1
|
Mallik S, Venezian J, Lobov A, Heidenreich M, Garcia-Seisdedos H, Yeates TO, Shiber A, Levy ED. Structural determinants of co-translational protein complex assembly. Cell 2025; 188:764-777.e22. [PMID: 39708808 DOI: 10.1016/j.cell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Protein assembly into functional complexes is critical to life's processes. While complex assembly is classically described as occurring between fully synthesized proteins, recent work showed that co-translational assembly is prevalent in human cells. However, the biological basis for the existence of this process and the identity of protein pairs that assemble co-translationally remain unknown. We show that co-translational assembly is governed by structural characteristics of complexes and involves mutually stabilized subunits. Accordingly, co-translationally assembling subunits are unstable in isolation and exhibit synchronized proteostasis with their partner. By leveraging structural signatures and AlphaFold2-based predictions, we accurately predicted co-translational assembly, including pair identities, at proteome scale and across species. We validated our predictions by ribosome profiling, stoichiometry perturbations, and single-molecule RNA-fluorescence in situ hybridization (smFISH) experiments that revealed co-localized mRNAs. This work establishes a fundamental connection between protein structure and the translation process, highlighting the overarching impact of three-dimensional structure on gene expression, mRNA localization, and proteostasis.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel.
| | - Johannes Venezian
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Arseniy Lobov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Hector Garcia-Seisdedos
- Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ayala Shiber
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7600001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Anand A, Gautam G, Yadav S, Ramalingam K, Kumar Haldar A, Goyal N. Epsilon subunit of T-complex protein-1 from Leishmania donovani: A tetrameric chaperonin. Gene 2024; 926:148637. [PMID: 38844270 DOI: 10.1016/j.gene.2024.148637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.
Collapse
Affiliation(s)
- Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabaad 201002, India
| | - Gunjan Gautam
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabaad 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Arun Kumar Haldar
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
3
|
Yeh CW, Hsu KL, Lin ST, Huang WC, Yeh KH, Liu CFJ, Wang LC, Li TT, Chen SC, Yu CH, Leu JY, Yeang CH, Yen HCS. Altered assembly paths mitigate interference among paralogous complexes. Nat Commun 2024; 15:7169. [PMID: 39169013 PMCID: PMC11339298 DOI: 10.1038/s41467-024-51286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Protein complexes are fundamental to all cellular processes, so understanding their evolutionary history and assembly processes is important. Gene duplication followed by divergence is considered a primary mechanism for diversifying protein complexes. Nonetheless, to what extent assembly of present-day paralogous complexes has been constrained by their long evolutionary pathways and how cross-complex interference is avoided remain unanswered questions. Subunits of protein complexes are often stabilized upon complex formation, whereas unincorporated subunits are degraded. How such cooperative stability influences protein complex assembly also remains unclear. Here, we demonstrate that subcomplexes determined by cooperative stabilization interactions serve as building blocks for protein complex assembly. We further develop a protein stability-guided method to compare the assembly processes of paralogous complexes in cellulo. Our findings support that oligomeric state and the structural organization of paralogous complexes can be maintained even if their assembly processes are rearranged. Our results indicate that divergent assembly processes by paralogous complexes not only enable the complexes to evolve new functions, but also reinforce their segregation by establishing incompatibility against deleterious hybrid assemblies.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Lun Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chieh Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Li-Chin Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ting-Ting Li
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chuan Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Innis S, Alpsoy A, Crodian J, Tseng YC, Dykhuizen E, Cabot B, Cabot R. Identification of SWI/SNF Subcomplex GBAF Presence, Intra-Complex Interactions, and Transcriptional Dynamics during Early Porcine Development. Animals (Basel) 2024; 14:773. [PMID: 38473159 PMCID: PMC10930984 DOI: 10.3390/ani14050773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the complex interplay between genetics and environmental factors is vital for enhancing livestock production efficiency while safeguarding animal health. Despite extensive studies on production-specific genes in livestock, exploring how epigenetic mechanisms and heritable modifications govern animal growth and development remains an under-explored frontier with potential implications across all life stages. This study focuses on the GBAF chromatin remodeling complex and evaluates its presence during embryonic and fetal development in swine. Immunocytochemistry and co-immunoprecipitation techniques were employed to investigate the presence and interactions of GBAF subunits BRD9 and GLTSCR1 in porcine oocytes, preimplantation embryos, and cell lines, and transcriptional dynamics of GBAF subunits across these key developmental stages were analyzed using existing RNA-seq datasets. BRD9 and GLTSCR1 were identified across all represented stages, and an interaction between GLTSCR1 and BAF170 was shown in PTr2 and PFF cells. Our findings highlight the ubiquitous presence of GBAF in porcine early development and the potentially novel association between GLTSCR1 and BAF170 in swine. The transcriptional dynamics findings may suggest GBAF-specific contributions during key developmental events. This study contributes to the growing understanding of epigenetic regulators in both swine and mammalian development, emphasizing the implications of GBAF as a modulator of key developmental events.
Collapse
Affiliation(s)
- Sarah Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.I.)
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jennifer Crodian
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.I.)
| | - Yu-Chun Tseng
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.I.)
| | - Emily Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Birgit Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.I.)
| | - Ryan Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.I.)
| |
Collapse
|
5
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
6
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
7
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
8
|
Wilkinson MD, Ferreira JL, Beeby M, Baum J, Willison KR. The malaria parasite chaperonin containing TCP-1 (CCT) complex: Data integration with other CCT proteomes. Front Mol Biosci 2022; 9:1057232. [PMID: 36567946 PMCID: PMC9772883 DOI: 10.3389/fmolb.2022.1057232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The multi-subunit chaperonin containing TCP-1 (CCT) is an essential molecular chaperone that functions in the folding of key cellular proteins. This paper reviews the interactome of the eukaryotic chaperonin CCT and its primary clients, the ubiquitous cytoskeletal proteins, actin and tubulin. CCT interacts with other nascent proteins, especially the WD40 propeller proteins, and also assists in the assembly of several protein complexes. A new proteomic dataset is presented for CCT purified from the human malarial parasite, P. falciparum (PfCCT). The CCT8 subunit gene was C-terminally FLAG-tagged using Selection Linked Integration (SLI) and CCT complexes were extracted from infected human erythrocyte cultures synchronized for maximum expression levels of CCT at the trophozoite stage of the parasite's asexual life cycle. We analyze the new PfCCT proteome and incorporate it into our existing model of the CCT system, supported by accumulated data from biochemical and cell biological experiments in many eukaryotic species. Together with measurements of CCT mRNA, CCT protein subunit copy number and the post-translational and chemical modifications of the CCT subunits themselves, a cumulative picture is emerging of an essential molecular chaperone system sitting at the heart of eukaryotic cell growth control and cell cycle regulation.
Collapse
Affiliation(s)
- Mark D. Wilkinson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Josie L. Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom,School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Keith R. Willison
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom,*Correspondence: Keith R. Willison,
| |
Collapse
|
9
|
The impact of dietary calcium and phosphorus on mitochondrial-linked gene expression in five tissues of laying hens. PLoS One 2022; 17:e0270550. [PMID: 35749523 PMCID: PMC9231785 DOI: 10.1371/journal.pone.0270550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
Mitochondria and the energy metabolism are linked to both, the availability of Ca and P to provide the eukaryotic cell with energy. Both minerals are commonly used supplements in the feed of laying hens but little is known about the relationship between the feed content, energy metabolism and genetic background. In this study, we provide a large-scaled gene expression analysis of 31 mitochondrial and nuclear encoded genes in 80 laying hens in the context of dietary P and Ca concentrations. The setup included five tissues and gene expression was analysed under four different diets of recommended and reduced Ca and P concentrations. Our study shows, that mitochondrial gene expression is reacting to a reduction in P and that an imbalance of the nutrients has a higher impact than a combined reduction. The results suggest, that both strains (Lohmann Brown and Lohmann Selected Leghorn) react in a similar way to the changes and that a reduction of both nutrients might be possible without crucial influence on the animals’ health or gene expression.
Collapse
|
10
|
Sharma VS, Fossati A, Ciuffa R, Buljan M, Williams EG, Chen Z, Shao W, Pedrioli PGA, Purcell AW, Martínez MR, Song J, Manica M, Aebersold R, Li C. PCfun: a hybrid computational framework for systematic characterization of protein complex function. Brief Bioinform 2022; 23:6611913. [PMID: 35724564 PMCID: PMC9310514 DOI: 10.1093/bib/bbac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
In molecular biology, it is a general assumption that the ensemble of expressed molecules, their activities and interactions determine biological function, cellular states and phenotypes. Stable protein complexes—or macromolecular machines—are, in turn, the key functional entities mediating and modulating most biological processes. Although identifying protein complexes and their subunit composition can now be done inexpensively and at scale, determining their function remains challenging and labor intensive. This study describes Protein Complex Function predictor (PCfun), the first computational framework for the systematic annotation of protein complex functions using Gene Ontology (GO) terms. PCfun is built upon a word embedding using natural language processing techniques based on 1 million open access PubMed Central articles. Specifically, PCfun leverages two approaches for accurately identifying protein complex function, including: (i) an unsupervised approach that obtains the nearest neighbor (NN) GO term word vectors for a protein complex query vector and (ii) a supervised approach using Random Forest (RF) models trained specifically for recovering the GO terms of protein complex queries described in the CORUM protein complex database. PCfun consolidates both approaches by performing a hypergeometric statistical test to enrich the top NN GO terms within the child terms of the GO terms predicted by the RF models. The documentation and implementation of the PCfun package are available at https://github.com/sharmavaruns/PCfun. We anticipate that PCfun will serve as a useful tool and novel paradigm for the large-scale characterization of protein complex function.
Collapse
Affiliation(s)
- Varun S Sharma
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI) and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Rodolfo Ciuffa
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Marija Buljan
- Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette Luxembourg
| | - Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenguang Shao
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland
| | - Anthony W Purcell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | | | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Faculty of Science, University of Zurich, Switzerland
| | - Chen Li
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Switzerland.,Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
11
|
Michnick SW, Levy ED. The modular cell gets connected. Science 2022; 375:1093-1094. [PMID: 35271323 DOI: 10.1126/science.abo2360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Integrative molecular cell biology can be used to interpret networks beyond modules.
Collapse
Affiliation(s)
- Stephen W Michnick
- Département de biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Dreyling C, Hasselmann M. The dynamics of mitochondrial-linked gene expression among tissues and life stages in two contrasting strains of laying hens. PLoS One 2022; 17:e0262613. [PMID: 35025974 PMCID: PMC8757906 DOI: 10.1371/journal.pone.0262613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/29/2021] [Indexed: 01/23/2023] Open
Abstract
The cellular energy metabolism is one of the most conserved processes, as it is present in all living organisms. Mitochondria are providing the eukaryotic cell with energy and thus their genome and gene expression has been of broad interest for a long time. Mitochondrial gene expression changes under different conditions and is regulated by genes encoded in the nucleus of the cell. In this context, little is known about non-model organisms and we provide the first large-scaled gene expression analysis of mitochondrial-linked genes in laying hens. We analysed 28 mitochondrial and nuclear genes in 100 individuals in the context of five life-stages and strain differences among five tissues. Our study showed that mitochondrial gene expression increases during the productive life span, and reacts tissue and strain specific. In addition, the strains react different to potential increased oxidative stress, resulting from the increase in mitochondrial gene expression. The results suggest that the cellular energy metabolism as part of a complex regulatory system is strongly affected by the productive life span in laying hens and thus partly comparable to model organisms. This study provides a starting point for further analyses in this field on non-model organisms, especially in laying-hens.
Collapse
Affiliation(s)
- Clara Dreyling
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Martin Hasselmann
- Department of Livestock Population Genomics, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Vallin J, Grantham J. Functional assessment of the V390F mutation in the CCTδ subunit of chaperonin containing tailless complex polypeptide 1. Cell Stress Chaperones 2021; 26:955-964. [PMID: 34655026 PMCID: PMC8578507 DOI: 10.1007/s12192-021-01237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
The chaperonin containing tailless complex polypeptide 1 (CCT) is a multi-subunit molecular chaperone. It is found in the cytoplasm of all eukaryotic cells, where the oligomeric form plays an essential role in the folding of predominantly the cytoskeletal proteins actin and tubulin. Both the CCT oligomer and monomeric subunits also display functions that extend beyond folding, which are often associated with microtubules and actin filaments. Here, we assess the functional significance of the CCTδ V390F mutation, reported in several cancer cell lines. Upon transfection into B16F1 mouse melanoma cells, GFP-CCTδV390F incorporates into the CCT oligomer more readily than GFP-CCTδ. Furthermore, unlike GFP-CCTδ, GFP-CCTδV390F does not interact with the dynactin complex component, p150Glued. As CCTδ has previously been implicated in altered migration in wound healing assays, we assessed the behaviour of GFP-CCTδV390F and other mutants of CCTδ, previously used to assess functional interactions with p150Glued, in chemotaxis assays. We developed the assay system to incorporate a layer of the inert hydrogel GrowDex® to provide a 3D matrix for chemotaxis assessment and found subtle differences in the migration of B16F1 cells, depending on the presence of the hydrogel.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
14
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
15
|
Spasskaya DS, Kotlov MI, Lekanov DS, Tutyaeva VV, Snezhkina AV, Kudryavtseva AV, Karpov VL, Karpov DS. CRISPR/Cas9-Mediated Genome Engineering Reveals the Contribution of the 26S Proteasome to the Extremophilic Nature of the Yeast Debaryomyces hansenii. ACS Synth Biol 2021; 10:297-308. [PMID: 33501828 DOI: 10.1021/acssynbio.0c00426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The marine yeast Debaryomyces hansenii is of high importance in the food, chemical, and medical industries. D. hansenii is also a popular model for studying molecular mechanisms of halo- and osmotolerance. The absence of genome editing technologies hampers D. hansenii research and limits its biotechnological application. We developed novel and efficient single- and dual-guide CRISPR systems for markerless genome editing of D. hansenii. The single-guide system allows high-efficiency (up to 95%) mutation of genes or regulatory elements. The dual-guide system is applicable for efficient deletion of genomic loci. We used these tools to study transcriptional regulation of the 26S proteasome, an ATP-dependent protease complex whose proper function is vital for all cells and organisms. We developed a genetic approach to control the activity of the 26S proteasome by deregulation of its essential subunits. The mutant strains were sensitive to geno- and proteotoxic stresses as well as high salinity and osmolarity, suggesting a contribution of the proteasome to the extremophilic properties of D. hansenii. The developed CRISPR systems allow efficient D. hansenii genome engineering, providing a genetic way to control proteasome activity, and should advance applications of this yeast.
Collapse
Affiliation(s)
- Daria S. Spasskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Mikhail I. Kotlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Dmitriy S. Lekanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Vera V. Tutyaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Anastasiya V. Snezhkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| |
Collapse
|
16
|
Weber AAT, Hugall AF, O’Hara TD. Convergent Evolution and Structural Adaptation to the Deep Ocean in the Protein-Folding Chaperonin CCTα. Genome Biol Evol 2020; 12:1929-1942. [PMID: 32780796 PMCID: PMC7643608 DOI: 10.1093/gbe/evaa167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
The deep ocean is the largest biome on Earth and yet it is among the least studied environments of our planet. Life at great depths requires several specific adaptations; however, their molecular mechanisms remain understudied. We examined patterns of positive selection in 416 genes from four brittle star (Ophiuroidea) families displaying replicated events of deep-sea colonization (288 individuals from 216 species). We found consistent signatures of molecular convergence in functions related to protein biogenesis, including protein folding and translation. Five genes were recurrently positively selected, including chaperonin-containing TCP-1 subunit α (CCTα), which is essential for protein folding. Molecular convergence was detected at the functional and gene levels but not at the amino-acid level. Pressure-adapted proteins are expected to display higher stability to counteract the effects of denaturation. We thus examined in silico local protein stability of CCTα across the ophiuroid tree of life (967 individuals from 725 species) in a phylogenetically corrected context and found that deep-sea-adapted proteins display higher stability within and next to the substrate-binding region, which was confirmed by in silico global protein stability analyses. This suggests that CCTα displays not only structural but also functional adaptations to deep-water conditions. The CCT complex is involved in the folding of ∼10% of newly synthesized proteins and has previously been categorized as a "cold-shock" protein in numerous eukaryotes. We thus propose that adaptation mechanisms to cold and deep-sea environments may be linked and highlight that efficient protein biogenesis, including protein folding and translation, is a key metabolic deep-sea adaptation.
Collapse
Affiliation(s)
- Alexandra A -T Weber
- Sciences, Museums Victoria, Melbourne, Victoria, Australia
- Centre de Bretagne, REM/EEP, Ifremer, Laboratoire Environnement Profond, Plouzané, France
- Zoological Institute, University of Basel, Switzerland
| | | | | |
Collapse
|
17
|
Dubreuil B, Sass E, Nadav Y, Heidenreich M, Georgeson JM, Weill U, Duan Y, Meurer M, Schuldiner M, Knop M, Levy ED. YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries. Nucleic Acids Res 2020; 47:D1245-D1249. [PMID: 30357397 PMCID: PMC6324022 DOI: 10.1093/nar/gky941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023] Open
Abstract
The ability to measure the abundance and visualize the localization of proteins across the yeast proteome has stimulated hypotheses on gene function and fueled discoveries. While the classic C’ tagged GFP yeast library has been the only resource for over a decade, the recent development of the SWAT technology has led to the creation of multiple novel yeast libraries where new-generation fluorescent reporters are fused at the N’ and C’ of open reading frames. Efficient access to these data requires a user interface to visualize and compare protein abundance, localization and co-localization across cells, strains, and libraries. YeastRGB (www.yeastRGB.org) was designed to address such a need, through a user-friendly interface that maximizes informative content. It employs a compact display where cells are cropped and tiled together into a ‘cell-grid.’ This representation enables viewing dozens of cells for a particular strain within a display unit, and up to 30 display units can be arrayed on a standard high-definition screen. Additionally, the display unit allows users to control zoom-level and overlay of images acquired using different color channels. Thus, YeastRGB makes comparing abundance and localization efficient, across thousands of cells from different strains and libraries.
Collapse
Affiliation(s)
- Benjamin Dubreuil
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Nadav
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Meta Heidenreich
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph M Georgeson
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yuanqiang Duan
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Matthias Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,Cell Morphogenesis and Signal Transduction, DKFZ-ZMBH Alliance and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
18
|
The Benefits of Cotranslational Assembly: A Structural Perspective. Trends Cell Biol 2019; 29:791-803. [DOI: 10.1016/j.tcb.2019.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
|
19
|
Cicaloni V, Trezza A, Pettini F, Spiga O. Applications of in Silico Methods for Design and Development of Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:534-554. [PMID: 30836920 DOI: 10.2174/1568026619666190304153901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Identification of Protein-Protein Interactions (PPIs) is a major challenge in modern molecular biology and biochemistry research, due to the unquestionable role of proteins in cells, biological process and pathological states. Over the past decade, the PPIs have evolved from being considered a highly challenging field of research to being investigated and examined as targets for pharmacological intervention. OBJECTIVE Comprehension of protein interactions is crucial to known how proteins come together to build signalling pathways, to carry out their functions, or to cause diseases, when deregulated. Multiplicity and great amount of PPIs structures offer a huge number of new and potential targets for the treatment of different diseases. METHODS Computational techniques are becoming predominant in PPIs studies for their effectiveness, flexibility, accuracy and cost. As a matter of fact, there are effective in silico approaches which are able to identify PPIs and PPI site. Such methods for computational target prediction have been developed through molecular descriptors and data-mining procedures. RESULTS In this review, we present different types of interactions between protein-protein and the application of in silico methods for design and development of drugs targeting PPIs. We described computational approaches for the identification of possible targets on protein surface and to detect of stimulator/ inhibitor molecules. CONCLUSION A deeper study of the most recent bioinformatics methodologies for PPIs studies is vital for a better understanding of protein complexes and for discover new potential PPI modulators in therapeutic intervention.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy.,Toscana Life Sciences Foundation, via Fiorentina 1, 53100 Siena, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Francesco Pettini
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy (Dept. of Excellence 2018-2022), University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
20
|
Understanding Human-Virus Protein-Protein Interactions Using a Human Protein Complex-Based Analysis Framework. mSystems 2019; 4:mSystems00303-18. [PMID: 30984872 PMCID: PMC6456672 DOI: 10.1128/msystems.00303-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/20/2019] [Indexed: 12/29/2022] Open
Abstract
Although human protein complexes have been reported to be directly related to viral infection, previous studies have not systematically investigated human-virus PPIs from the perspective of human protein complexes. To the best of our knowledge, we have presented here the most comprehensive and in-depth analysis of human-virus PPIs in the context of VTCs. Our findings confirm that human protein complexes are heavily involved in viral infection. The observed preferences of virally targeted subunits within complexes reflect the mechanisms used by viruses to manipulate host protein complexes. The identified periodic expression patterns of the VTCs and the corresponding candidates could increase our understanding of how viruses manipulate the host cell cycle. Finally, our proposed conceptual application framework of VTCs and the developed VTcomplex could provide new hints to develop antiviral drugs for the clinical treatment of viral infections. Computational analysis of human-virus protein-protein interaction (PPI) data is an effective way toward systems understanding the molecular mechanism of viral infection. Previous work has mainly focused on characterizing the global properties of viral targets within the entire human PPI network. In comparison, how viruses manipulate host local networks (e.g., human protein complexes) has been rarely addressed from a computational perspective. By mainly integrating information about human-virus PPIs, human protein complexes, and gene expression profiles, we performed a large-scale analysis of virally targeted complexes (VTCs) related to five common human-pathogenic viruses, including influenza A virus subtype H1N1, human immunodeficiency virus type 1, Epstein-Barr virus, human papillomavirus, and hepatitis C virus. We found that viral targets are enriched within human protein complexes. We observed in the context of VTCs that viral targets tended to have a high within-complex degree and to be scaffold and housekeeping proteins. Complexes that are essential for viral propagation were simultaneously targeted by multiple viruses. We characterized the periodic expression patterns of VTCs and provided the corresponding candidates that may be involved in the manipulation of the host cell cycle. As a potential application of the current analysis, we proposed a VTC-based antiviral drug target discovery strategy. Finally, we developed an online VTC-related platform known as VTcomplex (http://zzdlab.com/vtcomplex/index.php or http://systbio.cau.edu.cn/vtcomplex/index.php). We hope that the current analysis can provide new insights into the global landscape of human-virus PPIs at the VTC level and that the developed VTcomplex will become a vital resource for the community. IMPORTANCE Although human protein complexes have been reported to be directly related to viral infection, previous studies have not systematically investigated human-virus PPIs from the perspective of human protein complexes. To the best of our knowledge, we have presented here the most comprehensive and in-depth analysis of human-virus PPIs in the context of VTCs. Our findings confirm that human protein complexes are heavily involved in viral infection. The observed preferences of virally targeted subunits within complexes reflect the mechanisms used by viruses to manipulate host protein complexes. The identified periodic expression patterns of the VTCs and the corresponding candidates could increase our understanding of how viruses manipulate the host cell cycle. Finally, our proposed conceptual application framework of VTCs and the developed VTcomplex could provide new hints to develop antiviral drugs for the clinical treatment of viral infections.
Collapse
|
21
|
Vallin J, Grantham J. The role of the molecular chaperone CCT in protein folding and mediation of cytoskeleton-associated processes: implications for cancer cell biology. Cell Stress Chaperones 2019; 24:17-27. [PMID: 30506376 PMCID: PMC6363620 DOI: 10.1007/s12192-018-0949-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022] Open
Abstract
The chaperonin-containing tailless complex polypeptide 1 (CCT) is required in vivo for the folding of newly synthesized tubulin and actin proteins and is thus intrinsically connected to all cellular processes that rely on the microtubule and actin filament components of the cytoskeleton, both of which are highly regulated and dynamic assemblies. In addition to CCT acting as a protein folding oligomer, further modes of CCT action mediated either by the CCT oligomer itself or via CCT subunits in their monomeric forms can influence processes associated with assembled actin filaments and microtubules. Thus, there is an extended functional role for CCT with regard to its major folding substrates with a complex interplay between CCT as folding machine for tubulin/actin and as a modulator of processes involving the assembled cytoskeleton. As cell division, directed cell migration, and invasion are major drivers of cancer development and rely on the microtubule and actin filament components of the cytoskeleton, CCT activity is fundamentally linked to cancer. Furthermore, the CCT oligomer also folds proteins connected to cell cycle progression and interacts with several other proteins that are linked to cancer such as tumor-suppressor proteins and regulators of the cytoskeleton, while CCT monomer function can influence cell migration. Thus, understanding CCT activity is important for many aspects of cancer cell biology and may reveal new ways to target tumor growth and invasion.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
22
|
Tusk SE, Delalez NJ, Berry RM. Subunit Exchange in Protein Complexes. J Mol Biol 2018; 430:4557-4579. [DOI: 10.1016/j.jmb.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 01/09/2023]
|
23
|
Abstract
Together, the nuclear and mitochondrial genomes encode the oxidative phosphorylation (OXPHOS) complexes that reside in the mitochondrial inner membrane and enable aerobic life. Mitochondria maintain their own genome that is expressed and regulated by factors distinct from their nuclear counterparts. For optimal function, the cell must ensure proper stoichiometric production of OXPHOS subunits by coordinating two physically separated and evolutionarily distinct gene expression systems. Here, we review our current understanding of mitonuclear coregulation primarily at the levels of transcription and translation. Additionally, we discuss other levels of coregulation that may exist but remain largely unexplored, including mRNA modification and stability and posttranslational protein degradation.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , ,
| | - Erik McShane
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , ,
| | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , ,
| |
Collapse
|
24
|
Echbarthi M, Vallin J, Grantham J. Interactions between monomeric CCTδ and p150 Glued: A novel function for CCTδ at the cell periphery distinct from the protein folding activity of the molecular chaperone CCT. Exp Cell Res 2018; 370:137-149. [PMID: 29913154 DOI: 10.1016/j.yexcr.2018.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/08/2023]
Abstract
Chaperonin containing tailless complex polypeptide 1 (CCT) is a molecular chaperone consisting of eight distinct protein subunits, that when oligomeric is essential for the folding of newly synthesized tubulin and actin. In addition to folding, CCT activity includes functions of individual subunits in their monomeric form. For example, when CCTδ monomer levels are increased in cultured mammalian cells, numerous cell surface protrusions are formed from retraction fibres, indicating that an underlying function for the CCTδ monomer exists. Here, using a yeast two-hybrid screen we identify the dynactin complex component p150Glued as a binding partner for CCTδ and show by siRNA depletion that this interaction is required for the formation of CCTδ-induced cell surface protrusions. Intact microtubules are necessary for the formation of the protrusions, consistent with microtubule minus end transport driving the retraction fibre formation and depletion of either p150Glued or the dynactin complex-associated transmembrane protein dynAP prevents the previously observed localization of GFP-CCTδ to the plasma membrane. Wound healing assays reveal that CCTδ monomer levels influence directional cell migration and together our observations demonstrate that in addition to the folding activity of CCT in its oligomer form, a monomeric subunit is associated with events that involve the assembled cytoskeleton.
Collapse
Affiliation(s)
- Meriem Echbarthi
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Sweden
| | - Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Sweden.
| |
Collapse
|
25
|
Chan CW, Kiesel BR, Mondragón A. Crystal Structure of Human Rpp20/Rpp25 Reveals Quaternary Level Adaptation of the Alba Scaffold as Structural Basis for Single-stranded RNA Binding. J Mol Biol 2018; 430:1403-1416. [PMID: 29625199 DOI: 10.1016/j.jmb.2018.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
Abstract
Ribonuclease P (RNase P) catalyzes the removal of 5' leaders of tRNA precursors and its central catalytic RNA subunit is highly conserved across all domains of life. In eukaryotes, RNase P and RNase MRP, a closely related ribonucleoprotein enzyme, share several of the same protein subunits, contain a similar catalytic RNA core, and exhibit structural features that do not exist in their bacterial or archaeal counterparts. A unique feature of eukaryotic RNase P/MRP is the presence of two relatively long and unpaired internal loops within the P3 region of their RNA subunit bound by a heterodimeric protein complex, Rpp20/Rpp25. Here we present a crystal structure of the human Rpp20/Rpp25 heterodimer and we propose, using comparative structural analyses, that the evolutionary divergence of the single-stranded and helical nucleic acid binding specificities of eukaryotic Rpp20/Rpp25 and their related archaeal Alba chromatin protein dimers, respectively, originate primarily from quaternary level differences observed in their heterodimerization interface. Our work provides structural insights into how the archaeal Alba protein scaffold was adapted evolutionarily for incorporation into several functionally-independent eukaryotic ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States
| | - Benjamin R Kiesel
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, United States.
| |
Collapse
|
26
|
Holland DO, Johnson ME. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis. PLoS Comput Biol 2018. [PMID: 29518071 PMCID: PMC5860782 DOI: 10.1371/journal.pcbi.1006022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module allows cells to tune where endocytosis occurs, providing sensitive control over cargo uptake via clathrin-coated vesicles. Protein copy numbers are often found to be stoichiometrically balanced for subunits of multi-protein complexes. Imbalance is believed to be deleterious because it lowers complex yield (the dosage balance hypothesis) and increases the risk of misinteractions, but imbalance may also provide unexplored functional benefits. We show here that the benefits of stoichiometric balance can extend to larger networks of interacting proteins. We develop a method to quantify to what degree protein networks are balanced, and apply it to two networks. We find that the clathrin-mediated endocytosis system in yeast is statistically balanced, but not perfectly so, and explore the consequences of imbalance in the form of misinteractions and endocytic function. We also show that biological networks are more robust to misinteractions than random networks when balanced, but are more sensitive to misinteractions under imbalance. This suggests evolutionary pressure for proteins to be balanced and that any conserved imbalance should occur for functional reasons. We explore one such reason in the form of bottlenecking the endocytosis process. Our method can be generalized to other networks and used to identify out-of-balance proteins. Our results provide insight into how network design, expression level regulation, and cell fitness are intertwined.
Collapse
Affiliation(s)
- David O. Holland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Margaret E. Johnson
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Spillman NJ, Beck JR, Ganesan SM, Niles JC, Goldberg DE. The chaperonin TRiC forms an oligomeric complex in the malaria parasite cytosol. Cell Microbiol 2017; 19. [PMID: 28067475 DOI: 10.1111/cmi.12719] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite-specific antibody and epitope-tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC-θ subunit. Loss of the parasite TRiC-θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.
Collapse
Affiliation(s)
- Natalie J Spillman
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Josh R Beck
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
28
|
Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation. Cell 2016; 167:803-815.e21. [PMID: 27720452 DOI: 10.1016/j.cell.2016.09.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.
Collapse
|
29
|
Abrie JA, Molero C, Ariño J, Strauss E. Complex stability and dynamic subunit interchange modulates the disparate activities of the yeast moonlighting proteins Hal3 and Vhs3. Sci Rep 2015; 5:15774. [PMID: 26514574 PMCID: PMC4626798 DOI: 10.1038/srep15774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, acting both as inhibitors of the serine/threonine protein phosphatase Ppz1 and as subunits (together with Cab3) of the unique heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme of Hemiascomycetous yeast. Both these roles are essential: PPCDC catalyses the third step of coenzyme A biosynthesis, while Ppz1 inhibition is required for regulation of monovalent cation homeostasis. However, the mechanisms by which these proteins’ disparate activities are regulated are not well understood. The PPCDC domains (PDs) of Hal3, Vhs3 and Cab3 constitute the minimum requirement for these proteins to show both PPCDC activity and, in the case of Hal3 and Vhs3, to bind to Ppz1. Using these PD proteins as a model system to study the possibility of dynamic interchange between these roles, we provide evidence that Hal3 binds Ppz1 as a monomer (1:1 stoichiometry), requiring it to de-oligomerize from its usual homo- and heterotrimeric states (the latter having PPCDC activity). This de-oligomerization is made possible by structural features that set Hal3 apart from Vhs3, increasing its ability to undergo monomer exchange. These findings suggest that oligomer interchange may be a significant factor in the functional regulation of these proteins and their various unrelated (moonlighting) functions.
Collapse
Affiliation(s)
- J Albert Abrie
- Department of Biochemistry, Stellenbosch University, South Africa
| | - Cristina Molero
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, South Africa
| |
Collapse
|
30
|
Wang Y, Ma H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits. THE NEW PHYTOLOGIST 2015; 207:1198-212. [PMID: 25921392 DOI: 10.1111/nph.13432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/24/2015] [Indexed: 05/25/2023]
Abstract
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
31
|
Edmunds LR, Sharma L, Wang H, Kang A, d’Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS One 2015; 10:e0134049. [PMID: 26230505 PMCID: PMC4521957 DOI: 10.1371/journal.pone.0134049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022] Open
Abstract
The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.
Collapse
Affiliation(s)
- Lia R. Edmunds
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Lokendra Sharma
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Huabo Wang
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Audry Kang
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sonia d’Souza
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Jie Lu
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Michael McLaughlin
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - James M. Dolezal
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Susan T. Weintraub
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Ying Ding
- Department of Biostatistics, The University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xuemei Zeng
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nathan Yates
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- The Hillman Cancer Center, The University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
32
|
Over-Expression Analysis of All Eight Subunits of the Molecular Chaperone CCT in Mammalian Cells Reveals a Novel Function for CCTdelta. J Mol Biol 2015; 427:2757-64. [PMID: 26101841 DOI: 10.1016/j.jmb.2015.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022]
Abstract
Chaperonin containing tailless complex polypeptide 1 (CCT) forms a classical chaperonin barrel structure where two rings of subunits surround a central cavity. Each ring consists of eight distinct subunits, creating a complex binding interface that makes CCT unique among the chaperonins. In addition to acting as a multimeric chaperonin, there is increasing evidence indicating that the CCT subunits, when monomeric, possess additional functions. Here we assess the role of the CCT subunits individually, using a GFP (green fluorescent protein) tagging approach to express each of the subunits in their monomeric form in cultured mammalian cells. Over-expression of CCTdelta, but not the other seven CCT subunits, results in the appearance of numerous protrusions at the cell surface. Two point mutations, one in the apical domain and one in the ATP binding pocket of CCTdelta, that abolish protrusion formation have been identified, consistent with the apical domain containing a novel interaction site that is influenced by the ATPase activity in the equatorial domain. Structured illumination microscopy, together with sub-cellular fractionation, reveals that only the wild-type CCTdelta is associated with the plasma membrane, thus connecting spatial organization with surface protrusion formation. Expression of the equivalent subunit in yeast, GFP-Cct4, rescues growth of the temperature-sensitive strain cct4-1 at the non-permissive temperature, indicative of conserved subunit-specific activities for CCTdelta.
Collapse
|
33
|
Elliott KL, Svanström A, Spiess M, Karlsson R, Grantham J. A novel function of the monomeric CCTε subunit connects the serum response factor pathway to chaperone-mediated actin folding. Mol Biol Cell 2015; 26:2801-9. [PMID: 26063733 PMCID: PMC4571339 DOI: 10.1091/mbc.e15-01-0048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022] Open
Abstract
Correct protein folding is fundamental for maintaining protein homeostasis and avoiding the formation of potentially cytotoxic protein aggregates. Although some proteins appear to fold unaided, actin requires assistance from the oligomeric molecular chaperone CCT. Here we report an additional connection between CCT and actin by identifying one of the CCT subunits, CCTε, as a component of the myocardin-related cotranscription factor-A (MRTF-A)/serum response factor (SRF) pathway. The SRF pathway registers changes in G-actin levels, leading to the transcriptional up-regulation of a large number of genes after actin polymerization. These genes encode numerous actin-binding proteins as well as actin. We show that depletion of the CCTε subunit by siRNA enhances SRF signaling in cultured mammalian cells by an actin assembly-independent mechanism. Overexpression of CCTε in its monomeric form revealed that CCTε binds via its substrate-binding domain to the C-terminal region of MRTF-A and that CCTε is able to alter the nuclear accumulation of MRTF-A after stimulation by serum addition. Given that the levels of monomeric CCTε conversely reflect the levels of CCT oligomer, our results suggest that CCTε provides a connection between the actin-folding capacity of the cell and actin expression.
Collapse
Affiliation(s)
- Kerryn L Elliott
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Andreas Svanström
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Matthias Spiess
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Roger Karlsson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
34
|
Structural and evolutionary versatility in protein complexes with uneven stoichiometry. Nat Commun 2015; 6:6394. [PMID: 25775164 DOI: 10.1038/ncomms7394] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/25/2015] [Indexed: 12/20/2022] Open
Abstract
Proteins assemble into complexes with diverse quaternary structures. Although most heteromeric complexes of known structure have even stoichiometry, a significant minority have uneven stoichiometry--that is, differing numbers of each subunit type. To adopt this uneven stoichiometry, sequence-identical subunits must be asymmetric with respect to each other, forming different interactions within the complex. Here we first investigate the occurrence of uneven stoichiometry, demonstrating that it is common in vitro and is likely to be common in vivo. Next, we elucidate the structural determinants of uneven stoichiometry, identifying six different mechanisms by which it can be achieved. Finally, we study the frequency of uneven stoichiometry across evolution, observing a significant enrichment in bacteria compared with eukaryotes. We show that this arises due to a general increased tendency for bacterial proteins to self-assemble and form homomeric interactions, even within the context of a heteromeric complex.
Collapse
|
35
|
Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C. Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 2015; 15:3163-8. [PMID: 25656970 PMCID: PMC6680238 DOI: 10.1002/pmic.201400441] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 01/17/2023]
Abstract
Protein quantification at proteome‐wide scale is an important aim, enabling insights into fundamental cellular biology and serving to constrain experiments and theoretical models. While proteome‐wide quantification is not yet fully routine, many datasets approaching proteome‐wide coverage are becoming available through biophysical and MS techniques. Data of this type can be accessed via a variety of sources, including publication supplements and online data repositories. However, access to the data is still fragmentary, and comparisons across experiments and organisms are not straightforward. Here, we describe recent updates to our database resource “PaxDb” (Protein Abundances Across Organisms). PaxDb focuses on protein abundance information at proteome‐wide scope, irrespective of the underlying measurement technique. Quantification data is reprocessed, unified, and quality‐scored, and then integrated to build a meta‐resource. PaxDb also allows evolutionary comparisons through precomputed gene orthology relations. Recently, we have expanded the scope of the database to include cell‐line samples, and more systematically scan the literature for suitable datasets. We report that a significant fraction of published experiments cannot readily be accessed and/or parsed for quantitative information, requiring additional steps and efforts. The current update brings PaxDb to 414 datasets in 53 organisms, with (semi‐) quantitative abundance information covering more than 300 000 proteins.
Collapse
Affiliation(s)
- Mingcong Wang
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Christina J Herrmann
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Milan Simonovic
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland
| |
Collapse
|