1
|
Fan Y, Tao Y, Wang J, Gao Y, Wei W, Zheng C, Zhang X, Song XM, Northoff G. Irregularity of visual motion perception and negative symptoms in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:82. [PMID: 39349502 PMCID: PMC11443095 DOI: 10.1038/s41537-024-00496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 10/02/2024]
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder characterized by perceptual, emotional, and behavioral abnormalities, with cognitive impairment being a prominent feature of the disorder. Recent studies demonstrate irregularity in SZ with increased variability on the neural level. Is there also irregularity on the psychophysics level like in visual perception? Here, we introduce a methodology to analyze the irregularity in a trial-by-trial way to compare the SZ and healthy control (HC) subjects. In addition, we use an unsupervised clustering algorithm K-means + + to identify SZ subgroups in the sample, followed by validation of the subgroups based on intraindividual visual perception variability and clinical symptomatology. The K-means + + method divided SZ patients into two subgroups by measuring durations across trials in the motion discrimination task, i.e., high, and low irregularity of SZ patients (HSZ, LSZ). We found that HSZ and LSZ subgroups are associated with more negative and positive symptoms respectively. Applying a mediation model in the HSZ subgroup, the enhanced irregularity mediates the relationship between visual perception and negative symptoms. Together, we demonstrate increased irregularity in visual perception of a HSZ subgroup, including its association with negative symptoms. This may serve as a promising marker for identifying and distinguishing SZ subgroups.
Collapse
Affiliation(s)
- Yi Fan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yunhai Tao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jue Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chanying Zheng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:63. [PMID: 39013944 PMCID: PMC11252134 DOI: 10.1038/s41537-024-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Padmanabhan A, Prabhu PB, Vidyadharan V, Tharayil HM. Retinal Nerve Fiber Layer Thickness in Patients with Schizophrenia and Its Relation with Cognitive Impairment. Indian J Psychol Med 2024; 46:238-244. [PMID: 38699767 PMCID: PMC11062300 DOI: 10.1177/02537176231223311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Background Schizophrenia is a chronic severe mental illness with heterogeneous clinical presentation, course, and outcome. Cognitive impairment is one of its core features. Retinal nerve fiber layer (RNFL) imaging using OCT (optical coherence tomography) could provide easy access for in vivo imaging of the retina, rendering it as a "window to the brain." Studies done on schizophrenia have shown RNFL thinning. This study attempts to look into the association between cognitive impairment, disease duration, and RNFL abnormality in patients with schizophrenia using OCT. Methods Patients diagnosed with schizophrenia meeting DSM 5 (Diagnostic and Statistical Manual of Mental Disorders) criteria and who were confirmed to be in remission for at least six months clinically and scoring less than three on PANSS-8 (positive and negative symptom scale-8) remission scale were included. They were administered the Montreal Cognitive Assessment Scale (MoCA) for cognitive assessment. RNFL measures were taken using spectral domain-OCT. Variables were compared using Pearson's correlation test, one-way ANOVA test, and independent t-test as appropriate. Results A total of 36 patients were studied. MoCA scores and RNFL thickness showed a positive correlation. Patients with schizophrenia had reduced average RNFL thickness and reduced RNFL thickness in superior, inferior, and temporal quadrants. Average RNFL thickness, Superior and inferior quadrant RNFL thickness showed a positive correlation with MoCA scores. No correlation was obtained between macular volume, macular thickness, duration of illness, and MoCA scores. Conclusion Patients with schizophrenia have reduced average RNFL thickness. Patients with low MoCA scores have RNFL thinning.
Collapse
Affiliation(s)
- Anu Padmanabhan
- Dept. of Psychiatry, Government Medical College, Kozhikode, Kerala, India
| | - Padma B. Prabhu
- Dept. of Ophthalmology, Government Medical College, Kozhikode, Kerala, India
| | - Varsha Vidyadharan
- Dept. of Psychiatry, Government Medical College, Kozhikode, Kerala, India
| | - Harish M. Tharayil
- Dept. of Psychiatry, Government Medical College, Kozhikode, Kerala, India
| |
Collapse
|
4
|
Martínez A, Gaspar PA, Bermudez DH, Belen Aburto-Ponce M, Beggel O, Javitt DC. Disrupted third visual pathway function in schizophrenia: Evidence from real and implied motion processing. Neuroimage Clin 2024; 41:103570. [PMID: 38309185 PMCID: PMC10847789 DOI: 10.1016/j.nicl.2024.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Impaired motion perception in schizophrenia has been associated with deficits in social-cognitive processes and with reduced activation of visual sensory regions, including the middle temporal area (MT+) and posterior superior temporal sulcus (pSTS). These findings are consistent with the recent proposal of the existence of a specific 'third visual pathway' specialized for social perception in which motion is a fundamental component. The third visual pathway transmits visual information from early sensory visual processing areas to the STS, with MT+ acting as a critical intermediary. We used functional magnetic resonance imaging to investigate functioning of this pathway during processing of naturalistic videos with explicit (real) motion and static images with implied motion cues. These measures were related to face emotion recognition and motion-perception, as measured behaviorally. Participants were 28 individuals with schizophrenia (Sz) and 20 neurotypical controls. Compared to controls, individuals with Sz showed reduced activation of third visual pathway regions (MT+, pSTS) in response to both real- and implied-motion stimuli. Dysfunction of early visual cortex and pulvinar were also associated with aberrant real-motion processing. Implied-motion stimuli additionally engaged a wide network of brain areas including parietal, motor and frontal nodes of the human mirror neuron system. The findings support concepts of MT+ as a mediator between visual sensory areas and higher-order brain and argue for greater focus on MT+ contributions to social-cognitive processing, in addition to its well-documented role in visual motion processing.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Pablo A Gaspar
- Department of Psychiatry, Biomedical Neurosciences Institute, IMHAY, University of Chile, Santiago, Chile
| | - Dalton H Bermudez
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - M Belen Aburto-Ponce
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Odeta Beggel
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Martínez A, Hillyard SA, Javitt DC. Visual Neurophysiological Biomarkers for Patient Stratification and Treatment Development Across Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 40:757-799. [PMID: 39562463 DOI: 10.1007/978-3-031-69491-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The human visual system begins in the retina and projects to cortex through both the thalamocortical and retinotectal visual pathways. The thalamocortical system is divided into separate magnocellular and parvocellular divisions, which engage separate layers of the lateral geniculate nucleus (LGN) and project preferentially to the dorsal and ventral visual streams, respectively. The retinotectal system, in contrast, projects to the superior colliculus, pulvinar nucleus of the thalamus and amygdala. The pulvinar nucleus also plays a critical role in the integration of information processing across early visual regions.The functions of the visual system can be assessed using convergent EEG- and functional brain imaging approaches, increasingly supplemented by simultaneously collected eye-tracking information. These approaches may be used for tracing the flow of information from retina through early visual regions, as well as the contribution of these regions to higher-order cognitive processing. A pathway of increasing interest in relationship to neuropsychiatric disorders is the primate-specific "third visual pathway" that relies extensively on motion-related input and contributes preferentially to social information processing. Thus, disturbances in the brain's responsiveness to motion stimuli may be especially useful as biomarkers for early visual dysfunction related to impaired social cognition.Visual event-related potentials (ERPs) can be collected with high-fidelity and have proven effective for the study of neuropsychiatric disorders such as schizophrenia and Alzheimer's disease, in which alterations in visual processing may occur early in the disorder, andautism-spectrum disorder (ASD), in which abnormal persistence of early childhood patterns may persist into adulthood, leading to impaired functioning of visual social pathways. The utility of visual ERPs as biomarkers for larger clinical studies is limited at present by the need for standardization of visual stimuli across laboratories, which requires specialized protocols and equipment. The development of optimized stimulation protocols as well as newer headset-based systems may increase the clinical utility of present stimulation approaches.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Steven A Hillyard
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA
| | - Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Fakheir Y, Khalil R. The effects of abnormal visual experience on neurodevelopmental disorders. Dev Psychobiol 2023; 65:e22408. [PMID: 37607893 DOI: 10.1002/dev.22408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023]
Abstract
Normal visual development is supported by intrinsic neurobiological mechanisms and by appropriate stimulation from the environment, both of which facilitate the maturation of visual functions. However, an offset of this balance can give rise to visual disorders. Therefore, understanding the factors that support normal vision during development and in the mature brain is important, as vision guides movement, enables social interaction, and allows children to recognize and understand their environment. In this paper, we review fundamental mechanisms that support the maturation of visual functions and discuss and draw links between the perceptual and neurobiological impairments in autism spectrum disorder (ASD) and schizophrenia. We aim to explore how this is evident in the case of ASD, and how perceptual and neurobiological deficits further degrade social ability. Furthermore, we describe the altered perceptual experience of those with schizophrenia and evaluate theories of the underlying neural deficits that alter perception.
Collapse
Affiliation(s)
- Yara Fakheir
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Reem Khalil
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
Javitt DC. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu Rev Pharmacol Toxicol 2023; 63:119-141. [PMID: 36151052 DOI: 10.1146/annurev-pharmtox-051921-093250] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cognitive impairment is a core feature of schizophrenia and a major contributor to poor functional outcomes. Methods for assessment of cognitive dysfunction in schizophrenia are now well established. In addition, there has been increasing appreciation in recent years of the additional role of social cognitive impairment in driving functional outcomes and of the contributions of sensory-level dysfunction to higher-order impairments. At the neurochemical level, acute administration of N-methyl-d-aspartate receptor (NMDAR) antagonists reproduces the pattern of neurocognitive dysfunction associated with schizophrenia, encouraging the development of treatments targeted at both NMDAR and its interactome. At the local-circuit level, an auditory neurophysiological measure, mismatch negativity, has emerged both as a veridical index of NMDAR dysfunction and excitatory/inhibitory imbalance in schizophrenia and as a critical biomarker for early-stage translational drug development. Although no compounds have yet been approved for treatment of cognitive impairment associated with schizophrenia, several candidates are showing promise in early-phase testing.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; .,Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| |
Collapse
|
8
|
Cushing CA, Dawes AJ, Hofmann SG, Lau H, LeDoux JE, Taschereau-Dumouchel V. A generative adversarial model of intrusive imagery in the human brain. PNAS NEXUS 2023; 2:pgac265. [PMID: 36733294 PMCID: PMC9887942 DOI: 10.1093/pnasnexus/pgac265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The mechanisms underlying the subjective experiences of mental disorders remain poorly understood. This is partly due to long-standing over-emphasis on behavioral and physiological symptoms and a de-emphasis of the patient's subjective experiences when searching for treatments. Here, we provide a new perspective on the subjective experience of mental disorders based on findings in neuroscience and artificial intelligence (AI). Specifically, we propose the subjective experience that occurs in visual imagination depends on mechanisms similar to generative adversarial networks that have recently been developed in AI. The basic idea is that a generator network fabricates a prediction of the world, and a discriminator network determines whether it is likely real or not. Given that similar adversarial interactions occur in the two major visual pathways of perception in people, we explored whether we could leverage this AI-inspired approach to better understand the intrusive imagery experiences of patients suffering from mental illnesses such as post-traumatic stress disorder (PTSD) and acute stress disorder. In our model, a nonconscious visual pathway generates predictions of the environment that influence the parallel but interacting conscious pathway. We propose that in some patients, an imbalance in these adversarial interactions leads to an overrepresentation of disturbing content relative to current reality, and results in debilitating flashbacks. By situating the subjective experience of intrusive visual imagery in the adversarial interaction of these visual pathways, we propose testable hypotheses on novel mechanisms and clinical applications for controlling and possibly preventing symptoms resulting from intrusive imagery.
Collapse
Affiliation(s)
- Cody A Cushing
- Department of Psychology, UCLA, Los Angeles, CA, 90095, USA
| | - Alexei J Dawes
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps-University Marburg, 35037 Marburg, Germany
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02215, USA
| | - Hakwan Lau
- RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan
| | - Joseph E LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY, 10012, USA
- Department of Psychiatry, and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, 10016, USA
| | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec H1N 3M5, Canada
| |
Collapse
|
9
|
Kody E, Diwadkar VA. Magnocellular and parvocellular contributions to brain network dysfunction during learning and memory: Implications for schizophrenia. J Psychiatr Res 2022; 156:520-531. [PMID: 36351307 DOI: 10.1016/j.jpsychires.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Memory deficits are core features of schizophrenia, and a central aim in biological psychiatry is to identify the etiology of these deficits. Scrutiny is naturally focused on the dorsolateral prefrontal cortex and the hippocampal cortices, given these structures' roles in memory and learning. The fronto-hippocampal framework is valuable but restrictive. Network-based underpinnings of learning and memory are substantially diverse and include interactions between hetero-modal and early sensory networks. Thus, a loss of fidelity in sensory information may impact memorial and cognitive processing in higher-order brain sub-networks, becoming a sensory source for learning and memory deficits. In this overview, we suggest that impairments in magno- and parvo-cellular visual pathways result in degraded inputs to core learning and memory networks. The ascending cascade of aberrant neural events significantly contributes to learning and memory deficits in schizophrenia. We outline the network bases of these effects, and suggest that any network perspectives of dysfunction in schizophrenia must assess the impact of impaired perceptual contributions. Finally, we speculate on how this framework enriches the space of biomarkers and expands intervention strategies to ameliorate this prototypical disconnection syndrome.
Collapse
Affiliation(s)
- Elizabeth Kody
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
10
|
Scheliga S, Schwank R, Scholle R, Habel U, Kellermann T. A neural mechanism underlying predictive visual motion processing in patients with schizophrenia. Psychiatry Res 2022; 318:114934. [PMID: 36347125 DOI: 10.1016/j.psychres.2022.114934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Psychotic symptoms may be traced back to sensory sensitivity. Thereby, visual motion (VM) processing particularly has been suggested to be impaired in schizophrenia (SCZ). In healthy brains, VM underlies predictive processing within hierarchically structured systems. However, less is known about predictive VM processing in SCZ. Therefore, we performed fMRI during a VM paradigm with three conditions of varying predictability, i.e., Predictable-, Random-, and Arbitrary motion. The study sample comprised 17 SCZ patients and 23 healthy controls. We calculated general linear model (GLM) analysis to assess group differences in VM processing across motion conditions. Here, we identified significantly lower activity in right temporoparietal junction (TPJ) for SCZ patients. Therefore, right TPJ was set as seed for connectivity analyses. For patients, across conditions we identified increased connections to higher regions, namely medial prefrontal cortex, or paracingulate gyrus. Healthy subjects activated sensory regions as area V5, or superior parietal lobule. Reduced TPJ activity may reflect both a failure in the bottom-up flow of visual information and a decrease of signal processing as consequence of increased top-down input from frontal areas. In sum, these altered neural patterns provide a framework for future studies focusing on predictive VM processing to identify potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Sebastian Scheliga
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Rosalie Schwank
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ruben Scholle
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH, Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany; JARA-Institute Brain Structure Function Relationship, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
11
|
The impact of visual dysfunctions in recent-onset psychosis and clinical high-risk state for psychosis. Neuropsychopharmacology 2022; 47:2051-2060. [PMID: 35982238 PMCID: PMC9556592 DOI: 10.1038/s41386-022-01385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Subtle subjective visual dysfunctions (VisDys) are reported by about 50% of patients with schizophrenia and are suggested to predict psychosis states. Deeper insight into VisDys, particularly in early psychosis states, could foster the understanding of basic disease mechanisms mediating susceptibility to psychosis, and thereby inform preventive interventions. We systematically investigated the relationship between VisDys and core clinical measures across three early phase psychiatric conditions. Second, we used a novel multivariate pattern analysis approach to predict VisDys by resting-state functional connectivity within relevant brain systems. VisDys assessed with the Schizophrenia Proneness Instrument (SPI-A), clinical measures, and resting-state fMRI data were examined in recent-onset psychosis (ROP, n = 147), clinical high-risk states of psychosis (CHR, n = 143), recent-onset depression (ROD, n = 151), and healthy controls (HC, n = 280). Our multivariate pattern analysis approach used pairwise functional connectivity within occipital (ON) and frontoparietal (FPN) networks implicated in visual information processing to predict VisDys. VisDys were reported more often in ROP (50.34%), and CHR (55.94%) than in ROD (16.56%), and HC (4.28%). Higher severity of VisDys was associated with less functional remission in both CHR and ROP, and, in CHR specifically, lower quality of life (Qol), higher depressiveness, and more severe impairment of visuospatial constructability. ON functional connectivity predicted presence of VisDys in ROP (balanced accuracy 60.17%, p = 0.0001) and CHR (67.38%, p = 0.029), while in the combined ROP + CHR sample VisDys were predicted by FPN (61.11%, p = 0.006). These large-sample study findings suggest that VisDys are clinically highly relevant not only in ROP but especially in CHR, being closely related to aspects of functional outcome, depressiveness, and Qol. Findings from multivariate pattern analysis support a model of functional integrity within ON and FPN driving the VisDys phenomenon and being implicated in core disease mechanisms of early psychosis states.
Collapse
|
12
|
Barch DM, Boudewyn MA, Carter CC, Erickson M, Frank MJ, Gold JM, Luck SJ, MacDonald AW, Ragland JD, Ranganath C, Silverstein SM, Yonelinas A. Cognitive [Computational] Neuroscience Test Reliability and Clinical Applications for Serious Mental Illness (CNTRaCS) Consortium: Progress and Future Directions. Curr Top Behav Neurosci 2022; 63:19-60. [PMID: 36173600 DOI: 10.1007/7854_2022_391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of treatments for impaired cognition in schizophrenia has been characterized as the most important challenge facing psychiatry at the beginning of the twenty-first century. The Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) project was designed to build on the potential benefits of using tasks and tools from cognitive neuroscience to better understanding and treat cognitive impairments in psychosis. These benefits include: (1) the use of fine-grained tasks that measure discrete cognitive processes; (2) the ability to design tasks that distinguish between specific cognitive domain deficits and poor performance due to generalized deficits resulting from sedation, low motivation, poor test taking skills, etc.; and (3) the ability to link cognitive deficits to specific neural systems, using animal models, neuropsychology, and functional imaging. CNTRICS convened a series of meetings to identify paradigms from cognitive neuroscience that maximize these benefits and identified the steps need for translation into use in clinical populations. The Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRaCS) Consortium was developed to help carry out these steps. CNTRaCS consists of investigators at five different sites across the country with diverse expertise relevant to a wide range of the cognitive systems identified as critical as part of CNTRICs. This work reports on the progress and current directions in the evaluation and optimization carried out by CNTRaCS of the tasks identified as part of the original CNTRICs process, as well as subsequent extensions into the Positive Valence systems domain of Research Domain Criteria (RDoC). We also describe the current focus of CNTRaCS, which involves taking a computational psychiatry approach to measuring cognitive and motivational function across the spectrum of psychosis. Specifically, the current iteration of CNTRaCS is using computational modeling to isolate parameters reflecting potentially more specific cognitive and visual processes that may provide greater interpretability in understanding shared and distinct impairments across psychiatric disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | | | | | | | | | - James M Gold
- Maryland Psychiatric Research Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Frequency-Specific Analysis of the Dynamic Reconfiguration of the Brain in Patients with Schizophrenia. Brain Sci 2022; 12:brainsci12060727. [PMID: 35741612 PMCID: PMC9221032 DOI: 10.3390/brainsci12060727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/28/2022] [Indexed: 12/10/2022] Open
Abstract
The analysis of resting-state fMRI signals usually focuses on the low-frequency range/band (0.01−0.1 Hz), which does not cover all aspects of brain activity. Studies have shown that distinct frequency bands can capture unique fluctuations in brain activity, with high-frequency signals (>0.1 Hz) providing valuable information for the diagnosis of schizophrenia. We hypothesized that it is meaningful to study the dynamic reconfiguration of schizophrenia through different frequencies. Therefore, this study used resting-state functional magnetic resonance (RS-fMRI) data from 42 schizophrenia and 40 normal controls to investigate dynamic network reconfiguration in multiple frequency bands (0.01−0.25 Hz, 0.01−0.027 Hz, 0.027−0.073 Hz, 0.073−0.198 Hz, 0.198−0.25 Hz). Based on the time-varying dynamic network constructed for each frequency band, we compared the dynamic reconfiguration of schizophrenia and normal controls by calculating the recruitment and integration. The experimental results showed that the differences between schizophrenia and normal controls are observed in the full frequency, which is more significant in slow3. In addition, as visual network, attention network, and default mode network differ a lot from each other, they can show a high degree of connectivity, which indicates that the functional network of schizophrenia is affected by the abnormal brain state in these areas. These shreds of evidence provide a new perspective and promote the current understanding of the characteristics of dynamic brain networks in schizophrenia.
Collapse
|
14
|
Remy I, Schwitzer T, Albuisson É, Schwan R, Krieg J, Bernardin F, Ligier F, Lalanne L, Maillard L, Laprevote V. Impaired P100 among regular cannabis users in response to magnocellular biased visual stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110437. [PMID: 34520807 DOI: 10.1016/j.pnpbp.2021.110437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023]
Abstract
Regular cannabis using causes vision impairment by affecting human retinal neurotransmission. However, studies less considered its impact on the subsequent visual cortical processing, key feature for the integration of the visual signal in brain. We aimed at investigating this purpose in regular cannabis users using spatial frequencies and temporal frequencies filtered visual stimuli. We recruited 45 regular cannabis users and 25 age-matched controls. We recorded visual evoked potentials during the projection of low spatial frequency (0.5 cycles/degree) or high spatial frequency gratings (15 cycles/degree), which were presented statically (0 Hz) or dynamically (8 Hz). We analyzed the amplitude, latency, and area under the curve of both P100 and N170, best EEG markers for early visual processing. Data were compared between groups by repeated measures ANCOVA. Results showed a significant decrease in P100 amplitude among regular cannabis users in low spatial frequency (F(1,67) = 4.43; p = 0.04) and in dynamic condition (F(1,67) = 4.35; p = 0.04). Analysis also reported a decrease in P100 area under the curve in regular cannabis users to low spatial frequency (F(1,67) = 4.31; p = 0.04) and in dynamic condition (F(1,67) = 7.65; p < 0.01). No effect was found on P100 latency, N170 amplitude, latency, or area under the curve. We found alteration of P100 responses to low spatial frequency and dynamic stimuli in regular cannabis users. This result could be interpreted as a preferential magnocellular impairment where such deficit could be linked to glutamatergic dysfunction. As mentioned in the literature, visual and electrophysiological anomalies in schizophrenia are related to a magnocellular dysfunction. Further studies are needed to clarify electrophysiological deficits in both populations. CLINICAL TRIALS REGISTRATION: Electrophysiological Study of the Functioning of Magnocellular Visual Pathway in Regular Cannabis Users (CAUSA MAP). [NCT02864680; ID 2013-A00097-38]. https://clinicaltrials.gov/ct2/show/NCT02864680?cond=Cannabis&cntry=FR&draw=2&rank=1.
Collapse
Affiliation(s)
- Irving Remy
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France; BioSerenity - 47, Boulevard de l'Hôpital, ICM-IPEPS, 75013, Paris, France
| | - Thomas Schwitzer
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy F-54505, France; Université de Lorraine, IADI, INSERM U1254, Vandœuvre-lès-Nancy, F-54511, France
| | - Éliane Albuisson
- Unité de méthodologie, Gestion des données statistiques, Centre Hospitalier Régional Universitaire de Nancy, DRCI, Département MPI, UMDS, F-54000 Nancy, France; Université de Lorraine, Faculté de Médecine, Département du Grand Est de Recherche en Soins Primaires (DEGERESP), F-54000 Nancy, France; Université de Lorraine, CNRS, Institut Élie-Cartan de Lorraine, F-54000 Nancy, France
| | - Raymund Schwan
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy F-54505, France; Université de Lorraine, IADI, INSERM U1254, Vandœuvre-lès-Nancy, F-54511, France
| | - Julien Krieg
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France
| | - Florent Bernardin
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France
| | - Fabienne Ligier
- Centre Psychothérapique de Nancy, Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Laxou F-54520, France; Université de Lorraine, EA 4360 APEMAC, Equipe MICS, F-54000, France; Université de Lorraine, EA 4432 InterPsy, Equipe PRISME, F-54000, France
| | - Laurence Lalanne
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France; Unité de Psychiatrie et d'Addictologie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, UMR 7039, F-54500, Nancy, France; Service de Neurologie, Centre Hospitalier Régional Universitaire de Nancy, Nancy F-54000, France
| | - Vincent Laprevote
- Centre Psychothérapique de Nancy, Pôle Hospitalo-Universitaire de Psychiatrie d'Adultes du Grand Nancy, Laxou F-54520, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, F-67200, France; Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy F-54505, France.
| |
Collapse
|
15
|
Edwards M, Goodhew SC, Badcock DR. Using perceptual tasks to selectively measure magnocellular and parvocellular performance: Rationale and a user's guide. Psychon Bull Rev 2021; 28:1029-1050. [PMID: 33742424 PMCID: PMC8367893 DOI: 10.3758/s13423-020-01874-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
The visual system uses parallel pathways to process information. However, an ongoing debate centers on the extent to which the pathways from the retina, via the Lateral Geniculate nucleus to the visual cortex, process distinct aspects of the visual scene and, if they do, can stimuli in the laboratory be used to selectively drive them. These questions are important for a number of reasons, including that some pathologies are thought to be associated with impaired functioning of one of these pathways and certain cognitive functions have been preferentially linked to specific pathways. Here we examine the two main pathways that have been the focus of this debate: the magnocellular and parvocellular pathways. Specifically, we review the results of electrophysiological and lesion studies that have investigated their properties and conclude that while there is substantial overlap in the type of information that they process, it is possible to identify aspects of visual information that are predominantly processed by either the magnocellular or parvocellular pathway. We then discuss the types of visual stimuli that can be used to preferentially drive these pathways.
Collapse
Affiliation(s)
- Mark Edwards
- Research School of Psychology, The Australian National University, Canberra, Australia.
| | - Stephanie C Goodhew
- Research School of Psychology, The Australian National University, Canberra, Australia
| | - David R Badcock
- School of Psychological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
16
|
Norton DJ, McBain RK, Murray GE, Khang J, Zong Z, Bollacke HR, Maher S, Levy DL, Ongur D, Chen Y. Normal Face Detection Over a Range of Luminance Contrasts in Adolescents With Autism Spectrum Disorder. Front Psychol 2021; 12:667359. [PMID: 34335378 PMCID: PMC8322772 DOI: 10.3389/fpsyg.2021.667359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022] Open
Abstract
Face recognition is impaired in autism spectrum disorders (ASDs), but the reason for this remains unclear. One possibility is that impairments in the ability to visually detect faces might be a factor. As a preliminary study in this vein, we measured face detection ability as a function of visual contrast level in 13 individuals with ASD, aged 13–18, and 18 neurotypical controls (NCs) in the same age range. We also measured contrast sensitivity, using sinusoidal grating stimuli, as a control task. Individuals with ASD did not differ from controls in face detection (p > 0.9) or contrast detection (p > 0.2) ability. Performance on contrast and face detection was significantly correlated in ASD but not in NC. Results suggest that the ability to visually detect faces is not altered in ASD overall, but that alterations in basic visual processing may affect face detection ability in some individuals with ASD.
Collapse
Affiliation(s)
- Daniel J Norton
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States.,Department of Psychology, Williams College, Williamstown, MA, United States.,Gordon College, Wenham, MA, United States
| | - Ryan K McBain
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States.,RAND Corporation, Boston, MA, United States
| | - Grace E Murray
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States.,Department of Psychology, Williams College, Williamstown, MA, United States
| | - Juna Khang
- Department of Psychology, Williams College, Williamstown, MA, United States
| | - Ziqing Zong
- Department of Psychology, Williams College, Williamstown, MA, United States
| | | | - Stephen Maher
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States.,McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Deborah L Levy
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Dost Ongur
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| | - Yue Chen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
17
|
Moser C, Schmitt L, Schmidt J, Fairchild A, Klusek J. Response Inhibition Deficits in Women with the FMR1 Premutation are Associated with Age and Fall Risk. Brain Cogn 2020; 148:105675. [PMID: 33387817 DOI: 10.1016/j.bandc.2020.105675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
One in 113-178 females worldwide carry a premutation allele on the FMR1 gene. The FMR1 premutation is linked to neurocognitive and neuromotor impairments, although the phenotype is not fully understood, particularly with respect to age effects. This study sought to define oculomotor response inhibition skills in women with the FMR1 premutation and their association with age and fall risk. We employed an antisaccade eye-tracking paradigm to index oculomotor inhibition skills in 35 women with the FMR1 premutation and 28 control women. The FMR1 premutation group exhibited longer antisaccade latency and reduced accuracy relative to controls, indicating deficient response inhibition skills. Longer response latency was associated with older age in the FMR1 premutation and was also predictive of fall risk. Findings highlight the utility of the antisaccade paradigm for detecting early signs of age-related executive decline in the FMR1 premutation, which is related to fall risk. Findings support the need for clinical prevention efforts to decrease and delay the trajectory of age-related executive decline in women with the FMR1 premutation during midlife.
Collapse
Affiliation(s)
- Carly Moser
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Lyndsay Schmitt
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA
| | - Joseph Schmidt
- Department of Psychology, University of Central Florida, 4111 Pictor Lane, Orlando, FL 32816, Orlando, Florida 32816, USA
| | - Amanda Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, South Carolina, 29208, USA
| | - Jessica Klusek
- Communication Sciences and Disorders, University of South Carolina, 1705 College Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
18
|
Kaliuzhna M, Stein T, Sterzer P, Seymour KJ. Examining motion speed processing in schizophrenia using the flash lag illusion. Schizophr Res Cogn 2020; 19:100165. [PMID: 31832345 PMCID: PMC6890935 DOI: 10.1016/j.scog.2019.100165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 01/29/2023]
Abstract
Research on visual perception in schizophrenia suggests a deficit in motion processing. Specifically, difficulties with discriminating motion speed are commonly reported. However, speed discrimination tasks typically require participants to make judgments about the difference between two stimuli in a two-interval forced choice (2IFC) task. Such tasks not only tap into speed processing mechanisms, but also rely on higher executive functioning including working memory and attention which has been shown to be compromised in schizophrenia. We used the Flash Lag illusion to examine speed processing in patients with schizophrenia. Based on previous research showing a strong dependence between motion speed and the illusion magnitude, we expected a deficit in speed processing to alter this relationship. A motion processing deficit in patients would also predict overall reductions in perceived lag. We found the magnitude and speed dependence of the Flash Lag illusion to be similar in patients and controls. Together, the findings suggest no general abnormality in motion speed processing in schizophrenia.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Group, Department of Psychiatry, University of Geneva, Switzerland
| | - Timo Stein
- Department of Psychology, University of Amsterdam, Netherlands
| | - Philipp Sterzer
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Germany
| | - Kiley J. Seymour
- School of Psychology, The MARCS Institute for Brain, Behaviour and Development, Translational Health Research Institute, Western Sydney University, New South Wales, Australia
| |
Collapse
|
19
|
Luo Y, He H, Duan M, Huang H, Hu Z, Wang H, Yao G, Yao D, Li J, Luo C. Dynamic Functional Connectivity Strength Within Different Frequency-Band in Schizophrenia. Front Psychiatry 2020; 10:995. [PMID: 32116820 PMCID: PMC7029741 DOI: 10.3389/fpsyt.2019.00995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
As a complex psychiatric disorder, schizophrenia is interpreted as a "dysconnection" syndrome, which is linked to abnormal integrations in between distal brain regions. Recently, neuroimaging has been widely adopted to investigate how schizophrenia affects brain networks. Furthermore, some studies reported frequency dependence of the abnormalities of functional network in schizophrenia, however, dynamic functional connectivity with frequency dependence is rarely used to explore changes in the whole brain of patients with schizophrenia (SZ). Therefore, in the current study, dynamic functional connectivity strength (dFCS) was performed on resting-state functional magnetic resonance data from 96 SZ patients and 121 healthy controls (HCs) at slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz), and slow-2 (0.198-0.25 Hz) frequency bands and further assessed whether the altered dFCS was correlated to clinical symptoms in SZ patients. Results revealed that decreased dFCS of schizophrenia were found in salience, auditory, sensorimotor, visual networks, while increased dFCS in cerebellum, basal ganglia, and prefrontal networks were observed across different frequency bands. Specifically, the thalamus subregion of schizophrenic patients exhibited enhanced dynamic FCS in slow-5 and slow-4, while reduced in slow-3. Moreover, in slow-5 and slow-4, significant interaction effects between frequency and group were observed in the left calcarine cortex, the bilateral inferior orbitofrontal gyrus, and anterior cingulum cortex (ACC). Furthermore, the altered dFCS of insula, thalamus (THA), calcarine cortex, orbitofrontal gyrus, and paracentral lobule were partial correlated with clinical symptoms of SZ patients in slow-5 and slow-4 bands. These results demonstrate the abnormalities of dFCS in schizophrenia patients is rely on different frequency bands and may provide potential implications for exploring the neuropathological mechanism of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianfu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | | |
Collapse
|
20
|
Improvement on visual cognitive training exercises in schizophrenia is present but less robust than in healthy individuals. Schizophr Res 2020; 216:538-540. [PMID: 31928910 PMCID: PMC10174075 DOI: 10.1016/j.schres.2019.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
|
21
|
Laycock R, Cutajar E, Crewther SG. High schizotypy traits associated with atypical processing of negative emotions with low spatial frequencies. Schizophr Res 2019; 210:294-295. [PMID: 30630707 DOI: 10.1016/j.schres.2018.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Robin Laycock
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia.
| | - Elizabeth Cutajar
- School of Psychological Sciences, La Trobe University, Melbourne 3086, Australia
| | - Sheila G Crewther
- School of Psychological Sciences, La Trobe University, Melbourne 3086, Australia.
| |
Collapse
|
22
|
Türközer HB, Hasoğlu T, Chen Y, Norris LA, Brown M, Delaney-Busch N, Kale EH, Pamir Z, Boyacı H, Kuperberg G, Lewandowski KE, Topçuoğlu V, Öngür D. Integrated assessment of visual perception abnormalities in psychotic disorders and relationship with clinical characteristics. Psychol Med 2019; 49:1740-1748. [PMID: 30178729 DOI: 10.1017/s0033291718002477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The visual system is recognized as an important site of pathology and dysfunction in schizophrenia. In this study, we evaluated different visual perceptual functions in patients with psychotic disorders using a potentially clinically applicable task battery and assessed their relationship with symptom severity in patients, and with schizotypal features in healthy participants. METHODS Five different areas of visual functioning were evaluated in patients with schizophrenia and schizoaffective disorder (n = 28) and healthy control subjects (n = 31) using a battery that included visuospatial working memory (VSWM), velocity discrimination (VD), contour integration, visual context processing, and backward masking tasks. RESULTS The patient group demonstrated significantly lower performance in VD, contour integration, and VSWM tasks. Performance did not differ between the two groups on the visual context processing task and did not differ across levels of interstimulus intervals in the backward masking task. Performances on VSWM, VD, and contour integration tasks were correlated with negative symptom severity but not with other symptom dimensions in the patient group. VSWM and VD performances were also correlated with negative sychizotypal features in healthy controls. CONCLUSION Taken together, these results demonstrate significant abnormalities in multiple visual processing tasks in patients with psychotic disorders, adding to the literature implicating visual abnormalities in these conditions. Furthermore, our results show that visual processing impairments are associated with the negative symptom dimension in patients as well as healthy individuals.
Collapse
Affiliation(s)
| | - Tuna Hasoğlu
- McLean Hospital, Belmont, and Harvard Medical School,Boston, MA,USA
| | - Yue Chen
- McLean Hospital, Belmont, and Harvard Medical School,Boston, MA,USA
| | | | - Meredith Brown
- Department of Psychology,Tufts University,Medford, MA,USA
| | | | - Emre H Kale
- Brain Research Center, Ankara University,Ankara,Turkey
| | - Zahide Pamir
- Neuroscience Graduate Program, Bilkent University,Ankara,Turkey
| | - Hüseyin Boyacı
- Neuroscience Graduate Program, Bilkent University,Ankara,Turkey
| | - Gina Kuperberg
- Department of Psychology,Tufts University,Medford, MA,USA
| | | | - Volkan Topçuoğlu
- Department of Psychiatry,Marmara University School of Medicine,Istanbul,Turkey
| | - Dost Öngür
- McLean Hospital, Belmont, and Harvard Medical School,Boston, MA,USA
| |
Collapse
|
23
|
From basic perception deficits to facial affect recognition impairments in schizophrenia. Sci Rep 2019; 9:8958. [PMID: 31222063 PMCID: PMC6586813 DOI: 10.1038/s41598-019-45231-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
While impaired facial emotion recognition and magnocellular deficits in visual perception are core features of schizophrenia, their relationship is still unclear. Our aim was to analyze the oscillatory background of these processes and to investigate the connection between the magnocellular pathway deficit and the abnormal facial affect processing. Thirty-nine subjects with schizophrenia and forty socially matched healthy controls subjects were enrolled. A 128 channel EEG was recorded in three experimental tasks: first, participants viewed magnocellular biased low-spatial frequency (LSF) and parvocellular biased high-spatial frequency (HSF) Gabor-patches, then faces and houses were presented and in the third task a facial affect recognition task was presented with happy, sad and neutral faces. Event-related theta (4–7 Hz) synchronization (ERS) (i.e. an increase in theta power) by magnocellular biased stimuli was decreased in patients relative to controls, while no similar differences were found between groups in the parvocellular biased condition. ERS was significantly lower in patients compared to healthy controls both in the face and in the emotion recognition task. Theta ERS to magnocellular biased stimuli, but not to parvocellular biased stimuli, were correlated with emotion recognition performance. These findings indicate a bottom up disruption of face perception and emotion recognition in schizophrenia.
Collapse
|
24
|
Chieffi S. Dysfunction of Magnocellular/dorsal Processing Stream in Schizophrenia. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190119163522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background:
Patients with schizophrenia show not only cognitive, but also perceptual
deficits. Perceptual deficits may affect different sensory modalities. Among these, the impairment of
visual information processing is of particular relevance as demonstrated by the high incidence of
visual disturbances. In recent years, the study of neurophysiological mechanisms that underlie
visuo-perceptual, -spatial and -motor disorders in schizophrenia has increasingly attracted the
interest of researchers.
Objective:
The study aims to review the existent literature on magnocellular/dorsal (occipitoparietal)
visual processing stream impairment in schizophrenia. The impairment of relatively early stages of
visual information processing was examined using experimental paradigms such as backward masking,
contrast sensitivity, contour detection, and perceptual closure. The deficits of late processing
stages were detected by examining visuo-spatial and -motor abilities.
Results:
Neurophysiological and behavioral studies support the existence of deficits in the
processing of visual information along the magnocellular/dorsal pathway. These deficits appear to
affect both early and late stages of visual information processing.
Conclusion:
The existence of disturbances in the early processing of visual information along the
magnocellular/dorsal pathway is strongly supported by neurophysiological and behavioral observations.
Early magnocellular dysfunction may provide a substrate for late dorsal processing impairment
as well as higher-level cognition deficits.
Collapse
Affiliation(s)
- Sergio Chieffi
- Department of Experimental Medicine, University of Campania , Italy
| |
Collapse
|
25
|
Laycock R, Cutajar E, Crewther SG. Subclinical high schizotypy traits are associated with slower change detection. Acta Psychol (Amst) 2019; 195:80-86. [PMID: 30925292 DOI: 10.1016/j.actpsy.2019.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022] Open
Abstract
Patients with schizophrenia often show impairments in visual information processing that have been linked to abnormal magnocellular or dorsal stream functioning. However, such deficits are not consistently reported, possibly due to the broad symptomology inherent to schizophrenia, and/or medication effects. To avoid these latter issues this study employed visual perceptual tasks targeting magnocellular (flicker-defined form contrast threshold), dorsal stream (motion coherence, change detection) and ventral stream (form coherence) processing, and compared performance of groups of high and low sub-clinical schizotypy traits from a neurotypical population (n = 20 per group). Significantly worse performance of high compared with low schizotypy participants was only demonstrated on the change detection task that requires rapid attention acquisition and encoding of the first visual array into short term memory prior to a comparison of a second array presentation. No group differences on the other tasks were established. Given this potentially important effect is apparent in a non-clinical population, there are likely to be implications for understanding visual and attentional abnormalities in the schizophrenia spectrum more broadly.
Collapse
Affiliation(s)
- Robin Laycock
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; School of Psychological Sciences, La Trobe University, Melbourne 3086, Australia.
| | - Elizabeth Cutajar
- School of Psychological Sciences, La Trobe University, Melbourne 3086, Australia
| | - Sheila G Crewther
- School of Psychological Sciences, La Trobe University, Melbourne 3086, Australia
| |
Collapse
|
26
|
Dondé C, Mondino M, Brunelin J, Haesebaert F. Sensory-targeted cognitive training for schizophrenia. Expert Rev Neurother 2019; 19:211-225. [PMID: 30741038 DOI: 10.1080/14737175.2019.1581609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Auditory and visual dysfunctions are key pathophysiological features of schizophrenia (Sz). Therefore, remedial interventions that directly target such impairments could potentially drive gains in higher-order cognition (e.g., memory, executive functions, emotion processing), symptoms and functional outcome, in addition to improving sensory abilities in this population. Here, we reviewed available sensory-targeted cognitive training (S-TCT) programs that were investigated so far in Sz patients. Area covered: A systematic review of the literature was conducted following PRISMA guidelines. Twenty-seven relevant records were included. The superiority of S-TCT over control conditions on higher-order cognition measures was repeatedly demonstrated, but mostly lost significance at later endpoints of evaluation. Clinical symptoms and functional outcome were improved in a minority of studies. S-TCT interventions were associated with the relative normalization of several neurobiological biomarkers of neuroplasticity and sensory mechanisms. Expert commentary: S-TCT, although time-intensive, is a cost-efficient, safe and promising technique for Sz treatment. Its efficacy on higher-order cognition opens a critical window for clinical and functional improvement. The biological impact of S-TCT may allow for the identification of therapeutic biomarkers to further precision-medicine. Additional research is required to investigate the long-term effects of S-TCT, optimal training parameters and potential confounding factors associated with the illness.
Collapse
Affiliation(s)
- Clément Dondé
- a INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team , Lyon, F-69678 , France.,b University Lyon 1 , Villeurbanne, F-69000 , France.,c Centre Hospitalier Le Vinatier, Department of Psychiatry , Bron, F-69000 , France
| | - Marine Mondino
- a INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team , Lyon, F-69678 , France.,b University Lyon 1 , Villeurbanne, F-69000 , France.,c Centre Hospitalier Le Vinatier, Department of Psychiatry , Bron, F-69000 , France
| | - Jérôme Brunelin
- a INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team , Lyon, F-69678 , France.,b University Lyon 1 , Villeurbanne, F-69000 , France.,c Centre Hospitalier Le Vinatier, Department of Psychiatry , Bron, F-69000 , France
| | - Frédéric Haesebaert
- a INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team , Lyon, F-69678 , France.,b University Lyon 1 , Villeurbanne, F-69000 , France.,c Centre Hospitalier Le Vinatier, Department of Psychiatry , Bron, F-69000 , France
| |
Collapse
|
27
|
Casile A, Victor JD, Rucci M. Contrast sensitivity reveals an oculomotor strategy for temporally encoding space. eLife 2019; 8:40924. [PMID: 30620333 PMCID: PMC6324884 DOI: 10.7554/elife.40924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/03/2018] [Indexed: 11/23/2022] Open
Abstract
The contrast sensitivity function (CSF), how sensitivity varies with the frequency of the stimulus, is a fundamental assessment of visual performance. The CSF is generally assumed to be determined by low-level sensory processes. However, the spatial sensitivities of neurons in the early visual pathways, as measured in experiments with immobilized eyes, diverge from psychophysical CSF measurements in primates. Under natural viewing conditions, as in typical psychophysical measurements, humans continually move their eyes even when looking at a fixed point. Here, we show that the resulting transformation of the spatial scene into temporal modulations on the retina constitutes a processing stage that reconciles human CSF and the response characteristics of retinal ganglion cells under a broad range of conditions. Our findings suggest a fundamental integration between perception and action: eye movements work synergistically with the spatio-temporal sensitivities of retinal neurons to encode spatial information.
Collapse
Affiliation(s)
- Antonino Casile
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy.,Center for Neuroscience and Cognitive Systems, Rovereto, Italy.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jonathan D Victor
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, United States.,Department of Neurology, Weill Cornell Medical College, New York, United States
| | - Michele Rucci
- Brain and Cognitive Sciences, University of Rochester, Rochester, United States.,Center for Visual Science, University of Rochester, Rochester, United States
| |
Collapse
|
28
|
Ichinose M, Park S. Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia. Curr Top Behav Neurosci 2019; 41:345-367. [PMID: 31407240 DOI: 10.1007/7854_2019_99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Working memory deficits are observed in the vast majority of individuals diagnosed with schizophrenia and those at risk for the disorder. Working memory impairments are present during the prodromal stage and persist throughout the course of schizophrenia. Given the importance of cognition in functional outcome, working memory deficits are an important therapeutic target for schizophrenia. This chapter examines mechanisms underlying working memory deficits in schizophrenia, focusing on the roles of perception and attention in the encoding process. Lastly, we present a comprehensive discussion of neural oscillation and internal noise in the context of the etiology of working memory deficits in schizophrenia and introduce noninvasive treatment strategies that could improve encoding processes.
Collapse
Affiliation(s)
- Megan Ichinose
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
29
|
Kogata T, Iidaka T. A review of impaired visual processing and the daily visual world in patients with schizophrenia. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018; 80:317-328. [PMID: 30214081 PMCID: PMC6125648 DOI: 10.18999/nagjms.80.3.317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several studies have investigated perceptual processes in patients with schizophrenia. Research confirms that visual impairments are one of the most important features of schizophrenia. Many studies, using behavioral and psychological experiments, confirm that visual impairments can be used to determine illness severity, state, and best treatments. Herein, we review recent research pertaining to visual function in patients with schizophrenia and highlight the relationship between laboratory findings and subjective, real-life reports from patients themselves. The purpose of this review is to 1) describe visual impairments that manifest in patients with schizophrenia, 2) examine the relationship between visual dysfunction, assessed by laboratory tests, and the experiences of patients themselves, and 3) describe real-life experiences related to visual function in this population. In this review, the impairments of motion and color perception, perceptual organization, and scan paths are summarized, along with the relationship between laboratory findings and patients' real-world subjective experiences related to visual function.
Collapse
Affiliation(s)
- Tomohiro Kogata
- Department of Physical and Occupational Therapy, Nagoya University, Nagoya, Japan
| | - Tetsuya Iidaka
- Department of Physical and Occupational Therapy, Nagoya University, Nagoya, Japan.,Brain & Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Pobric G, Hulleman J, Lavidor M, Silipo G, Rohrig S, Dias E, Javitt DC. Seeing the World as it is: Mimicking Veridical Motion Perception in Schizophrenia Using Non-invasive Brain Stimulation in Healthy Participants. Brain Topogr 2018; 31:827-837. [PMID: 29516204 PMCID: PMC6097741 DOI: 10.1007/s10548-018-0639-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/26/2018] [Indexed: 11/06/2022]
Abstract
Schizophrenia (Sz) is a mental health disorder characterized by severe cognitive, emotional, social, and perceptual deficits. Visual deficits are found in tasks relying on the magnocellular/dorsal stream. In our first experiment we established deficits in global motion processing in Sz patients compared to healthy controls. We used a novel task in which background optic flow produces a distortion of the apparent trajectory of a moving stimulus, leading control participants to provide biased estimates of the true motion trajectory under conditions of global stimulation. Sz patients were significantly less affected by the global background motion, and reported trajectories that were more veridically accurate than those of controls. In order to study the mechanism of this effect, we performed a second experiment where we applied transcranial electrical stimulation over area MT+ to selectively modify global motion processing of optic flow displays in healthy participants. Cathodal and high frequency random noise stimulation had opposite effects on trajectory perception in optic flow. The brain stimulation over a control site and in a control task revealed that the effect of stimulation was specific for global motion processing in area MT+. These findings both support prior studies of impaired early visual processing in Sz and provide novel approaches for measurement and manipulation of the underlying circuits.
Collapse
Affiliation(s)
- Gorana Pobric
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
| | - Johan Hulleman
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michal Lavidor
- Department of Psychology, Bar Ilan University, Ramat Gan, Tel Aviv, Israel
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Stephanie Rohrig
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Daniel C Javitt
- Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Division of Experimental Therapeutics, Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
31
|
Abstract
In this paper we describe an open-access collection of multimodal neuroimaging data in schizophrenia for release to the community. Data were acquired from approximately 100 patients with schizophrenia and 100 age-matched controls during rest as well as several task activation paradigms targeting a hierarchy of cognitive constructs. Neuroimaging data include structural MRI, functional MRI, diffusion MRI, MR spectroscopic imaging, and magnetoencephalography. For three of the hypothesis-driven projects, task activation paradigms were acquired on subsets of ~200 volunteers which examined a range of sensory and cognitive processes (e.g., auditory sensory gating, auditory/visual multisensory integration, visual transverse patterning). Neuropsychological data were also acquired and genetic material via saliva samples were collected from most of the participants and have been typed for both genome-wide polymorphism data as well as genome-wide methylation data. Some results are also presented from the individual studies as well as from our data-driven multimodal analyses (e.g., multimodal examinations of network structure and network dynamics and multitask fMRI data analysis across projects). All data will be released through the Mind Research Network's collaborative informatics and neuroimaging suite (COINS).
Collapse
|
32
|
The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia. Neural Plast 2018; 2018:2821832. [PMID: 29853841 PMCID: PMC5954893 DOI: 10.1155/2018/2821832] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/18/2018] [Accepted: 02/25/2018] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.
Collapse
|
33
|
Contreras NA, Tan EJ, Lee SJ, Castle DJ, Rossell SL. Using visual processing training to enhance standard cognitive remediation outcomes in schizophrenia: A pilot study. Psychiatry Res 2018; 262:494-499. [PMID: 28967441 DOI: 10.1016/j.psychres.2017.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Approaches to cognitive remediation (CR) that address sensory perceptual skills before higher cognitive skills, have been found to be effective in enhancing cognitive performance in schizophrenia. To date, however, most of the conducted trials have concentrated on auditory processing. The aim of this study was to explore whether the addition of visual processing training could enhance standard cognitive remediation outcomes in a schizophrenia population. Twenty participants were randomised to either receive 20h of computer-assisted cognitive remediation alone or 20h of visual processing training modules and cognitive remediation training. All participants were assessed at baseline and at the end of cognitive remediation training on cognitive and psychosocial (i.e. self-esteem, quality of life) measures. At the end of the study participants across both groups improved significantly in overall cognition and psychosocial functioning. No significant differences were observed between groups on any of the measures. Of potential interest, however, was that the Cohen's d assessing the between group difference in the rates of change were moderate/large for a greater improvement in Visual Learning, Working Memory and Social Cognition for the visual training plus cognitive remediation group. On the basis of our effect sizes on three domains of cognition, we recommend replicating this intervention with a larger sample.
Collapse
Affiliation(s)
- Natalia A Contreras
- Cognitive Neuropsychiatry Team / Voices Clinic, Monash Alfred Psychiatry Research Centre, Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia.
| | - Eric J Tan
- Cognitive Neuropsychiatry Team / Voices Clinic, Monash Alfred Psychiatry Research Centre, Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia; Department of Psychiatry, St. Vincent's Hospital, Melbourne, Australia; Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, Australia
| | - Stuart J Lee
- Cognitive Neuropsychiatry Team / Voices Clinic, Monash Alfred Psychiatry Research Centre, Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia
| | - David J Castle
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia; Department of Psychiatry, St. Vincent's Hospital, Melbourne, Australia
| | - Susan L Rossell
- Cognitive Neuropsychiatry Team / Voices Clinic, Monash Alfred Psychiatry Research Centre, Alfred Hospital and Monash University Central Clinical School, Melbourne, Australia; Department of Psychiatry, St. Vincent's Hospital, Melbourne, Australia; Brain and Psychological Sciences Research Centre, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
34
|
Berkovitch L, Del Cul A, Maheu M, Dehaene S. Impaired conscious access and abnormal attentional amplification in schizophrenia. NEUROIMAGE-CLINICAL 2018; 18:835-848. [PMID: 29876269 PMCID: PMC5988039 DOI: 10.1016/j.nicl.2018.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 11/25/2022]
Abstract
Previous research suggests that the conscious perception of a masked stimulus is impaired in schizophrenia, while unconscious bottom-up processing of the same stimulus, as assessed by subliminal priming, can be preserved. Here, we test this postulated dissociation between intact bottom-up and impaired top-down processing and evaluate its brain mechanisms using high-density recordings of event-related potentials. Sixteen patients with schizophrenia and sixteen controls were exposed to peripheral digits with various degrees of visibility, under conditions of either focused attention or distraction by another task. In the distraction condition, the brain activity evoked by masked digits was drastically reduced in both groups, but early bottom-up visual activation could still be detected and did not differ between patients and controls. By contrast, under focused top-down attention, a major impairment was observed: in patients, contrary to controls, the late non-linear ignition associated with the P3 component was reduced. Interestingly, the patients showed an essentially normal attentional amplification of the P1 and N2 components. These results suggest that some but not all top-down attentional amplification processes are impaired in schizophrenia, while bottom-up processing seems to be preserved. An elevated consciousness threshold is observed in schizophrenia. Under unattended conditions, brain activity was similarly reduced in schizophrenic patients and controls. Under attended conditions, the late ignition associated with the P3 component is impaired in patients. In schizophrenia, top-down attentional amplification is abnormal while bottom-up processing is essentially spared.
Collapse
Affiliation(s)
- L Berkovitch
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | - A Del Cul
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Psychiatrie d'Adultes, 75013 Paris, France; Inserm, CNRS, APHP, Institut du Cerveau et de la Moelle (ICM), Hôpital Pitié-Salpêtrière, Sorbonne Universités, UPMC Univ Paris 06, 75013 Paris, France
| | - M Maheu
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - S Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif-sur-Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
35
|
Kronbichler L, Stelzig-Schöler R, Pearce BG, Tschernegg M, Said-Yürekli S, Reich LA, Weber S, Aichhorn W, Kronbichler M. Schizophrenia and Category-Selectivity in the Brain: Normal for Faces but Abnormal for Houses. Front Psychiatry 2018; 9:47. [PMID: 29527179 PMCID: PMC5829027 DOI: 10.3389/fpsyt.2018.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Face processing is regularly found to be impaired in schizophrenia (SZ), thus suggesting that social malfunctioning might be caused by dysfunctional face processing. Most studies focused on emotional face processes, whereas non-emotional face processing received less attention. While current reports on abnormal face processing in SZ are mixed, examinations of non-emotional face processing compared to adequate control stimuli may clarify whether SZ is characterized by a face-processing deficit. Patients with SZ (n = 28) and healthy controls (n = 30) engaged in an fMRI scan where images of non-emotional faces and houses were presented. A simple inverted-picture detection task warranted the participants' attention. Region of interest (ROI) analyses were conducted on face-sensitive regions including the fusiform face area, the occipital face area, and the superior temporal sulcus. Scene-sensitivity was assessed in the parahippocampal place area (PPA) and served as control condition. Patients did not show aberrant face-related neural processes in face-sensitive regions. This finding was also evident when analyses were done on individually defined ROIs or on in-house-localizer ROIs. Patients revealed a decreased specificity toward house stimuli as reflected in decreased neural response toward houses in the PPA. Again, this result was supported by supplementary analyses. Neural activation toward neutral faces was not found to be impaired in SZ, therefore speaking against an overall face-processing deficit. Aberrant activation in scene-sensitive PPA is also found in assessments of memory processes in SZ. It is up to future studies to show how impairments in PPA relate to functional outcome in SZ.
Collapse
Affiliation(s)
- Lisa Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Renate Stelzig-Schöler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Brandy-Gale Pearce
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Melanie Tschernegg
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Sarah Said-Yürekli
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Luise Antonia Reich
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Weber
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Aichhorn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Martin Kronbichler
- Centre for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria.,Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
36
|
The role of the retina in visual hallucinations: A review of the literature and implications for psychosis. Neuropsychologia 2017; 99:128-138. [DOI: 10.1016/j.neuropsychologia.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
|
37
|
Hudgens-Haney ME, Ethridge LE, Knight JB, McDowell JE, Keedy SK, Pearlson GD, Tamminga CA, Keshavan MS, Sweeney JA, Clementz BA. Intrinsic neural activity differences among psychotic illnesses. Psychophysiology 2017; 54:1223-1238. [PMID: 28419491 DOI: 10.1111/psyp.12875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/03/2017] [Accepted: 03/11/2017] [Indexed: 12/13/2022]
Abstract
Individuals with psychosis have been reported to show either reduced or augmented brain responses under seemingly similar conditions. It is likely that inconsistent baseline-adjustment methods are partly responsible for this discrepancy. Using steady-state stimuli during a pro/antisaccade task, this study addressed the relationship between nonspecific and stimulus-related neural activity, and how these activities are modulated as a function of cognitive demands. In 98 psychosis probands (schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis), neural activity was assessed during baseline and during a 5-s period in preparation for the pro/antisaccade task. To maximize the ability to identify meaningful differences between psychosis subtypes, analyses were conducted as a function of subgrouping probands by standard clinical diagnoses and neurobiological features. These psychosis "biotypes" were created using brain-based biomarkers, independent of symptomatology (Clementz et al., ). Psychosis probands as a whole showed poor antisaccade performance and diminished baseline oscillatory phase synchrony. Psychosis biotypes differed on both behavioral and brain measures, in ways predicted from Clementz et al. (). Two biotype groups showed similarly deficient behavior and baseline synchrony, despite diametrically opposed neural activity amplitudes. Another biotype subgroup was more similar to healthy individuals on behavioral and brain measures, despite the presence of psychosis. This study provides evidence that (a) consideration of baseline levels of activation and synchrony will be essential for a comprehensive understanding of neural response differences in psychosis, and (b) distinct psychosis subgroups exhibit reduced versus augmented intrinsic neural activity, despite cognitive performance and clinical similarities.
Collapse
Affiliation(s)
- Matthew E Hudgens-Haney
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Lauren E Ethridge
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Psychology, University of Oklahoma, Norman, Oklahoma
| | - Justin B Knight
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut.,Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern, Dallas, Texas
| | | | - John A Sweeney
- Department of Psychiatry, University of Texas Southwestern, Dallas, Texas.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| |
Collapse
|
38
|
Visual Population Receptive Fields in People with Schizophrenia Have Reduced Inhibitory Surrounds. J Neurosci 2016; 37:1546-1556. [PMID: 28025253 PMCID: PMC5299570 DOI: 10.1523/jneurosci.3620-15.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/22/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022] Open
Abstract
People with schizophrenia (SZ) experience abnormal visual perception on a range of visual tasks, which have been linked to abnormal synaptic transmission and an imbalance between cortical excitation and inhibition. However, differences in the underlying architecture of visual cortex neurons, which might explain these visual anomalies, have yet to be reported in vivo Here, we probed the neural basis of these deficits using fMRI and population receptive field (pRF) mapping to infer properties of visually responsive neurons in people with SZ. We employed a difference-of-Gaussian model to capture the center-surround configuration of the pRF, providing critical information about the spatial scale of the pRFs inhibitory surround. Our analysis reveals that SZ is associated with reduced pRF size in early retinotopic visual cortex, as well as a reduction in size and depth of the inhibitory surround in V1, V2, and V4. We consider how reduced inhibition might explain the diverse range of visual deficits reported in SZ.SIGNIFICANCE STATEMENT People with schizophrenia (SZ) experience abnormal perception on a range of visual tasks, which has been linked to abnormal synaptic transmission and an imbalance between cortical excitation/inhibition. However, associated differences in the functional architecture of visual cortex neurons have yet to be reported in vivo We used fMRI and population receptive field (pRF) mapping to demonstrate that the fine-grained functional architecture of visual cortex in people with SZ differs from unaffected controls. SZ is associated with reduced pRF size in early retinotopic visual cortex largely due to reduced inhibitory surrounds. An imbalance between cortical excitation and inhibition could drive such a change in the center-surround pRF configuration and ultimately explain the range of visual deficits experienced in SZ.
Collapse
|
39
|
Applying Transcranial Magnetic Stimulation (TMS) Over the Dorsal Visual Pathway Induces Schizophrenia-like Disruption of Perceptual Closure. Brain Topogr 2016; 29:552-60. [PMID: 27021230 DOI: 10.1007/s10548-016-0487-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
Perceptual closure ability is postulated to depend upon rapid transmission of magnocellular information to prefrontal cortex via the dorsal stream. In contrast, illusory contour processing requires only local interactions within primary and ventral stream visual regions, such as lateral occipital complex. Schizophrenia is associated with deficits in perceptual closure versus illusory contours processing that is hypothesized to reflect impaired magnocellular/dorsal stream. Perceptual closure and illusory contours performance was evaluated in separate groups of 12 healthy volunteers during no TMS, and during repetitive 10 Hz rTMS stimulation over dorsal stream or vertex (TMS-vertex). Perceptual closure and illusory contours were performed in 11 schizophrenia patients, no TMS was applied in these patients. TMS effects were evaluated with repeated measures ANOVA across treatments. rTMS significantly increased perceptual closure identification thresholds, with significant difference between TMS-dorsal stream and no TMS. TMS-dorsal stream also significantly reduced perceptual closure but not illusory contours accuracy. Schizophrenia patients showed increased perceptual closure identification thresholds relative to controls in the no TMS condition, but similar to controls in the TMS-dorsal stream condition. Conclusions of this study are that magnocellular/dorsal stream input is critical for perceptual closure but not illusory contours performance, supporting both trickledown theories of normal perceptual closure function, and magnocellular/dorsal stream theories of visual dysfunction in schizophrenia.
Collapse
|
40
|
Emge DK, Vialatte FB, Dreyfus G, Adalı T. Independent Vector Analysis for SSVEP Signal Enhancement, Detection, and Topographical Mapping. Brain Topogr 2016; 31:117-124. [PMID: 26936596 DOI: 10.1007/s10548-016-0478-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022]
Abstract
Steady state visual evoked potentials (SSVEPs) have been identified as an effective solution for brain computer interface (BCI) systems as well as for neurocognitive investigations. SSVEPs can be observed in the scalp-based recordings of electroencephalogram signals, and are one component buried amongst the normal brain signals and complex noise. We present a novel method for enhancing and improving detection of SSVEPs by leveraging the rich joint blind source separation framework using independent vector analysis (IVA). IVA exploits the diversity within each dataset while preserving dependence across all the datasets. This approach is shown to enhance the detection of SSVEP signals across a range of frequencies and subjects for BCI systems. Furthermore, we show that IVA enables improved topographic mapping of the SSVEP propagation providing a promising new tool for neuroscience and neurocognitive research.
Collapse
Affiliation(s)
- Darren K Emge
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| | - François-Benoît Vialatte
- SIGnal processing and MAchine learning (SIGMA) lab, ESPCI ParisTech, 10, rue Vauquelin, 75231, Paris Cedex 05, France
| | - Gérard Dreyfus
- SIGnal processing and MAchine learning (SIGMA) lab, ESPCI ParisTech, 10, rue Vauquelin, 75231, Paris Cedex 05, France
| | - Tülay Adalı
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| |
Collapse
|
41
|
Silverstein SM. Visual Perception Disturbances in Schizophrenia: A Unified Model. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:77-132. [PMID: 27627825 DOI: 10.1007/978-3-319-30596-7_4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Dowiasch S, Backasch B, Einhäuser W, Leube D, Kircher T, Bremmer F. Eye movements of patients with schizophrenia in a natural environment. Eur Arch Psychiatry Clin Neurosci 2016; 266:43-54. [PMID: 25472882 PMCID: PMC4723634 DOI: 10.1007/s00406-014-0567-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/24/2014] [Indexed: 10/25/2022]
Abstract
Alterations of eye movements in schizophrenia patients have been widely described for laboratory settings. For example, gain during smooth tracking is reduced, and fixation patterns differ between patients and healthy controls. The question remains, whether such results are related to the specifics of the experimental environment, or whether they transfer to natural settings. Twenty ICD-10 diagnosed schizophrenia patients and 20 healthy age-matched controls participated in the study, each performing four different oculomotor tasks corresponding to natural everyday behavior in an indoor environment: (I) fixating stationary targets, (II) sitting in a hallway with free gaze, (III) walking down the hallway, and (IV) visually tracking a target on the floor while walking straight-ahead. In all conditions, eye movements were continuously recorded binocularly by a mobile lightweight eye tracker (EyeSeeCam). When patients looked at predefined targets, they showed more fixations with reduced durations than controls. The opposite was true when participants were sitting in a hallway with free gaze. During visual tracking, patients showed a significantly greater root-mean-square error (representing the mean deviation from optimal) of retinal target velocity. Different from previous results on smooth-pursuit eye movements obtained in laboratory settings, no such difference was found for velocity gain. Taken together, we have identified significant differences in fundamental oculomotor parameters between schizophrenia patients and healthy controls during natural behavior in a real environment. Moreover, our data provide evidence that in natural settings, patients overcome some impairments, which might be present only in laboratory studies, by as of now unknown compensatory mechanisms or strategies.
Collapse
Affiliation(s)
- Stefan Dowiasch
- Department of Neurophysics, Philipps-University Marburg, Karl-von-Frisch-Straße 8a, 35043, Marburg, Germany.
| | - Bianca Backasch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, 35039 Marburg, Germany
| | - Wolfgang Einhäuser
- Department of Neurophysics, Philipps-University Marburg, Karl-von-Frisch-Straße 8a, 35043 Marburg, Germany
| | - Dirk Leube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, 35039 Marburg, Germany ,AWO Centre of Psychiatry Halle, Clinic for Psychiatry and Psychotherapy, Zscherbener Str. 11, 06124 Halle, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, 35039 Marburg, Germany
| | - Frank Bremmer
- Department of Neurophysics, Philipps-University Marburg, Karl-von-Frisch-Straße 8a, 35043 Marburg, Germany
| |
Collapse
|
43
|
Elementary sensory deficits in schizophrenia indexed by impaired visual mismatch negativity. Schizophr Res 2015; 166:164-70. [PMID: 26072712 DOI: 10.1016/j.schres.2015.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Mismatch negativity (MMN) is an automatic brain response to unexpected events. It represents a prediction error (PE) response, reflecting the difference between the sensory input and predictions. While deficits in auditory MMN are well known in schizophrenia, only few studies investigated impairments in predictive visual processing in schizophrenia. These studies used complex stimuli such as motion direction and emotional facial expressions. Here we studied whether automatic predictive processing of elementary features such as orientation is also impaired in schizophrenia. METHODS Altogether 28 patients with schizophrenia and 27 healthy controls matched in age, gender, and education participated in the study. EEG was recorded using 128 channels in the two experimental blocks. Using an oddball paradigm, horizontal stripes of Gabor patches were presented as frequent standards and vertical stripes as rare deviants in one block. Stimulus probabilities were swapped in the other block. Mismatch responses were obtained by subtracting responses to standard from those to deviant stimuli. RESULTS We found significant mismatch responses in healthy controls but not in patients in the prefrontal and occipital-parietal regions in the 90-200ms interval. Furthermore patients showed significantly decreased deviant minus standard difference waveforms relative to controls in the same regions with moderate to large effect sizes. CONCLUSIONS Our findings demonstrate that predictive processing of unattended low-level visual features such as orientation is impaired in schizophrenia. Our results complement reports of sensory deficits found in tasks requiring attentive processing and suggest that deficits are present in automatic visual sensory processes putatively mediated by glutamatergic functioning.
Collapse
|
44
|
Gracitelli CPB, Abe RY, Diniz-Filho A, Vaz-de-Lima FB, Paranhos A, Medeiros FA. Ophthalmology issues in schizophrenia. Curr Psychiatry Rep 2015; 17:28. [PMID: 25773224 PMCID: PMC4523638 DOI: 10.1007/s11920-015-0569-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a complex mental disorder associated with not only cognitive dysfunctions, such as memory and attention deficits, but also changes in basic sensory processing. Although most studies on schizophrenia have focused on disturbances in higher-order brain functions associated with the prefrontal cortex or frontal cortex, recent investigations have also reported abnormalities in low-level sensory processes, such as the visual system. At very early stages of the disease, schizophrenia patients frequently describe in detail symptoms of a disturbance in various aspects of visual perception that may lead to worse clinical symptoms and decrease in quality of life. Therefore, the aim of this review is to describe the various studies that have explored the visual issues in schizophrenia.
Collapse
Affiliation(s)
- Carolina P. B. Gracitelli
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA; Department of Ophthalmology, Federal University of São Paulo, Botucatu Street, 821. Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - Ricardo Y. Abe
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA; ; Department of Ophthalmology, University of Campinas, Vital Brasil Street, 251, Cidade Universitária Zeferino Vaz, Campinas, SP 13083-970, Brazil
| | - Alberto Diniz-Filho
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA; ; Department of Ophthalmology and Otorhinolaryngology, Federal University of Minas Gerais, Alfredo Balena Avenue, 190 Santa Efigenia, Belo Horizonte, MG 30130-100, Brazil
| | | | - Augusto Paranhos
- Department of Ophthalmology, Federal University of São Paulo, Botucatu Street, 821. Vila Clementino, São Paulo, SP 04023-062, Brazil;
| | - Felipe A. Medeiros
- Hamilton Glaucoma Center and Department of Ophthalmology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0946, USA;
| |
Collapse
|
45
|
Contrast Sensitivity in Patients with Schizophrenia of Different Durations of Illness. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0103-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Bortolon C, Capdevielle D, Raffard S. Face recognition in schizophrenia disorder: A comprehensive review of behavioral, neuroimaging and neurophysiological studies. Neurosci Biobehav Rev 2015; 53:79-107. [PMID: 25800172 DOI: 10.1016/j.neubiorev.2015.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/11/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Facial emotion processing has been extensively studied in schizophrenia patients while general face processing has received less attention. The already published reviews do not address the current scientific literature in a complete manner. Therefore, here we tried to answer some questions that remain to be clarified, particularly: are the non-emotional aspects of facial processing in fact impaired in schizophrenia patients? At the behavioral level, our key conclusions are that visual perception deficit in schizophrenia patients: are not specific to faces; are most often present when the cognitive (e.g. attention) and perceptual demands of the tasks are important; and seems to worsen with the illness chronification. Although, currently evidence suggests impaired second order configural processing, more studies are necessary to determine whether or not holistic processing is impaired in schizophrenia patients. Neural and neurophysiological evidence suggests impaired earlier levels of visual processing, which might involve the deficits in interaction of the magnocellular and parvocellular pathways impacting on further processing. These deficits seem to be present even before the disorder out-set. Although evidence suggests that this deficit may be not specific to faces, further evidence on this question is necessary, in particularly more ecological studies including context and body processing.
Collapse
Affiliation(s)
- Catherine Bortolon
- Epsylon Laboratory, EA 4556 Montpellier, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France.
| | - Delphine Capdevielle
- University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France; French National Institute of Health and Medical Research (INSERM), U1061 Pathologies of the Nervous System: Epidemiological and Clinical Research, La Colombiere Hospital, 34093 Montpellier Cedex 5, France
| | - Stéphane Raffard
- Epsylon Laboratory, EA 4556 Montpellier, France; University Department of Adult Psychiatry, CHU Montpellier, Montpellier, France
| |
Collapse
|
47
|
Local and global limits on visual processing in schizophrenia. PLoS One 2015; 10:e0117951. [PMID: 25689281 PMCID: PMC4331538 DOI: 10.1371/journal.pone.0117951] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information.
Collapse
|
48
|
Hashimoto N, Toyomaki A, Hirai M, Miyamoto T, Narita H, Okubo R, Kusumi I. Absent activation in medial prefrontal cortex and temporoparietal junction but not superior temporal sulcus during the perception of biological motion in schizophrenia: a functional MRI study. Neuropsychiatr Dis Treat 2014; 10:2221-30. [PMID: 25484590 PMCID: PMC4240192 DOI: 10.2147/ndt.s70074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Patients with schizophrenia show disturbances in both visual perception and social cognition. Perception of biological motion (BM) is a higher-level visual process, and is known to be associated with social cognition. BM induces activation in the "social brain network", including the superior temporal sulcus (STS). Although deficits in the detection of BM and atypical activation in the STS have been reported in patients with schizophrenia, it remains unclear whether other nodes of the "social brain network" are also atypical in patients with schizophrenia. PURPOSE We aimed to explore whether brain regions other than STS were involved during BM perception in patients with schizophrenia, using functional magnetic resonance imaging (fMRI). METHODS AND PATIENTS Seventeen patients with schizophrenia, and 17 age- and sex- matched healthy controls, underwent fMRI scanning during a one-back visual task, containing three experimental conditions: (1) BM, (2) scrambled motion (SM), and (3) static condition. We used one-sample t-tests to examine neural responses selective to BM versus SM within each group, and two-sample t-tests to directly compare neural patterns to BM versus SM in schizophrenics versus controls. RESULTS We found significant activation in the STS region when BM was contrasted with SM in both groups, with no significant difference between groups. On the contrary, significant activation in the medial prefrontal cortex (MPFC) and bilateral temporoparietal junction (TPJ) was found only in the control group. When we directly compared the two groups, the healthy controls showed significant greater activation in left MPFC and TPJ to BM versus SM than patients with schizophrenia. CONCLUSION Our findings suggest that patients with schizophrenia show normal activation to biologically and socially relevant motion stimuli in the STS, but atypical activation in other regions of the social brain network, specifically MPFC and TPJ. Moreover, these results were not due to atypical processing of motion, suggesting that patients with schizophrenia lack in the recruitment of neural circuits needed for the visual perception of social cognition.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Child and Adolescent Psychiatry, Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Atsuhito Toyomaki
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Hirai
- Center for Development of Advanced Medical Technology, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Tamaki Miyamoto
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisashi Narita
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Okubo
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
Shoshina II, Shelepin YE, Semenova NB. Frequency-contrast sensitivity of visual stimulus perception in patients with schizophrenia treated with atypical and typical antipsychotics. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s0362119714010150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Yoon JH, Sheremata SL, Rokem A, Silver MA. Windows to the soul: vision science as a tool for studying biological mechanisms of information processing deficits in schizophrenia. Front Psychol 2013; 4:681. [PMID: 24198792 PMCID: PMC3813897 DOI: 10.3389/fpsyg.2013.00681] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/09/2013] [Indexed: 11/13/2022] Open
Abstract
Cognitive and information processing deficits are core features and important sources of disability in schizophrenia. Our understanding of the neural substrates of these deficits remains incomplete, in large part because the complexity of impairments in schizophrenia makes the identification of specific deficits very challenging. Vision science presents unique opportunities in this regard: many years of basic research have led to detailed characterization of relationships between structure and function in the early visual system and have produced sophisticated methods to quantify visual perception and characterize its neural substrates. We present a selective review of research that illustrates the opportunities for discovery provided by visual studies in schizophrenia. We highlight work that has been particularly effective in applying vision science methods to identify specific neural abnormalities underlying information processing deficits in schizophrenia. In addition, we describe studies that have utilized psychophysical experimental designs that mitigate generalized deficit confounds, thereby revealing specific visual impairments in schizophrenia. These studies contribute to accumulating evidence that early visual cortex is a useful experimental system for the study of local cortical circuit abnormalities in schizophrenia. The high degree of similarity across neocortical areas of neuronal subtypes and their patterns of connectivity suggests that insights obtained from the study of early visual cortex may be applicable to other brain regions. We conclude with a discussion of future studies that combine vision science and neuroimaging methods. These studies have the potential to address pressing questions in schizophrenia, including the dissociation of local circuit deficits vs. impairments in feedback modulation by cognitive processes such as spatial attention and working memory, and the relative contributions of glutamatergic and GABAergic deficits.
Collapse
Affiliation(s)
- Jong H Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University and Veterans Affairs Palo Alto Healthcare System Palo Alto, CA, USA
| | | | | | | |
Collapse
|