38124, Germany
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, ECW Bldg Deiniol Rd, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | - Laura Giuliano
- Institute for Coastal Marine Environment, CNR, Spianata S. Raineri 86, Messina, 98122, Italy
| |
Collapse
|
20
|
Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Toxins (Basel) 2016; 8:toxins8070228. [PMID: 27455323 PMCID: PMC4963859 DOI: 10.3390/toxins8070228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/03/2022] Open
Abstract
Bacterial toxin–antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements.
Collapse
|
21
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
22
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
23
|
Abstract
Bacterial persister cells are dormant cells, tolerant to multiple antibiotics, that are involved in several chronic infections. Toxin-antitoxin modules play a significant role in the generation of such persister cells. Toxin-antitoxin modules are small genetic elements, omnipresent in the genomes of bacteria, which code for an intracellular toxin and its neutralizing antitoxin. In the past decade, mathematical modeling has become an important tool to study the regulation of toxin-antitoxin modules and their relation to the emergence of persister cells. Here, we provide an overview of several numerical methods to simulate toxin-antitoxin modules. We cover both deterministic modeling using ordinary differential equations and stochastic modeling using stochastic differential equations and the Gillespie method. Several characteristics of toxin-antitoxin modules such as protein production and degradation, negative autoregulation through DNA binding, toxin-antitoxin complex formation and conditional cooperativity are gradually integrated in these models. Finally, by including growth rate modulation, we link toxin-antitoxin module expression to the generation of persister cells.
Collapse
|
24
|
Wessner F, Lacoux C, Goeders N, Fouquier d'Hérouel A, Matos R, Serror P, Van Melderen L, Repoila F. Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen Enterococcus faecalis. RNA Biol 2015; 12:1099-108. [PMID: 26305399 DOI: 10.1080/15476286.2015.1084465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We discovered a chromosomal locus containing 2 toxin-antitoxin modules (TAs) with an antisense transcriptional organization in the E. faecalis clinical isolate V583. These TAs are homologous to the type I txpA-ratA system and the type II mazEF, respectively. We have shown that the putative MazF is toxic for E. coli and triggers RNA degradation, and its cognate antitoxin MazE counteracts toxicity. The second module, adjacent to mazEF, expresses a toxin predicted to belong to the TxpA type I family found in Firmicutes, and the antisense RNA antidote, RatA. Genomic analysis indicates that the cis-association of mazEF and txpA-ratA modules has been favored during evolution, suggesting a selective advantage for this TA organization in the E. faecalis species. We showed regulatory interplays between the 2 modules, involving transcription control and RNA stability. Remarkably, our data reveal that MazE and MazEF have a dual transcriptional activity: they act as autorepressors and activate ratA transcription, most likely in a direct manner. RatA controls txpA RNA levels through stability. Our data suggest a pivotal role of MazEF in the coordinated expression of mazEF and txpA-ratA modules in V583. To our knowledge, this is the first report describing a crosstalk between type I and II TAs.
Collapse
Affiliation(s)
- Françoise Wessner
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Caroline Lacoux
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Nathalie Goeders
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | | | - Renata Matos
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Pascale Serror
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| | - Laurence Van Melderen
- c Université Libre de Bruxelles, Faculté des Sciences, Institut de Biologie et Médecine Moléculaire ; Gosselies , Belgium
| | - Francis Repoila
- a INRA UMR1319 Micalis ; Jouy-en-Josas , France.,b AgroParisTech, UMR Micalis ; Jouy-en-Josas , France
| |
Collapse
|
25
|
Cut to the chase--Regulating translation through RNA cleavage. Biochimie 2015; 114:10-7. [PMID: 25633441 DOI: 10.1016/j.biochi.2015.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
Abstract
Activation of toxin-antitoxin (TA) systems provides an important mechanism for bacteria to adapt to challenging and ever changing environmental conditions. Known TA systems are classified into five families based on the mechanisms of antitoxin inhibition and toxin activity. For type II TA systems, the toxin is inactivated in exponentially growing cells by tightly binding its antitoxin partner protein, which also serves to regulate cellular levels of the complex through transcriptional auto-repression. During cellular stress, however, the antitoxin is degraded thus freeing the toxin, which is then able to regulate central cellular processes, primarily protein translation to adjust cell growth to the new conditions. In this review, we focus on the type II TA pairs that regulate protein translation through cleavage of ribosomal, transfer, or messenger RNA.
Collapse
|
26
|
Koonin EV, Wolf YI. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus-host coevolution. MOLECULAR BIOSYSTEMS 2015; 11:20-7. [PMID: 25238531 PMCID: PMC5875448 DOI: 10.1039/c4mb00438h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas is an adaptive immunity system in prokaryotes that functions via a unique mechanism which involves incorporation of foreign DNA fragments into CRISPR arrays and subsequent utilization of transcripts of these inserts (known as spacers) as guide RNAs to cleave the cognate selfish element genome. Multiple attempts have been undertaken to explore the coevolution of viruses and microbial hosts carrying CRISPR-Cas using mathematical models that employ either systems of differential equations or an agent-based approach, or combinations thereof. Analysis of these models reveals highly complex co-evolutionary dynamics that ensues from the combination of the heritability of the CRISPR-mediated adaptive immunity with the existence of different degrees of immunity depending on the number of cognate spacers and the cost of carrying a CRISPR-Cas locus. Depending on the details of the models, a variety of testable, sometimes conflicting predictions have been made on the dependence of the degree of immunity and the benefit of maintaining CRISPR-Cas on the abundance and diversity of hosts and viruses. Some of these predictions have already been directly validated experimentally. In particular, both the reality of the virus-host arms race, with viruses escaping resistance and hosts reacquiring it through the capture of new spacers, and the fitness cost of CRISPR-Cas due to the curtailment of beneficial HGT have been reproduced in the laboratory. However, to test the predictions of the models more specifically, detailed studies of coevolving populations of microbes and viruses both in nature and in the laboratory are essential. Such analyses are expected to yield disagreements with the predictions of the current, oversimplified models and to trigger a new round of theoretical developments.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
27
|
Bustamante P, Tello M, Orellana O. Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS One 2014; 9:e112226. [PMID: 25384039 PMCID: PMC4226512 DOI: 10.1371/journal.pone.0112226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022] Open
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a pair of genes encoding a stable toxin and an unstable antitoxin that inhibits toxin activity. They are widespread among plasmids and chromosomes of bacteria and archaea. TA systems are known to be involved in the stabilization of plasmids but there is no consensus about the function of chromosomal TA systems. To shed light on the role of chromosomally encoded TA systems we analyzed the distribution and functionality of type II TA systems in the chromosome of two strains from Acidithiobacillus ferrooxidans (ATCC 23270 and 53993), a Gram-negative, acidophilic, environmental bacterium that participates in the bioleaching of minerals. As in other environmental microorganisms, A. ferrooxidans has a high content of TA systems (28-29) and in twenty of them the toxin is a putative ribonuclease. According to the genetic context, some of these systems are encoded near or within mobile genetic elements. Although most TA systems are shared by both strains, four of them, which are encoded in the active mobile element ICEAfe1, are exclusive to the type strain ATCC 23270. We demostrated that two TA systems from ICEAfe1 are functional in E. coli cells, since the toxins inhibit growth and the antitoxins counteract the effect of their cognate toxins. All the toxins from ICEAfe1, including a novel toxin, are RNases with different ion requirements. The data indicate that some of the chromosomally encoded TA systems are actually part of the A. ferrooxidans mobile genome and we propose that could be involved in the maintenance of these integrated mobile genetic elements.
Collapse
Affiliation(s)
- Paula Bustamante
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Tello
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
28
|
Guglielmini J, Van Melderen L. Bacterial toxin-antitoxin systems: Translation inhibitors everywhere. Mob Genet Elements 2014; 1:283-290. [PMID: 22545240 PMCID: PMC3337138 DOI: 10.4161/mge.18477] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Toxin-antitoxin (TA) systems are composed of two elements: a toxic protein and an antitoxin which is either an RNA (type I and III) or a protein (type II). Type II systems are abundant in bacterial genomes in which they move via horizontal gene transfer. They are generally composed of two genes organized in an operon, encoding a toxin and a labile antitoxin. When carried by mobile genetic elements, these small modules contribute to their stability by a phenomenon denoted as addiction. Recently, we developed a bioinformatics procedure that, along with experimental validation, allowed the identification of nine novel toxin super-families. Here, considering that some toxin super-families exhibit dramatic sequence diversity but similar structure, bioinformatics tools were used to predict tertiary structures of novel toxins. Seven of the nine novel super-families did not show any structural homology with known toxins, indicating that combination of sequence similarity and three-dimensional structure prediction allows a consistent classification. Interestingly, the novel super-families are translation inhibitors similar to the majority of known toxins indicating that this activity might have been selected rather than more detrimental traits such as DNA-gyrase inhibitors, which are very toxic for cells.
Collapse
|
29
|
Blower TR, Short FL, Fineran PC, Salmond GPC. Viral molecular mimicry circumvents abortive infection and suppresses bacterial suicide to make hosts permissive for replication. BACTERIOPHAGE 2014; 2:234-238. [PMID: 23739522 PMCID: PMC3594212 DOI: 10.4161/bact.23830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global interplay between bacteria and bacteriophages has generated many macromolecules useful in biotechnology, through the co-evolutionary see-saw of bacterial defense and viral counter-attack measures. Bacteria can protect themselves using abortive infection systems, which induce altruistic suicide in an infected cell and therefore protect the clonal population at the expense of the infected individual. Our recent paper describes how bacteriophage ΦTE successfully subverted the activity of a plasmid-borne abortive infection system. ΦTE evolved mimics of the small RNA antitoxin that naturally inhibits the active toxin component of this anti-viral mechanism. These mutant phages further manipulated the behavior of the host population, through transduction of the plasmid encoding the abortive infection system. Transductants thereby became enslaved by the abortive infection system, committing suicide in response to infection by the original phage population. In effect, the new host was infected by an “addictive altruism,” to the advantage of the resistant bacteriophage.
Collapse
Affiliation(s)
- Tim R Blower
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | | | | | | |
Collapse
|
30
|
Sterckx YGJ, Haesaerts S, Van Melderen L, Loris R. Crystallization and preliminary X-ray analysis of two variants of the Escherichia coli O157 ParE2-PaaA2 toxin-antitoxin complex. Acta Crystallogr F Struct Biol Commun 2014; 70:1284-91. [PMID: 25195911 PMCID: PMC4157438 DOI: 10.1107/s2053230x1401749x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/30/2014] [Indexed: 11/11/2022] Open
Abstract
The paaR2-paaA2-parE2 operon is a three-component toxin-antitoxin module encoded in the genome of the human pathogen Escherichia coli O157. The toxin (ParE2) and antitoxin (PaaA2) interact to form a nontoxic toxin-antitoxin complex. In this paper, the crystallization and preliminary characterization of two variants of the ParE2-PaaA2 toxin-antitoxin complex are described. Selenomethionine-derivative crystals of the full-length ParE2-PaaA2 toxin-antitoxin complex diffracted to 2.8 Å resolution and belonged to space group P41212 (or P43212), with unit-cell parameters a = b = 90.5, c = 412.3 Å. It was previously reported that the full-length ParE2-PaaA2 toxin-antitoxin complex forms a higher-order oligomer. In contrast, ParE2 and PaaA213-63, a truncated form of PaaA2 in which the first 12 N-terminal residues of the antitoxin have been deleted, form a heterodimer as shown by analytical gel filtration, dynamic light scattering and small-angle X-ray scattering. Crystals of the PaaA213-63-ParE2 complex diffracted to 2.7 Å resolution and belonged to space group P6122 (or P6522), with unit-cell parameters a = b = 91.6, c = 185.6 Å.
Collapse
Affiliation(s)
- Yann G. J. Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Sarah Haesaerts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Laurence Van Melderen
- Génétique et Physiologie Bactérienne, IBMM, Université Libre de Bruxelles (ULB), 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
31
|
Chopra N, Saumitra, Pathak A, Bhatnagar R, Bhatnagar S. Linkage, mobility, and selfishness in the MazF family of bacterial toxins: a snapshot of bacterial evolution. Genome Biol Evol 2014; 5:2268-84. [PMID: 24265503 PMCID: PMC3879964 DOI: 10.1093/gbe/evt175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prokaryotic MazF family toxins cooccur with cognate antitoxins having divergent
DNA-binding folds and can be of chromosomal or plasmid origin. Sequence similarity search
was carried out to identify the Toxin–Antitoxin (TA) operons of MazF family followed
by sequence analysis and phylogenetic studies. The genomic DNA upstream of the TA operons
was searched for the presence of regulatory motifs. The MazF family toxins showed a
conserved hydrophobic pocket in a multibinding site and are present in pathogenic
bacteria. The toxins of the MazF family are associated with four main types of cognate
antitoxin partners and cluster as a subfamily on the branches of the phylogenetic tree.
This indicates that transmission of the entire operon is the dominant mode of inheritance.
The plasmid borne TA modules were interspersed between the chromosomal TA modules of the
same subfamily, compatible with a frequent interchange of TA genes between the chromosome
and the plasmid akin to that observed for antibiotic resistance gens. The split network of
the MazF family toxins showed the AbrB-linked toxins as a hub of horizontal gene transfer.
Distinct motifs are present in the upstream region of each subfamily. The presence of MazF
family TA modules in pathogenic bacteria and identification of a conserved binding pocket
are significant for the development of novel antibacterials to disrupt the TA interaction.
However, the role of TAs in stress resistance needs to be established. Phylogenetic
studies provide insight into the evolution of MazF family TAs and effect on the bacterial
genome.
Collapse
Affiliation(s)
- Nikita Chopra
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | | | | | | | | |
Collapse
|
32
|
Lopes APY, Lopes LM, Fraga TR, Chura-Chambi RM, Sanson AL, Cheng E, Nakajima E, Morganti L, Martins EAL. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 2014; 9:e101678. [PMID: 25047537 PMCID: PMC4105405 DOI: 10.1371/journal.pone.0101678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Collapse
Affiliation(s)
| | - Luana M. Lopes
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Tatiana R. Fraga
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Rosa M. Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | - André L. Sanson
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Elisabeth Cheng
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Erika Nakajima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
33
|
Abstract
TA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.
Collapse
|
34
|
Sterckx YGJ, Volkov AN, Vranken WF, Kragelj J, Jensen MR, Buts L, Garcia-Pino A, Jové T, Van Melderen L, Blackledge M, van Nuland NAJ, Loris R. Small-angle X-ray scattering- and nuclear magnetic resonance-derived conformational ensemble of the highly flexible antitoxin PaaA2. Structure 2014; 22:854-65. [PMID: 24768114 DOI: 10.1016/j.str.2014.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
Abstract
Antitoxins from prokaryotic type II toxin-antitoxin modules are characterized by a high degree of intrinsic disorder. The description of such highly flexible proteins is challenging because they cannot be represented by a single structure. Here, we present a combination of SAXS and NMR data to describe the conformational ensemble of the PaaA2 antitoxin from the human pathogen E. coli O157. The method encompasses the use of SAXS data to filter ensembles out of a pool of conformers generated by a custom NMR structure calculation protocol and the subsequent refinement by a block jackknife procedure. The final ensemble obtained through the method is validated by an established residual dipolar coupling analysis. We show that the conformational ensemble of PaaA2 is highly compact and that the protein exists in solution as two preformed helices, connected by a flexible linker, that probably act as molecular recognition elements for toxin inhibition.
Collapse
Affiliation(s)
- Yann G J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Alexander N Volkov
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim F Vranken
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jaka Kragelj
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Malene Ringkjøbing Jensen
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Lieven Buts
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Thomas Jové
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Martin Blackledge
- Protein Dynamics and Flexibility, Institut de Biologie Structurale Jean-Pierre Ebel CNRS-CEA-UJF UMR 5075, 41 Rue Jules Horowitz, 38027 Grenoble Cedex, France
| | - Nico A J van Nuland
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; Molecular Recognition Unit and Jean Jeener NMR Centre, Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
35
|
Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep 2014; 7:424-435. [PMID: 24703849 DOI: 10.1016/j.celrep.2014.03.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/05/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022] Open
Abstract
Produced from the pathogenicity islands of Staphylococcus aureus clinical isolates, stable SprG1 RNA encodes two peptides from a single internal reading frame. These two peptides accumulate at the membrane, and inducing their expression triggers S. aureus death. Replacement of the two initiation codons by termination signals reverses this toxicity. During growth, cis-antisense RNA SprF1 is expressed, preventing mortality by reducing SprG1 RNA and peptide levels. The peptides are secreted extracellularly, where they lyse human host erythrocytes, a process performed more efficiently by the longer peptide. The two peptides also inactivate Gram-negative and -positive bacteria, with the shorter peptide more effective against S. aureus rivals. Two peptides are secreted from an individual RNA containing two functional initiation codons. Thus, we present an unconventional type I toxin-antitoxin system expressed from a human pathogen producing two hemolytic and antibacterial peptides from a dual-coding RNA, negatively regulated by a dual-acting antisense RNA.
Collapse
|
36
|
Martínez LC, Vadyvaloo V. Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol 2014; 4:38. [PMID: 24724055 PMCID: PMC3971182 DOI: 10.3389/fcimb.2014.00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022] Open
Abstract
Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.
Collapse
Affiliation(s)
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| |
Collapse
|
37
|
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 2014; 6:1002-20. [PMID: 24662523 PMCID: PMC3968373 DOI: 10.3390/toxins6031002] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022] Open
Abstract
The hallmark of Mycobacterium tuberculosis is its ability to persist for a long-term in host granulomas, in a non-replicating and drug-tolerant state, and later awaken to cause disease. To date, the cellular factors and the molecular mechanisms that mediate entry into the persistence phase are poorly understood. Remarkably, M. tuberculosis possesses a very high number of toxin-antitoxin (TA) systems in its chromosome, 79 in total, regrouping both well-known (68) and novel (11) families, with some of them being strongly induced in drug-tolerant persisters. In agreement with the capacity of stress-responsive TA systems to generate persisters in other bacteria, it has been proposed that activation of TA systems in M. tuberculosis could contribute to its pathogenesis. Herein, we review the current knowledge on the multiple TA families present in this bacterium, their mechanism, and their potential role in physiology and virulence.
Collapse
|
38
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
39
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
40
|
Gilmore BF. Bacteriophages as anti-infective agents: recent developments and regulatory challenges. Expert Rev Anti Infect Ther 2014; 10:533-5. [DOI: 10.1586/eri.12.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM. Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 2014; 289:1060-70. [PMID: 24257752 PMCID: PMC3887174 DOI: 10.1074/jbc.m113.512095] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Indexed: 01/08/2023] Open
Abstract
Bacterial toxin-antitoxin (TA) systems regulate key cellular processes to promote cell survival during periods of stress. During steady-state cell growth, antitoxins typically interact with their cognate toxins to inhibit activity presumably by preventing substrate recognition. We solved two x-ray crystal structures of the Proteus vulgaris tetrameric HigB-(HigA)2-HigB TA complex and found that, unlike most other TA systems, the antitoxin HigA makes minimal interactions with toxin HigB. HigB adopts a RelE family tertiary fold containing a highly conserved concave surface where we predict its active site is located. HigA does not cover the solvent-exposed HigB active site, suggesting that, in general, toxin inhibition is not solely mediated by active site hindrance by its antitoxin. Each HigA monomer contains a helix-turn-helix motif that binds to its own DNA operator to repress transcription during normal cellular growth. This is distinct from antitoxins belonging to other superfamilies that typically only form DNA-binding motifs upon dimerization. We further show that disruption of the HigB-(HigA)2-HigB tetramer to a HigBA heterodimer ablates operator binding. Taken together, our biochemical and structural studies elucidate the novel molecular details of the HigBA TA system.
Collapse
MESH Headings
- Amino Acid Sequence
- Antitoxins/chemistry
- Antitoxins/genetics
- Antitoxins/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Catalytic Domain
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Electrophoresis, Polyacrylamide Gel
- Models, Molecular
- Molecular Sequence Data
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Multimerization
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Proteus vulgaris/genetics
- Proteus vulgaris/metabolism
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Marc A. Schureck
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tatsuya Maehigashi
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Stacey J. Miles
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jhomar Marquez
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Shein Ei Cho
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Rachel Erdman
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Christine M. Dunham
- From the Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
42
|
Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 2014; 6:304-24. [PMID: 24434905 PMCID: PMC3920263 DOI: 10.3390/toxins6010304] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually composed of a toxin and an antitoxin counteracting the activity of the toxic protein. These systems are widely spread in bacterial and archaeal genomes. TA systems have been assigned many functions, ranging from persistence to DNA stabilization or protection against mobile genetic elements. They are classified in five types, depending on the nature and mode of action of the antitoxin. In type I and III, antitoxins are RNAs that either inhibit the synthesis of the toxin or sequester it. In type II, IV and V, antitoxins are proteins that either sequester, counterbalance toxin activity or inhibit toxin synthesis. In addition to these interactions between the antitoxin and toxin components (RNA-RNA, protein-protein, RNA-protein), TA systems interact with a variety of cellular factors, e.g., toxins target essential cellular components, antitoxins are degraded by RNAses or ATP-dependent proteases. Hence, TA systems have the capacity to interact with each other at different levels. In this review, we will discuss the different interactions in which TA systems are involved and their implications in TA system functions and evolution.
Collapse
|
43
|
Xuan J, Song X, Chen C, Wang J, Feng Y. A PilT N-terminus domain protein SSO1118 from hyperthemophilic archaeon Sulfolobus solfataricus P2. JOURNAL OF BIOMOLECULAR NMR 2013; 57:363-368. [PMID: 24170369 DOI: 10.1007/s10858-013-9794-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China,
| | | | | | | | | |
Collapse
|
44
|
Molecular mechanism of bacterial persistence by HipA. Mol Cell 2013; 52:248-54. [PMID: 24095282 DOI: 10.1016/j.molcel.2013.08.045] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/29/2013] [Accepted: 08/22/2013] [Indexed: 11/24/2022]
Abstract
HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.
Collapse
|
45
|
Połom D, Boss L, Węgrzyn G, Hayes F, Kędzierska B. Amino acid residues crucial for specificity of toxin-antitoxin interactions in the homologous Axe-Txe and YefM-YoeB complexes. FEBS J 2013; 280:5906-18. [PMID: 24028219 DOI: 10.1111/febs.12517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 11/29/2022]
Abstract
Toxin-antitoxin complexes are ubiquitous in bacteria. The specificity of interactions between toxins and antitoxins from homologous but non-interacting systems was investigated. Based on molecular modeling, selected amino acid residues were changed to assess which positions were crucial in the specificity of toxin-antitoxin interaction in the related Axe-Txe and YefM-YoeB complexes. No cross-interactions between wild-type proteins were detected. However, a single amino acid substitution that converts a Txe-specific residue to a YoeB-specific residue reduced, but did not abolish, Txe interaction with the Axe antitoxin. Interestingly, this alteration (Txe-Asp83Tyr) promoted functional interactions between Txe and the YefM antitoxin. The interactions between Txe-Asp83Tyr and YefM were sufficiently strong to abolish Txe toxicity and to allow effective corepression by YefM-Txe-Asp83Tyr of the promoter from which yefM-yoeB is expressed. We conclude that Asp83 in Txe is crucial for the specificity of toxin-antitoxin interactions in the Axe-Txe complex and that swapping this residue for the equivalent residue in YoeB relaxes the specificity of the toxin-antitoxin interaction.
Collapse
Affiliation(s)
- Dorota Połom
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | | | | | |
Collapse
|
46
|
Koonin EV, Dolja VV. A virocentric perspective on the evolution of life. Curr Opin Virol 2013; 3:546-57. [PMID: 23850169 PMCID: PMC4326007 DOI: 10.1016/j.coviro.2013.06.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/12/2023]
Abstract
Viruses and/or virus-like selfish elements are associated with all cellular life forms and are the most abundant biological entities on Earth, with the number of virus particles in many environments exceeding the number of cells by one to two orders of magnitude. The genetic diversity of viruses is commensurately enormous and might substantially exceed the diversity of cellular organisms. Unlike cellular organisms with their uniform replication-expression scheme, viruses possess either RNA or DNA genomes and exploit all conceivable replication-expression strategies. Although viruses extensively exchange genes with their hosts, there exists a set of viral hallmark genes that are shared by extremely diverse groups of viruses to the exclusion of cellular life forms. Coevolution of viruses and host defense systems is a key aspect in the evolution of both viruses and cells, and viral genes are often recruited for cellular functions. Together with the fundamental inevitability of the emergence of genomic parasites in any evolving replicator system, these multiple lines of evidence reveal the central role of viruses in the entire evolution of life.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
47
|
MacGregor BJ, Biddle JF, Teske A. Mobile elements in a single-filament orange Guaymas Basin Beggiatoa ("Candidatus Maribeggiatoa") sp. draft genome: evidence for genetic exchange with cyanobacteria. Appl Environ Microbiol 2013; 79:3974-85. [PMID: 23603674 PMCID: PMC3697557 DOI: 10.1128/aem.03821-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/15/2013] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament collected from a microbial mat at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) shows evidence of extensive genetic exchange with cyanobacteria, in particular for sensory and signal transduction genes. A putative homing endonuclease gene and group I intron within the 23S rRNA gene; several group II catalytic introns; GyrB and DnaE inteins, also encoding homing endonucleases; multiple copies of sequences similar to the fdxN excision elements XisH and XisI (required for heterocyst differentiation in some cyanobacteria); and multiple sequences related to an open reading frame (ORF) (00024_0693) of unknown function all have close non-Beggiatoaceae matches with cyanobacterial sequences. Sequences similar to the uncharacterized ORF and Xis elements are found in other Beggiatoaceae genomes, a variety of cyanobacteria, and a few phylogenetically dispersed pleiomorphic or filamentous bacteria. We speculate that elements shared among filamentous bacterial species may have been exchanged in microbial mats and that some of them may be involved in cell differentiation.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA.
| | | | | |
Collapse
|
48
|
Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol 2013; 195:3834-44. [PMID: 23794616 DOI: 10.1128/jb.00412-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A stochastic, agent-based mathematical model of the coevolution of the archaeal and bacterial adaptive immunity system, CRISPR-Cas, and lytic viruses shows that CRISPR-Cas immunity can stabilize the virus-host coexistence rather than leading to the extinction of the virus. In the model, CRISPR-Cas immunity does not specifically promote viral diversity, presumably because the selection pressure on each single proto-spacer is too weak. However, the overall virus diversity in the presence of CRISPR-Cas grows due to the increase of the host and, accordingly, the virus population size. Above a threshold value of total viral diversity, which is proportional to the viral mutation rate and population size, the CRISPR-Cas system becomes ineffective and is lost due to the associated fitness cost. Our previous modeling study has suggested that the ubiquity of CRISPR-Cas in hyperthermophiles, which contrasts its comparative low prevalence in mesophiles, is due to lower rates of mutation fixation in thermal habitats. The present findings offer a complementary, simpler perspective on this contrast through the larger population sizes of mesophiles compared to hyperthermophiles, because of which CRISPR-Cas can become ineffective in mesophiles. The efficacy of CRISPR-Cas sharply increases with the number of proto-spacers per viral genome, potentially explaining the low information content of the proto-spacer-associated motif (PAM) that is required for spacer acquisition by CRISPR-Cas because a higher specificity would restrict the number of spacers available to CRISPR-Cas, thus hampering immunity. The very existence of the PAM might reflect the tradeoff between the requirement of diverse spacers for efficient immunity and avoidance of autoimmunity.
Collapse
|
49
|
Ma Z, Geng J, Yi L, Xu B, Jia R, Li Y, Meng Q, Fan H, Hu S. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246. BMC Genomics 2013; 14:377. [PMID: 23742619 PMCID: PMC3750634 DOI: 10.1186/1471-2164-14-377] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/28/2013] [Indexed: 01/10/2023] Open
Abstract
Background Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus. Results Genome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246. Conclusion Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Olivares J, Bernardini A, Garcia-Leon G, Corona F, B Sanchez M, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol 2013; 4:103. [PMID: 23641241 PMCID: PMC3639378 DOI: 10.3389/fmicb.2013.00103] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 11/13/2022] Open
Abstract
Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.
Collapse
Affiliation(s)
- Jorge Olivares
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | | | | | |
Collapse
|