1
|
Chiou LC, Sieghart W. IUPHAR Review: Alpha6-containing GABA A receptors - Novel targets for the treatment of schizophrenia. Pharmacol Res 2025; 213:107613. [PMID: 39848349 DOI: 10.1016/j.phrs.2025.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
α6-containing GABAA receptors (α6GABAARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABAARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow. The cerebellum has strong connections to multiple brain regions via closed loop circuits and is also extensively connected with the dopamine system in the prefrontal cortex, that initiates the execution of behavior. Patients suffering from schizophrenia exhibit an impaired structure and function of the cerebellum and an impaired GABAergic transmission at α6GABAARs. This also impairs the function of the dopamine system, can explain a variety of schizophrenia symptoms observed, and might be one of the pathophysiological causes of schizophrenia. Enhancing GABAergic transmission at α6GABAARs should thus reduce the symptoms of schizophrenia. This recently has been confirmed by demonstrating that positive allosteric modulators with high selectivity for α6GABAARs can reduce positive and negative symptoms and cognitive impairment of schizophrenia in several animal models of this disorder. So far, the beneficial actions of these modulators have been demonstrated in animal models of neuropsychiatric disorders, only. Future human studies have to investigate the safety and possible side effects of these modulators and to clarify, to which extent individual symptoms of schizophrenia can be reduced by these drugs in patients during acute and chronic dosing.
Collapse
Affiliation(s)
- Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
3
|
Huang L, Sun S, Jiang G, Xie G, Yang Y, Chen S, Luo J, Lv C, Li X, Liao J, Wang Z, Zhang Z, Xiong J. Follicle-stimulating hormone induces depression-like phenotype by affecting synaptic function. Front Mol Neurosci 2024; 17:1459858. [PMID: 39498265 PMCID: PMC11532131 DOI: 10.3389/fnmol.2024.1459858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Depression is one of the most common affective disorders in people's life. Women are susceptibility to depression during puberty, peripartum and menopause transition, when they are suffering from sex hormone fluctuation. A lot of studies have demonstrated the neuroprotective effect of estrogen on depression in women, however, the effect of FSH on depression is unclear. In this study, we investigated the role of FSH on depression in mice. Our study demonstrated that FSH induced depression-like behaviors in mice in a dose-dependent manner. This induction was associated with elevated levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α in both serum and hippocampal tissues. Additionally, FSH treatment resulted in impaired synaptic plasticity and a reduction in the expression of key synaptic proteins. It is noteworthy that the depression-like behaviors, inflammatory cytokines expression and synaptic plasticity impairment induced by FSH could be alleviated by knocking down the expression of FSH receptor (FSHR) in the hippocampus of the mice. Therefore, our findings reveal that FSH may play an important role in the pathogenesis of depression and targeting FSH may be a potential therapeutic strategy for depression during hormone fluctuation in women.
Collapse
Affiliation(s)
- Liqin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shangqi Sun
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science of Technology, Wuhan, China
| | - Gege Jiang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guanfeng Xie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Hirakawa H, Terao T. The genetic association between bipolar disorder and dementia: a qualitative review. Front Psychiatry 2024; 15:1414776. [PMID: 39228919 PMCID: PMC11368786 DOI: 10.3389/fpsyt.2024.1414776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and energy and recurrent episodes of mania/hypomania and depression. Bipolar disorder may be regarded as a neuro-progressive disorder in which repeated mood episodes may lead to cognitive decline and dementia development. In the current review, we employed genome-wide association studies to comprehensively investigate the genetic variants associated with bipolar disorder and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar disorder and 19 on dementia. The results showed that the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A may be associated with the neuro-progression of bipolar disorder to dementia. Further genetic studies are needed to comprehensively clarify the role of genes in cognitive decline and the development of dementia in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | |
Collapse
|
5
|
Tully J, Pereira AC, Sethi A, Griem J, Cross B, Williams SC, Blair RJ, Murphy D, Blackwood N. Impaired striatal glutamate/GABA regulation in violent offenders with antisocial personality disorder and psychopathy. Mol Psychiatry 2024; 29:1824-1832. [PMID: 38326560 PMCID: PMC11371654 DOI: 10.1038/s41380-024-02437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Men with antisocial personality disorder (ASPD) with or without psychopathy (+/-P) are responsible for most violent crime in society. Development of effective treatments is hindered by poor understanding of the neurochemical underpinnings of the condition. Men with ASPD with and without psychopathy demonstrate impulsive decision-making, associated with striatal abnormalities in functional neuroimaging studies. However, to date, no study has directly examined the potential neurochemical underpinnings of such abnormalities. We therefore investigated striatal glutamate: GABA ratio using Magnetic Resonance Spectroscopy in 30 violent offenders (16 ASPD-P, 14 ASPD + P) and 21 healthy non-offenders. Men with ASPD +/- P had a significant reduction in striatal glutamate : GABA ratio compared to non-offenders. We report, for the first time, striatal Glutamate/GABA dysregulation in ASPD +/- P, and discuss how this may be related to core behavioral abnormalities in the disorders.
Collapse
Affiliation(s)
- John Tully
- Academic Unit of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Jubilee Campus, University of Nottingham, Wollaton Rd, Lenton, Nottingham, NG8 1BB, United Kingdom.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom.
| | - Andreia C Pereira
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Arjun Sethi
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Julia Griem
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ben Cross
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Steve Cr Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE58AF, United Kingdom
| | - Robert James Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Nigel Blackwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| |
Collapse
|
6
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Palmisano A, Pandit S, Smeralda CL, Demchenko I, Rossi S, Battelli L, Rivolta D, Bhat V, Santarnecchi E. The Pathophysiological Underpinnings of Gamma-Band Alterations in Psychiatric Disorders. Life (Basel) 2024; 14:578. [PMID: 38792599 PMCID: PMC11122172 DOI: 10.3390/life14050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/26/2024] Open
Abstract
Investigating the biophysiological substrates of psychiatric illnesses is of great interest to our understanding of disorders' etiology, the identification of reliable biomarkers, and potential new therapeutic avenues. Schizophrenia represents a consolidated model of γ alterations arising from the aberrant activity of parvalbumin-positive GABAergic interneurons, whose dysfunction is associated with perineuronal net impairment and neuroinflammation. This model of pathogenesis is supported by molecular, cellular, and functional evidence. Proof for alterations of γ oscillations and their underlying mechanisms has also been reported in bipolar disorder and represents an emerging topic for major depressive disorder. Although evidence from animal models needs to be further elucidated in humans, the pathophysiology of γ-band alteration represents a common denominator for different neuropsychiatric disorders. The purpose of this narrative review is to outline a framework of converging results in psychiatric conditions characterized by γ abnormality, from neurochemical dysfunction to alterations in brain rhythms.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TUD Dresden University of Technology, 01069 Dresden, Germany
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Siddhartha Pandit
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
| | - Carmelo L. Smeralda
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation (SI-BIN) Laboratory, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, 53100 Siena, Italy;
| | - Lorella Battelli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (I.D.)
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA (E.S.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
8
|
Thomaidis GV, Papadimitriou K, Michos S, Chartampilas E, Tsamardinos I. A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning. IBRO Neurosci Rep 2023; 15:77-89. [PMID: 38025660 PMCID: PMC10668096 DOI: 10.1016/j.ibneur.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification scores and disease-related predictive biosignature identification, in short time frames and scaled down to small datasets. Method A fully automated machine learning platform, based on the most suitable algorithm selection and relevant set of hyper-parameter values, was applied on a preprocessed transcriptomics dataset, in order to produce a model for biosignature selection and to classify subjects into groups of patients and controls. The parent GEO datasets were originally produced from the cerebellar and parietal lobe tissue of deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST Array. Results Patients and controls were classified into two separate groups, with no close-to-the-boundary cases, and this classification was based on the cerebellar transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and Average Precision 0.955. The biosignature includes both genes connected before to bipolar disorder, depression, psychosis or epilepsy, as well as genes not linked before with any psychiatric disease. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed participation of 4 identified features in 6 pathways which have also been associated with bipolar disorder. Conclusion Automated machine learning (AutoML) managed to identify accurately 25 genes that can jointly - in a multivariate-fashion - separate bipolar patients from healthy controls with high predictive power. The discovered features lead to new biological insights. Machine Learning (ML) analysis considers the features in combination (in contrast to standard differential expression analysis), removing both irrelevant as well as redundant markers, and thus, focusing to biological interpretation.
Collapse
Affiliation(s)
- Georgios V. Thomaidis
- Greek National Health System, Psychiatric Department, Katerini General Hospital, Katerini, Greece
| | - Konstantinos Papadimitriou
- Greek National Health System, G. Papanikolaou General Hospital, Organizational Unit - Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelos Chartampilas
- Laboratory of Radiology, AHEPA General Hospital, University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
9
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
10
|
Santa C, Rodrigues D, Coelho JF, Anjo SI, Mendes VM, Bessa-Neto D, Dunn MJ, Cotter D, Baltazar G, Monteiro P, Manadas B. Chronic treatment with D2-antagonist haloperidol leads to inhibitory/excitatory imbalance in striatal D1-neurons. Transl Psychiatry 2023; 13:312. [PMID: 37803004 PMCID: PMC10558446 DOI: 10.1038/s41398-023-02609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Striatal dysfunction has been implicated in the pathophysiology of schizophrenia, a disorder characterized by positive symptoms such as hallucinations and delusions. Haloperidol is a typical antipsychotic medication used in the treatment of schizophrenia that is known to antagonize dopamine D2 receptors, which are abundantly expressed in the striatum. However, haloperidol's delayed therapeutic effect also suggests a mechanism of action that may go beyond the acute blocking of D2 receptors. Here, we performed proteomic analysis of striatum brain tissue and found more than 400 proteins significantly altered after 30 days of chronic haloperidol treatment in mice, namely proteins involved in glutamatergic and GABAergic synaptic transmission. Cell-type specific electrophysiological recordings further revealed that haloperidol not only reduces the excitability of striatal medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) but also affects D1-MSNs by increasing the ratio of inhibitory/excitatory synaptic transmission (I/E ratio) specifically onto D1-MSNs but not D2-MSNs. Therefore, we propose the slow remodeling of D1-MSNs as a mechanism mediating the delayed therapeutic effect of haloperidol over striatum circuits. Understanding how haloperidol exactly contributes to treating schizophrenia symptoms may help to improve therapeutic outcomes and elucidate the molecular underpinnings of this disorder.
Collapse
Affiliation(s)
- Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- III - Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Joana F Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Diogo Bessa-Neto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Michael J Dunn
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Dublin, Ireland
| | - David Cotter
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont, Dublin, Ireland
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal.
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
11
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
12
|
Ali AB, Islam A, Constanti A. The fate of interneurons, GABA A receptor sub-types and perineuronal nets in Alzheimer's disease. Brain Pathol 2022; 33:e13129. [PMID: 36409151 PMCID: PMC9836378 DOI: 10.1111/bpa.13129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurological disease, which is associated with gradual memory loss and correlated with synaptic hyperactivity and abnormal oscillatory rhythmic brain activity that precedes phenotypic alterations and is partly responsible for the spread of the disease pathology. Synaptic hyperactivity is thought to be because of alteration in the homeostasis of phasic and tonic synaptic inhibition, which is orchestrated by the GABAA inhibitory system, encompassing subclasses of interneurons and GABAA receptors, which play a vital role in cognitive functions, including learning and memory. Furthermore, the extracellular matrix, the perineuronal nets (PNNs) which often go unnoticed in considerations of AD pathology, encapsulate the inhibitory cells and neurites in critical brain regions and have recently come under the light for their crucial role in synaptic stabilisation and excitatory-inhibitory balance and when disrupted, serve as a potential trigger for AD-associated synaptic imbalance. Therefore, in this review, we summarise the current understanding of the selective vulnerability of distinct interneuron subtypes, their synaptic and extrasynaptic GABAA R subtypes as well as the changes in PNNs in AD, detailing their contribution to the mechanisms of disease development. We aim to highlight how seemingly unique malfunction in each component of the interneuronal GABA inhibitory system can be tied together to result in critical circuit dysfunction, leading to the irreversible symptomatic damage observed in AD.
Collapse
|
13
|
Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes. Int J Mol Sci 2022; 23:ijms23147965. [PMID: 35887307 PMCID: PMC9318753 DOI: 10.3390/ijms23147965] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.
Collapse
|
14
|
Yazici E, Kose S, Gunduz Y, Kurt EM, Yazici AB. Mega cisterna magna in bipolar mood disorder: a case report. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:58-61. [PMID: 35067008 PMCID: PMC8895964 DOI: 10.12701/yujm.2020.00864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Mega cisterna magna (MCM), one of the members of the Dandy-Walker complex, is a developmental malformation of the posterior fossa that is larger than 10 mm but morphologically does not affect the vermis and cerebellar hemispheres. Reports of psychiatric disorders associated with this anomaly are rare. We present the case of a patient with MCM who presented with a psychotic manic attack and was diagnosed with bipolar disorder. A 28-year-old female, single housewife, university graduate, presented with irritability, decreased sleep and appetite, distraction, and agitation. The patient also had a delusion of reference. In the clinical follow-up, an increase in energy and an increase in the amount of speech were observed. Her neurological examination was normal, and cranial magnetic resonance imaging revealed an MCM. The relationship and clinical significance of MCM with psychosis and mood disorders have not yet been fully elucidated. It is not known whether this association is accidental or based on etiological commonality. The purpose of this case report is to review the relationship between the cerebellum and psychiatric symptoms and to contribute to the literature.
Collapse
Affiliation(s)
- Esra Yazici
- Department of Psychiatry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Sefanur Kose
- Department of Psychiatry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Yasemin Gunduz
- Department of Radiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Elif Merve Kurt
- Department of Psychiatry, Diyarbakır Dağkapı State Hospital, Diyarbakır, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
- Corresponding author: Ahmet Bulent Yazici, MD Department of Psychiatry, Faculty of Medicine, Sakarya University, Sakarya, Turkey Tel: +90-5325994988 Fax: +90-2642552105 E-mail:
| |
Collapse
|
15
|
Richardson B, Swenson S, Hamilton J, Leonard K, Delis F, Gold M, Blum K, Thanos PK. Chronic neuroleptic treatment combined with a high fat diet elevated [3H] flunitrazepam binding in the cerebellum. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110407. [PMID: 34320402 DOI: 10.1016/j.pnpbp.2021.110407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 01/29/2023]
Abstract
Clinical and preclinical studies have shown dysfunctions in genetic expression and neurotransmission of γ-Aminobutyric acid (GABA), GABAA receptor subunits, and GABA-synthesizing enzymes GAD67 and GAD65 in schizophrenia. It is well documented that there is significant weight gain after chronic neuroleptic treatment in humans. While there are limited studies on the effects of diet on GABA signaling directly, a change in diet has been used clinically as an adjunct to treatment for schizophrenic relief. In this study, rats chronically consumed either a chow diet (CD) or a 60% high-fat diet (HFD) and drank from bottles that contained one of the following solutions: water, haloperidol (1.5 mg/kg), or olanzapine (10 mg/kg) for four weeks. Rats were then euthanized and their brains were processed for GABAA in-vitro receptor autoradiography using [3H] flunitrazepam. A chronic HFD treatment yielded significantly increased [3H] flunitrazepam binding in the rat cerebellum independent of neuroleptic treatment. The desynchronization between the prefrontal cortex and the cerebellum is associated with major cognitive and motor dysfunctions commonly found in schizophrenic symptomatology, such as slowed reaction time, motor dyscoordination, and prefrontal activations related to speech fluency and cognitive alertness. These data support the notion that there is a dietary effect on GABA signaling within the cerebellum, as well as the importance of considering nutritional intervention methods as an adjunct treatment for patients chronically treated with neuroleptics. Finally, we indicate that future studies involving the analysis of individual patient's genetic profiles will further assist towards a precision medicine approach to the treatment of schizophrenia.
Collapse
Affiliation(s)
- Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - Ken Leonard
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Foteini Delis
- Department of Pharmacology, University at Ioannina, Ioannina, Greece
| | - Mark Gold
- Washington University in St Louis, School of Medicine, St. Louis, MS, USA
| | - Ken Blum
- Western University Health Sciences, Graduate School of Biomedical Sciences, Pomona, CA, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
16
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
17
|
Magwai T, Shangase KB, Oginga FO, Chiliza B, Mpofana T, Xulu KR. DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells 2021; 10:2890. [PMID: 34831111 PMCID: PMC8616184 DOI: 10.3390/cells10112890] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by dissociation of thoughts, idea, identity, and emotions. It has no central pathophysiological mechanism and precise diagnostic markers. Despite its high heritability, there are also environmental factors implicated in the development of schizophrenia. Epigenetic factors are thought to mediate the effects of environmental factors in the development of the disorder. Epigenetic modifications like DNA methylation are a risk factor for schizophrenia. Targeted gene approach studies attempted to find candidate gene methylation, but the results are contradictory. Genome-wide methylation studies are insufficient in literature and the available data do not cover different populations like the African populations. The current genome-wide studies have limitations related to the sample and methods used. Studies are required to control for these limitations. Integration of DNA methylation, gene expression, and their effects are important in the understanding of the development of schizophrenia and search for biomarkers. There are currently no precise and functional biomarkers for the disorder. Several epigenetic markers have been reported to be common in functional and peripheral tissue. This makes the peripheral tissue epigenetic changes a surrogate of functional tissue, suggesting common epigenetic alteration can be used as biomarkers of schizophrenia in peripheral tissue.
Collapse
Affiliation(s)
- Thabo Magwai
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
- National Health Laboratory Service, Department of Chemical Pathology, University of Kwa-Zulu Natal, Durban 4085, South Africa
| | - Khanyiso Bright Shangase
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwa-Zulu Natal, Durban 4001, South Africa;
| | - Thabisile Mpofana
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| | - Khethelo Richman Xulu
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; (K.B.S.); (F.O.O.); (T.M.)
| |
Collapse
|
18
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
19
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
20
|
A Combined Network Pharmacology and Molecular Docking Approach to Investigate Candidate Active Components and Multitarget Mechanisms of Hemerocallis Flowers on Antidepressant Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7127129. [PMID: 34306154 PMCID: PMC8266453 DOI: 10.1155/2021/7127129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Objective The purpose of our research is to systematically explore the multiple mechanisms of Hemerocallis fulva Flowers (HF) on depressive disorder (DD). Methods The components of HF were searched from the literature. The targets of components were obtained from PharmMapper. After that, Cytoscape software was used to build a component-target network. The targets of DD were collected from DisGeNET, PharmGKB, TTD, and OMIM. Protein-protein interactions (PPIs) among the DD targets were executed to screen the key targets. Afterward, the GO and KEGG pathway enrichment analysis were performed by the KOBAS database. A compound-target-KEGG pathway network was built to analyze the key compounds and targets. Finally, the potential active substances and targets were validated by molecular docking. Results A total of 55 active compounds in HF, 646 compound-related targets, and 527 DD-related targets were identified from public databases. After treated with PPI, 219 key targets of DD were acquired. The gene enrichment analysis suggested that HF probably benefits DD patients by modulating pathways related to the nervous system, endocrine system, amino acid metabolism, and signal transduction. The network analysis showed the critical components and targets of HF on DD. Results of molecular docking increased the reliability of this study. Conclusions It predicted and verified the pharmacological and molecular mechanism of HF against DD from a holistic perspective, which will also lay a foundation for further experimental research and rational clinical application of DD.
Collapse
|
21
|
Purves-Tyson TD, Brown AM, Weissleder C, Rothmond DA, Shannon Weickert C. Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia. Mol Brain 2021; 14:96. [PMID: 34174930 PMCID: PMC8235806 DOI: 10.1186/s13041-021-00805-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 – 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p < 0.05). Gene expression of somatostatin (SST) was unchanged (p = 0.485). We confirmed the reduction in GAD at the protein level (34%, p < 0.05). When stratifying by inflammation, only GABRA3 mRNA exhibited more pronounced changes in high compared to low inflammatory subgroups in schizophrenia. GABRA3 protein was expressed by 98% of tyrosine hydroxylase-positive neurons and was 23% lower in schizophrenia, though this did not reach statistical significance (p > 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p < 0.001) but not controls (GABRA2; r < − 0.200, GABRA3; r < 0.310, all p > 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Amelia M Brown
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia
| | - Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, 139 Barker Street, Margarete Ainsworth Building, Level 5, Randwick, NSW, 2031, Australia. .,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
22
|
Zhang L, Li Z, Liu Q, Shao M, Sun F, Su X, Song M, Zhang Y, Ding M, Lu Y, Liu J, Yang Y, Li M, Li W, Lv L. Weak Association Between the Glutamate Decarboxylase 1 Gene (GAD1) and Schizophrenia in Han Chinese Population. Front Neurosci 2021; 15:677153. [PMID: 34234640 PMCID: PMC8255988 DOI: 10.3389/fnins.2021.677153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Schizophrenia (SZ) is a complex psychiatric disorder with high heritability, and genetic components are thought to be pivotal risk factors for this illness. The glutamate decarboxylase 1 gene (GAD1) was hypothesized to be a candidate risk locus for SZ given its crucial role in the GABAergic neurotransmission system, and previous studies have examined the associations of single nucleotide polymorphisms (SNPs) spanning the GAD1 gene with SZ. However, inconsistent results were obtained. We hence examined the associations between GAD1 SNPs and SZ in two independent case-control samples of Han Chinese ancestry. Materials and Methods Two Han Chinese SZ case-control samples, referred as the discovery sample and the replication sample, respectively, were recruited for the current study. The discovery sample comprised of 528 paranoid SZ cases (with age of first onset ≥ 18) and 528 healthy controls; the independent replication sample contained 1,256 early onset SZ cases (with age of first onset < 18) and 2,661 healthy controls. Logistic regression analysis was performed to examine the associations between GAD1 SNPs and SZ. Results Ten SNPs covering GAD1 gene were analyzed in the discovery sample, and two SNPs showed nominal associations with SZ (rs2241165, P = 0.0181, OR = 1.261; rs2241164, P = 0.0225, OR = 1.219). SNP rs2241164 was also nominally significant in the independent replication sample (P = 0.0462, OR = 1.110), and the significance became stronger in a subsequent meta-analysis combining both discovery and replication samples (P = 0.00398, OR = 1.138). Nevertheless, such association could not survive multiple corrections, although the effect size of rs2241164 was comparable with other SZ risk loci identified in genome-wide association studies (GWAS) in Han Chinese population. We also examined the associations between GAD1 SNPs and SZ in published datasets of SZ GWAS in East Asians and Europeans, and no significant associations were observed. Conclusion We observed weak associations between GAD1 SNPs and risk of SZ in Han Chinese populations. Further analyses in larger Han Chinese samples with more detailed phenotyping are necessary to elucidate the genetic correlation between GAD1 SNPs and SZ.
Collapse
Affiliation(s)
- Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhen Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Fuping Sun
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minli Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Ming Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.,Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021; 22:5583. [PMID: 34070424 PMCID: PMC8197505 DOI: 10.3390/ijms22115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The extracellular matrix of the PNS/CNS is unusual in that it is dominated by glycosaminoglycans, especially hyaluronan, whose space filling and hydrating properties make essential contributions to the functional properties of this tissue. Hyaluronan has a relatively simple structure but its space-filling properties ensure micro-compartments are maintained in the brain ultrastructure, ensuring ionic niches and gradients are maintained for optimal cellular function. Hyaluronan has cell-instructive, anti-inflammatory properties and forms macro-molecular aggregates with the lectican CS-proteoglycans, forming dense protective perineuronal net structures that provide neural and synaptic plasticity and support cognitive learning. AIMS To highlight the central nervous system/peripheral nervous system (CNS/PNS) and its diverse extracellular and cell-associated proteoglycans that have cell-instructive properties regulating neural repair processes and functional recovery through interactions with cell adhesive molecules, receptors and neuroregulatory proteins. Despite a general lack of stabilising fibrillar collagenous and elastic structures in the CNS/PNS, a sophisticated dynamic extracellular matrix is nevertheless important in tissue form and function. CONCLUSIONS This review provides examples of the sophistication of the CNS/PNS extracellular matrix, showing how it maintains homeostasis and regulates neural repair and regeneration.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW 2052, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Gregory Bix
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
24
|
Rizzardi LF, Hickey PF, Idrizi A, Tryggvadóttir R, Callahan CM, Stephens KE, Taverna SD, Zhang H, Ramazanoglu S, GTEx Consortium, Hansen KD, Feinberg AP. Human brain region-specific variably methylated regions are enriched for heritability of distinct neuropsychiatric traits. Genome Biol 2021; 22:116. [PMID: 33888138 PMCID: PMC8061076 DOI: 10.1186/s13059-021-02335-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND DNA methylation dynamics in the brain are associated with normal development and neuropsychiatric disease and differ across functionally distinct brain regions. Previous studies of genome-wide methylation differences among human brain regions focus on limited numbers of individuals and one to two brain regions. RESULTS Using GTEx samples, we generate a resource of DNA methylation in purified neuronal nuclei from 8 brain regions as well as lung and thyroid tissues from 12 to 23 donors. We identify differentially methylated regions between brain regions among neuronal nuclei in both CpG (181,146) and non-CpG (264,868) contexts, few of which were unique to a single pairwise comparison. This significantly expands the knowledge of differential methylation across the brain by 10-fold. In addition, we present the first differential methylation analysis among neuronal nuclei from basal ganglia tissues and identify unique CpG differentially methylated regions, many associated with ion transport. We also identify 81,130 regions of variably CpG methylated regions, i.e., variable methylation among individuals in the same brain region, which are enriched in regulatory regions and in CpG differentially methylated regions. Many variably methylated regions are unique to a specific brain region, with only 202 common across all brain regions, as well as lung and thyroid. Variably methylated regions identified in the amygdala, anterior cingulate cortex, and hippocampus are enriched for heritability of schizophrenia. CONCLUSIONS These data suggest that epigenetic variation in these particular human brain regions could be associated with the risk for this neuropsychiatric disorder.
Collapse
Affiliation(s)
- Lindsay F. Rizzardi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
| | - Peter F. Hickey
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Rakel Tryggvadóttir
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Colin M. Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Sean D. Taverna
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
| | - Sinan Ramazanoglu
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
| | - GTEx Consortium
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria Australia
- Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, 13 Children’s Way, Little Rock, AR 72202 USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St, Baltimore, MD 21205 USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205 USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Departments of Biomedical Engineering and Mental Health, Johns Hopkins University Schools of Engineering and Public Health, Baltimore, MD USA
| |
Collapse
|
25
|
ACC Glu/GABA ratio is decreased in euthymic bipolar disorder I patients: possible in vivo neurometabolite explanation for mood stabilization. Eur Arch Psychiatry Clin Neurosci 2021; 271:537-547. [PMID: 31993746 DOI: 10.1007/s00406-020-01096-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is characterized by unstable mood states ranging from mania to depression. Although there is some evidence that mood instability may result from an imbalance between excitatory glutamatergic and inhibitory GABA-ergic neurotransmission, few proton magnetic resonance spectroscopy (1H-MRS) studies have measured these two neurometabolites simultaneously in BD. The enzyme glutamic acid decarboxylase (GAD1) catalyzes the decarboxylation of glutamate (Glu) to GABA, and its single nucleotide polymorphisms (SNPs) might influence Glu/GABA ratio. Thus, we investigated Glu/GABA ratio in the dorsal anterior cingulate cortex (dACC) of euthymic BD type I patients and healthy controls (HC), and assessed the influence of both mood stabilizers and GAD1 SNPs on this ratio. Eighty-eight subjects (50 euthymic BD type I patients and 38 HC) underwent 3T 1H-MRS in the dACC (2 × 2 × 4.5 cm3) using a two-dimensional JPRESS sequence and all subjects were genotyped for 4 SNPs in the GAD1 gene. BD patients had lower dACC Glu/GABA ratio compared to HC, where this was influenced by anticonvulsant and antipsychotic medications, but not lithium. The presence of GAD1 rs1978340 allele A was associated with higher Glu/GABA ratio in BD, while patients without this allele taking mood stabilizers had a lower Glu/GABA ratio. The lowering of dACC Glu/GABA could be one explanation for the mood stabilizing action of anticonvulsants and antipsychotics in BD type I euthymia. Therefore, this putative role of Glu/GABA ratio and the influence of GAD1 genotype interacting with mood stabilization medication should be confirmed by further studies involving larger samples and other mood states.ClincalTrials.gov registration: NCT01237158.
Collapse
|
26
|
Markouli M, Strepkos D, Chlamydas S, Piperi C. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases. Prog Neurobiol 2020; 200:101968. [PMID: 33279625 DOI: 10.1016/j.pneurobio.2020.101968] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/31/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic changes that regulate chromatin structure have a major impact in genome stabilization and maintenance of cellular homeostasis, been recently implicated in the pathophysiology of central nervous system (CNS). Aberrant expression and dysregulation of histone modification enzymes has been associated with the development of several CNS disorders, revealing these enzymes as putative targets for drug development and novel therapeutic approaches. SETDB1 is a histone lysine methyltransferase responsible for the di- and tri-methylation of histone 3 (H3) at lysine (K) 9 in euchromatic regions further promoting gene silencing through heterochromatin formation. By this way, SETDB1 has been shown to regulate gene expression and influence normal cellular homeostasis required for nervous system function while it is also implicated in the pathogenesis of CNS disorders. Among them, brain tumors, schizophrenia, Huntington's disease, autism spectrum disorders along with alcohol-induced fetal neurobehavioral deficits and Prader-Willi syndrome are representative examples, indicating the aberrant expression and function of SETDB1 as a common pathogenic factor. In this review, we focus on SETDB1-associated molecular mechanisms implicated in CNS physiology and disease while we further discuss current pharmacological approaches targeting SETDB1 enzymatic activity with beneficial effects.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
27
|
Roversi K, Buizza C, Brivio P, Calabrese F, Verheij MMM, Antoniazzi CTD, Burger ME, Riva MA, Homberg JR. Neonatal Tactile Stimulation Alters Behaviors in Heterozygous Serotonin Transporter Male Rats: Role of the Amygdala. Front Behav Neurosci 2020; 14:142. [PMID: 32903627 PMCID: PMC7438747 DOI: 10.3389/fnbeh.2020.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 02/02/2023] Open
Abstract
The serotonin transporter (SERT) gene, especially the short allele of the human serotonin transporter linked polymorphic region (5-HTTLPR), has been associated with the development of stress-related neuropsychiatric disorders. In line, exposure to early life stress in SERT knockout animals contributes to anxiety- and depression-like behavior. However, there is a lack of investigation of how early-life exposure to beneficial stimuli, such as tactile stimulation (TS), affects later life behavior in these animals. In this study, we investigated the effect of TS on social, anxiety, and anhedonic behavior in heterozygous SERT knockouts rats and wild-type controls and its impact on gene expression in the basolateral amygdala. Heterozygous SERT+/– rats were submitted to TS during postnatal days 8–14, for 10 min per day. In adulthood, rats were assessed for social and affective behavior. Besides, brain-derived neurotrophic factor (Bdnf) gene expression and its isoforms, components of glutamatergic and GABAergic systems as well as glucocorticoid-responsive genes were measured in the basolateral amygdala. We found that exposure to neonatal TS improved social and affective behavior in SERT+/– animals compared to naïve SERT+/– animals and was normalized to the level of naïve SERT+/+ animals. At the molecular level, we observed that TS per se affected Bdnf, the glucocorticoid-responsive genes Nr4a1, Gadd45β, the co-chaperone Fkbp5 as well as glutamatergic and GABAergic gene expression markers including the enzyme Gad67, the vesicular GABA transporter, and the vesicular glutamate transporter genes. Our results suggest that exposure of SERT+/– rats to neonatal TS can normalize their phenotype in adulthood and that TS per se alters the expression of plasticity and stress-related genes in the basolateral amygdala. These findings demonstrate the potential effect of a supportive stimulus in SERT rodents, which are more susceptible to develop psychiatric disorders.
Collapse
Affiliation(s)
- Karine Roversi
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Carolina Buizza
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caren T D Antoniazzi
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Marilise E Burger
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
28
|
Keever MR, Zhang P, Bolt CR, Antonson AM, Rymut HE, Caputo MP, Houser AK, Hernandez AG, Southey BR, Rund LA, Johnson RW, Rodriguez-Zas SL. Lasting and Sex-Dependent Impact of Maternal Immune Activation on Molecular Pathways of the Amygdala. Front Neurosci 2020; 14:774. [PMID: 32848554 PMCID: PMC7431923 DOI: 10.3389/fnins.2020.00774] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The prolonged and sex-dependent impact of maternal immune activation (MIA) during gestation on the molecular pathways of the amygdala, a brain region that influences social, emotional, and other behaviors, is only partially understood. To address this gap, we investigated the effects of viral-elicited MIA during gestation on the amygdala transcriptome of pigs, a species of high molecular and developmental homology to humans. Gene expression levels were measured using RNA-Seq on the amygdala for 3-week-old female and male offspring from MIA and control groups. Among the 403 genes that exhibited significant MIA effect, a prevalence of differentially expressed genes annotated to the neuroactive ligand-receptor pathway, glutamatergic functions, neuropeptide systems, and cilium morphogenesis were uncovered. Genes in these categories included corticotropin-releasing hormone receptor 2, glutamate metabotropic receptor 4, glycoprotein hormones, alpha polypeptide, parathyroid hormone 1 receptor, vasointestinal peptide receptor 2, neurotensin, proenkephalin, and gastrin-releasing peptide. These categories and genes have been associated with the MIA-related human neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Gene network reconstruction highlighted differential vulnerability to MIA effects between sexes. Our results advance the understanding necessary for the development of multifactorial therapies targeting immune modulation and neurochemical dysfunction that can ameliorate the effects of MIA on offspring behavior later in life.
Collapse
Affiliation(s)
- Marissa R. Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni R. Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Adrienne M. Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Megan P. Caputo
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alexandra K. Houser
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- High-throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
29
|
Kim J, Cho H, Kim J, Kim A, Kang Y, Kang W, Choi KW, Ham BJ, Han KM, Tae WS. Changes in cortical thickness and volume of cerebellar subregions in patients with bipolar disorders. J Affect Disord 2020; 271:74-80. [PMID: 32479334 DOI: 10.1016/j.jad.2020.03.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous studies have suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). We aimed to investigate differences in the volume and cortical thickness of the cerebellar subregions between patients with BD and healthy controls (HCs). METHODS Ninety patients with BD and one hundred sixty-six HCs participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed the volume and cortical thickness of each cerebellar hemisphere divided into 12 subregions using T1-weighted images of participants. One-way analysis of covariance was used to evaluate differences between the groups, with age, sex, medication, and total intracranial cavity volume used as covariates. RESULTS The BD group had significantly increased cortical thickness of the cerebellum in all cerebellar subregions compared to the HC group. The cortical thicknesses of the whole cerebellum and each hemisphere were also significantly thicker in the BD group than in the HC group. The volume of the left lobule IX was significantly lower in patients with BD than in HCs, whereas no significant differences in the volumes were observed in the other subregions. LIMITATIONS Our cross-sectional design cannot provide a causal relationship between the increased cortical thickness of the cerebellum and the risk of BD. CONCLUSIONS We observed widespread and significant cortical thickening in all the cerebellar subregions. Our results provide evidence for the involvement of the cerebellum in BD. Further studies are required to integrate neurobiological evidence and structural brain imaging to elucidate the pathophysiology of BD.
Collapse
Affiliation(s)
- Jooyeon Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heejoon Cho
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinha Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Glutamic acid decarboxylase 67 haplodeficiency in mice: consequences of postweaning social isolation on behavior and changes in brain neurochemical systems. Brain Struct Funct 2020; 225:1719-1742. [PMID: 32514634 PMCID: PMC7321906 DOI: 10.1007/s00429-020-02087-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/09/2020] [Indexed: 01/22/2023]
Abstract
Reductions of glutamate acid decarboxylase (GAD67) and subsequent GABA levels have been consistently observed in neuropsychiatric disorders like schizophrenia and depression, but it has remained unclear how GABAergic dysfunction contributes to different symptoms of the diseases. To address this issue, we investigated male mice haplodeficient for GAD67 (GAD67+/GFP mice), which showed a reduced social interaction, social dominance and increased immobility in the forced swim test. No differences were found in rotarod performance and sensorimotor gating. We also addressed potential effects of social deprivation, which is known, during early life, to affect GABAergic function and induces behavioral abnormalities similar to the symptoms found in psychiatric disorders. Indeed, social isolation of GAD67+/GFP mice provoked increased rearing activity in the social interaction test and hyperlocomotion on elevated plus maze. Since GABA closely interacts with the dopaminergic, serotonergic and cholinergic neurotransmitter systems, we investigated GAD67+/GFP and GAD67+/+ mice for morphological markers of the latter systems and found increased tyrosine hydroxylase (TH)-IR fiber densities in CA1 of dorsal hippocampus. By contrast, no differences in numbers and densities of TH-positive neurons of the midbrain dopamine regions, serotonin (5-HT) neurons of the raphe nuclei, or choline acetyltransferase (ChAT)-expressing neurons of basal forebrain and their respective terminal fields were observed. Our results indicate that GAD67 haplodeficiency impairs sociability and increases vulnerability to social stress, provokes depressive-like behavior and alters the catecholaminergic innervation in brain areas associated with schizophrenia. GAD67+/GFP mice may provide a useful model for studying the impact of GABAergic dysfunction as related to neuropsychiatric disorders.
Collapse
|
31
|
Kondo HM, Lin IF. Excitation-inhibition balance and auditory multistable perception are correlated with autistic traits and schizotypy in a non-clinical population. Sci Rep 2020; 10:8171. [PMID: 32424307 PMCID: PMC7234986 DOI: 10.1038/s41598-020-65126-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Individuals with autism spectrum disorder and individuals with schizophrenia have impaired social and communication skills. They also have altered auditory perception. This study investigated autistic traits and schizotypy in a non-clinical population as well as the excitation-inhibition (EI) balance in different brain regions and their auditory multistable perception. Thirty-four healthy participants were assessed by the Autism-Spectrum Quotient (AQ) and Schizotypal Personality Questionnaire (SPQ). The EI balance was evaluated by measuring the resting-state concentrations of glutamate-glutamine (Glx) and ϒ-aminobutyric acid (GABA) in vivo by using magnetic resonance spectroscopy. To observe the correlation between their traits and perception, we conducted an auditory streaming task and a verbal transformation task, in which participants reported spontaneous perceptual switching while listening to a sound sequence. Their AQ and SPQ scores were positively correlated with the Glx/GABA ratio in the auditory cortex but not in the frontal areas. These scores were negatively correlated with the number of perceptual switches in the verbal transformation task but not in the auditory streaming task. Our results suggest that the EI balance in the auditory cortex and the perceptual formation of speech are involved in autistic traits and schizotypy.
Collapse
Affiliation(s)
- Hirohito M Kondo
- School of Psychology, Chukyo University, Nagoya, Aichi, 466-8666, Japan. .,Human Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan.
| | - I-Fan Lin
- Department of Occupational Medicine, Shuang Ho Hospital, New Taipei City, 235, Taiwan.,Department of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
32
|
Sawahata M, Mori D, Arioka Y, Kubo H, Kushima I, Kitagawa K, Sobue A, Shishido E, Sekiguchi M, Kodama A, Ikeda R, Aleksic B, Kimura H, Ishizuka K, Nagai T, Kaibuchi K, Nabeshima T, Yamada K, Ozaki N. Generation and analysis of novel Reln-deleted mouse model corresponding to exonic Reln deletion in schizophrenia. Psychiatry Clin Neurosci 2020; 74:318-327. [PMID: 32065683 PMCID: PMC7318658 DOI: 10.1111/pcn.12993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
AIM A Japanese individual with schizophrenia harboring a novel exonic deletion in RELN was recently identified by genome-wide copy-number variation analysis. Thus, the present study aimed to generate and analyze a model mouse to clarify whether Reln deficiency is associated with the pathogenesis of schizophrenia. METHODS A mouse line with a novel RELN exonic deletion (Reln-del) was established using the CRISPR/Cas9 method to elucidate the underlying molecular mechanism. Subsequently, general behavioral tests and histopathological examinations of the model mice were conducted and phenotypic analysis of the cerebellar granule cell migration was performed. RESULTS The phenotype of homozygous Reln-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice. CONCLUSION The present results in novel Reln-del mice modeled after our patient with a novel exonic deletion in RELN are expected to contribute to the development of reelin-based therapies for schizophrenia.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Hisako Kubo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kanako Kitagawa
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Emiko Shishido
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Kodama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Ikeda
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Amoah SK, Rodriguez BA, Logothetis CN, Chander P, Sellgren CM, Weick JP, Sheridan SD, Jantzie LL, Webster MJ, Mellios N. Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics. Neuropsychopharmacology 2020; 45:656-665. [PMID: 31775160 PMCID: PMC7021900 DOI: 10.1038/s41386-019-0579-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/24/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
The ability of small secretory microvesicles known as exosomes to influence neuronal and glial function via their microRNA (miRNA) cargo has positioned them as a novel and effective method of cell-to-cell communication. However, little is known about the role of exosome-secreted miRNAs in the regulation of glutamate receptor gene expression and their relevance for schizophrenia (SCZ) and bipolar disorder (BD). Using mature miRNA profiling and quantitative real-time PCR (qRT-PCR) in the orbitofrontal cortex (OFC) of SCZ (N = 29; 20 male and 9 female), BD (N = 26; 12 male and 14 female), and unaffected control (N = 25; 21 male and 4 female) subjects, we uncovered that miR-223, an exosome-secreted miRNA that targets glutamate receptors, was increased at the mature miRNA level in the OFC of SCZ and BD patients with positive history of psychosis at the time of death and was inversely associated with deficits in the expression of its targets glutamate ionotropic receptor NMDA-type subunit 2B (GRIN2B) and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2). Furthermore, changes in miR-223 levels in the OFC were positively and negatively correlated with inflammatory and GABAergic gene expression, respectively. Moreover, miR-223 was found to be enriched in astrocytes and secreted via exosomes, and antipsychotics were shown to control its cellular and exosomal localization in a cell-specific manner. Furthermore, addition of astrocytic exosomes in neuronal cultures resulted in a significant increase in miR-223 expression and a notable reduction in Grin2b and Gria2 mRNA levels, which was strongly inversely associated with miR-223 expression. Lastly, inhibition of astrocytic miR-223 abrogated the exosomal-mediated reduction in neuronal Grin2b expression. Taken together, our results demonstrate that the exosomal secretion of a psychosis-altered and glial-enriched miRNA that controls neuronal gene expression is regulated by antipsychotics.
Collapse
Affiliation(s)
- Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA
| | - Brian A Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Praveen Chander
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Steven D Sheridan
- Center for Genomic Medicine, Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA.
| |
Collapse
|
34
|
Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, Gaisler‐Salomon I. Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. GENES BRAIN AND BEHAVIOR 2020; 19:e12636. [DOI: 10.1111/gbb.12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergiy Chornyy
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Hazem Safory
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Amit Gross
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Herman Wolosker
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | | |
Collapse
|
35
|
Beasley CL, Honer WG, Ramos-Miguel A, Vila-Rodriguez F, Barr AM. Prefrontal fatty acid composition in schizophrenia and bipolar disorder: Association with reelin expression. Schizophr Res 2020; 215:493-498. [PMID: 28583708 DOI: 10.1016/j.schres.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The extracellular matrix protein reelin regulates early brain development and synaptic plasticity in adulthood. Reelin is decreased in the postmortem brain in schizophrenia patients. Reelin's two receptors, ApoER2 and VLDLR, are also substrates for ApoE - a key lipoprotein that regulates phospholipid homeostasis in the brain. The goal of the present study was therefore to examine phospholipids and their constituent fatty acids, and determine whether there is an association between reelin, its receptors and phospholipids in the brain. METHODS Dorsolateral prefrontal cortex (BA9) grey matter was obtained from the Stanley Foundation Neuropathology Consortium. Samples included tissue from 35 controls, 35 schizophrenia and 34 bipolar disorder patients. Phospholipids were measured using gas liquid chromatography. RESULTS We quantified 15 individual fatty acid or plasmalogen species for phosphatidylethanolamine and phosphatidylcholine fractions, each comprising >0.5% of the total fatty acid pool. There were no group differences in phospholipids or individual fatty acid species after correcting for multiple comparisons. However, for the entire cohort, both the polyunsaturated subclass of fatty acids, and ApoE, correlated significantly with reelin expression, with a number of individual ω-6 fatty acid species also demonstrating a significant positive correlation. There was a non-significant trend for similar effects with VLDLR expression as for reelin. CONCLUSION Phospholipids and fatty acids in the dorsolateral cortex do not differ in patients with schizophrenia, bipolar disorder and controls. Reelin expression in this brain region is associated with polyunsaturated fatty acids and ApoE, suggesting further study of potential physiological interactions between these substrates is warranted.
Collapse
Affiliation(s)
- Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alfredo Ramos-Miguel
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Alasdair M Barr
- Department of Pharmacology, 2176 Health Sciences Mall, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.
| |
Collapse
|
36
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
37
|
Notaras MJ, Vivian B, Wilson C, van den Buuse M. Interaction of reelin and stress on immobility in the forced swim test but not dopamine-mediated locomotor hyperactivity or prepulse inhibition disruption: Relevance to psychotic and mood disorders. Schizophr Res 2020; 215:485-492. [PMID: 28711473 DOI: 10.1016/j.schres.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE Psychotic disorders, such as schizophrenia, as well as some mood disorders, such as bipolar disorder, have been suggested to share common biological risk factors. One such factor is reelin, a large extracellular matrix glycoprotein that regulates neuronal migration during development as well as numerous activity-dependent processes in the adult brain. The current study sought to evaluate whether a history of stress exposure interacts with endogenous reelin levels to modify behavioural endophenotypes of relevance to psychotic and mood disorders. METHODS Heterozygous Reeler Mice (HRM) and wildtype (WT) controls were treated with 50mg/L of corticosterone (CORT) in their drinking water from 6 to 9weeks of age, before undergoing behavioural testing in adulthood. We assessed methamphetamine-induced locomotor hyperactivity, prepulse inhibition (PPI) of acoustic startle, short-term spatial memory in the Y-maze, and depression-like behaviour in the Forced-Swim Test (FST). RESULTS HRM genotype or CORT treatment did not affect methamphetamine-induced locomotor hyperactivity, a model of psychosis-like behaviour. At baseline, HRM showed decreased PPI at the commonly used 100msec interstimulus interval (ISI), but not at the 30msec ISI or following challenge with apomorphine. A history of CORT exposure potentiated immobility in the FST amongst HRM, but not WT mice. In the Y-maze, chronic CORT treatment decreased novel arm preference amongst HRM, reflecting reduced short-term spatial memory. CONCLUSION These data confirm a significant role of endogenous reelin levels on stress-related behaviour, supporting a possible role in both bipolar disorder and schizophrenia. However, an interaction of reelin deficiency with dopaminergic regulation of psychosis-like behaviour remains unclear.
Collapse
Affiliation(s)
- Michael J Notaras
- Florey Institute of Neuroscience & Mental Health, Melbourne, Victoria, Australia
| | - Billie Vivian
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Carey Wilson
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia; Department of Pharmacology, University of Melbourne, Victoria, Australia; The College of Public Health, Medical and Veterinary Sciences, James Cook University, Queensland, Australia.
| |
Collapse
|
38
|
El-Abassi R, Soliman MY, Villemarette-Pittman N, England JD. SPS: Understanding the complexity. J Neurol Sci 2019; 404:137-149. [PMID: 31377632 DOI: 10.1016/j.jns.2019.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Stiff-person syndrome (SPS), first described in 1956 by Moersch and Woltman, is a progressive autoimmune disorder with core features of chronic fluctuating progressive truncal and limb rigidity and painful muscle spasms leading to gait difficulties, falls and an appearance that resembles tin soldiers. The syndrome is a rare, highly disabling disorder of the central nervous and frequently results in significant disability. Understanding of the etiology, clinical spectrum, diagnostic workup and therapeutic modalities for this painful and disabling disorder has vastly evolved over the past few years with more confidence in classifying and treating the patients. The purpose of this review is to increase the awareness, early detection, and treatment of this disabling disease. METHOD PubMed was searched, all date inclusive, using the following phrases: stiff person syndrome,anti-Glutamic acid decarboxylase (Anti-GAD) antibody syndrome, Progressive encephalomyelitis with rigidity and myoclonus (PERM), and Paraneoplastic Stiff Person syndrome. No filters or restrictions were used. A total of 888 articles were identified. RESULTS The results were narrowed to 190 citations after excluding non-English and duplicate reports. Clinical presentation, laboratory testing, treatment, and prognosis were categorized and summarized. DISCUSSION In this article we will discuss the epidemiology, presentation and classification. Explain the pathophysiology of SPS and the autoimmune mechanisms involved. Discuss the diagnostic approach and treatments available, as well as, the prognosis and outcome.
Collapse
Affiliation(s)
- Rima El-Abassi
- Department of Neurology, Louisiana State University School of medicine, New Orleans, USA.
| | - Michael Y Soliman
- Department of Neurology, Louisiana State University School of medicine, New Orleans, USA
| | | | - John D England
- Department of Neurology, Louisiana State University School of medicine, New Orleans, USA
| |
Collapse
|
39
|
Piras F, Piras F, Banaj N, Ciullo V, Vecchio D, Edden RAE, Spalletta G. Cerebellar GABAergic correlates of cognition-mediated verbal fluency in physiology and schizophrenia. Acta Psychiatr Scand 2019; 139:582-594. [PMID: 30887499 DOI: 10.1111/acps.13027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Defective cerebellar GABAergic inhibitory control may participate to the cognitive impairments seen in SZ. We tested the prediction of a model for the relationship between cerebellar GABA concentration and the associative/executive processes required by verbal fluency in patients with schizophrenia (SZ) and matched healthy controls (HC). METHOD Magnetic resonance spectroscopy of GABA was performed using a 3 Tesla scanner and verbal fluency assessed by the Controlled Word (WFT) and Semantic (SFT) Fluency tests. Cerebellar GABA measurements were obtained using the MEGA-PRESS acquisition sequence. Linear correlations between cerebellar GABA levels and the WFT, SFT score were performed to test differences between correlation coefficients of SZ and HC. Quantile regressions between GABA levels and the WFT score were performed. RESULTS Higher cerebellar GABA concentration was associated in SZ with lower phonemic fluency and reduced number of switches among subcategories as opposed to what observed in HC (with higher cerebellar GABA associated with higher number of words and phonemic switches). GABA levels explained phonemic fluency in SZ performing above the group mean. CONCLUSION Studying cerebellar GABA provides a valid heuristic to explore the molecular mechanisms of SZ. This is crucial for developing pharmacological treatments to improve cognition and functional recovery in SZ.
Collapse
Affiliation(s)
- F Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - F Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - N Banaj
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - V Ciullo
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - D Vecchio
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - R A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - G Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
40
|
Kolaka R, Chotwiwatthanakun C, Chutabhakdikul N. Fetal exposure to high levels of maternal glucocorticoids alters reelin signaling in the prefrontal cortex of rat pups. Int J Dev Neurosci 2019; 78:185-190. [PMID: 31014819 DOI: 10.1016/j.ijdevneu.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022] Open
Abstract
Maternal stress (MS) is associated with various neuropsychiatric disorders and cognitive impairment in the offspring. However, it is unclear how early life stress alters the pup's brain development and how it contributes to the pathology of neuropsychiatric disorders later in life. Reelin is a large extracellular matrix glycoprotein that plays essential roles in early brain development such as neural migration, synaptic development, and maturation. Dysregulation of reelin and its signaling proteins is associated with the emergence of neuropsychiatric disorders in adulthood. This study examined the effect of repeated maternal Carbenoxolone (CBX) injection during late gestation on reelin signaling in the prefrontal cortex (PFC) of rat pups. CBX is a selective 11β-HSD2 enzyme inhibitor that promotes the direct transfer of maternal corticosteroids (CORT) to the fetus. Therefore, treatment with CBX can mimic the animal model of early life exposure to high levels of maternal stress hormone. In this study, pregnant rats were injected daily with either saline or CBX during gestation day (GD) 14-21, and the levels of reelin and its signaling proteins were examined in the PFC of rat pups at different postnatal age from P0-P21. The main result of this study is the repeated maternal CBX injections during GD14-21 acutely increase reln mRNA and protein expression in the PFC of rat pups at birth (P0) and follow by a significant decrease during P7-P14. The treatment also causes long term decreases in the amount of VLDLR and Dab1 which are the downstream signaling proteins for the reelin pathway, at least until P21. Our results indicated that fetal exposure to high levels of maternal CORT interferes with reelin signaling which might have profound effects on cortical development associated with neuropsychiatric disorders later in life.
Collapse
Affiliation(s)
- Ratirat Kolaka
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | | | - Nuanchan Chutabhakdikul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| |
Collapse
|
41
|
O’Connor MJ, Beebe LL, Deodato D, Ball RE, Page AT, VanLeuven AJ, Harris KT, Park S, Hariharan V, Lauderdale JD, Dore TM. Bypassing Glutamic Acid Decarboxylase 1 (Gad1) Induced Craniofacial Defects with a Photoactivatable Translation Blocker Morpholino. ACS Chem Neurosci 2019; 10:266-278. [PMID: 30200754 PMCID: PMC6337688 DOI: 10.1021/acschemneuro.8b00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
γ-Amino
butyric acid (GABA) mediated signaling is critical
in the central and enteric nervous systems, pancreas, lungs, and other
tissues. It is associated with many neurological disorders and craniofacial
development. Glutamic acid decarboxylase (GAD) synthesizes GABA from
glutamate, and knockdown of the gad1 gene results
in craniofacial defects that are lethal in zebrafish. To bypass this
and enable observation of the neurological defects resulting from
knocking down gad1 expression, a photoactivatable
morpholino oligonucleotide (MO) against gad1 was
prepared by cyclization with a photocleavable linker rendering the
MO inactive. The cyclized MO was stable in the dark and toward degradative
enzymes and was completely linearized upon brief exposure to 405 nm
light. In the course of investigating the function of the ccMOs in
zebrafish, we discovered that zebrafish possess paralogous gad1 genes, gad1a and gad1b. A gad1b MO injected at the 1–4 cell stage
caused severe morphological defects in head development, which could
be bypassed, enabling the fish to develop normally, if the fish were
injected with a photoactivatable, cyclized gad1b MO
and grown in the dark. At 1 day post fertilization (dpf), light activation
of the gad1b MO followed by observation at 3 and
7 dpf led to increased and abnormal electrophysiological brain activity
compared to wild type animals. The photocleavable linker can be used
to cyclize and inactivate any MO, and represents a general strategy
to parse the function of developmentally important genes in a spatiotemporal
manner.
Collapse
Affiliation(s)
- Matthew J. O’Connor
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Lindsey L. Beebe
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Davide Deodato
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Rebecca E. Ball
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - A. Tyler Page
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Ariel J. VanLeuven
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Kyle T. Harris
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Vani Hariharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James D. Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
- Neuroscience
Division
of the Biomedical and Health Sciences Institute, Athens, Georgia 30602, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| |
Collapse
|
42
|
Vázquez-Borsetti P, Peña E, Rojo Y, Acuña A, Loidl FC. Deep hypothermia reverses behavioral and histological alterations in a rat model of perinatal asphyxia. J Comp Neurol 2018; 527:362-371. [PMID: 30255933 DOI: 10.1002/cne.24539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/03/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
The consequences of perinatal asphyxia (PA) include alterations which may manifest as schizophrenia. Characteristic features of this disease include a decrease in specific subpopulations of GABAergic cells and deterioration of social interaction. The purpose of this study is to assess if a deep and short-hypothermic treatment can ameliorate this damage in a model of PA. Rats offsprings were exposed to 19 min of asphyxia by immersing the uterus horns in water at 37 °C followed by 30 min in air at 10 °C that resulted in 15 °C body temperature. At postnatal day 36-38, the rats were tested in the open field and social interaction paradigms and processed for immunostaining of calbindin and reelin. A brief exposure to deep hypothermia reversed the deterioration produced by PA in play soliciting. PA decreased the density of calbindin neurons in layer II of the Anterior Insular Cortex, while deep hypothermia reversed this effect. Paradoxically, in AIC, there was a significant increase in the number of reelin-secreting neurons in layers II and III generated by PA and this increase was reversed by hypothermia. This suggests a compensatory mechanism, where reelin neurons trend to compensate for the loss of calbindin neurons, at least within Anterior Insular Cortex. Finally, the deep hypothermic shock might represent a valuable therapeutic alternative to treat PA.
Collapse
Affiliation(s)
- Pablo Vázquez-Borsetti
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Elena Peña
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Yanina Rojo
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Andrés Acuña
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" UBA-CONICET, Buenos Aires, Argentina
| | - Fabián C Loidl
- Facultad de Medicina, Universidad Católica de Cuyo, San Juan, Argentina
| |
Collapse
|
43
|
Woźniak M, Cieślik P, Marciniak M, Lenda T, Pilc A, Wieronska JM. Neurochemical changes underlying schizophrenia-related behavior in a modified forced swim test in mice. Pharmacol Biochem Behav 2018; 172:50-58. [DOI: 10.1016/j.pbb.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 10/14/2022]
|
44
|
Sobue A, Kushima I, Nagai T, Shan W, Kohno T, Aleksic B, Aoyama Y, Mori D, Arioka Y, Kawano N, Yamamoto M, Hattori M, Nabeshima T, Yamada K, Ozaki N. Genetic and animal model analyses reveal the pathogenic role of a novel deletion of RELN in schizophrenia. Sci Rep 2018; 8:13046. [PMID: 30158644 PMCID: PMC6115412 DOI: 10.1038/s41598-018-31390-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
Reelin protein (RELN), an extracellular matrix protein, plays multiple roles that range from embryonic neuronal migration to spine formation in the adult brain. Results from genetic studies have suggested that RELN is associated with the risk of psychiatric disorders, including schizophrenia (SCZ). We previously identified a novel exonic deletion of RELN in a patient with SCZ. High-resolution copy number variation analysis revealed that this deletion included exons 52 to 58, which truncated the RELN in a similar manner to the Reln Orleans mutation (Relnrl-Orl). We examined the clinical features of this patient and confirmed a decreased serum level of RELN. To elucidate the pathophysiological role of the exonic deletion of RELN in SCZ, we conducted behavioral and neurochemical analyses using heterozygous Relnrl-Orl/+ mice. These mice exhibited abnormalities in anxiety, social behavior, and motor learning; the deficits in motor learning were ameliorated by antipsychotics. Methamphetamine-induced hyperactivity and dopamine release were significantly reduced in the Relnrl-Orl/+ mice. In addition, the levels of GABAergic markers were decreased in the brain of these mice. Taken together, our results suggest that the exonic deletion of RELN plays a pathological role, implicating functional changes in the dopaminergic and GABAergic systems, in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Akira Sobue
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuki Aoyama
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Naoko Kawano
- Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory Fujita Health University, Graduate School of Health Sciences, Toyoake, Aichi, Japan.,Aino University, Ibaraki, Osaka, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
45
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
46
|
Imai H, Shoji H, Ogata M, Kagawa Y, Owada Y, Miyakawa T, Sakimura K, Terashima T, Katsuyama Y. Dorsal Forebrain-Specific Deficiency of Reelin-Dab1 Signal Causes Behavioral Abnormalities Related to Psychiatric Disorders. Cereb Cortex 2018; 27:3485-3501. [PMID: 26762856 DOI: 10.1093/cercor/bhv334] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reelin-Dab1 signaling is involved in brain development and neuronal functions. The abnormalities in the signaling through either reduction of Reelin and Dab1 gene expressions or the genomic mutations in the brain have been reported to be associated with psychiatric disorders. However, it has not been clear if the deficiency in Reelin-Dab1 signaling is responsible for symptoms of the disorders. Here, to examine the function of Reelin-Dab1 signaling in the forebrain, we generated dorsal forebrain-specific Dab1 conditional knockout mouse (Dab1 cKO) and performed a behavioral test battery on the Dab1 cKO mice. Although conventional Dab1 null mutant mice exhibit cerebellar atrophy and cerebellar ataxia, the Dab1 cKO mice had normal cerebellum and showed no motor dysfunction. Dab1 cKO mice exhibited behavioral abnormalities, including hyperactivity, decreased anxiety-like behavior, and impairment of working memory, which are reminiscent of symptoms observed in patients with psychiatric disorders such as schizophrenia and bipolar disorder. These results suggest that deficiency of Reelin-Dab1 signal in the dorsal forebrain is involved in the pathogenesis of some symptoms of human psychiatric disorders.
Collapse
Affiliation(s)
- Hideaki Imai
- Division of Developmental Neurobiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi 332-0012, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan.,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Kawaguchi 332-0012, Japan.,Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshio Terashima
- Division of Developmental Neurobiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Yu Katsuyama
- Division of Developmental Neurobiology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan.,Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
47
|
Chromosomal Conformations and Epigenomic Regulation in Schizophrenia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:21-40. [PMID: 29933951 DOI: 10.1016/bs.pmbts.2017.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal conformations, including promoter-enhancer loops, provide a critical regulatory layer for the transcriptional machinery. Therefore, schizophrenia, a common psychiatric disorder associated with broad changes in neuronal gene expression in prefrontal cortex and other brain regions implicated in psychosis, could be associated with alterations in higher-order chromatin. Here, we review early studies on spatial genome organization in the schizophrenia postmortem brain and discuss how integrative approaches using cell culture and animal model systems could gain deeper insight into the potential roles of higher-order chromatin for the neurobiology of and novel treatment avenues for common psychiatric disease.
Collapse
|
48
|
Bhambhvani HP, Mueller TM, Simmons MS, Meador-Woodruff JH. Actin polymerization is reduced in the anterior cingulate cortex of elderly patients with schizophrenia. Transl Psychiatry 2017; 7:1278. [PMID: 29225346 PMCID: PMC5802511 DOI: 10.1038/s41398-017-0045-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/17/2022] Open
Abstract
Recent reports suggest abnormalities in the regulation of actin cytoskeletal dynamics in schizophrenia, despite consistent evidence for normal actin expression. We hypothesized that this may be explained by changes in the polymerization state of actin, rather than in total actin expression. To test this, we prepared filamentous actin (F-actin, polymeric) and globular actin (G-actin, monomeric) fractions from postmortem anterior cingulate cortex from 16 patients with schizophrenia and 14 comparison subjects. Additionally, binding of fluorescently-labeled phalloidin, a selectively F-actin-binding peptide, was measured in unfractionated samples from the same subjects. Western blot analysis of fractions revealed decreased F-actin, increased G-actin, and decreased ratios of F-actin/total actin and F-actin/G-actin in schizophrenia. Decreased phalloidin binding to F-actin in parallel experiments in the same subjects independently supports these findings. These results suggest a novel aspect of schizophrenia pathophysiology and are consistent with previous evidence of reduced dendritic spine density and altered synaptic plasticity in schizophrenia, both of which have been linked to cytoskeletal abnormalities.
Collapse
Affiliation(s)
- Hriday P Bhambhvani
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 593A, Birmingham, AL, 35294, USA
| | - Toni M Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 593A, Birmingham, AL, 35294, USA
| | - Micah S Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 593A, Birmingham, AL, 35294, USA.
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 593A, Birmingham, AL, 35294, USA
| |
Collapse
|
49
|
Fu K, Miyamoto Y, Sumi K, Saika E, Muramatsu SI, Uno K, Nitta A. Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit. PLoS One 2017; 12:e0189006. [PMID: 29211814 PMCID: PMC5718521 DOI: 10.1371/journal.pone.0189006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023] Open
Abstract
Transmembrane protein 168 (TMEM168) comprises 697 amino acid residues, including some putative transmembrane domains. It is reported that TMEM168 controls methamphetamine (METH) dependence in the nucleus accumbens (NAc) of mice. Moreover, a strong link between METH dependence-induced adaptive changes in the brain and mood disorders has been evaluated. In the present study, we investigated the effects of accumbal TMEM168 in a battery of behavioral paradigms. The adeno-associated virus (AAV) Tmem168 vector was injected into the NAc of C57BL/6J mice (NAc-TMEM mice). Subsequently, the accumbal TMEM168 mRNA was increased approximately by seven-fold when compared with the NAc-Mock mice (controls). The NAc-TMEM mice reported no change in the locomotor activity, cognitive ability, social interaction, and depression-like behaviors; however, TMEM168 overexpression enhanced anxiety in the elevated-plus maze and light/dark box test. The increased anxiety was reversed by pretreatment with the antianxiety drug diazepam (0.3 mg/kg i.p.). Moreover, the NAc-TMEM mice exhibited decreased prepulse inhibition (PPI) in the startle response test, and the induced schizophrenia-like behavior was reversed by pretreatment with the antipsychotic drug risperidone (0.01 mg/kg i.p.). Furthermore, accumbal TMEM168 overexpression decreased the basal levels of extracellular GABA in the NAc and the high K+ (100 mM)-stimulated GABA elevation; however, the total contents of GABA in the NAc remained unaffected. These results suggest that the TMEM168-regulated GABAergic neuronal system in the NAc might become a novel target while studying the etiology of anxiety and sensorimotor gating deficits.
Collapse
Affiliation(s)
- Kequan Fu
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Yoshiaki Miyamoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Kazuyuki Sumi
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Eriko Saika
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Shin-ichi Muramatsu
- Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Center for Gene & Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
50
|
Jørgensen L, Al-Khawaja A, Kickinger S, Vogensen SB, Skovgaard-Petersen J, Rosenthal E, Borkar N, Löffler R, Madsen KK, Bräuner-Osborne H, Schousboe A, Ecker GF, Wellendorph P, Clausen RP. Structure–Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). J Med Chem 2017; 60:8834-8846. [DOI: 10.1021/acs.jmedchem.7b00924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lars Jørgensen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anas Al-Khawaja
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Stefanie Kickinger
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stine B. Vogensen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jonas Skovgaard-Petersen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Emil Rosenthal
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nrupa Borkar
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karsten K. Madsen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Gerhard F. Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Petrine Wellendorph
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rasmus P. Clausen
- Department of Drug
Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|