1
|
Chang K, Hong F, Liu H, Fang Y, Wang H, Song N, Ning Y, Lu Z, Jin S, Dai Y, Ding X. FTO aggravates podocyte injury and diabetic nephropathy progression via m6A-dependent stabilization of ACC1 mRNA and promoting fatty acid metabolism. Biochem Pharmacol 2025; 235:116819. [PMID: 39988261 DOI: 10.1016/j.bcp.2025.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Podocyte injury associated with albuminuria and diabetic nephropathy (DN) progression. N6-methyladenosine (m6A) is a common form of epigenetic modification in eukaryotic cells and is known to be associated with a variety of disease processes. Its role in podocyte injury of DN remains poorly studied. We observed a higher expression of fat mass and obesity-associated protein (FTO) both in diabetic mice and human kidneys and DN podocytes in vitro, and the level of FTO was correlated with lipid accumulation. Furthermore, we confirmed that two selective FTO demethylation inhibitors meclofenamic acid (MA) and diacerein (DIA) administration effectively ameliorated lipotoxicity-induced podocyte injury, evidenced by restored autophagy, inhibition of apoptosis and inflammation, as well as mitigating endoplasmic reticulum stress (ERS) and mitochondrial damage both in vitro and vivo model of DN. Mechanistically, FTO demethylation inhibitors downregulated Acetyl-CoA-carboxylase 1 (ACC1) levels in db/db mice and advanced glycation end product (AGE)-treated podocytes, subsequently decreased podocyte fatty acid accumulation. ACC1 was identified as a direct FTO target in which FTO stabilizes ACC1 mRNA with the mediation of YTH domain-containing family protein 2 (YTHDF2) in an m6A-dependent manner using m6A RNA immunoprecipitation-quantitative real-time PCR (MeRIP-qPCR) and dual-luciferase reporter gene assays. Collectively, our findings demonstrate an important role of FTO mediated-m6A modification of ACC1 contributed to s lipotoxicity-mediated injury of DN podocytes, which provide fresh insights into the therapeutic strategies for DN.
Collapse
Affiliation(s)
- Kaili Chang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Fuyuan Hong
- Division of Nephrology, Fujian Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350122, China
| | - Hong Liu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Hongyu Wang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Yichun Ning
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Zhihui Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Shi Jin
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China
| | - Yan Dai
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Kidney and Dialysis Institute of Shanghai, Kidney and Blood Purification Laboratory of Shanghai, Shanghai 200032, China.
| |
Collapse
|
2
|
Li X, Guo W, Wen Y, Meng C, Zhang Q, Chen H, Zhao X, Wu B. Structural basis for the RNA binding properties of mouse IGF2BP3. Structure 2025; 33:771-785.e3. [PMID: 39986276 DOI: 10.1016/j.str.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
IGF2BP family proteins (IGF2BPs) contain six tandem RNA-binding domains (RBDs), resulting in highly complex RNA binding properties. Dissecting how IGF2BPs recognize their RNA targets is essential for understanding their regulatory roles in gene expression. Here, we have determined the crystal structures of mouse IGF2BP3 constructs complexed with different RNA substrates. Our structures reveal that the IGF2BP3-RRM12 domains can recognize CA-rich elements up to 5-nt in length, mainly through RRM1. We also captured the antiparallel RNA-binding mode of the IGF2BP3-KH12 domains, with five nucleotides bound by KH1 and two nucleotides bound by KH2. Furthermore, our structural and biochemical studies suggest that the IGF2BP3-KH12 domains could recognize the "zipcode" RNA element within the β-actin mRNA. Finally, we analyzed the similarities and differences of the RNA-binding properties between the KH12 and KH34. Our studies provide structural insights into RNA target recognition by mouse IGF2BP3.
Collapse
Affiliation(s)
- Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaomiao Zhao
- Department of Reproductive Medicine, Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Lancaster CL, Moberg KH, Corbett AH. Post-Transcriptional Regulation of Gene Expression and the Intricate Life of Eukaryotic mRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70007. [PMID: 40059537 PMCID: PMC11949413 DOI: 10.1002/wrna.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
In recent years, there has been a growing appreciation for how regulatory events that occur either co- or post-transcriptionally contribute to the control of gene expression. Messenger RNAs (mRNAs) are extensively regulated throughout their metabolism in a precise spatiotemporal manner that requires sophisticated molecular mechanisms for cell-type-specific gene expression, which dictates cell function. Moreover, dysfunction at any of these steps can result in a variety of human diseases, including cancers, muscular atrophies, and neurological diseases. This review summarizes the steps of the central dogma of molecular biology, focusing on the post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Carly L. Lancaster
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University Atlanta, Georgia, USA
| | - Kenneth H. Moberg
- Department of Cell Biology Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anita H. Corbett
- Department of Biology, Emory College of Arts and Sciences, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Song GY, Yu QH, Xing XK, Fan XM, Xu SG, Zhang WB, Wu YY, Zhang N, Chao TZ, Wang F, Ding CS, Guo CY, Ma L, Sun CY, Duan SY, Xu P. The YTHDC1 reader protein recognizes and regulates the lncRNA MEG3 following its METTL3-mediated m 6A methylation: a novel mechanism early during radiation-induced liver injury. Cell Death Dis 2025; 16:127. [PMID: 39994235 PMCID: PMC11850776 DOI: 10.1038/s41419-025-07417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
While apoptotic cell death is known to be central to the pathogenesis of radiation-induced liver injury (RILI), the mechanistic basis for this apoptotic activity remains poorly understood. N6-methyladenosine (m6A) modifications are the most common form of reversible methylation observed on lncRNAs in eukaryotic cells, with their presence leading to pronounced changes in the activity of a range of biological processes. The degree to which m6A modification plays a role in the induction of apoptotic cell death in response to ionizing radiation (IR) in the context of RILI remains to be established. Here, IR-induced apoptosis was found to significantly decrease the levels of m6A present, with a pronounced decrease in the expression of methyltransferase-like 3 (METTL3) at 2 d post radiation in vitro. From a mechanistic perspective, a methylated RNA immunoprecipitation assay found that lncRNA MEG3 was a major METTL3 target. The expression of MEG3 was upregulated via METTL3-mediated m6A in a process that was dependent on YTHDC1, ultimately reversing the miR-20b-mediated inhibition of BNIP2 expression. Together, these findings demonstrate that the responsivity of METTL3 activity to IR plays a role in IR-induced apoptotic cell death, leading to the reverse of miR-20b-mediated BNIP2 inhibition through the YTHDC1-dependent m6A modification of MEG3, suggesting that this process may play a central role in RILI incidence.
Collapse
Affiliation(s)
- Gui-Yuan Song
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Xue-Kun Xing
- School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| | - Xin-Ming Fan
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Si-Guang Xu
- Key Laboratory of Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wen-Bo Zhang
- Key Laboratory of Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yao-Yao Wu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Nan Zhang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Tian-Zhu Chao
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Cheng-Shi Ding
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Cun-Yang Guo
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Binzhou Medical University, Yantai, Shandong, China
| | - Li Ma
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Chang-Ye Sun
- Key Laboratory of Medical Tissue Regeneration of Henan Province, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shu-Yan Duan
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China.
| |
Collapse
|
6
|
Sheng Q, Yu Q, Lu S, Yang M, Fan X, Su H, Kong Z, Gao Y, Wang R, Lv Z. The inhibition of ZC3H13 attenuates G2/M arrest and apoptosis by alleviating NABP1 m6A modification in cisplatin-induced acute kidney injury. Cell Mol Life Sci 2025; 82:86. [PMID: 39985591 PMCID: PMC11846817 DOI: 10.1007/s00018-025-05596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025]
Abstract
Acute kidney injury (AKI) is a clinical syndrome caused by various etiologies and causes a rapid decline in renal function in a short period of time. The most common internal modification of mRNAs is the N6-methyladenosine (m6A) modification, which is important for controlling gene expressions. However, the role of m6A modification in AKI is largely unknown. Here, we characterized the role of zinc finger CCCH-type containing 13 (ZC3H13), which is a type of m6A methyltransferases, in cisplatin-induced AKI mouse model and a cisplatin-treated human proximal tubular epithelial cell line (HK2 cells). The ZC3H13 knockdown attenuated the G2/M cell cycle arrest and apoptosis in HK2 cells. In the ZC3H13-overexpressed HK2 cells, the opposite was true. In the presence of cisplatin, mice with the AAV9-mediated silencing of ZC3H13 exhibited milder cell cycle arrest, apoptosis, and renal injury. In addition, we identified nucleic acid binding protein 1 (NABP1) as a target of ZC3H13, which was verified by knocking down and overexpressing ZC3H13 in HK2 cells. Moreover, we confirmed that the ZC3H13-mediated m6A modification stabilized NABP1 mRNA and was discriminated by insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1). In conclusion, ZC3H13 promoted the m6A modification of NABP1 and enhanced its mRNA stability through an IGF2BP1-dependent mechanism. The inhibition of ZC3H13 alleviated the G2/M cell cycle arrest, apoptosis and kidney injury by affecting the expression of NABP1. These results show that the ZC3H13/NABP1 axis is a promising AKI treatment target.
Collapse
Affiliation(s)
- Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Shan C, Dong K, Wen D, Ye Z, Hu F, Zekraoui M, Cao J. Writers, readers, and erasers of N6-Methyladenosine (m6A) methylomes in oilseed rape: identification, molecular evolution, and expression profiling. BMC PLANT BIOLOGY 2025; 25:147. [PMID: 39905321 PMCID: PMC11792417 DOI: 10.1186/s12870-025-06127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND m6A RNA modifications are the most prevalent internal modifications in eukaryotic mRNAs and are crucial for plant growth and development, as well as for responses to biotic or abiotic stresses. The modification is catalyzed by writers, removed by erasers, and decoded by various m6A-binding proteins, which are readers. Brassica napus is a major oilseed crop. The dynamic regulation of m6A modifications by writers, erasers, and readers offers potential targets for improving the quality of this crop. RESULTS In this study, we identified 92 m6A-regulatory genes in B. napus, including 13 writers, 29 erasers, and 50 readers. A phylogenetic analysis revealed that they could be further divided into four, three, and two clades, respectively. The distribution of protein motifs and gene structures among members of the same clade exhibited notable similarity. During the course of evolution, whole genome duplication (WGD) and segmental duplication were the primary drivers of the expansion of m6A-related gene families. The genes were subjected to rigorous purification selection. Additionally, several sites under positive selection were identified in the proteins. RNA-seq and quantitative real-time PCR (qRT-PCR) expression analyses revealed that the identified Bnam6As exhibit tissue-specific expression patterns, as well as their expression patterns in response to various abiotic and biotic stresses. The 2000 bp sequence upstream of Bnam6As contained a number of cis-acting elements that regulate plant growth and environmental response. Furthermore, the protein interaction network revealed their interactions with a number of proteins of significant functional importance. CONCLUSION The identification of m6A modifiers in oilseed rape and their molecular evolution and expression profiling have revealed potential functions and molecular mechanisms of m6A, thus establishing a foundation for further functional validation and molecular breeding.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Meryem Zekraoui
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Sun Y, Sun Y, He X, Li S, Xu X, Feng Y, Yang J, Xie R, Sun G. Transcriptome-wide methylated RNA immunoprecipitation sequencing profiling reveals m6A modification involved in response to heat stress in Apostichopus japonicus. BMC Genomics 2024; 25:1071. [PMID: 39528936 PMCID: PMC11556200 DOI: 10.1186/s12864-024-10972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Global warming-induced environmental stresses have diverse effects on gene expression and regulation in the life processes of various aquatic organisms. N6 adenylate methylation (m6A) modifications are known to influence mRNA transcription, localization, translation, stability, splicing, and nuclear export, which are pivotal in mediating stress responses. Apostichopus japonicus is a significant species in aquaculture and a representative of benthic organisms in ecosystems, thus there is a growing need for research on its heat stress mechanism. RESULTS In this study, m6A-modified whole transcriptome profiles of the respiratory tree tissues of A. japonicus in the control (T18) and high-temperature stress (T32) groups were obtained using MeRIP-seq technology. The results showed that 7,211 common m6A peaks, and 9,459 genes containing common m6A were identified in three replicates T18 and T32 groups. The m6A peaks were found to be highly enriched in the 3' untranslated region, and the common sequence of the m6A peak was also enriched, which was shown as RRACH (R = G or A; H = A, C, or U). A total of 1,200 peaks were identified as significantly differentially enriched in the T32 group compared with the T18 group. Among them, 245 peaks were upregulated and 955 were downregulated, which indicated that high temperature stress significantly altered the methylation pattern of m6A, and there were more demethylation sites in the T32 group. Conjoint analysis of the m6A methylation modification and the transcript expression level (the MeRIP-seq and RNA-seq data) showed co-differentiated 395 genes were identified, which were subsequently divided into four groups with a predominant pattern that more genes with decreased m6A modification and up-regulated expression, including HSP70IV, EIF2AK1, etc. GO enrichment and KEGG analyses of differential m6A peak related genes and co-differentiated genes showed the genes were significantly associated with transcription process and pathways such as protein processing in the endoplasmic reticulum, Wnt signaling pathway, and mTOR signaling pathway, etc. CONCLUSION: The comparisons of m6A modification patterns and conjoint analyses of m6A modification and gene expression profiles suggest that m6A modification was involved in the regulation of heat stress-responsive genes and important functional pathways in A. japonicus in response to high-temperature stress. The study will contribute to elucidate the regulatory mechanism of m6A modification in the response of A. japonicus to environmental stress, as well as the conservation and utilization of sea cucumber resources in the context of environmental changes.
Collapse
Affiliation(s)
- Yanan Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Youmei Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohua He
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Siyi Li
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Rubiao Xie
- Shandong Huachun Fishery Co., Ltd, Dongying, 257093, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
9
|
Zhang G, Cheng C, Wang X, Wang S. N6-Methyladenosine methylation modification in breast cancer: current insights. J Transl Med 2024; 22:971. [PMID: 39468547 PMCID: PMC11514918 DOI: 10.1186/s12967-024-05771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer is the most common cancer type among women. Despite advanced treatment strategies, some patients still face challenges in disease control, prompting the exploration of new therapeutic approaches. N6-Methyladenosine (m6A) methylation modification regulates RNA and plays a crucial role in various tumor biological processes, closely linked to breast cancer occurrence, development, prognosis, and treatment. M6A regulators impact breast cancer progression, development, and drug resistance by modulating RNA metabolism and tumor-related pathways. Researchers have begun to understand the regulatory mechanisms of m6A methylation in breast cancer. This paper discusses the roles of m6A regulators in breast cancer progression, prognosis, and treatment, offering new perspectives for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Guangwen Zhang
- First Clinical Medical College of Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| | - Chen Cheng
- Department of General Surgery, Jincheng General Hospital, Shanxi Medical University, Financial Street, Jincheng, 048006, Shanxi, China
| | - Xinle Wang
- First Clinical Medical College of Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Shiming Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
10
|
Chen Y, Zhou Z, Chen Y, Chen D. Reading the m 6A-encoded epitranscriptomic information in development and diseases. Cell Biosci 2024; 14:124. [PMID: 39342406 PMCID: PMC11439334 DOI: 10.1186/s13578-024-01293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal and reversible modification on RNAs. Different cell types display their unique m6A profiles, which are determined by the functions of m6A writers and erasers. M6A modifications lead to different outcomes such as decay, stabilization, or transport of the RNAs. The m6A-encoded epigenetic information is interpreted by m6A readers and their interacting proteins. M6A readers are essential for different biological processes, and the defects in m6A readers have been discovered in diverse diseases. Here, we review the latest advances in the roles of m6A readers in development and diseases. These recent studies not only highlight the importance of m6A readers in regulating cell fate transitions, but also point to the potential application of drugs targeting m6A readers in diseases.
Collapse
Affiliation(s)
- Yunbing Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Ziyu Zhou
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yanxi Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, Zhejiang, 314400, China.
| |
Collapse
|
11
|
Piomponi V, Krepl M, Sponer J, Bussi G. Molecular Simulations to Investigate the Impact of N6-Methylation in RNA Recognition: Improving Accuracy and Precision of Binding Free Energy Prediction. J Phys Chem B 2024; 128:8896-8907. [PMID: 39240243 DOI: 10.1021/acs.jpcb.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
N6-Methyladenosine (m6A) is a prevalent RNA post-transcriptional modification that plays crucial roles in RNA stability, structural dynamics, and interactions with proteins. The YT521-B (YTH) family of proteins, which are notable m6A readers, functions through its highly conserved YTH domain. Recent structural investigations and molecular dynamics (MD) simulations have shed light on the mechanism of recognition of m6A by the YTHDC1 protein. Despite advancements, using MD to predict the stabilization induced by m6A on the free energy of binding between RNA and YTH proteins remains challenging due to inaccuracy of the employed force field and limited sampling. For instance, simulations often fail to sufficiently capture the hydration dynamics of the binding pocket. This study addresses these challenges through an innovative methodology that integrates metadynamics, alchemical simulations, and force-field refinement. Importantly, our research identifies hydration of the binding pocket as giving only a minor contribution to the binding free energy and emphasizes the critical importance of precisely tuning force-field parameters to experimental data. By employing a fitting strategy built on alchemical calculations, we refine the m6A partial charge parameters, thereby enabling the simultaneous reproduction of N6 methylation on both the protein binding free energy and the thermodynamic stability of nine RNA duplexes. Our findings underscore the sensitivity of binding free energies to partial charges, highlighting the necessity for thorough parametrization and validation against experimental observations across a range of structural contexts.
Collapse
Affiliation(s)
- Valerio Piomponi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, Via Bonomea 265, Trieste 34136, Italy
- Area Science Park, località Padriciano, 99, Trieste 34149, Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno 612 00, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno 612 00, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, Via Bonomea 265, Trieste 34136, Italy
| |
Collapse
|
12
|
Ogbe SE, Wang J, Shi Y, Wang Y, Xu Z, Abankwa JK, Dal Pozzo L, Zhao S, Zhou H, Peng Y, Chu X, Wang X, Bian Y. Insights into the epitranscriptomic role of N 6-methyladenosine on aging skeletal muscle. Biomed Pharmacother 2024; 177:117041. [PMID: 38964182 DOI: 10.1016/j.biopha.2024.117041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
The modification of RNA through the N6-methyladenosine (m6A) has emerged as a growing area of research due to its regulatory role in gene expression and various biological processes regulating the expression of genes. m6A RNA methylation is a post-transcriptional modification that is dynamic and reversible and found in mRNA, tRNA, rRNA, and other non-coding RNA of most eukaryotic cells. It is executed by special proteins known as "writers," which initiate methylation; "erasers," which remove methylation; and "readers," which recognize it and regulate the expression of the gene. Modification by m6A regulates gene expression by affecting the splicing, translation, stability, and localization of mRNA. Aging causes molecular and cellular damage, which forms the basis of most age-related diseases. The decline in skeletal muscle mass and functionality because of aging leads to metabolic disorders and morbidities. The inability of aged muscles to regenerate and repair after injury poses a great challenge to the geriatric populace. This review seeks to explore the m6A epigenetic regulation in the myogenesis and regeneration processes in skeletal muscle as well as the progress made on the m6A epigenetic regulation of aging skeletal muscles.
Collapse
Affiliation(s)
- Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Physiology, Federal University, Wukari, Taraba 670101, Nigeria
| | - JiDa Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YueXuan Shi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwa
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - ShuWu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuiFang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YanFei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - XiangLing Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
13
|
Zhao L, Wei X, Chen F, Yuan L, Chen B, Li R. N6-methyladenosine RNA methyltransferase CpMTA1 mediates CpAphA mRNA stability through a YTHDF1-dependent m6A modification in the chestnut blight fungus. PLoS Pathog 2024; 20:e1012476. [PMID: 39159278 PMCID: PMC11361730 DOI: 10.1371/journal.ppat.1012476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/29/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
In eukaryotic cells, N6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification that plays crucial roles in multiple biological processes. Nevertheless, the functions and regulatory mechanisms of m6A in phytopathogenic fungi are poorly understood. Here, we showed that CpMTA1, an m6A methyltransferase in Cryphonectria parasitica, plays a crucial role in fungal phenotypic traits, virulence, and stress tolerance. Furthermore, the acid phosphatase gene CpAphA was implicated to be a target of CpMTA1 by integrated analysis of m6A-seq and RNA-seq, as in vivo RIP assay data confirmed that CpMTA1 directly interacts with CpAphA mRNA. Deletion of CpMTA1 drastically lowered the m6A level of CpAphA and reduced its mRNA expression. Moreover, we found that an m6A reader protein CpYTHDF1 recognizes CpAphA mRNA and increases its stability. Typically, the levels of CpAphA mRNA and protein exhibited a positive correlation with CpMTA1 and CpYTHDF1. Importantly, site-specific mutagenesis demonstrated that the m6A sites, A1306 and A1341, of CpAphA mRNA are important for fungal phenotypic traits and virulence in C. parasitica. Together, our findings demonstrate the essential role of the m6A methyltransferase CpMTA1 in C. parasitica, thereby advancing our understanding of fungal gene regulation through m6A modification.
Collapse
Affiliation(s)
- Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Mei J, Che J, Shi Y, Fang Y, Wu R, Zhu X. Mapping the Influence of Light Intensity on the Transgenerational Genetic Architecture of Arabidopsis thaliana. Curr Issues Mol Biol 2024; 46:8148-8169. [PMID: 39194699 DOI: 10.3390/cimb46080482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Light is a crucial environmental factor that influences the phenotypic development of plants. Despite extensive studies on the physiological, biochemical, and molecular mechanisms of the impact of light on phenotypes, genetic investigations regarding light-induced transgenerational plasticity in Arabidopsis thaliana remain incomplete. In this study, we used thaliana as the material, then gathered phenotypic data regarding leaf number and plant height under high- and low-light conditions from two generations. In addition to the developed genotype data, a functional mapping model was used to locate a series of significant single-nucleotide polymorphisms (SNPs). Under low-light conditions, a noticeable adaptive change in the phenotype of leaf number in the second generation suggests the presence of transgenerational genetic effects in thaliana under environmental stress. Under different lighting treatments, 33 and 13 significant genes associated with transgenerational inheritance were identified, respectively. These genes are largely involved in signal transduction, technical hormone pathways, light responses, and the regulation of organ development. Notably, genes identified under high-light conditions more significantly influence plant development, whereas those identified under low-light conditions focus more on responding to external environmental stimuli.
Collapse
Affiliation(s)
- Jie Mei
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jincan Che
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunzhu Shi
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yudian Fang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Liu X, Chen W, Li K, Sheng J. RNA N6-methyladenosine methylation in influenza A virus infection. Front Microbiol 2024; 15:1401997. [PMID: 38957616 PMCID: PMC11217485 DOI: 10.3389/fmicb.2024.1401997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Influenza A virus (IAV) is a negative-sense single-stranded RNA virus that causes acute lung injury and acute respiratory distress syndrome, posing a serious threat to both animal and human health. N6-methyladenosine (m6A), a prevalent and abundant post-transcriptional methylation of RNA in eukaryotes, plays a crucial regulatory role in IAV infection by altering viral RNA and cellular transcripts to affect viral infection and the host immune response. This review focuses on the molecular mechanisms underlying m6A modification and its regulatory function in the context of IAV infection and the host immune response. This will provide a better understanding of virus-host interactions and offer insights into potential anti-IAV strategies.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
16
|
Burns D, Khatiwada B, Singh A, Purslow JA, Potoyan DA, Venditti V. An α-ketoglutarate conformational switch controls iron accessibility, activation, and substrate selection of the human FTO protein. Proc Natl Acad Sci U S A 2024; 121:e2404457121. [PMID: 38865275 PMCID: PMC11194561 DOI: 10.1073/pnas.2404457121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 3-methylthymine (m3T), and 3-methyluracil (m3U) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species. In the second reaction, the oxyferryl intermediate oxidizes the methylated nucleic acid to reestablish Fe(II) and the canonical base. However, it remains unclear how binding of the nucleic acid activates the αKG decarboxylation reaction and why FTO demethylates different methyl modifications at different rates. Here, we investigate the interaction of FTO with 5-mer DNA oligos incorporating the m6A, m1A, or m3T modifications using solution NMR, molecular dynamics (MD) simulations, and enzymatic assays. We show that binding of the nucleic acid to FTO activates a two-state conformational equilibrium in the αKG cosubstrate that modulates the O2 accessibility of the Fe(II) catalyst. Notably, the substrates that provide better stabilization to the αKG conformation in which Fe(II) is exposed to O2 are demethylated more efficiently by FTO. These results indicate that i) binding of the methylated nucleic acid is required to expose the catalytic metal to O2 and activate the αKG decarboxylation reaction, and ii) the measured turnover of the demethylation reaction (which is an ensemble average over the entire sample) depends on the ability of the methylated base to favor the Fe(II) state accessible to O2.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | | | - Aayushi Singh
- Department of Chemistry, Iowa State University, Ames, IA50011
| | | | - Davit A. Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
- Department of Chemistry, Iowa State University, Ames, IA50011
| | - Vincenzo Venditti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
- Department of Chemistry, Iowa State University, Ames, IA50011
| |
Collapse
|
17
|
Cao Y, Qiu G, Dong Y, Zhao W, Wang Y. Exploring the role of m 6 A writer RBM15 in cancer: a systematic review. Front Oncol 2024; 14:1375942. [PMID: 38915367 PMCID: PMC11194397 DOI: 10.3389/fonc.2024.1375942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
In the contemporary epoch, cancer stands as the predominant cause of premature global mortality, necessitating a focused exploration of molecular markers and advanced therapeutic strategies. N6-methyladenosine (m6A), the most prevalent mRNA modification, undergoes dynamic regulation by enzymes referred to as methyltransferases (writers), demethylases (erasers), and effective proteins (readers). Despite lacking methylation activity, RNA-binding motif protein 15 (RBM15), a member of the m6A writer family, assumes a crucial role in recruiting the methyltransferase complex (MTC) and binding to mRNA. Although the impact of m6A modifications on cancer has garnered widespread attention, RBM15 has been relatively overlooked. This review briefly outlines the structure and operational mechanism, and delineates the unique role of RBM15 in various cancers, shedding light on its molecular basis and providing a groundwork for potential tumor-targeted therapies.
Collapse
Affiliation(s)
- Yuan Cao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Shenyang 242 Hospital, Shenyang, Liaoning, China
| | - Yu Dong
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Zhao
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Liu Y, Zeng X, Zhang H. An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis. Adv Biol (Weinh) 2024; 8:e2300613. [PMID: 38279573 DOI: 10.1002/adbi.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 01/28/2024]
Abstract
As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Huasong Zhang
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
| |
Collapse
|
19
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Ethève-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. eLife 2024; 12:RP92537. [PMID: 38470714 PMCID: PMC10932547 DOI: 10.7554/elife.92537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on messenger RNA (mRNA) in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a BA representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release, and suggests that the latter step is rate-limiting for METTL3. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
Affiliation(s)
- Ivan Corbeski
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | | | - Rajiv Kumar Bedi
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Jiahua Deng
- Department of Chemistry, Boston UniversityBostonUnited States
| | - Dylan Coelho
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Emmanuelle Braud
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Laura Iannazzo
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Yaozong Li
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Danzhi Huang
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Mélanie Ethève-Quelquejeu
- Université Paris Cité, CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et ToxicologiquesParisFrance
| | - Qiang Cui
- Department of Chemistry, Boston UniversityBostonUnited States
- Department of Physics, Boston UniversityBostonUnited States
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Amedeo Caflisch
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
20
|
Zhao Y, Huang J, Zhao K, Li M, Wang S. Ubiquitination and deubiquitination in the regulation of N 6-methyladenosine functional molecules. J Mol Med (Berl) 2024; 102:337-351. [PMID: 38289385 DOI: 10.1007/s00109-024-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
N6 methyladenosine (m6A) is the most prevalent RNA epigenetic modification, regulated by methyltransferases and demethyltransferases and recognized by methylation-related reading proteins to impact mRNA splicing, translocation, stability, and translation efficiency. It significantly affects a variety of activities, including stem cell maintenance and differentiation, tumor formation, immune regulation, and metabolic disorders. Ubiquitination refers to the specific modification of target proteins by ubiquitin molecule in response to a series of enzymes. E3 ligases connect ubiquitin to target proteins and usually lead to protein degradation. On the contrary, deubiquitination induced by deubiquitinating enzymes (DUBs) can separate ubiquitin and regulate the stability of protein. Recent studies have emphasized the potential importance of ubiquitination and deubiquitination in controlling the function of m6A modification. In this review, we discuss the impact of ubiquitination and deubiquitination on m6A functional molecules in diseases, such as metabolism, cellular stress, and tumor growth.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Jiefang Road No 438, Zhenjiang, 212002, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kexin Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Jiefang Road No 438, Zhenjiang, 212002, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
21
|
Zhang X, Nie Y, Zhang R, Yu J, Ge J. Reduced DNMT1 levels induce cell apoptosis via upregulation of METTL3 in cardiac hypertrophy. Heliyon 2024; 10:e24572. [PMID: 38314261 PMCID: PMC10837504 DOI: 10.1016/j.heliyon.2024.e24572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
DNA methylation is also involved in the development and progression of cardiac diseases. Although studies have shown that DNA methylation and RNA m6A methylation play an important role in the development of myocardial hypertrophy, whether DNA methylation and RNA m6A methylation have a coordinated role in the development of myocardial hypertrophy and influence each other is still unknown. Here, we found that DNMT1 expression was downregulated in TAC mice and Ang II-treated NRCMs. Moreover, DNMT1 overexpression inhibited Ang II-induced apoptosis of NRCMs. Furthermore, we found that the expression of METTL3 was up-regulated after inhibiting the expression of DNMT1 by a DNMT1 inhibitor or small interfering RNA. In addition, ectopic expression DNMT1 inhibited METTL3 expression in NRCMs. Furthermore, METTL3 expression was elevated in NRCMs treated with Ang II, and suppression of METTL3 inhibited cell apoptosis induced by Ang II in NRCMs.In addition, this study revealed that the DNMT1/METTL3 pathway affected Ang II-induced apoptosis in NRCMs. Finally, this study found that DNMT1, but not METTL3, might directly regulated the ANP and BNP expression. Collectively, our findings revealed the role of the DNMT1/METTL3 pathway in cardiac hypertrophy and provided a novel molecular mechanism describing the physiological and pathological processes.
Collapse
Affiliation(s)
| | | | - Rui Zhang
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jiquan Yu
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Jianjun Ge
- Department of Cardiac surgery, The First Affiliated Hospital of USTC, Hefei, 230001, China
| |
Collapse
|
22
|
Corbeski I, Vargas-Rosales PA, Bedi RK, Deng J, Coelho D, Braud E, Iannazzo L, Li Y, Huang D, Etheve-Quelquejeu M, Cui Q, Caflisch A. The catalytic mechanism of the RNA methyltransferase METTL3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556513. [PMID: 37732228 PMCID: PMC10508762 DOI: 10.1101/2023.09.06.556513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The complex of methyltransferase-like proteins 3 and 14 (METTL3-14) is the major enzyme that deposits N6-methyladenosine (m6A) modifications on mRNA in humans. METTL3-14 plays key roles in various biological processes through its methyltransferase (MTase) activity. However, little is known about its substrate recognition and methyl transfer mechanism from its cofactor and methyl donor S-adenosylmethionine (SAM). Here, we study the MTase mechanism of METTL3-14 by a combined experimental and multiscale simulation approach using bisubstrate analogues (BAs), conjugates of a SAM-like moiety connected to the N6-atom of adenosine. Molecular dynamics simulations based on crystal structures of METTL3-14 with BAs suggest that the Y406 side chain of METTL3 is involved in the recruitment of adenosine and release of m6A. A crystal structure with a bisubstrate analogue representing the transition state of methyl transfer shows a direct involvement of the METTL3 side chains E481 and K513 in adenosine binding which is supported by mutational analysis. Quantum mechanics/molecular mechanics (QM/MM) free energy calculations indicate that methyl transfer occurs without prior deprotonation of adenosine-N6. Furthermore, the QM/MM calculations provide further support for the role of electrostatic contributions of E481 and K513 to catalysis. The multidisciplinary approach used here sheds light on the (co)substrate binding mechanism, catalytic step, and (co)product release catalysed by METTL3, and suggests that the latter step is rate-limiting. The atomistic information on the substrate binding and methyl transfer reaction of METTL3 can be useful for understanding the mechanisms of other RNA MTases and for the design of transition state analogues as their inhibitors.
Collapse
|
23
|
Ye W, Lv X, Gao S, Li Y, Luan J, Wang S. Emerging role of m6A modification in fibrotic diseases and its potential therapeutic effect. Biochem Pharmacol 2023; 218:115873. [PMID: 37884198 DOI: 10.1016/j.bcp.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Fibrosis can occur in a variety of organs such as the heart, lung, liver and kidney, and its pathological changes are mainly manifested by an increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues, and continuous progression can lead to structural damage and organ hypofunction, or even failure, seriously threatening human health and life. N6-methyladenosine (m6A) modification, as one of the most common types of internal modifications of RNA in eukaryotes, exerts a multifunctional role in physiological and pathological processes by regulating the metabolism of RNA. With the in-depth understanding and research of fibrosis, we found that m6A modification plays an important role in fibrosis, and m6A regulators can further participate in the pathophysiological process of fibrosis by regulating the function of specific cells. In our review, we summarized the latest research advances in m6A modification in fibrosis, as well as the specific functions of different m6A regulators. In addition, we focused on the mechanisms and roles of m6A modification in cardiac fibrosis, liver fibrosis, pulmonary fibrosis, renal fibrosis, retinal fibrosis and oral submucosal fibrosis, with the aim of providing new insights and references for finding potential therapeutic targets for fibrosis. Finally, we discussed the prospects and challenges of targeted m6A modification in the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
24
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
25
|
Zhang L, Wu L, Zhu X, Mei J, Chen Y. Paeonol represses A549 cell glycolytic reprogramming and proliferation by decreasing m6A modification of Acyl-CoA dehydrogenase. CHINESE J PHYSIOL 2023; 66:248-256. [PMID: 37635484 DOI: 10.4103/cjop.cjop-d-22-00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Aberrant glycolytic reprogramming is involved in lung cancer progression by promoting the proliferation of non-small cell lung cancer cells. Paeonol, as a traditional Chinese medicine, plays a critical role in multiple cancer cell proliferation and inflammation. Acyl-CoA dehydrogenase (ACADM) is involved in the development of metabolic diseases. N6-methyladenosine (m6A) modification is important for the regulation of messenger RNA stability, splicing, and translation. Here, we investigated whether paeonol regulates the proliferation and glycolytic reprogramming via ACADM with m6A modification in A549 cells (human non-small cell lung cancer cells). Cell counting kit 8, 5-Bromo-2-deoxyuridine, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, flow cytometry analysis, western blotting and seahorse XFe24 extracellular flux analyzer assays showed that paeonol had a significant inhibitory effect against A549 cell proliferation and glycolysis. Mechanistically, ACADM was a functional target of paeonol. We also showed that the m6A reader YTH domain containing 1 plays an important role in m6A-modified ACADM expression, which is negatively regulated by paeonol, and is involved in A549 cell proliferation and glycolytic reprogramming. These results indicated the central function of paeonol in regulating A549 cell glycolytic reprogramming and proliferation via m6A modification of ACADM.
Collapse
Affiliation(s)
- Lixin Zhang
- Central Laboratory of Harbin Medical University, Daqing, China; Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Lihua Wu
- Department of Geriatrics, Daqing Oilfield General Hospital, Daqing, China
| | - Xiangrui Zhu
- Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Jian Mei
- Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Yingli Chen
- Central Laboratory of Harbin Medical University, Daqing, China; Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| |
Collapse
|
26
|
Xu Y, Zhang Y, Luo Y, Qiu G, Lu J, He M, Wang Y. Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases. Cell Death Discov 2023; 9:170. [PMID: 37202385 DOI: 10.1038/s41420-023-01435-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/20/2023] Open
Abstract
N6-methyladenosine (m6A) modification, catalyzed by methyltransferase complexes (MTCs), plays many roles in multifaceted biological activities. As the most important subunit of MTCs, the METTL3-METTL14 complex is reported to be the initial factor that catalyzes the methylation of adenosines. Recently, accumulating evidence has indicated that the METTL3-METTL14 complex plays a key role in musculoskeletal diseases in an m6A-dependent or -independent manner. Although the functions of m6A modifications in a variety of musculoskeletal diseases have been widely recognized, the critical role of the METTL3-METTL14 complex in certain musculoskeletal disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis and osteosarcoma, has not been systematically revealed. In the current review, the structure, mechanisms and functions of the METTL3-METTL14 complex and the mechanisms and functions of its downstream pathways in the aforementioned musculoskeletal diseases are categorized and summarized.
Collapse
Affiliation(s)
- Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Yinzhou Luo
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Guanzhen Qiu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China
| | - Jie Lu
- Department of Cardiology, Shenyang Fourth People's Hospital, China Medical University, 110031, Shenyang, Liaoning, People's Republic of China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, People's Republic of China
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, 110024, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
27
|
Peng WX, Liu F, Jiang JH, Yuan H, Zhang Z, Yang L, Mo YY. N6-methyladenosine modified LINC00901 promotes pancreatic cancer progression through IGF2BP2/MYC axis. Genes Dis 2023; 10:554-567. [PMID: 37223505 PMCID: PMC10201599 DOI: 10.1016/j.gendis.2022.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that RNA methylation at N6-methyladenosine (m6A) plays an important regulatory role in gene expression and aberrant mRNA m6A modification is often associated with a variety of cancers. However, little is known whether and how m6A-modification impacts long non-coding RNA (lncRNA) and lncRNA-mediated tumorigenesis, particularly in pancreatic ductal adenocarcinoma (PDAC). In the present study, we report that a previously uncharacterized lncRNA, LINC00901, promotes pancreatic cancer cell growth and invasion and moreover, LINC00901 is subject to m6A modification which regulates its expression. In this regard, YTHDF1 serves as a reader for the m6A modified LINC00901 and downregulates the LINC00901 level. Notably, two conserved m6A sites in LINC00901 are critical to the recognition of LINC00901 by YTHDF1. Finally, RNA sequencing (RNA-seq) and gene function analysis revealed that LINC00901 positively regulates MYC through upregulation of IGF2BP2, a known RNA binding protein that can enhance MYC mRNA stability. Together, our results suggest that there is a LINC00901-IGF2BP2-MYC axis through which LINC00901 promotes PDAC progression in an m6A dependent manner.
Collapse
Affiliation(s)
- Wan-Xin Peng
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Research Center for Child Health, Hangzhou, Zhejiang 310052, China
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fei Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jia-Hong Jiang
- Department of Medical Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hang Yuan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ziqiang Zhang
- Department of Pulmonary Medicine, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yin-Yuan Mo
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
28
|
Shi L, Ma X, Xie H, Qin Y, Huang Y, Zhang Y, Sun L, Yang J, Li G. Engineering m 6A demethylation-activated DNAzyme for visually and sensitively sensing fat mass and obesity-associated protein. Biosens Bioelectron 2023; 222:115007. [PMID: 36527832 DOI: 10.1016/j.bios.2022.115007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Fat mass and obesity-associated protein (FTO) regulating the N6-methyladenine (m6A, the most pervasive epigenetic modification) levels within the nucleus has been identified as a potential biomarker for cancer diagnosis and prognosis. However, current methods for FTO detection are complicated or/and not sensitive enough for practical application. Herein, we propose a colorimetric biosensor for detecting FTO based on a delicate design of m6A demethylation-activated DNAzyme. Specifically, an m6A-blocked DNAzyme is constructed as a switch of the biosensor that can be turned on by target FTO. The decreased thermal stability resulting from substrate cleavage leads to a DNAzyme recycling to produce multiple primers. Then the rolling circle amplification (RCA) reactions can be initiated to generate G-quadruplex-DNAzymes catalyzing 2,2-azino-bis-(3-ethylben-zthiazoline-6-sulfonic acid (ABTS) oxidation which can be readily observed by the naked eye. Quantitative detection can also be achieved with a limit of detection (LOD) down to 69.9 fM, exhibiting higher sensitivity than previous reports. Therefore, this biosensor opens a simple and sensitive way to achieve visual assay of FTO via triple signal amplification. In addition, our biosensor has been successfully applied to FTO detection in clinical samples, which shows great potential in clinical molecular diagnostics.
Collapse
Affiliation(s)
- Liu Shi
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xuemei Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yujia Qin
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
29
|
Wang J, Zuo Y, Lv C, Zhou M, Wan Y. N6-methyladenosine regulators are potential prognostic biomarkers for multiple myeloma. IUBMB Life 2023; 75:137-148. [PMID: 36177774 PMCID: PMC10115423 DOI: 10.1002/iub.2678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023]
Abstract
N6-methyladenosine (m6A) regulators play an important role in tumorigenesis; however, their role in multiple myeloma (MM) remains unknown. This study aimed to create an m6A RNA regulators prognostic signature for MM patients. We integrated data from the Multiple Myeloma Research Foundation CoMMpass Study and the Genotype-Tissue Expression database to analyze gene expression profiles of 21 m6A regulators. Consistent clustering analysis was used to identify the clusters of patients with MM having different clinical outcomes. Gene distribution was analyzed using principal component analysis. Next, we generated an mRNA gene signature of m6A regulators using a multivariate logistic regression model with least absolute shrinkage and selection operator. The expressions of m6A regulators, except FMR1, were significantly different in MM samples compared with those in normal samples. The KIAA1429, HNRNPC, FTO, and WTAP expression levels were dramatically downregulated in tumor samples, whereas those of other signatures were remarkably upregulated. Three clusters of patients with MM were identified, and significant differences were found in terms of overall survival (p = .024). A prognostic two-gene signature (KIAA1429 and HNRNPA2B1) was constructed, which had a good prognostic significance using the ROC method (AUC = 0.792). Moreover, the risk score correlated with the infiltration immune cells. In addition, KEGG pathway analysis showed that 16 pathways were dramatically enriched. The m6A signature might be a novel biomarker for predicting the prognosis of patients with MM (p = .002). Our study is the first to explore the potential application value of m6A in MM. These findings may enhance the understanding of the functional organization of m6A in MM and provide new insights into the treatment of MM patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, People's Republic of China.,Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China.,The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University SUNY, Binghamton, New York, USA
| | - Yifan Zuo
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Chenglan Lv
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Min Zhou
- Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University SUNY, Binghamton, New York, USA
| |
Collapse
|
30
|
METTL3 Regulates Osteoclast Biological Behaviors via iNOS/NO-Mediated Mitochondrial Dysfunction in Inflammatory Conditions. Int J Mol Sci 2023; 24:ijms24021403. [PMID: 36674918 PMCID: PMC9862541 DOI: 10.3390/ijms24021403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023] Open
Abstract
Excessive differentiation of osteoclasts contributes to the disruption of bone homeostasis in inflammatory bone diseases. Methyltransferase-like 3 (METTL3), the core methyltransferase that installs an N6-methyladenosine (m6A) modification on RNA, has been reported to participate in bone pathophysiology. However, whether METTL3-mediated m6A affects osteoclast differentiation in inflammatory conditions remains unelucidated. In this study, we observed that the total m6A content and METTL3 expression decreased during LPS-induced osteoclastogenesis. After knocking down METTL3, we found reduced levels of the number of osteoclasts, osteoclast-related gene expression and bone resorption area. A METTL3 deficiency increased osteoclast apoptosis and pro-apoptotic protein expression. RNA sequencing analysis showed that differentially expressed genes in METTL3-deficient cells were mainly associated with the mitochondrial function. The expression of the mitochondrial function-related genes, ATP production and mitochondrial membrane potential decreased after METTL3 knockdown. Moreover, the most obviously upregulated gene in RNA-Seq was Nos2, which encoded the iNOS protein to induce nitric oxide (NO) synthesis. METTL3 knockdown increased the levels of Nos2 mRNA, iNOS protein and NO content. NOS inhibitor L-NAME rescued the inhibited mitochondrial function and osteoclast formation while suppressing osteoclast apoptosis in METTL3-silenced cells. Mechanistically, a METTL3 deficiency promoted the stability and expression of Nos2 mRNA, and similar results were observed after m6A-binding protein YTHDF1 knockdown. Further in vivo evidence revealed that METTL3 knockdown attenuated the inflammatory osteolysis of the murine calvaria and suppressed osteoclast formation. In conclusion, these data suggested that METTL3 knockdown exacerbated iNOS/NO-mediated mitochondrial dysfunction by promoting a Nos2 mRNA stability in a YTHDF1-dependent manner and further inhibited osteoclast differentiation and increased osteoclast apoptosis in inflammatory conditions.
Collapse
|
31
|
Fan Y, Lv X, Chen Z, Peng Y, Zhang M. m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci 2023; 16:1102147. [PMID: 36896007 PMCID: PMC9990872 DOI: 10.3389/fnmol.2023.1102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells, which participates in the functional regulation of various biological processes. It regulates the expression of targeted genes by affecting RNA translocation, alternative splicing, maturation, stability, and degradation. As recent evidence shows, of all organs, brain has the highest abundance of m6A methylation of RNAs, which indicates its regulating role in central nervous system (CNS) development and the remodeling of the cerebrovascular system. Recent studies have shown that altered m6A levels are crucial in the aging process and the onset and progression of age-related diseases. Considering that the incidence of cerebrovascular and degenerative neurologic diseases increase with aging, the importance of m6A in neurological manifestations cannot be ignored. In this manuscript, we focus on the role of m6A methylation in aging and neurological manifestations, hoping to provide a new direction for the molecular mechanism and novel therapeutic targets.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Lv
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
33
|
Wang X, Li Q, He S, Bai J, Ma C, Zhang L, Guan X, Yuan H, Li Y, Zhu X, Mei J, Gao F, Zhu D. LncRNA FENDRR with m6A RNA methylation regulates hypoxia-induced pulmonary artery endothelial cell pyroptosis by mediating DRP1 DNA methylation. Mol Med 2022; 28:126. [PMID: 36284300 PMCID: PMC9594874 DOI: 10.1186/s10020-022-00551-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pyroptosis is a form of programmed cell death involved in the pathophysiological progression of hypoxic pulmonary hypertension (HPH). Emerging evidence suggests that N6-methyladenosine (m6A)-modified transcripts of long noncoding RNAs (lncRNAs) are important regulators that participate in many diseases. However, whether m6A modified transcripts of lncRNAs can regulate pyroptosis in HPH progression remains unexplored. Methods The expression levels of FENDRR in hypoxic pulmonary artery endothelial cells (HPAECs) were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Western blot, Lactate dehydrogenase (LDH) release assay, Annexin V-FITC/PI double staining, Hoechst 33342/PI fluorescence staining and Caspase-1 activity assay were used to detect the role of FENDRR in HPAEC pyroptosis. The relationship between FENDRR and dynamin-related protein 1 (DRP1) was explored using bioinformatics analysis, Chromatin Isolation by RNA Purification (CHIRP), Electrophoretic mobility shift assay (EMSA) and Methylation-Specific PCR (MSP) assays. RNA immunoprecipitation (RIP) and m6A dot blot were used to detect the m6A modification levels of FENDRR. A hypoxia-induced mouse model of pulmonary hypertension (PH) was used to test preventive effect of conserved fragment TFO2 of FENDRR. Results We found that FENDRR was significantly downregulated in the nucleus of hypoxic HPAECs. FENDRR overexpression inhibited hypoxia-induced HPAEC pyroptosis. Additionally, DRP1 is a downstream target gene of FENDRR, and FENDRR formed an RNA–DNA triplex with the promoter of DRP1, which led to an increase in DRP1 promoter methylation that decreased the transcriptional level of DRP1. Notably, we illustrated that the m6A reader YTHDC1 plays an important role in m6A-modified FENDRR degradation. Additionally, conserved fragment TFO2 of FENDEE overexpression prevented HPH in vivo. Conclusion In summary, our results demonstrated that m6A-induced decay of FENDRR promotes HPAEC pyroptosis by regulating DRP1 promoter methylation and thereby provides a novel potential target for HPH therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00551-z.
Collapse
Affiliation(s)
- Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Qian Li
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Siyu He
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Xiaoyu Guan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hao Yuan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yiying Li
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xiangrui Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Jian Mei
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Feng Gao
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, IL, 60515, USA
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China. .,College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China. .,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, People's Republic of China. .,College of Pharmacy, Harbin Medical University (Daqing), Xinyang Road, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
34
|
Functional Characterization of Two RNA Methyltransferase Genes METTL3 and METTL14 Uncovers the Roles of m 6A in Mediating Adaptation of Plutella xylostella to Host Plants. Int J Mol Sci 2022; 23:ijms231710013. [PMID: 36077410 PMCID: PMC9456542 DOI: 10.3390/ijms231710013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the major epigenetic modifications in eukaryotes. Although increasing functions of m6A have been identified in insects, its role in Plutella xylostella L. for host plant adaptation remains unclear. In the current study, we show that the m6A content of P. xylostella was relatively low in different developmental stages and tissues, with no significant differences. Two RNA methyltransferase genes, PxMETTL3 (methyltransferase-like 3) and PxMETTL14 (methyltransferase-like 14), were identified and characterized. PxMETTL3 could be transcribed into two transcripts, and PxMETTL14 had only one transcript; both of these genes were highly expressed in egg and adult stages and reproductive tissues. The CRISPR/Cas9-mediated knockout of PxMETTL3 (ΔPxMETTL3-2) or PxMETTL14 (ΔPxMETTL14-14) confirmed their function in m6A installation into RNA. Furthermore, upon transfer from an artificial diet to the host plant, the mutant strains were affected in terms of larval and pupal weight or adult emergence rate, while the wildtype (WT) strain did not exhibit any difference. In addition, the fecundity and egg hatching rate of the WT strain decreased significantly, whereas only the ΔPxMETTL14-14 mutant strain displayed significantly decreased fecundity. There seemed to be a tradeoff between the stress adaptation and reproduction in P. xylostella mediated by m6A modification. During host transfer, the expression of PxMETTL14 was consistent with the change in m6A content, which implied that PxMETTL14 could respond to host plant defense effectively, and may regulate m6A content. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the differentially expressed transcripts with changes in m6A levels revealed that the potential functions of m6A-related genes may be involved in steroid biosynthesis for larval performance and metabolic pathways for adult reproduction. Overall, our work reveals an epigenetic regulation mechanism for the rapid adaptation of P. xylostella to variations in the host environment.
Collapse
|
35
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
36
|
Hengwei Y, Raza SHA, Wenzhen Z, Xinran Y, Almohaimeed HM, Alshanwani AR, Assiri R, Aggad WS, Zan L. Research progress of m 6A regulation during animal growth and development. Mol Cell Probes 2022; 65:101851. [PMID: 36007750 DOI: 10.1016/j.mcp.2022.101851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Environmental factors, genetic factors, and epigenetics are involved in animal growth and development. Among them, methylation is one of the abundant modifications of epigenetics. N6-methyladenosine(m6A) is extensive in cellular RNA, of which mRNA is the most common internal modification. m6A modification regulates life activities dynamically and reversibly, including expressed genes, RNA metabolism, and protein translation. The m6A modifications are closely related to human diseases involving heart failure, tumors, and cancer. It is relatively in-depth in the medical field. However, there are few studies on its biochemical function in animals. We summarized the latest paper related to the chemical structure and role of the writers, the erasers, and the readers to study exerting dynamic regulation of m6A modification of animal growth and development. Furthermore, the key roles of m6A modification were reported in the process of RNA metabolism. Finally, the dynamic regulation of m6A modification in animal growth and development was reviewed, including brain development, fertility, fat deposition, and muscle production. It reveals the key roles of m6A modification and the regulation of gene expression, aiming to provide new ideas for m6A methylation in animal growth and development.
Collapse
Affiliation(s)
- Yu Hengwei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zhang Wenzhen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yang Xinran
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Aliah R Alshanwani
- Physiology Department, College of Medicine, King Saud University, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O.Box 8304, Jeddah, 23234, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; National Beef Cattle Improvement Center, Yangling, 712100, China.
| |
Collapse
|
37
|
He F, Guo Q, Jiang GX, Zhou Y. Comprehensive analysis of m6A circRNAs identified in colorectal cancer by MeRIP sequencing. Front Oncol 2022; 12:927810. [PMID: 36059637 PMCID: PMC9437624 DOI: 10.3389/fonc.2022.927810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
PurposeTo characterize the entire profile of m6A modifications and differential expression patterns for circRNAs in colorectal cancer (CRC).MethodsFirst, High-throughput MeRIP-sequencing and RNA-sequencing was used to determine the difference in m6A methylome and expression of circRNA between CRC tissues and tumor-adjacent normal control (NC) tissues. Then, GO and KEGG analysis detected pathways involved in differentially methylated and differentially expressed circRNAs (DEGs). The correlations between m6A status and expression level were calculated using a Pearson correlation analysis. Next, the networks of circRNA-miRNA-mRNA were visualized using the Target Scan and miRanda software. Finally, We describe the relationship of distance between the m6A peak and internal ribosome entry site (IRES) and protein coding potential of circRNAs.ResultsA total of 4340 m6A peaks of circRNAs in CRC tissue and 3216 m6A peaks of circRNAs in NC tissues were detected. A total of 2561 m6A circRNAs in CRC tissues and 2129 m6A circRNAs in NC tissues were detected. Pathway analysis detected that differentially methylated and expressed circRNAs were closely related to cancer. The conjoint analysis of MeRIP-seq and RNA-seq data discovered 30 circRNAs with differentially m6A methylated and synchronously differential expression. RT-qPCR showned circRNAs (has_circ_0032821, has_circ_0019079, has_circ_0093688) were upregulated and circRNAs (hsa_circ_0026782, hsa_circ_0108457) were downregulated in CRC. In the ceRNA network, the 10 hyper-up circRNAs were shown to be associated with 19 miRNAs and regulate 16 mRNAs, 14 hypo-down circRNAs were associated with 30 miRNAs and regulated 27 mRNAs. There was no significant correlation between the level of m6A and the expression of circRNAs. The distance between the m6A peak and IRES was not significantly related to the protein coding potential of circRNAs.ConclusionOur study found that there were significant differences in the m6A methylation patterns of circRNAs between CRC and NC tissues. M6A methylation may affect circRNA-miRNA-mRNA co-expression in CRC and further affect the regulation of cancer-related target genes.
Collapse
Affiliation(s)
- Feng He
- The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Qin Guo
- The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Guo-xiu Jiang
- The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Zhou
- National Health Commission (NHC), Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- *Correspondence: Yan Zhou,
| |
Collapse
|
38
|
Duan X, Shao Y, Che Z, Zhao X, Guo M, Li C, Liang W. Genome-wide identification m 6A modified circRNAs revealed their key roles in skin ulceration syndrome disease development in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:748-757. [PMID: 35835384 DOI: 10.1016/j.fsi.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Circular RNAs (circRNAs) are novel endogenous non-coding RNAs (ncRNAs) and can be acted as competing endogenous RNAs (ceRNAs) to regulate microRNA (miRNA) and downstream gene expression. Recently, m6A modification has been found in circRNA, and m6A circRNAs also play important roles in various biological processes and a variety of diseases. Our previous study had been demonstrated that circRNAs were differentially expressed in skin ulceration syndrome (SUS) diseased sea cucumber Apostichopus japonicus. However, whether the function of circRNAs are dependent on m6A levels are largely unknown. Here, we firstly investigated the genome-wide map of m6A circRNAs in sea cucumbers with different stages of Vibrio splendidus challenge, that's Control group, SUS-diseased group, and SUS-resistant group. MeRIP-seq revealed that m6A abundances were enriched in circRNAs in all three groups, especially for SUS-resistant group. Among them, more than 62% of modified circRNAs harbor only a single m6A peak and about 55% of m6A sites in circRNAs were derived from sense overlapping in each group. After V. splendidus infection, we found that most of m6A peaks in circRNAs were upregulated and less were downregulated in both SUS-diseased and SUS-resistant groups when compared with Control. Furthermore, GO analysis indicated that the host genes of circRNAs with dysregulated m6A peaks in SUS-diseased and SUS-resistant groups were both mainly enriched in the adhesion pathway. More importantly, we discovered that more than 50% m6A circRNAs showed a positive correlation between the circRNAs expression and m6A methylation levels both in SUS-diseased and SUS-resistant groups. Therefore, a core circRNA-miRNA-mRNA (ceRNA) network whether influenced by m6A modification was constructed based on conjoint analysis. Our results indicated that several selected m6A circRNAs bind with miRNAs were mainly targeting to ubiquitylation system and adhesion pathway. What's more, three candidate m6A circRNAs and three target genes were validated by MeRIP-qPCR and qPCR, whose m6A levels in circRNA and mRNA expressions were consistent with disease occurrence or disease resistance. All of our current findings suggested that m6A circRNAs could play important roles during pathogen infection and might be served as a new molecular biomarker in SUS disease diagnose of A. japonicus.
Collapse
Affiliation(s)
- Xuemei Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| | - Zhongjie Che
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
39
|
Zhao C, Xu G, Zhang X, Ye Y, Cai W, Shao Q. RNA m6A modification orchestrates the rhythm of immune cell development from hematopoietic stem cells to T and B cells. Front Immunol 2022; 13:839291. [PMID: 35935968 PMCID: PMC9354743 DOI: 10.3389/fimmu.2022.839291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
RNA, one of the major building blocks of the cell, participates in many essential life processes. RNA stability is well-established to be closely related to various RNA modifications. To date, hundreds of different RNA modifications have been identified. N6-methyladenosine (m6A) is one of the most important RNA modifications in mammalian cells. An increasing body of evidence from recently published studies suggests that m6A modification is a novel immune system regulator of the generation and differentiation of hematopoietic stem cells (HSCs) and immune cells. In this review, we introduce the process and relevant regulatory mechanisms of m6A modification; summarize recent findings of m6A in controlling HSC generation and self-renewal, and the development and differentiation of T and B lymphocytes from HSCs; and discuss the potential mechanisms involved.
Collapse
Affiliation(s)
- Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
| | - Guoying Xu
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
| | - Xiaoxian Zhang
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
| | - Yunfeng Ye
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qixiang Shao,
| |
Collapse
|
40
|
Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers (Basel) 2022; 14:cancers14133195. [PMID: 35804965 PMCID: PMC9264946 DOI: 10.3390/cancers14133195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer remains a burden to the public health all over the world. An increasing number of studies have concentrated on the role of methyladenosine modifications on cancers. Methyladenosine modifications mainly include N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am), of which dynamic changes could modulate the metabolism of RNAs in eukaryotic cells. Mounting evidence has confirmed the crucial role of methyladenosine modification in cancer, offering possibilities for cancer therapy. In this review, we discussed the regulatory role of methyladenosine modification on cancer, as well as their potential for treatment. Abstract Methyladenosine modifications are the most abundant RNA modifications, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 2’-O-methyladenosine (m6Am). As reversible epigenetic modifications, methyladenosine modifications in eukaryotic RNAs are not invariable. Drastic alterations of m6A are found in a variety of diseases, including cancers. Dynamic changes of m6A modification induced by abnormal methyltransferase, demethylases, and readers can regulate cancer progression via interfering with the splicing, localization, translation, and stability of mRNAs. Meanwhile, m6A, m1A, and m6Am modifications also exert regulatory effects on noncoding RNAs in cancer progression. In this paper, we reviewed recent findings concerning the underlying biomechanism of methyladenosine modifications in oncogenesis and metastasis and discussed the therapeutic potential of methyladenosine modifications in cancer treatments.
Collapse
|
41
|
Liu Y, Luo G, Tang Q, Song Y, Liu D, Wang H, Ma J. Methyltransferase-like 14 silencing relieves the development of atherosclerosis via m 6A modification of p65 mRNA. Bioengineered 2022; 13:11832-11843. [PMID: 35543357 PMCID: PMC9275857 DOI: 10.1080/21655979.2022.2031409] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To explore the METTL14-dependent m6A modification mechanism involved in the development of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) and the HUVEC cell line were used to establish an atherosclerosis cell model in vitro, and APOE−/− mice fed a high-fat diet were used as the animal model. Cell viability and apoptosis were assessed using MTT assays and flow cytometry. The status of m6A in HUVECs was examined using MeRIP-qPCR. Oil Red O staining was used to evaluate the lesions or plaques on aortas separated from the target mice. METTL14 and METTL3 were upregulated in HUVECs after ox-LDL treatment. After transfection with si-METTL14, the bcl-2 expression level and the viability of ox-LDL-incubated cells increased, whereas the apoptosis rate and the expressions of Bax and cleaved caspase-3 decreased. However, the effect of METTL14 knockdown was reversed by p65 overexpression. After METTL14 knockdown, there was a decrease in the total m6A content in HUVECs, m6A modification, and p65 expression. The plaques and lesion areas on the high-fat diet APOE−/− mouse aortas were smaller after METTL14 silencing. METTL14 reduced cell viability and promoted apoptosis of HUVECs, which were both induced by ox-LDL via m6A modification of p65. Knocking down METTL14 could inhibit the development of atherosclerosis in high-fat diet-treated APOE−/− mice.
Collapse
Affiliation(s)
- Yingjie Liu
- Department of Cardiac and Vascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gang Luo
- Department of Cardiac and Vascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Quan Tang
- Department of Cardiac and Vascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yang Song
- Department of Cardiac and Vascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Daxing Liu
- Department of Cardiac and Vascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongjuan Wang
- Department of Scientific Research, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junliang Ma
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
42
|
Issah MA, Wu D, Zhang F, Zheng W, Liu Y, Chen R, Lai G, Shen J. Expression profiling of N 6-methyladenosine modified circRNAs in acute myeloid leukemia. Biochem Biophys Res Commun 2022; 601:137-145. [PMID: 35247767 DOI: 10.1016/j.bbrc.2022.02.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults, associated with poor prognosis and easy relapse of disease. Circular RNAs (circRNAs) were detected to be m6A modified and the role of m6A circRNAs has been reported in other diseases including cancers, however, their role has not been elucidated in AML yet. In the present study, we aimed to investigate the expression profiling of m6A circRNAs in AML. We performed m6A circRNAs microarray analysis to identify differentially expressed m6A circRNAs in bone marrow samples from AML patients and healthy individuals (control). Furthermore, bioinformatics analysis predicted the potential functions and relevant pathways that may be associated with the m6A circRNAs. The circRNA m6A methylation levels were found to be positively associated with the circRNAs expression, suggesting circRNA m6A modification could contribute to circRNA regulation in AML. Further analysis demonstrated that circRNA m6A modification might influence the circRNA-miRNA-mRNA co-expression network that may contribute to the circRNA regulatory network in AML. Our findings provide evidence of the differential expression profile of m6A circRNAs in AML, and circRNA m6A modification may contribute to circRNA regulatory function in AML.
Collapse
Affiliation(s)
- Mohammed Awal Issah
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Dansen Wu
- Medical Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, Fujian, 35001, China
| | - Feng Zhang
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Weili Zheng
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yanquan Liu
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Rong Chen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Guilan Lai
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Jianzhen Shen
- Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
43
|
Zhang R, Zhang Y, Guo F, Li S, Cui H. RNA N6-Methyladenosine Modifications and Its Roles in Alzheimer's Disease. Front Cell Neurosci 2022; 16:820378. [PMID: 35401117 PMCID: PMC8989074 DOI: 10.3389/fncel.2022.820378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of epitranscriptomics in regulating gene expression has received widespread attention. Recently, RNA methylation modifications, particularly N6-methyladenosine (m6A), have received marked attention. m6A, the most common and abundant type of eukaryotic methylation modification in RNAs, is a dynamic reversible modification that regulates nuclear splicing, stability, translation, and subcellular localization of RNAs. These processes are involved in the occurrence and development of many diseases. An increasing number of studies have focused on the role of m6A modification in Alzheimer's disease, which is the most common neurodegenerative disease. This review focuses on the general features, mechanisms, and functions of m6A methylation modification and its role in Alzheimer's disease.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Fangzhen Guo
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
44
|
Yadav P, Subbarayalu P, Medina D, Nirzhor S, Timilsina S, Rajamanickam S, Eedunuri VK, Gupta Y, Zheng S, Abdelfattah N, Huang Y, Vadlamudi R, Hromas R, Meltzer P, Houghton P, Chen Y, Rao MK. M6A RNA Methylation Regulates Histone Ubiquitination to Support Cancer Growth and Progression. Cancer Res 2022; 82:1872-1889. [PMID: 35303054 DOI: 10.1158/0008-5472.can-21-2106] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is the most common malignancy of the bone, yet the survival for osteosarcoma patients is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In osteosarcoma patients, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Me-RIP-seq analysis and functional studies showed that ALKBH5 mediates its pro-tumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key pro-tumorigenic genes, consequently driving unchecked cell cycle progression, incessant replication and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth.
Collapse
Affiliation(s)
- Pooja Yadav
- Greehey Children's Cancer Research Institute, United States
| | | | - Daisy Medina
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Saif Nirzhor
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Santosh Timilsina
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Subapriya Rajamanickam
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yogesh Gupta
- UT Health Science Center at San Antonio, San Antonio, TX, United States
| | - Siyuan Zheng
- The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | | | - Yufei Huang
- The University of Texas at San Antonio, San Antonio, Texas, United States
| | - Ratna Vadlamudi
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Hromas
- The University of Texas Health Science Center at San Antonio, United States
| | - Paul Meltzer
- National Cancer Institute, Bethesda, MD, United States
| | - Peter Houghton
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yidong Chen
- The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Manjeet K Rao
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
45
|
Vaasjo LO. LncRNAs and Chromatin Modifications Pattern m6A Methylation at the Untranslated Regions of mRNAs. Front Genet 2022; 13:866772. [PMID: 35368653 PMCID: PMC8968631 DOI: 10.3389/fgene.2022.866772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
New roles for RNA in mediating gene expression are being discovered at an alarming rate. A broad array of pathways control patterning of N6-methyladenosine (m6A) methylation on RNA transcripts. This review comprehensively discusses long non-coding RNAs (lncRNAs) as an additional dynamic regulator of m6A methylation, with a focus on the untranslated regions (UTRs) of mRNAs. Although there is extensive literature describing m6A modification of lncRNA, the function of lncRNA in guiding m6A writers has not been thoroughly explored. The independent control of lncRNA expression, its heterogeneous roles in RNA metabolism, and its interactions with epigenetic machinery, alludes to their potential in dynamic patterning of m6A methylation. While epigenetic regulation by histone modification of H3K36me3 has been demonstrated to pattern RNA m6A methylation, these modifications were specific to the coding and 3′UTR regions. However, there are observations that 5′UTR m6A is distinct from that of the coding and 3′UTR regions, and substantial evidence supports the active regulation of 5′UTR m6A methylation. Consequently, two potential mechanisms in patterning the UTRs m6A methylation are discussed; (1) Anti-sense lncRNA (AS-lncRNA) can either bind directly to the UTR, or (2) act indirectly via recruitment of chromatin-modifying complexes to pattern m6A. Both pathways can guide the m6A writer complex, facilitate m6A methylation and modulate protein translation. Findings in the lncRNA-histone-m6A axis could potentially contribute to the discovery of new functions of lncRNAs and clarify lncRNA-m6A findings in translational medicine.
Collapse
Affiliation(s)
- Lee O. Vaasjo
- Cellular and Molecular Biology, Tulane University, New Orleans, LA, United States
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA, United States
- *Correspondence: Lee O. Vaasjo,
| |
Collapse
|
46
|
Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay. Nat Commun 2022; 13:859. [PMID: 35165263 PMCID: PMC8844045 DOI: 10.1038/s41467-022-28547-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/18/2022] [Indexed: 01/28/2023] Open
Abstract
Maternal RNA degradation is critical for embryogenesis and is tightly controlled by maternal RNA-binding proteins. Fragile X mental-retardation protein (FMR1) binds target mRNAs to form ribonucleoprotein (RNP) complexes/granules that control various biological processes, including early embryogenesis. However, how FMR1 recognizes target mRNAs and how FMR1-RNP granule assembly/disassembly regulates FMR1-associated mRNAs remain elusive. Here we show that Drosophila FMR1 preferentially binds mRNAs containing m6A-marked “AGACU” motif with high affinity to contributes to maternal RNA degradation. The high-affinity binding largely depends on a hydrophobic network within FMR1 KH2 domain. Importantly, this binding greatly induces FMR1 granule condensation to efficiently recruit unmodified mRNAs. The degradation of maternal mRNAs then causes granule de-condensation, allowing normal embryogenesis. Our findings reveal that sequence-specific mRNAs instruct FMR1-RNP granules to undergo a dynamic phase-switch, thus contributes to maternal mRNA decay. This mechanism may represent a general principle that regulated RNP-granules control RNA processing and normal development. Maternal RNA degradation is critical for embryogenesis and is tightly controlled by maternal RNA-binding proteins. Here the authors show that a subset of m6A-modified mRNAs regulates the dynamics of RNA-granules, thus contributes to maternal mRNA decay.
Collapse
|
47
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
48
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
49
|
Liu Q. Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer. Front Genet 2022; 12:825109. [PMID: 35087575 PMCID: PMC8787278 DOI: 10.3389/fgene.2021.825109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) is a dynamic, reversible post-transcriptional modification, and the most common internal modification of eukaryotic messenger RNA (mRNA). Considerable evidence now shows that m6A alters gene expression, thereby regulating cell self-renewal, differentiation, invasion, and apoptotic processes. M6A methylation disorders are directly related to abnormal RNA metabolism, which may lead to tumor formation. M6A methyltransferase is the dominant catalyst during m6A modification; it removes m6A demethylase, promotes recognition by m6A binding proteins, and regulates mRNA metabolic processes. Bladder cancer (BC) is a urinary system malignant tumor, with complex etiology and high incidence rates. A well-differentiated or moderately differentiated pathological type at initial diagnosis accounts for most patients with BC. For differentiated superficial bladder urothelial carcinoma, the prognosis is normally good after surgery. However, due to poor epithelial cell differentiation, BC urothelial cell proliferation and infiltration may lead to invasive or metastatic BC, which lowers the 5-years survival rate and significantly affects clinical treatments in elderly patients. Here, we review the latest progress in m6A RNA methylation research and investigate its regulation on BC occurrence and development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
50
|
Zhao Y, Peng H. The Role of N 6-Methyladenosine (m 6A) Methylation Modifications in Hematological Malignancies. Cancers (Basel) 2022; 14:332. [PMID: 35053496 PMCID: PMC8774242 DOI: 10.3390/cancers14020332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Epigenetics is identified as the study of heritable modifications in gene expression and regulation that do not involve DNA sequence alterations, such as DNA methylation, histone modifications, etc. Importantly, N6-methyladenosine (m6A) methylation modification is one of the most common epigenetic modifications of eukaryotic messenger RNA (mRNA), which plays a key role in various cellular processes. It can not only mediate various RNA metabolic processes such as RNA splicing, translation, and decay under the catalytic regulation of related enzymes but can also affect the normal development of bone marrow hematopoiesis by regulating the self-renewal, proliferation, and differentiation of pluripotent stem cells in the hematopoietic microenvironment of bone marrow. In recent years, numerous studies have demonstrated that m6A methylation modifications play an important role in the development and progression of hematologic malignancies (e.g., leukemia, lymphoma, myelodysplastic syndromes [MDS], multiple myeloma [MM], etc.). Targeting the inhibition of m6A-associated factors can contribute to increased susceptibility of patients with hematologic malignancies to therapeutic agents. Therefore, this review elaborates on the biological characteristics and normal hematopoietic regulatory functions of m6A methylation modifications and their role in the pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Hematology, Central South University, Changsha 410011, China
| | - Hongling Peng
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Hematology, Central South University, Changsha 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha 410011, China
| |
Collapse
|