1
|
Xu Y, Huang H, Wu M, Zhuang Z, Liu H, Hou M, Chen C. Transcranial Direct Current Stimulation for Cognitive Impairment Rehabilitation: A Bibliometric Analysis. Arch Med Res 2025; 56:103086. [PMID: 39326160 DOI: 10.1016/j.arcmed.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS As global demographics shift toward an older population, cognitive impairment is becoming increasingly critical. Transcranial Direct Current Stimulation (tDCS), an innovative brain stimulation technique, has the potential to significantly improve cognitive function. Our main aim is to comprehensively analyze the existing literature, identify key aspects of tDCS research in the rehabilitation of cognitive impairment, and predict future trends in this field. METHODS We used the Web of Science (WOS) database to search for English articles and reviews relevant to this topic. For visual analysis of the literature, we employed the WOS analysis tool, CiteSpace, along with VOSviewer software to ensure comprehensive analysis. RESULTS We included 2940 articles published between 1998 and 2023. Over 25 years, annual publications and citations in this field increased steadily, peaking at 379 articles in 2021. Michael A. Nitsche was a major contributor. Most articles came from developed countries, primarily North America and Europe, and journals generally had modest impact factors. Research in this field primarily aims to treat cognitive impairment resulting from pathological aging or neuropsychiatric disorders, with a particular focus on specific brain regions. Recently, researchers have integrated various treatment modalities with tDCS techniques to actively investigate effective strategies to mitigate cognitive impairments associated with pathological aging. CONCLUSION This study presents the first bibliometric analysis of the literature on tDCS in the rehabilitation of cognitive impairment, highlighting key areas of research and emerging trends. These findings provide critical insights for future tDCS interventions targeting cognitive impairment associated with pathological aging.
Collapse
Affiliation(s)
- Ying Xu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Haoyu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mengyuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zesen Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meijin Hou
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Hallajian AH, Sharifi K, Rostami R, Saeed F, Mokarian Rajabi S, Zangenehnia N, Amini Z, Askari Z, Vila-Rodriguez F, Salehinejad MA. Neurocognitive effects of 3 mA prefrontal electrical stimulation in schizophrenia: A randomized sham-controlled tDCS-fMRI study protocol. PLoS One 2024; 19:e0306422. [PMID: 39150917 PMCID: PMC11329159 DOI: 10.1371/journal.pone.0306422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/10/2024] [Indexed: 08/18/2024] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is characterized by cognitive deficits that are linked to prefrontal cortex dysfunction. While transcranial direct current stimulation (tDCS) shows promise for improving cognition, the effects of intensified 3mA tDCS protocols on brain physiology are unknown. This project aims to elucidate the neurophysiological and cognitive effects of an intensified prefrontal tDCS protocol in SCZ. METHODS The study is designed as a randomized, double-blind, 2-arm parallel-group, sham-controlled, trial. Forty-eight participants with SCZ and cognitive impairment (measured via a set of executive functions tests) will be randomly allocated to receive either a single session of active (n = 24) or sham (n = 24) tDCS (20-min, 3-mA). The anodal and cathodal electrodes are positioned over the left and right DLPFC respectively. The stimulation occurs concurrently with the working memory task, which is initiated precisely 5 minutes after the onset of tDCS. Structural and resting-state (rs-fMRI) scans are conducted immediately before and after both active and sham tDCS using a 3 Tesla scanner (Siemens Prisma model) equipped with a 64-channel head coil. The primary outcome will be changes in brain activation (measures vis BOLD response) and working memory performance (accuracy, reaction time). DISCUSSION The results of this study are helpful in optimizing tDCS protocols in SCZ and inform us of neurocognitive mechanisms underlying 3 mA stimulation. This study will additionally provide initial safety and efficacy data on a 3 mA tDCS protocol to support larger clinical trials. Positive results could lead to rapid and broader testing of a promising tool for debilitating symptoms that affect the majority of patients with SCZ. The results will be made available through publications in peer-reviewed journals and presentations at national and international conferences.
Collapse
Affiliation(s)
| | - Kiomars Sharifi
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Fahimeh Saeed
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shirin Mokarian Rajabi
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Negin Zangenehnia
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Amini
- Psychosis Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Askari
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | | | - Mohammad Ali Salehinejad
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychology and Neurosciences, Leibniz-Institut fur Arbeitsforschung, Dortmund, Germany
| |
Collapse
|
3
|
Park D, Oh J, Kwon I. The effect of warm-up with transcranial direct current stimulation on performance factors in collegiate golfers. Phys Act Nutr 2024; 28:14-19. [PMID: 39097993 PMCID: PMC11298282 DOI: 10.20463/pan.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
PURPOSE This study aimed to determine the effects of warm-up using transcranial direct current stimulation (tDCS) on performance factors in collegiate golfers and to provide a scientific basis for the effectiveness and methodology of tDCS. We sought to compare the effects of tDCS as an additional treatment during warm-up. tDCS is generally activated when a small electric current is applied to the motor cortex of the cerebral cortex, which has been reported to be helpful in improving motor function. Therefore, we sought to prove the effectiveness of combined warm-up exercise and tDCS. METHODS Twenty-two collegiate male golfers were divided into tDC- (tDCS; n=11) and sham-treated (sham; n=11) groups. To examine performance factors, the following were assessed following tDCS application: carry, clubhead speed (CHS), ball speed (BS) for driver performance, countermovement jump (CMJ) for lower extremity muscle power, global rating of change (GRC) for the subjective change in condition of the participants, and test of attentional interpersonal style (TAIS) for concentration. RESULTS This study showed that warm-up with tDCS had positive effects on carry (p=.004), CHS (p=.019), BS (p=.017) of driver performance, CMJ (p=.002), and GRC (p=.005), however, no significant effect on TAIS was found, which suggest that the effects of the warm-up with tDCS were significant for driver performances, CMJ, and GRC. CONCLUSION Future studies should independently validate the effectiveness of tDCS and apply it to different situations and timeframes, such as training and competitions, to provide new alternative strategies or performance improvement.
Collapse
Affiliation(s)
- Deuksu Park
- Korea National Sport University, Seoul, Republic of Korea
| | - Jaekeun Oh
- Korea National Sport University, Seoul, Republic of Korea
| | - Ilsu Kwon
- Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Li YT, Zhang C, Han JC, Shang YX, Chen ZH, Cui GB, Wang W. Neuroimaging features of cognitive impairments in schizophrenia and major depressive disorder. Ther Adv Psychopharmacol 2024; 14:20451253241243290. [PMID: 38708374 PMCID: PMC11070126 DOI: 10.1177/20451253241243290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Cognitive dysfunctions are one of the key symptoms of schizophrenia (SZ) and major depressive disorder (MDD), which exist not only during the onset of diseases but also before the onset, even after the remission of psychiatric symptoms. With the development of neuroimaging techniques, these non-invasive approaches provide valuable insights into the underlying pathogenesis of psychiatric disorders and information of cognitive remediation interventions. This review synthesizes existing neuroimaging studies to examine domains of cognitive impairment, particularly processing speed, memory, attention, and executive function in SZ and MDD patients. First, white matter (WM) abnormalities are observed in processing speed deficits in both SZ and MDD, with distinct neuroimaging findings highlighting WM connectivity abnormalities in SZ and WM hyperintensity caused by small vessel disease in MDD. Additionally, the abnormal functions of prefrontal cortex and medial temporal lobe are found in both SZ and MDD patients during various memory tasks, while aberrant amygdala activity potentially contributes to a preference to negative memories in MDD. Furthermore, impaired large-scale networks including frontoparietal network, dorsal attention network, and ventral attention network are related to attention deficits, both in SZ and MDD patients. Finally, abnormal activity and volume of the dorsolateral prefrontal cortex (DLPFC) and abnormal functional connections between the DLPFC and the cerebellum are associated with executive dysfunction in both SZ and MDD. Despite these insights, longitudinal neuroimaging studies are lacking, impeding a comprehensive understanding of cognitive changes and the development of early intervention strategies for SZ and MDD. Addressing this gap is critical for advancing our knowledge and improving patient prognosis.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jia-Cheng Han
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi’an 710038, Shaanxi, China
| |
Collapse
|
5
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
6
|
Zhou Y, Xia X, Zhao X, Yang R, Wu Y, Liu J, Lyu X, Li Z, Zhang G, Du X. Efficacy and safety of Transcranial Direct Current Stimulation (tDCS) on cognitive function in chronic schizophrenia with Tardive Dyskinesia (TD): a randomized, double-blind, sham-controlled, clinical trial. BMC Psychiatry 2023; 23:623. [PMID: 37620825 PMCID: PMC10464035 DOI: 10.1186/s12888-023-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVE Previous studies have shown that transcranial direct current stimulation(tDCS) led to an improvement of cognitive function in patients with schizophrenia, but rare study has explored the effect of tDCS on long-term hospitalized chronic schizophrenia with tardive dyskinesia (TD). The present research explored if cognitive function in patients with long-term hospitalized chronic schizophrenia with TD could be improved through tDCS. METHODS This study is a randomized, double-blind, sham-controlled clinical trial. Of the 52 patients, 14 dropped out, and 38 completed the experiment. Thirty-eight patients on stable treatment regimens were randomly assigned to receive active tDCS(n = 21) or sham stimulation(n = 17) on weekdays of the first, third, and fifth weeks of treatment. Patients performed the Pattern Recognition Memory (PRM) and the Intra/Extradimensional Set Shift (IED) from the Cambridge Neuropsychological Test Automated Battery (CANTAB) at baseline and the end of week 3, week 5. Clinical symptoms were also measured at the baseline and the fifth week using the Scale for the Assessment of Negative Symptoms (SANS) and the Positive and Negative Syndrome Scale (PANSS). Side effects of tDCS were assessed with an experimenter-administered open-ended questionnaire during the whole experiment. RESULTS There were no significant differences in PRM and IED performance metrics, SANS total score and PANSS total score between active and sham tDCS groups at the end of week 5 (p > 0.05). Furthermore, there was a significant difference in the adverse effects of the tingling sensation between the two groups (p < 0.05), but there was no significant difference in other side effects (p > 0.05). CONCLUSION According to these findings, no evidence supports using anodal stimulation over the left dorsolateral prefrontal cortex to improve cognitive function in patients with long-term hospitalized chronic schizophrenia with TD.
Collapse
Affiliation(s)
- Yue Zhou
- Xuzhou Medical University, Xuzhou, China
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xingzhi Xia
- Xuzhou Medical University, Xuzhou, China
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xueli Zhao
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Ruchang Yang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Yuxuan Wu
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Junjun Liu
- Nanjing Meishan Hospital, Nanjing, China
| | - Xiaoli Lyu
- Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, China
| | - Zhe Li
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Guangya Zhang
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangdong Du
- Xuzhou Medical University, Xuzhou, China.
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Abul Hasan M, Shahid H, Ahmed Qazi S, Ejaz O, Danish Mujib M, Vuckovic A. Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation. Int J Psychophysiol 2023; 185:1-10. [PMID: 36634750 DOI: 10.1016/j.ijpsycho.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique for enhancement of executive functions in healthy as well as neurologically disturbed patients. However, the evidence regarding the neuropsychological and behavioral change with neurophysiological shifts as well as the mechanism of tDCS action as evidenced by activation of neuronal sources important for executive functions have remained unaddressed. The study thereby endeavors to (1) determine the neuropsychological, behavioral, and neurophysiological change induced with five sessions of bilateral tDCS stimulation and (2) identify putative neuronal sources related to the executive functions responsible for neuropsychological and behavioral change. For this single blinded study, a total of 40 healthy participants, randomly allocated to active (n = 19) or sham (n = 21) groups completed five sessions of 2 mA tDCS stimulation administered over Dorso-Lateral Prefrontal Cortex (DLPFC) (F3 as anode, F4 as cathode). Repeated measure analysis was performed on neuropsychological (Everyday Memory Questionnaire and Mindful Attention Awareness Scale), and behavioral assessment (n-Back and Stroop tests) to investigate within and between group differences. Pre and post neurophysiological (Electroencephalogram) results showed that bilateral tDCS stimulation activates cortical regions responsible for executive functions including updation (working memory) and inhibition (interference control or attention). Multiple sessions of bilateral tDCS stimulation results in a significant increase in theta, alpha, and beta-band activity in the DLPFC, cingulate and parietal cortex. This study provides evidence that tDCS can be used for performance enhancement of executive functions in able-bodied people.
Collapse
Affiliation(s)
- Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan; Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Hira Shahid
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom.
| | - Saad Ahmed Qazi
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan; Department of Electrical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Osama Ejaz
- Neurocomputation Laboratory, National Center of Artificial Intelligence, Karachi, Pakistan
| | - Muhammad Danish Mujib
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Aleksandra Vuckovic
- Biomedical Engineering Division, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
8
|
Wang Y, Wang J, Zhang QF, Xiao KW, Wang L, Yu QP, Xie Q, Poo MM, Wen Y. Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation. Neurosci Bull 2023; 39:69-82. [PMID: 35908004 PMCID: PMC9849633 DOI: 10.1007/s12264-022-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing-Fang Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke-Wei Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Ping Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China.
| | - Yunqing Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Zhu X, Huang C, Fan H, Fan F, Zhao Y, Xiu M, Wang Y, Li Y, Tan Y, Wang Z, Tan S. The effect of transcranial direct current stimulation combined with working memory training on working memory deficits in schizophrenic patients: study protocol for a randomized controlled trial. Trials 2022; 23:826. [PMID: 36175919 PMCID: PMC9523935 DOI: 10.1186/s13063-022-06776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Working memory deficits are one of the core and most characteristic clinical features of cognitive impairment in schizophrenia. Cognitive training can improve the cognitive function of patients with schizophrenia. However, the overall and transfer effects of working memory treatment (WMT) require improvement. Numerous studies have confirmed that transcranial direct current stimulation (tDCS) enhances neuroplasticity in the brain, providing a new treatment approach for cognitive impairment in patients with schizophrenia. We hypothesize that a training mode combining “preheating” (tDCS, which changes the neural activity of working memory-related brain regions) and “ironing” (WMT) affords greater cognitive improvements than WMT alone. In addition, this study aims to examine the mechanisms underlying the superiority of tDCS combined with WMT in improving cognitive function in patients with schizophrenia. Methods This study will include 120 patients with schizophrenia aged 18–60 years. The patients will be randomized into four groups: the study group (tDCS + WMT), tDCS group (tDCS + simple response training, SRT), WMT group (sham tDCS + WMT), and control group (sham tDCS + SRT). Patients will receive 20-min, 2 mA sessions of active or sham tDCS twice a day on weekdays for 2 weeks. Each stimulation will be immediately followed by a 1 − 2-min rest and 40 min of WMT or SRT. The primary outcome is cognitive function, measured using Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and some subscales of the MATRICS Consensus Cognitive Battery (MCCB). The secondary outcomes are other behavioral measures, variations in brain imaging, and serum levels of brain-derived neurotrophic factor (BDNF). All outcomes will be measured at baseline, post-treatment, and 3-month follow-up, except for brain imaging and BDNF levels, which will be measured at baseline and post-treatment only. Discussion If tDCS combined with WMT results in significant improvements and prolonged effects on working memory, this method could be considered as a first-line clinical treatment for schizophrenia. Moreover, these results could provide evidence-based support for the development of other approaches to improve cognitive function in patients with schizophrenia, especially by enhancing WMT effects. Trial registration Chictr.org.cn; ChiCTR2200063844. Registered on September 19, 2022. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06776-x.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Chao Huang
- Pinghu Branch, Chongqing Three Gorges Central Hospital, Chongqing, 404000, People's Republic of China
| | - Hongzhen Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Yanli Zhao
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Meihong Xiu
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Yunhui Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Yajun Li
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, 100096, People's Republic of China.
| |
Collapse
|
10
|
Shu IW, Granholm EL, Singh F. Targeting Frontal Gamma Activity with Neurofeedback to Improve Working Memory in Schizophrenia. Curr Top Behav Neurosci 2022; 63:153-172. [PMID: 35989397 DOI: 10.1007/7854_2022_377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Optimal working memory (WM), the mental ability to internally maintain and manipulate task-relevant information, requires coordinated activity of dorsal-lateral prefrontal cortical (DLPFC) neurons. More specifically, during delay periods of tasks with WM features, DLPFC microcircuits generate persistent, stimulus-specific higher-frequency (e.g., gamma) activity. This activity largely depends on recurrent connections between parvalbumin positive inhibitory interneurons and pyramidal neurons in more superficial DLPFC layers. Due to the size and organization of pyramidal neurons (especially apical dendrites), local field potentials generated by DLPFC microcircuits are strong enough to pass outside the skull and can be detected using electroencephalography (EEG). Since patients with schizophrenia (SCZ) exhibit both DLPFC and WM abnormalities, EEG markers of DLPFC microcircuit activity during WM may serve as effective biomarkers or treatment targets. In this review, we summarize converging evidence from primate and human studies for a critical role of DLPFC microcircuit activity during WM and in the pathophysiology of SCZ. We also present a meta-analysis of studies available in PubMed specifically comparing frontal gamma activity between participants with SCZ and healthy controls, to determine whether frontal gamma activity may be a valid biomarker or treatment target for patients with SCZ. We summarize the complex cognitive and neurophysiologic processes contributing to neural oscillations during tasks with WM features, and how such complexity has stalled the development of neurophysiologic biomarkers and treatment targets. Finally, we summarize promising results from early reports using neuromodulation to target DLPFC neural activity and improve cognitive function in participants with SCZ, including a study from our team demonstrating that gamma-EEG neurofeedback increases frontal gamma power and WM performance in participants with SCZ. From the evidence discussed in this review, we believe the emerging field of neuromodulation, which includes extrinsic (electrical or magnetic stimulation) and intrinsic (EEG neurofeedback) modalities, will, in the coming decade, provide promising treatment options targeting specific neurophysiologic properties of specific brain areas to improve cognitive and behavioral health for patients with SCZ.
Collapse
Affiliation(s)
- I-Wei Shu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Eric L Granholm
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Fiza Singh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Effects of transcranial direct current stimulation on brain changes and relation to cognition in patients with schizophrenia: a fMRI study. Brain Imaging Behav 2022; 16:2061-2071. [PMID: 35781191 DOI: 10.1007/s11682-022-00676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
We studied brain changes during an N-back task before and after 10 sessions of transcranial direct current stimulation (tDCS) and its relation to cognitive changes. This was a double-blind, sham-controlled, randomized study of tDCS in 27 patients with schizophrenia. They performed an N-back task in a 3 T scanner before and after receiving the 10 tDCS sessions. Cognitive performance outside the fMRI session was assessed using the MATRICS Consensus Cognitive Battery and other tests at baseline and several time points after 10 sessions of tDCS. During the N-back task performed during fMRI scans, comparing the 0-back vs. the 2-back task, the active tDCS group demonstrated a significantly increased activation in the right fusiform, left middle frontal, left inferior frontal gyrus (opercular part) and right inferior frontal gyrus (triangular part) and reduced activation in the left posterior cingulum gyrus with most of these results primarily due to increases in activation during the 0-back rather than 2-back task. There were also significant positive or negative correlations between some of the brain changes and cognitive performance. tDCS modulated prefrontal activation at low working memory load or attention mode, but default mode network at higher working memory load. Changes in brain activation measured during the N-back task were correlated with some dimensions of cognitive function immediately after 10 tDCS sessions and at follow-up times. The results support tDCS could offer a potential novel approach for modulating cortical activity and its relation to cognitive function.
Collapse
|
12
|
Bollen Z, Dormal V, Maurage P. How Should Transcranial Direct Current Stimulation be Used in Populations With Severe Alcohol Use Disorder? A Clinically Oriented Systematic Review. Clin EEG Neurosci 2022; 53:367-383. [PMID: 33733871 DOI: 10.1177/15500594211001212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background and rationale. Severe alcohol use disorder (SAUD) is a major public health concern, given its massive individual, interpersonal, and societal consequences. The available prevention and treatment programs have proven limited effectiveness, as relapse rates are still high in this clinical population. Developing effective interventions reducing the appearance and persistence of SAUD thus constitutes an experimental and clinical priority. Among the new therapeutic approaches, there is a growing interest for noninvasive neuromodulation techniques, and particularly for transcranial direct current stimulation (tDCS) as an adjunctive treatment in neuropsychiatric disorders, including SAUD. Methods. We propose a systematic review, based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, evaluating the available evidence on the effectiveness of tDCS to improve clinical interventions in SAUD. Results. We provide an integrative overview of studies applying tDCS in clinical populations with SAUD, together with a standardized methodological quality assessment. We show that the currently available data remain inconsistent. Some data suggested that tDCS can (1) reduce craving, relapse or alcohol-cue reactivity and (2) improve cognitive control and inhibition. However, other studies did not observe any beneficial effect of tDCS in SAUD. Conclusions. Capitalizing on the identified strengths and shortcomings of available results, we present evidence-based clinical guidelines to integrate tDCS in current clinical settings and to combine it with neurocognitive training.
Collapse
Affiliation(s)
- Zoé Bollen
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Science Research Institute, 83415UCLouvain, Louvain-la-Neuve, Belgium
| | - Valérie Dormal
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Science Research Institute, 83415UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (LEP), Psychological Science Research Institute, 83415UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Li Q, Fu Y, Liu C, Meng Z. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex for Treatment of Neuropsychiatric Disorders. Front Behav Neurosci 2022; 16:893955. [PMID: 35711693 PMCID: PMC9195619 DOI: 10.3389/fnbeh.2022.893955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
Background The dorsolateral prefrontal cortex (DLPFC) is a key node of the frontal cognitive circuit. It is involved in executive control and many cognitive processes. Abnormal activities of DLPFC are likely associated with many psychiatric diseases. Modulation of DLPFC may have potential beneficial effects in many neural and psychiatric diseases. One of the widely used non-invasive neuromodulation technique is called transcranial direct current stimulation (or tDCS), which is a portable and affordable brain stimulation approach that uses direct electrical currents to modulate brain functions. Objective This review aims to discuss the results from the past two decades which have shown that tDCS can relieve clinical symptoms in various neurological and psychiatric diseases. Methods Here, we performed searches on PubMed to collect clinical and preclinical studies that using tDCS as neuromodulation technique, DLPFC as the stimulation target in treating neuropsychiatric disorders. We summarized the stimulation sites, stimulation parameters, and the overall effects in these studies. Results Overall, tDCS stimulation of DLPFC could alleviate the clinical symptoms of schizophrenia, depression, drug addiction, attention deficit hyperactivity disorder and other mental disorders. Conclusion The stimulation parameters used in these studies were different from each other. The lasting effect of stimulation was also not consistent. Nevertheless, DLPFC is a promising target for non-invasive stimulation in many psychiatric disorders. TDCS is a safe and affordable neuromodulation approach that has potential clinical uses. Larger clinical studies will be needed to determine the optimal stimulation parameters in each condition.
Collapse
Affiliation(s)
- Qing Li
- Medical School, Kunming University of Science and Technology, Kunming, China
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Fu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chang Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Chang Liu,
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Zhiqiang Meng,
| |
Collapse
|
14
|
Fathi Azar E, Hosseinzadeh S, Nosrat Abadi M, Sayad Nasiri M, Haghgoo HA. Impact of Psychosocial Occupational Therapy Combined with Anodal Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex on the Cognitive Performance of Patients with Schizophrenia: A Randomized Controlled Trial. Hong Kong J Occup Ther 2022; 34:121-131. [PMID: 34987350 PMCID: PMC8721578 DOI: 10.1177/15691861211065155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background The most common cognitive dysfunctions in patients with schizophrenia are information processing, memory, and learning. Based on the hypothesis of rehabilitation and brain stimulation in memory and learning, adding a form of neuromodulation to conventional rehabilitation might increase the effectiveness of treatments. Aims To explore the effects of psychosocial occupational therapy combined with anodal Transcranial Direct Current Stimulation (tDCS) on cognitive performance in patients with Schizophrenia. Methods Twenty-four patients diagnosed with schizophrenia were randomized into the experimental and control groups. We used The Cambridge Neuropsychological Test Automated Battery (CANTAB) and the Loewenstein Occupational Therapy Cognitive Assessment battery (LOTCA) to assess spatial recognition, attention, visual memory, learning abilities, and high-level cognitive functions like problem-solving. All participants received customized psychosocial occupational therapy activities. Furthermore, the experimental group received 12 sessions of active anodal tDCS for 20 minutes with 2 mA intensity on the left dorsolateral prefrontal cortex (DLPFC) while the patients in the sham group received sham tDCS. Results Combining tDCS to conventional psychosocial occupational therapy resulted in a significant increase in spatial memory, visual learning, and attention. Conclusions Anodal tDCS on the left DLPFC improved visual memory, attention, and learning abilities. Contrary to our expectations, we could not find any changes in complex and more demanding cognitive functions.
Collapse
Affiliation(s)
- Elahe Fathi Azar
- MSc in Occupational Therapy, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Samaneh Hosseinzadeh
- Biostatics Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Nosrat Abadi
- Clinical Psychology Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohamad Sayad Nasiri
- Assistant Professor of Neurology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hojjat Allah Haghgoo
- Occupational Therapy Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Hojjat Allah Haghgoo, Occupational Therapy Department, The University of Social Welfare and Rehabilitation Sciences, Kodakyar st.,Velenjak, Tehran, 1985713871, Iran.
| |
Collapse
|
15
|
Sun CH, Jiang WL, Cai DB, Wang ZM, Sim K, Ungvari GS, Huang X, Zheng W, Xiang YT. Adjunctive multi-session transcranial direct current stimulation for neurocognitive dysfunction in schizophrenia: A meta-analysis. Asian J Psychiatr 2021; 66:102887. [PMID: 34740126 DOI: 10.1016/j.ajp.2021.102887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
Findings of multi-session transcranial direct current stimulation (tDCS) as an adjunctive treatment of neurocognitive dysfunction in schizophrenia have been inconsistent. This meta-analysis of randomized controlled trials (RCTs) investigated the neurocognitive effects of adjunctive multi-session tDCS for schizophrenia. Twelve RCTs covering 418 schizophrenia patients were included and analyzed in this meta-analysis. The RevMan software (Version 5.3) was used to calculate risk ratios (RRs) and standardized mean differences (SMDs) with their 95% confidence intervals (CIs). Adjunctive tDCS outperformed the comparator in improving working memory deficits (SMD = 0.34, 95% CI: 0.03, 0.65; I2 = 52%; p = 0.03), but no significant effects were found in other cognitive domains. No group differences were found with regard to total psychopathology measured by the Brief Psychiatric Rating Scale and the Positive and Negative Symptom Scale (SMD =-0.29, 95%CI: -0.61, 0.03; I2 = 50%, p = 0.07) and discontinuation due to any reason (RR=0.80, 95%CI: 0.39, 1.66; I2 = 9%, p = 0.56). Adjunctive tDCS appears to have a significant therapeutic effect improving the working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Chen-Hui Sun
- Qingdao Mental Health Center, Qingdao University, Shandong, China
| | | | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhi-Min Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Kang Sim
- West Region, Institute of Mental Health, Buangkok Green Medical Park, Singapore, Singapore
| | - Gabor S Ungvari
- University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR, China; Institute of Advanced Studies in Humanities and Social Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
16
|
Herrera-Melendez AL, Bajbouj M, Aust S. Application of Transcranial Direct Current Stimulation in Psychiatry. Neuropsychobiology 2021; 79:372-383. [PMID: 31340213 DOI: 10.1159/000501227] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulation technique, which noninvasively alters cortical excitability via weak polarizing currents between two electrodes placed on the scalp. Since it is comparably easy to handle, cheap to use and relatively well tolerated, tDCS has gained increasing interest in recent years. Based on well-known behavioral effects, a number of clinical studies have been performed in populations including patients with major depressive disorder followed by schizophrenia and substance use disorders, in sum with heterogeneous results with respect to efficacy. Nevertheless, the potential of tDCS must not be underestimated since it could be further improved by systematically investigating the various stimulation parameters to eventually increase clinical efficacy. The present article briefly explains the underlying physiology of tDCS, summarizes typical stimulation protocols and then reviews clinical efficacy for various psychiatric disorders as well as prevalent adverse effects. Future developments include combined and more complex interactions of tDCS with pharmacological or psychotherapeutic interventions. In particular, using computational models to individualize stimulation protocols, considering state dependency and applying closed-loop technologies will pave the way for tDCS-based personalized interventions as well as the development of home treatment settings promoting the role of tDCS as an effective treatment option for patients with mental health problems.
Collapse
Affiliation(s)
- Ana-Lucia Herrera-Melendez
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,
| | - Malek Bajbouj
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Schilling TM, Bossert M, König M, Wirtz G, Weisbrod M, Aschenbrenner S. Acute effects of a single dose of 2 mA of anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex on executive functions in patients with schizophrenia-A randomized controlled trial. PLoS One 2021; 16:e0254695. [PMID: 34270620 PMCID: PMC8284793 DOI: 10.1371/journal.pone.0254695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 06/27/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Cognitive impairments are a frequent and difficult to treat symptom in patients with schizophrenia and the strongest predictor for a successful reintegration in occupational and everyday life. Recent research suggests transcranial direct current stimulation (tDCS) to enhance cognition in this patient group. However, the question regarding its acute effectiveness on executive functions remains largely unanswered. Here, we examined in a randomized, double blind, sham-controlled repeated-measures design the impact of tDCS on performance in several executive functions in patients with schizophrenia, schizoaffective disorder or acute transient psychotic disorder. Methods Patients (N = 48) were tested twice using standardized, well-constructed and clinically validated neuropsychological tests assessing verbal working memory, response inhibition, mental flexibility and problem solving. In session 1 they solely underwent the neuropsychological assessment, whereas in session 2 they additionally received 2 mA of anodal tDCS stimulation over the left dorsolateral prefrontal cortex (DLPFC), cathode right supraorbital ridge, or sham stimulation for 20 minutes. Results Patients of both groups were not able to correctly discriminate the type of stimulation received confirming the success of the blinding procedure. However, analyzing the whole sample the change in performance from session 1 to session 2 was the same in the verum as in the sham condition (all p >.5). Moreover, a subsequent exploratory analysis showed that performance in the response inhibition task was worse for patients that engaged in the task within 20 minutes after the end of the verum stimulation. Conclusion Hence, 2 mA of anodal tDCS applied over the left DLPFC did not acutely enhance executive functions in patients with schizophrenia or related disorders but impaired performance in the response inhibition task shortly after. Future studies should continue to seek for effective stimulation configurations for this patient group. Clinical trial registration The study is registered in the “Deutsches Register Klinischer Studien DRKS”, German Clinical Trial Register and has been allocated the following number: DRKS00022126.
Collapse
Affiliation(s)
- Thomas M. Schilling
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
- * E-mail:
| | - Magdalena Bossert
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Miriam König
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Gustav Wirtz
- SRH Psychiatric Rehabilitation Center, Karlsbad, Germany
| | - Matthias Weisbrod
- Department of Psychiatry and Psychotherapy, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
- Department of General Psychiatry, Center of Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Steffen Aschenbrenner
- Section of Clinical Psychology and Neuropsychology, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| |
Collapse
|
18
|
Investigating neurophysiological markers of impaired cognition in schizophrenia. Schizophr Res 2021; 233:34-43. [PMID: 34225025 DOI: 10.1016/j.schres.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Cognitive impairment is highly prevalent in schizophrenia and treatment options are severely limited. A greater understanding of the pathophysiology of impaired cognition would have broad implications, including for the development of effective treatments. In the current study we used a multimodal approach to identify neurophysiological markers of cognitive impairment in schizophrenia. Fifty-seven participants (30 schizophrenia, 27 controls) underwent neurobiological assessment (electroencephalography [EEG] and Transcranial Magnetic Stimulation combined with EEG [TMS-EEG]) and assessment of cognitive functioning using an n-back task and the MATRICS Consensus Cognitive Battery. Neurobiological outcome measures included oscillatory power during a 2-back task, TMS-related oscillations and TMS-evoked potentials (TEPs). Cognitive outcome measures were d prime and accurate reaction time on the 2-back and MATRICS domain scores. Compared to healthy controls, participants with schizophrenia showed significantly reduced theta oscillations in response to TMS, and trend level decreases in task-related theta and cortical reactivity (i.e. reduced N100 and N40 TEPs). Participants with schizophrenia also showed significantly impaired cognitive performance across all measures. Correlational analysis identified significant associations between cortical reactivity and TMS-related oscillations in both groups; and trend level associations between task-related oscillations and impaired cognition in schizophrenia. The current study provides experimental support for possible neurophysiological markers of cognitive impairment in schizophrenia. The potential implications of these findings, including for treatment development, are discussed.
Collapse
|
19
|
Ruch S, Fehér K, Homan S, Morishima Y, Mueller SM, Mueller SV, Dierks T, Grieder M. Bi-Temporal Anodal Transcranial Direct Current Stimulation during Slow-Wave Sleep Boosts Slow-Wave Density but Not Memory Consolidation. Brain Sci 2021; 11:brainsci11040410. [PMID: 33805063 PMCID: PMC8064104 DOI: 10.3390/brainsci11040410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Slow-wave sleep (SWS) has been shown to promote long-term consolidation of episodic memories in hippocampo–neocortical networks. Previous research has aimed to modulate cortical sleep slow-waves and spindles to facilitate episodic memory consolidation. Here, we instead aimed to modulate hippocampal activity during slow-wave sleep using transcranial direct current stimulation in 18 healthy humans. A pair-associate episodic memory task was used to evaluate sleep-dependent memory consolidation with face–occupation stimuli. Pre- and post-nap retrieval was assessed as a measure of memory performance. Anodal stimulation with 2 mA was applied bilaterally over the lateral temporal cortex, motivated by its particularly extensive connections to the hippocampus. The participants slept in a magnetic resonance (MR)-simulator during the recordings to test the feasibility for a future MR-study. We used a sham-controlled, double-blind, counterbalanced randomized, within-subject crossover design. We show that stimulation vs. sham significantly increased slow-wave density and the temporal coupling of fast spindles and slow-waves. While retention of episodic memories across sleep was not affected across the entire sample of participants, it was impaired in participants with below-average pre-sleep memory performance. Hence, bi-temporal anodal direct current stimulation applied during sleep enhanced sleep parameters that are typically involved in memory consolidation, but it failed to improve memory consolidation and even tended to impair consolidation in poor learners. These findings suggest that artificially enhancing memory-related sleep parameters to improve memory consolidation can actually backfire in those participants who are in most need of memory improvement.
Collapse
Affiliation(s)
- Simon Ruch
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, 3012 Bern, Switzerland;
- Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, University of Tübingen, 72076 Tübingen, Germany
| | - Kristoffer Fehér
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
| | - Stephanie Homan
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, 8032 Zurich, Switzerland
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
| | - Sarah Maria Mueller
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
| | - Stefanie Verena Mueller
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland; (K.F.); (S.H.); (Y.M.); (S.M.M.); (S.V.M.); (T.D.)
- Correspondence:
| |
Collapse
|
20
|
The impact of individual electrical fields and anatomical factors on the neurophysiological outcomes of tDCS: A TMS-MEP and MRI study. Brain Stimul 2021; 14:316-326. [PMID: 33516860 DOI: 10.1016/j.brs.2021.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS), a neuromodulatory non-invasive brain stimulation technique, has shown promising results in basic and clinical studies. The known interindividual variability of the effects, however, limits the efficacy of the technique. Recently we reported neurophysiological effects of tDCS applied over the primary motor cortex at the group level, based on data from twenty-nine participants who received 15min of either sham, 0.5, 1.0, 1.5 or 2.0 mA anodal, or cathodal tDCS. The neurophysiological effects were evaluated via changes in: 1) transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEP), and 2) cerebral blood flow (CBF) measured by functional magnetic resonance imaging (MRI) via arterial spin labeling (ASL). At the group level, dose-dependent effects of the intervention were obtained, which however displayed interindividual variability. METHOD In the present study, we investigated the cause of the observed inter-individual variability. To this end, for each participant, a MRI-based realistic head model was designed to 1) calculate anatomical factors and 2) simulate the tDCS- and TMS-induced electrical fields (EFs). We first investigated at the regional level which individual anatomical factors explained the simulated EFs (magnitude and normal component). Then, we explored which specific anatomical and/or EF factors predicted the neurophysiological outcomes of tDCS. RESULTS The results highlight a significant negative correlation between regional electrode-to-cortex distance (rECD) as well as regional CSF (rCSF) thickness, and the individual EF characteristics. In addition, while both rCSF thickness and rECD anticorrelated with tDCS-induced physiological changes, EFs positively correlated with the effects. CONCLUSION These results provide novel insights into the dependency of the neuromodulatory effects of tDCS on individual physical factors.
Collapse
|
21
|
Haller N, Hasan A, Padberg F, Strube W, da Costa Lane Valiengo L, Brunoni AR, Brunelin J, Palm U. [Transcranial electrical brain stimulation methods for treatment of negative symptoms in schizophrenia]. DER NERVENARZT 2021; 93:41-50. [PMID: 33492411 PMCID: PMC8763819 DOI: 10.1007/s00115-021-01065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Über die letzten Jahre entwickelten sich Neuromodulationsverfahren zu einer dritten Säule neben Pharmakotherapie und Psychotherapie in der Behandlung psychischer Erkrankungen. Besonders in der Behandlung von Menschen mit einer Schizophrenie könnten Hirnstimulationsverfahren eine Alternative oder Ergänzung zu den etablierten Therapiestrategien darstellen. Die meist vorhandenen Positivsymptome können zumeist mit Antipsychotika adäquat behandelt werden. Gerade bei Patienten mit Schizophrenie besitzen jedoch Negativsymptome einen überdauernden Krankheitswert und beeinflussen den Verlauf durch globale Antriebsverarmung und beeinträchtigte Kognition im alltäglichen Leben negativ. Dieser Übersichtsartikel stellt eine Zusammenfassung über die verschiedenen nichtinvasiven Hirnstimulationsverfahren transkranielle Gleichstromstimulation (transcranial direct current stimulation, tDCS), Wechselstromstimulation (transcranial alternating current stimulation, tACS) sowie Rauschstromstimulation (transcranial random noise stimulation, tRNS) zur Behandlung der Negativsymptomatik bei Schizophrenie dar. Die neuen transkraniellen Hirnstimulationsverfahren könnten dabei helfen, gestörte neuronale Vernetzungen wieder herzustellen und die Konnektivität vor allem der dorsolateralen präfrontalen Anteile des Kortex zu verbessern. Einige Studien weisen auf eine Verbesserung der Negativsymptome durch Behandlung mit tDCS, tACS bzw. tRNS hin und könnten so neue Therapiemöglichkeiten in der Behandlung der Schizophrenie darstellen.
Collapse
Affiliation(s)
- Nikolas Haller
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland
| | - Alkomiet Hasan
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland.,Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Universität Augsburg, Medizinische Fakultät, BKH Augsburg, Augsburg, Deutschland
| | - Frank Padberg
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland
| | - Wolfgang Strube
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Universität Augsburg, Medizinische Fakultät, BKH Augsburg, Augsburg, Deutschland
| | - Leandro da Costa Lane Valiengo
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasilien
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasilien
| | - Jerome Brunelin
- CH le Vinatier, INSERM U 1028, CNRS UMR 5292, PSYR2 Team, Centre de recherche en neuroscience de Lyon, Université de Lyon, Lyon, Frankreich
| | - Ulrich Palm
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland. .,Medical Park Chiemseeblick, Rasthausstr. 25, 83233, Bernau-Felden, Deutschland.
| |
Collapse
|
22
|
Smucny J. What transcranial direct current stimulation intensity is best for cognitive enhancement? J Neurophysiol 2021; 125:606-608. [PMID: 33406005 DOI: 10.1152/jn.00652.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a recent study published in The Journal of Neurophysiology, Ehrardt et al. (Ehrhardt SE, Filmer HL, Wards Y, Mattingley JB, Dux PE. J Neurophysiol 125: 385-397, 2021) report that moderate intensity (1 mA/25 cm2) transcranial direct current stimulation (tDCS) is optimal for improving performance on a stimulus-response matching task, as opposed to a lower 0.7 mA/25 cm2 or higher 2 mA/25 cm2 dose. This result suggests that behavioral effects of tDCS do not follow a linear dose-response curve. Potential neurobiological and neurocognitive implications of these findings, as well as suggested directions for future research, are discussed.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California
| |
Collapse
|
23
|
Ghasemian-Shirvan E, Farnad L, Mosayebi-Samani M, Verstraelen S, Meesen RL, Kuo MF, Nitsche MA. Age-related differences of motor cortex plasticity in adults: A transcranial direct current stimulation study. Brain Stimul 2020; 13:1588-1599. [DOI: 10.1016/j.brs.2020.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
|
24
|
Jahshan C, Wynn JK, Roach BJ, Mathalon DH, Green MF. Effects of Transcranial Direct Current Stimulation on Visual Neuroplasticity in Schizophrenia. Clin EEG Neurosci 2020; 51:382-389. [PMID: 32463701 DOI: 10.1177/1550059420925697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
People with schizophrenia (SZ) exhibit visual processing abnormalities that affect their daily functioning and remediating these deficits might help to improve functioning. Transcranial direct current stimulation (tDCS) is a potential tool for perceptual enhancement for this purpose, though there are no reports of tDCS applied to visual cortex in SZ. In a within-subject, crossover design, we evaluated the effects of tDCS on visual processing in 27 SZ. All patients received anodal, cathodal, or sham stimulation over the central occipital region in 3 visits separated by 1 week. In each visit, a backward masking task and an electroencephalography measure of visual neuroplasticity were administered after tDCS. Neuroplasticity was assessed with visual evoked potentials before and after tetanizing visual high-frequency stimulation. Masking performance was significantly poorer in the anodal and cathodal conditions compared with sham. Both anodal and cathodal stimulation increased the amplitude of P1 but did not change the plasticity index. We found significant plasticity effects of tDCS for only one waveform for one stimulation condition (P2 for anodal tDCS) which did not survive correction for multiple comparisons. The reason for the lack of tDCS stimulation effects on plasticity may be because tDCS was not delivered simultaneously with the tetanizing visual stimulus. The present findings emphasize the need for more research on the relevant parameters for stimulation of visual processing regions in clinical populations.
Collapse
Affiliation(s)
- Carol Jahshan
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jonathan K Wynn
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Brian J Roach
- San Francisco Department of Veterans Affairs Medical Center, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Daniel H Mathalon
- San Francisco Department of Veterans Affairs Medical Center, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Michael F Green
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Albizu A, Fang R, Indahlastari A, O'Shea A, Stolte SE, See KB, Boutzoukas EM, Kraft JN, Nissim NR, Woods AJ. Machine learning and individual variability in electric field characteristics predict tDCS treatment response. Brain Stimul 2020; 13:1753-1764. [PMID: 33049412 PMCID: PMC7731513 DOI: 10.1016/j.brs.2020.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is widely investigated as a therapeutic tool to enhance cognitive function in older adults with and without neurodegenerative disease. Prior research demonstrates that electric current delivery to the brain can vary significantly across individuals. Quantification of this variability could enable person-specific optimization of tDCS outcomes. This pilot study used machine learning and MRI-derived electric field models to predict working memory improvements as a proof of concept for precision cognitive intervention. METHODS Fourteen healthy older adults received 20 minutes of 2 mA tDCS stimulation (F3/F4) during a two-week cognitive training intervention. Participants performed an N-back working memory task pre-/post-intervention. MRI-derived current models were passed through a linear Support Vector Machine (SVM) learning algorithm to characterize crucial tDCS current components (intensity and direction) that induced working memory improvements in tDCS responders versus non-responders. MAIN RESULTS SVM models of tDCS current components had 86% overall accuracy in classifying treatment responders vs. non-responders, with current intensity producing the best overall model differentiating changes in working memory performance. Median current intensity and direction in brain regions near the electrodes were positively related to intervention responses (r=0.811,p<0.001 and r=0.774,p=0.001). CONCLUSIONS This study provides the first evidence that pattern recognition analyses of MRI-derived tDCS current models can provide individual prognostic classification of tDCS treatment response with 86% accuracy. Individual differences in current intensity and direction play important roles in determining treatment response to tDCS. These findings provide important insights into mechanisms of tDCS response as well as proof of concept for future precision dosing models of tDCS intervention.
Collapse
Affiliation(s)
- Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Ruogu Fang
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Skylar E Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Kyle B See
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Emanuel M Boutzoukas
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Jessica N Kraft
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Nicole R Nissim
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA; Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA.
| |
Collapse
|
26
|
Boudewyn MA, Scangos K, Ranganath C, Carter CS. Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. Neuropsychopharmacology 2020; 45:1877-1883. [PMID: 32604401 PMCID: PMC7608454 DOI: 10.1038/s41386-020-0750-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/09/2022]
Abstract
The goal of this study was to use transcranial direct current stimulation (tDCS) to examine the role of the prefrontal cortex (PFC) in neural oscillatory activity associated with proactive cognitive control in schizophrenia. To do so, we tested the impact of PFC-targeted tDCS on behavioral and electrophysiological markers of proactive cognitive control engagement in individuals with schizophrenia. Using a within-participants, double-blinded, sham-controlled crossover design, we recorded EEG while participants with schizophrenia completed a proactive cognitive control task (the Dot Pattern Expectancy (DPX) Task), after receiving 20 min of active prefrontal stimulation at 2 mA or sham stimulation. We hypothesized that active stimulation would enhance proactive cognitive control, leading to changes in behavioral performance on the DPX task and in activity in the gamma frequency band during key periods of the task designed to tax proactive cognitive control. The results showed significant changes in the pattern of error rates and increases in EEG gamma power as a function of tDCS condition (active or sham), that were indicative of enhanced proactive cognitive control. These findings, considered alongside our previous work in healthy adults, provides novel support for the role gamma oscillations in proactive cognitive control and they suggest that frontal tDCS may be a promising approach to enhance proactive cognitive control in schizophrenia.
Collapse
Affiliation(s)
- Megan A. Boudewyn
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, CA USA
| | - Katherine Scangos
- grid.266102.10000 0001 2297 6811University of California, San Francisco, CA USA
| | - Charan Ranganath
- grid.27860.3b0000 0004 1936 9684University of California, Davis, CA USA
| | - Cameron S. Carter
- grid.27860.3b0000 0004 1936 9684University of California, Davis, CA USA
| |
Collapse
|
27
|
Non-Invasive Brain Stimulation Does Not Improve Working Memory in Schizophrenia: A Meta-Analysis of Randomised Controlled Trials. Neuropsychol Rev 2020; 31:115-138. [PMID: 32918254 DOI: 10.1007/s11065-020-09454-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Poor working memory functioning is commonly found in schizophrenia. A number of studies have now tested whether non-invasive brain stimulation can improve this aspect of cognitive functioning. This report used meta-analysis to synthesise the results of these studies to examine whether transcranial electrical stimulation (tES) or repetitive transcranial magnetic stimulation (rTMS) can improve working memory in schizophrenia. The studies included in this meta-analysis were sham-controlled, randomised controlled trials that utilised either tES or rTMS to treat working memory problems in schizophrenia. A total of 22 studies were included in the review. Nine studies administered rTMS and 13 administered tES. Meta-analysis revealed that compared to sham/placebo stimulation, neither TMS nor tES significantly improved working memory. This was found when working memory was measured with respect to the accuracy on working memory tasks (TMS studies: Hedges' g = 0.112, CI95: -0.082, 0.305, p = .257; tES studies Hedges' g = 0.080, CI95: -0.117, 0.277, p = .427) or the speed working memory tasks were completed (rTMS studies: Hedges' g = 0.233, CI95: -0.212, 0.678, p = .305; tES studies Hedges' g = -0.016, CI95: -0.204, 0.173, p = .871). For tES studies, meta-regression analysis found that studies with a larger number of stimulation sessions were associated with larger treatment effects. This association was not found for TMS studies. At present, rTMS and tES is not associated with a reliable improvement in working memory for individuals with schizophrenia.
Collapse
|
28
|
An Integrative Clustering Approach to tDCS Individual Response Variability in Cognitive Performance: Beyond a Null Effect on Working Memory. Neuroscience 2020; 443:120-130. [PMID: 32730948 DOI: 10.1016/j.neuroscience.2020.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
Abstract
Despite the growing interest in the use of transcranial direct current stimulation (tDCS) for the modulation of human cognitive function, there are contradictory findings regarding the cognitive benefits of this technique. Inter-individual response variability to tDCS may play a significant role. We explored the effects of anodal versus sham tDCS over the left prefrontal cortex (LPFC) on working memory performance, taking into account the inter-individual variability. Twenty-nine healthy volunteers received an 'offline' anodal tDCS (1.5 mA, 15 min) to the left prefrontal cortex (F3 electrode site) in an intra-individual, cross-over, sham-controlled experimental design. n-back and Sternberg task performance was assessed before (baseline), immediately after tDCS administration (T1) and 5 min post-T1 (T2). We applied an integrative clustering approach to characterize both the group and individual responses to tDCS, as well as identifying naturally occurring subgroups that may be present within the total sample. Anodal tDCS failed to improve working memory performance in the total sample. Cluster analysis identified a subgroup of 'responders' who significantly improved their performance after anodal (vs. sham) stimulation, although not to a greater extent than the best baseline or sham condition. The proportion of 'responders' ranged from 15% to 59% across task conditions and behavioral outputs. Our findings show a high inter-individual variability of the tDCS response, suggesting that the use of tCDS may not be an effective tool to improve working memory performance in healthy subjects. We propose that the use of clustering methods is more suitable in identifying 'responders' and for evaluating the efficacy of this technique.
Collapse
|
29
|
Penton T, Catmur C, Banissy MJ, Bird G, Walsh V. Non-invasive stimulation in the social brain: the methodological challenges. Soc Cogn Affect Neurosci 2020; 17:15-25. [PMID: 32734295 PMCID: PMC9083106 DOI: 10.1093/scan/nsaa102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 11/15/2022] Open
Abstract
Use of non-invasive brain stimulation methods (NIBS) has become a common approach to study social processing in addition to behavioural, imaging and lesion studies. However, research using NIBS to investigate social processing faces challenges. Overcoming these is important to allow valid and reliable interpretation of findings in neurotypical cohorts, but also to allow us to tailor NIBS protocols to atypical groups with social difficulties. In this review, we consider the utility of brain stimulation as a technique to study and modulate social processing. We also discuss challenges that face researchers using NIBS to study social processing in neurotypical adults with a view to highlighting potential solutions. Finally, we discuss additional challenges that face researchers using NIBS to study and modulate social processing in atypical groups. These are important to consider given that NIBS protocols are rarely tailored to atypical groups before use. Instead, many rely on protocols designed for neurotypical adults despite differences in brain function that are likely to impact response to NIBS.
Collapse
Affiliation(s)
- Tegan Penton
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Michael J Banissy
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, UK
| | - Geoffrey Bird
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| |
Collapse
|
30
|
Ciullo V, Spalletta G, Caltagirone C, Banaj N, Vecchio D, Piras F, Piras F. Transcranial Direct Current Stimulation and Cognition in Neuropsychiatric Disorders: Systematic Review of the Evidence and Future Directions. Neuroscientist 2020; 27:285-309. [PMID: 32644874 DOI: 10.1177/1073858420936167] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been implemented in neuropsychiatric disorders characterized by cognitive impairment. However, methodological heterogeneity challenges conclusive remarks. Through a critical analysis of previous conflicting findings and in the light of current neurobiological models of pathophysiology, we qualitatively assessed the effects of tDCS in neuropsychiatric disorders that share neurobiological underpinnings, as to evaluate whether stimulation can improve cognitive deficits in patients' cohorts. We performed a systematic review of tDCS studies targeting cognitive functions in mental disorders and pathological cognitive aging. Data from 41 studies, comprising patients with diagnosis of mood disorders, schizophrenia-spectrum disorders, Alzheimer's disease (AD), and mild cognitive impairment (MCI), were included. Results indicate that tDCS has the capacity to enhance processing speed, working memory, and executive functions in patients with mood and schizophrenia-spectrum disorders. The evidence of a positive effect on general cognitive functioning and memory is either inconclusive in AD, or weak in MCI. Future directions are discussed for developing standardized stimulation protocols and for translating the technique therapeutic potential into effective clinical practice.
Collapse
Affiliation(s)
- Valentina Ciullo
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Daniela Vecchio
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
31
|
Papazova I, Strube W, Wienert A, Henning B, Schwippel T, Fallgatter AJ, Padberg F, Falkai P, Plewnia C, Hasan A. Effects of 1 mA and 2 mA transcranial direct current stimulation on working memory performance in healthy participants. Conscious Cogn 2020; 83:102959. [PMID: 32502908 DOI: 10.1016/j.concog.2020.102959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022]
Abstract
Anodal transcranial current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) has been shown to enhance working memory (WM) in neuropsychiatric patients. In healthy populations, however, tDCS obtains inconclusive results, mostly due to heterogeneous study and stimulation protocols. Here, we approached these issues by investigating effects of tDCS intensity on simultaneous WM performance with three cognitive loads by directly comparing findings of two double-blind, cross-over, sham-controlled experiments. TDCS was administrated to the left DLPFC at intensity of 1 mA (Experiment 1) or 2 mA (Experiment 2), while participants completed a verbal n-back paradigm (1-, 2-, 3-back). Analysis showed no overall effects of tDCS on WM, but a significant interaction with cognitive load. The present study suggests that cognitive load rather than tDCS intensity could be a decisive factor for effects on WM. Moreover, it emphasizes the need of thorough investigation on study parameters to develop more efficient stimulation protocols.
Collapse
Affiliation(s)
- Irina Papazova
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany.
| | - Wolfgang Strube
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany
| | - Aida Wienert
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany
| | - Bettina Henning
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany
| | - Tobias Schwippel
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University, München, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, BKH Augsburg, Medical Faculty, University of Augsburg, Germany
| |
Collapse
|
32
|
Kostova R, Cecere R, Thut G, Uhlhaas PJ. Targeting cognition in schizophrenia through transcranial direct current stimulation: A systematic review and perspective. Schizophr Res 2020; 220:300-310. [PMID: 32204971 DOI: 10.1016/j.schres.2020.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/03/2023]
Abstract
Cognitive deficits are a fundamental feature of schizophrenia for which currently no effective treatments exist. This paper examines the possibility to use transcranial direct current stimulation (tDCS) to target cognitive deficits in schizophrenia as evidence from studies in healthy participants suggests that tDCS may improve cognitive functions and associated neural processes. We carried out a systematic review with the following search terms: 'tDCS', 'electric brain stimulation', 'schizophrenia', 'cognitive', 'cognition' until March 2019. 659 records were identified initially, 612 of which were excluded after abstract screening. The remaining 47 articles were assessed for eligibility based on our criteria and 26 studies were excluded. In addition, we compared several variables, such as online vs. offline-stimulation protocols, stimulation type and intensity on mediating positive vs. negative study outcomes. The majority of studies (n = 21) identified significant behavioural and neural effects on a range of cognitive functions (versus n = 11 with null results), including working memory, attention and social cognition. However, we could not identify tDCS parameters (electrode montage, stimulation protocol, type and intensity) that clearly mediated effects on cognitive deficits. There is preliminary evidence for the possibility that tDCS may improve cognitive deficits in schizophrenia. We discuss the rationale and strength of evidence for using tDCS for targeting cognitive deficits in schizophrenia as well as methodological issues and potential mechanisms of action.
Collapse
Affiliation(s)
- R Kostova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - R Cecere
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - G Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Department of Child and Adolescent Psychiatry, Charite Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
33
|
Gainsford K, Fitzgibbon B, Fitzgerald PB, Hoy KE. Transforming treatments for schizophrenia: Virtual reality, brain stimulation and social cognition. Psychiatry Res 2020; 288:112974. [PMID: 32353694 DOI: 10.1016/j.psychres.2020.112974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Schizophrenia is characterised by delusions, hallucinations, anhedonia and apathy; while impairments in social cognition are often less recognised. Poor social cognition can lead to difficulties in obtaining and maintaining employment, academic progression, interpersonal relationships, and community functioning. Current interventions are highly intensive, require significant resources and have only modest effects on functional outcomes. Virtual reality (VR) and non-invasive brain stimulation (NIBS) may have a role in addressing these limitations. VR allows treatments that are potentially more accessible, less delivery intensive, and have higher ecological validity. While NIBS is able to directly modulate activity in social brain areas in order to promote neuroplasticity, strengthen neural connections and enhance brain function related to social cognitive behaviours. Therefore, the combination of VR and NIBS may allow for more efficient and transferrable interventions than those currently available. This review will explore the potential role of these technologies in the treatment of social cognitive impairment.
Collapse
Affiliation(s)
- Kirsten Gainsford
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| | - Bernadette Fitzgibbon
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| | - Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| |
Collapse
|
34
|
Salehinejad MA, Nejati V, Mosayebi-Samani M, Mohammadi A, Wischnewski M, Kuo MF, Avenanti A, Vicario CM, Nitsche MA. Transcranial Direct Current Stimulation in ADHD: A Systematic Review of Efficacy, Safety, and Protocol-induced Electrical Field Modeling Results. Neurosci Bull 2020; 36:1191-1212. [PMID: 32418073 DOI: 10.1007/s12264-020-00501-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising method for altering cortical excitability with clinical implications. It has been increasingly used in neurodevelopmental disorders, especially attention-deficit hyperactivity disorder (ADHD), but its efficacy (based on effect size calculations), safety, and stimulation parameters have not been systematically examined. In this systematic review, we aimed to (1) explore the effectiveness of tDCS on the clinical symptoms and neuropsychological deficits of ADHD patients, (2) evaluate the safety of tDCS application, especially in children with ADHD, (3) model the electrical field intensity in the target regions based on the commonly-applied and effective versus less-effective protocols, and (4) discuss and propose advanced tDCS parameters. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, a literature search identified 14 empirical experiments investigating tDCS effects in ADHD. Partial improving effects of tDCS on cognitive deficits (response inhibition, working memory, attention, and cognitive flexibility) or clinical symptoms (e.g., impulsivity and inattention) are reported in 10 studies. No serious adverse effects are reported in 747 sessions of tDCS. The left and right dorsolateral prefrontal cortex are the regions most often targeted, and anodal tDCS the protocol most often applied. An intensity of 2 mA induced stronger electrical fields than 1 mA in adults with ADHD and was associated with significant behavioral changes. In ADHD children, however, the electrical field induced by 1 mA, which is likely larger than the electrical field induced by 1 mA in adults due to the smaller head size of children, was sufficient to result in significant behavioral change. Overall, tDCS seems to be a promising method for improving ADHD deficits. However, the clinical utility of tDCS in ADHD cannot yet be concluded and requires further systematic investigation in larger sample sizes. Cortical regions involved in ADHD pathophysiology, stimulation parameters (e.g. intensity, duration, polarity, and electrode size), and types of symptom/deficit are potential determinants of tDCS efficacy in ADHD. Developmental aspects of tDCS in childhood ADHD should be considered as well.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany. .,International Graduate School of Neuroscience, Ruhr-University Bochum, 44801, Bochum, Germany. .,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, 1983963113, Iran.
| | - Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, 1983963113, Iran.
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany.,Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, 98693, Ilmenau, Germany
| | - Ali Mohammadi
- Department of Psychology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Miles Wischnewski
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorm, Università di Bologna, 47521, Cesena, Italy.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, 3605, Talca, Chile
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, 98121, Messina, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139, Dortmund, Germany. .,Department of Neurology, University Medical Hospital Bergmannsheil, 44789, Bochum, Germany.
| |
Collapse
|
35
|
Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reverse-calculation electric-field modeling. Brain Stimul 2020; 13:961-969. [PMID: 32330607 PMCID: PMC7906246 DOI: 10.1016/j.brs.2020.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Unique amongst brain stimulation tools, transcranial direct current stimulation (tDCS) currently lacks an easy or widely implemented method for individualizing dosage. Objective: We developed a method of reverse-calculating electric-field (E-field) models based on Magnetic Resonance Imaging (MRI) scans that can estimate individualized tDCS dose. We also evaluated an MRI-free method of individualizing tDCS dose by measuring transcranial magnetic stimulation (TMS) motor threshold (MT) and single pulse, suprathreshold transcranial electrical stimulation (TES) MT and regressing it against E-field modeling. Key assumptions of reverse-calculation E-field modeling, including the size of region of interest (ROI) analysis and the linearity of multiple E-field models were also tested. Methods: In 29 healthy adults, we acquired TMS MT, TES MT, and anatomical T1-weighted MPRAGE MRI scans with a fiducial marking the motor hotspot. We then computed a “reverse-calculated tDCS dose” of tDCS applied at the scalp needed to cause a 1.00 V/m E-field at the cortex. Finally, we examined whether the predicted E-field values correlated with each participant’s measured TMS MT or TES MT. Results: We were able to determine a reverse-calculated tDCS dose for each participant using a 5 × 5 x 5 voxel grid region of interest (ROI) approach (average = 6.03 mA, SD = 1.44 mA, range = 3.75–9.74 mA). The Transcranial Electrical Stimulation MT, but not the Transcranial Magnetic Stimulation MT, significantly correlated with the ROI-based reverse-calculated tDCS dose determined by E-field modeling (R2 = 0.45, p < 0.001). Conclusions: Reverse-calculation E-field modeling, alone or regressed against TES MT, shows promise as a method to individualize tDCS dose. The large range of the reverse-calculated tDCS doses between subjects underscores the likely need to individualize tDCS dose. Future research should further examine the use of TES MT to individually dose tDCS as an MRI-free method of dosing tDCS.
Collapse
|
36
|
Sreeraj VS, Bose A, Chhabra H, Shivakumar V, Agarwal SM, Narayanaswamy JC, Rao NP, Kesavan M, Varambally S, Venkatasubramanian G. Working memory performance with online-tDCS in schizophrenia: A randomized, double-blinded, sham-controlled, partial cross-over proof-of-concept study. Asian J Psychiatr 2020; 50:101946. [PMID: 32087502 DOI: 10.1016/j.ajp.2020.101946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Combining cognitive retraining with transcranial direct current stimulation (tDCS) has been hypothesized to improve cognitive deficits in schizophrenia. The effect of combining a neuropsychological/psychophysiological task with tDCS, called "online-tDCS" for cognitive enhancement in schizophrenia is not rigorously assessed. In this proof-of-concept study, we aimed at evaluating the effect of a single session online-tDCS on working memory(WM) and its transferability to other cognitive functions. Numerical n-back(NNB), digit symbol substitution test(DSST), emotional matching and labelling test(E-MALT), and anti-saccade eye movement beeforefore and after 20 min tDCS (anode: left dorsolateral prefrontal cortex and cathode: left temporoparietal junction) applied during Sternberg's task(WM-task) were assessed. Twenty-three schizophrenia patients with cognitive deficits were randomized to receive either online-tDCS or offline-tDCS (without simultaneous Sternberg's task) sessions. All patients received one session each of active and sham tDCS in a randomized counterbalanced double-blind cross-over design. RMANOVA revealed a significant interaction effect between tDCS type (Online/Offline) x activeness (active/sham) of tDCS; the reaction time during 2-back performance in the NNB test improved in online-sham (F = 5.23, p < 0.038) but not online-active tDCS session. No significant changes were noted in DSST, E-MALT, and anti-saccade performance. Improved performance after online-sham tDCS suggests that performing the Sternberg's task enhanced 2-back performance. The counterintuitive observation was noted with respect to the non-enhancement of WM performance on combining the task to tDCS. Aberrant plasticity in schizophrenia might attain a transitional ceiling that would have resulted in restriction of enhancement on combining the two plasticity modulators. The transferability of improvement to other cognitive domains could not be ascertained.
Collapse
Affiliation(s)
- Vanteemar S Sreeraj
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| | - Anushree Bose
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Harleen Chhabra
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Naren P Rao
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Muralidharan Kesavan
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
37
|
McClintock SM, Martin DM, Lisanby SH, Alonzo A, McDonald WM, Aaronson ST, Husain MM, O'Reardon JP, Weickert CS, Mohan A, Loo CK. Neurocognitive effects of transcranial direct current stimulation (tDCS) in unipolar and bipolar depression: Findings from an international randomized controlled trial. Depress Anxiety 2020; 37:261-272. [PMID: 31944487 DOI: 10.1002/da.22988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) has been found to have antidepressant effects and may have beneficial neurocognitive effects. However, prior research has produced an unclear understanding of the neurocognitive effects of repeated exposure to tDCS. The study's aim was to determine the neurocognitive effects following tDCS treatment in participants with unipolar or bipolar depression. METHOD The study was a triple-masked, randomized, controlled clinical trial across six international academic medical centers. Participants were randomized to high dose (2.5 mA for 30 min) or low dose (0.034 mA, for 30 min) tDCS for 20 sessions over 4 weeks, followed by an optional 4 weeks of open-label high dose treatment. The tDCS anode was centered over the left dorsolateral prefrontal cortex at F3 (10/20 EEG system) and the cathode over F8. Participants completed clinical and neurocognitive assessments before and after tDCS. Genotype (BDNF Val66Met and catechol-o-methyltransferase [COMT] Val158Met polymorphisms) were explored as potential moderators of neurocognitive effects. RESULTS The study randomized 130 participants. Across the participants, tDCS treatment (high and low dose) resulted in improvements in verbal learning and recall, selective attention, information processing speed, and working memory, which were independent of mood effects. Similar improvements were observed in the subsample of participants with bipolar disorder. There was no observed significant effect of tDCS dose. However, BDNF Val66Met and COMT Val158Met polymorphisms interacted with tDCS dose and affected verbal memory and verbal fluency outcomes, respectively. CONCLUSIONS These findings suggest that tDCS could have positive neurocognitive effects in unipolar and bipolar depression. Thus, tDCS stimulation parameters may interact with interindividual differences in BDNF and COMT polymorphisms to affect neurocognitive outcomes, which warrants further investigation.
Collapse
Affiliation(s)
- Shawn M McClintock
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Donel M Martin
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Sarah H Lisanby
- Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina.,Noninvasive Neuromodulation Unit, Experimental Therapeutics Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland
| | - Angelo Alonzo
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Scott T Aaronson
- Department of Clinical Research Programs, Sheppard Pratt Health System, Baltimore, Maryland
| | - Mustafa M Husain
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas.,Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina
| | - John P O'Reardon
- Department of Psychiatry and Behavioral Sciences, Center for Mood Disorders and Neuromodulation Therapies, Rowan University School of Osteopathic Medicine, Cherry Hill, New Jersey
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, Australia.,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York
| | - Adith Mohan
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Black Dog Institute, Sydney, Australia.,School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
38
|
Smith RC, Md WL, Wang Y, Jiang J, Wang J, Szabo V, Faull R, Jin H, Davis JM, Li C. Effects of transcranial direct current stimulation on cognition and symptoms in Chinese patients with schizophrenia ✰. Psychiatry Res 2020; 284:112617. [PMID: 31806403 DOI: 10.1016/j.psychres.2019.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023]
Abstract
There is preliminary evidence that transcranial direct current stimulation(tDCS) may improve symptoms and cognitive function in schizophrenia, but the generalizability of these results needs further investigation. We present a study of the effects of active vs. sham tDCS on cognition and symptoms in a sample of 45 Chinese patients with schizophrenia who showed significant cognitive deficits and were treated for 10 sessions with active or sham tDCS. Psychiatric symptoms were assessed by PANSS scores, and cognitive symptoms assessed by MATRICS battery and other tests. There were no differences between cognitive or symptom scores between subjects treated with active vs. sham tDCS tested within 1-2 days after the end of the 10th session. However, two weeks later subjects treated with active tDCS showed significantly more improvements on MATRICS Speed of Processing domain. MATRICS Overall Composite and a CogState measure related to accuracy on a 1-back working memory task were improved at two weeks in statistical tests without multiple corrections. The improvement in cognitive test scores 2 weeks after the last tDCS session, suggests longer term effects may be related to changes in neuroplasticity induced by 10 sessions of tDCS. The lack of significant changes in cognition shortly after the completion of 10 tDCS sessions contrasts with our earlier positive findings in U.S. patients with schizophrenia.
Collapse
Affiliation(s)
- Robert C Smith
- Nathan Kline Institute for Psychiatric Research; Department of Psychiatry, NYU Medical School; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine.
| | - Wei Li Md
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Yiran Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Jiangling Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | | | - Robert Faull
- Psychiatric institute, Department of Psychiatry, Univ. of Illinois College of Medicine, and John Hopkins School of Medicine
| | - Hua Jin
- University of California San Diego, Department of Psychiatry, San Diego, California, and VA San Diego Healthcare System, San Diego, CA, United States of America
| | - John M Davis
- Psychiatric institute, Department of Psychiatry, Univ. of Illinois College of Medicine, and John Hopkins School of Medicine
| | - Chunbo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
39
|
Workman CD, Kamholz J, Rudroff T. Increased leg muscle fatigability during 2 mA and 4 mA transcranial direct current stimulation over the left motor cortex. Exp Brain Res 2020; 238:333-343. [PMID: 31919540 DOI: 10.1007/s00221-019-05721-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) using intensities ≤ 2 mA on physical and cognitive outcomes has been extensively investigated. Studies comparing the effects of different intensities of tDCS have yielded mixed results and little is known about how higher intensities (> 2 mA) affect outcomes. This study examined the effects of tDCS at 2 mA and 4 mA on leg muscle fatigability. This was a double-blind, randomized, sham-controlled study. Sixteen healthy young adults underwent tDCS at three randomly ordered intensities (sham, 2 mA, 4 mA). Leg muscle fatigability of both legs was assessed via isokinetic fatigue testing (40 maximal reps, 120°/s). Torque- and work-derived fatigue indices (FI-T and FI-W, respectively), as well as total work performed (TW), were calculated. FI-T of the right knee extensors indicated increased fatigability in 2 mA and 4 mA compared with sham (p = 0.01, d = 0.73 and p < 0.001, d = 1.61, respectively). FI-W of the right knee extensors also indicated increased fatigability in 2 mA and 4 mA compared to sham (p = 0.01, d = 0.57 and p < 0.001, d = 1.12, respectively) and 4 mA compared with 2 mA (p = 0.034, d = 0.37). tDCS intensity did not affect TW performed. The 2 mA and 4 mA tDCS intensities increased the fatigability of the right knee extensors in young, healthy participants, potentially from altered motor unit recruitment/discharge rate or cortical hyperexcitability. Despite this increase in fatigability, the TW performed in both these conditions was not different from sham.
Collapse
Affiliation(s)
- Craig D Workman
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA
| | - John Kamholz
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, E432 Field House, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
40
|
Expanding the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep 2019; 9:18185. [PMID: 31796827 PMCID: PMC6890804 DOI: 10.1038/s41598-019-54621-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Size and duration of the neuroplastic effects of tDCS depend on stimulation parameters, including stimulation duration and intensity of current. The impact of stimulation parameters on physiological effects is partially non-linear. To improve the utility of this intervention, it is critical to gather information about the impact of stimulation duration and intensity on neuroplasticity, while expanding the parameter space to improve efficacy. Anodal tDCS of 1–3 mA current intensity was applied for 15–30 minutes to study motor cortex plasticity. Sixteen healthy right-handed non-smoking volunteers participated in 10 sessions (intensity-duration pairs) of stimulation in a randomized cross-over design. Transcranial magnetic stimulation (TMS)-induced motor-evoked potentials (MEP) were recorded as outcome measures of tDCS effects until next evening after tDCS. All active stimulation conditions enhanced motor cortex excitability within the first 2 hours after stimulation. We observed no significant differences between the three stimulation intensities and durations on cortical excitability. A trend for larger cortical excitability enhancements was however observed for higher current intensities (1 vs 3 mA). These results add information about intensified tDCS protocols and suggest that the impact of anodal tDCS on neuroplasticity is relatively robust with respect to gradual alterations of stimulation intensity, and duration.
Collapse
|
41
|
Weickert TW, Salimuddin H, Lenroot RK, Bruggemann J, Loo C, Vercammen A, Kindler J, Weickert CS. Preliminary findings of four-week, task-based anodal prefrontal cortex transcranial direct current stimulation transferring to other cognitive improvements in schizophrenia. Psychiatry Res 2019; 280:112487. [PMID: 31376788 DOI: 10.1016/j.psychres.2019.112487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
Most transcranial Direct Current Stimulation (tDCS) trials of schizophrenia administer few sessions and do not assess transfer effects to other cognitive domains. In a randomized, double-blind, sham-controlled, parallel groups trial, we determined the extent to which 4-weeks of 2 mA tDCS at 20 min/day totalling 20 tDCS sessions administered during a spatial working memory test, with anodal right dorsolateral prefrontal cortex (DLPFC) and cathodal left tempo-parietal junction (TPJ) placement, as an adjunct to antipsychotics reduced auditory hallucinations and improved cognition in 12 outpatients with schizophrenia. Anodal tDCS significantly improved language-based working memory after 2 weeks and verbal fluency after 2 and 4 weeks. Thus, four weeks of tDCS appears to be safe and elicits transfer benefits to other prefrontal-dependent cognitive abilities in schizophrenia.
Collapse
Affiliation(s)
- T W Weickert
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia.
| | - H Salimuddin
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - R K Lenroot
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia; Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, USA
| | - J Bruggemann
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | - C Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia; Black Dog Institute, Sydney, Australia
| | - A Vercammen
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia; Faculty of Natural Sciences, Imperial College London, London, UK
| | - J Kindler
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - C S Weickert
- School of Psychiatry, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
42
|
Kim J, Plitman E, Nakajima S, Alshehri Y, Iwata Y, Chung JK, Caravaggio F, Menon M, Blumberger DM, Pollock BG, Remington G, De Luca V, Graff-Guerrero A, Gerretsen P. Modulation of brain activity with transcranial direct current stimulation: Targeting regions implicated in impaired illness awareness in schizophrenia. Eur Psychiatry 2019; 61:63-71. [DOI: 10.1016/j.eurpsy.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/15/2019] [Accepted: 06/21/2019] [Indexed: 01/29/2023] Open
|
43
|
Filmer HL, Griffin A, Dux PE. For a minute there, I lost myself … dosage dependent increases in mind wandering via prefrontal tDCS. Neuropsychologia 2019; 129:379-384. [DOI: 10.1016/j.neuropsychologia.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
|
44
|
Chang CC, Kao YC, Chao CY, Chang HA. Enhancement of cognitive insight and higher-order neurocognitive function by fronto-temporal transcranial direct current stimulation (tDCS) in patients with schizophrenia. Schizophr Res 2019; 208:430-438. [PMID: 30635256 DOI: 10.1016/j.schres.2018.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
No studies have examined the effects of fronto-temporal transcranial direct current stimulation (tDCS) on cognitive insight and neurocognitive function in schizophrenia patients and the dynamic interplay between tDCS-induced changes in these two outcomes. In this double-blind, randomized, sham-controlled study, we investigated the effects of fronto-temporal tDCS [anode corresponding to left dorsolateral prefrontal cortex and cathode to left temporo-parietal junction; 2-mA, twice-daily sessions for 5 days] on illness severity, psychosocial functioning, cognitive insight and neurocognitive function in schizophrenia patients (N = 60). The authors observed significant trends that tDCS ameliorated the severity of total and general psychopathology as measured by the Positive and Negative Syndrome Scale. No significant effects were observed for other psychopathological symptoms and psychosocial functioning. Cognitive insight as measured by the Beck Cognitive Insight Scale (BCIS) was rapidly enhanced by 10-session tDCS (F = 10.80, Cohen's d = 0.44, p = 0.002) but the beneficial effect became borderline significant 1 month after stimulation. A trend-level improvement with tDCS of planning ability (F = 6.40, Cohen's d = 0.339, p = 0.014) as measured by the accuracy in Tower of London task was also observed. In the active tDCS group, the change in cognitive insight from baseline to immediately after tDCS assessment was positively correlated with that in planning ability (r = 0.46, p = 0.015), which was independent of the corresponding change in illness severity. The promising results regarding the fast-acting beneficial effects of tDCS on cognitive insight and planning ability in schizophrenia require confirmation in future replication studies.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
45
|
Schülke R, Straube B. Transcranial Direct Current Stimulation Improves Semantic Speech-Gesture Matching in Patients With Schizophrenia Spectrum Disorder. Schizophr Bull 2019; 45:522-530. [PMID: 30304518 PMCID: PMC6483581 DOI: 10.1093/schbul/sby144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patients with schizophrenia spectrum disorders (SSD) have severe deficits in speech and gesture processing that contribute considerably to the burden of this disorder. Brain imaging shows left inferior frontal gyrus involvement for impaired processing of co-verbal gestures in patients with schizophrenia. Recently, transcranial direct current stimulation (tDCS) of the left frontal lobe has been shown to modulate processing of co-verbal gestures in healthy subjects. Although tDCS has been used to reduce symptoms of patients with SSD, the effects of tDCS on gesture processing deficits remain hitherto unexplored. OBJECTIVE Here we tested the hypothesis that inhibitory cathodal tDCS of the left frontal lobe decreases pathological dysfunction and improves semantic processing of co-verbal gestures in patients with SSD. METHODS We measured ratings and reaction times in a speech-gesture semantic relatedness assessment task during application of frontal, frontoparietal, parietal, and sham tDCS to 20 patients with SSD and 29 healthy controls. RESULTS We found a specific effect of tDCS on speech-gesture relatedness ratings of patients. Frontal compared to parietal and sham stimulation significantly improved the differentiation between related and unrelated gestures. Placement of the second electrode (right frontal vs parietal) did not affect the effect of left frontal stimulation, which reduced the preexisting difference between patients and healthy controls. CONCLUSION Here we show that left frontal tDCS can improve semantic co-verbal gesture processing in patients with SSD. tDCS could be a viable tool to normalize processing in the left frontal lobe and facilitate direct social communicative functioning in patients with SSD.
Collapse
Affiliation(s)
- Rasmus Schülke
- Translational Neuroimaging Marburg (TNM), Department of Psychiatry and Psychotherapy and Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University, Marburg, Germany
| | - Benjamin Straube
- Translational Neuroimaging Marburg (TNM), Department of Psychiatry and Psychotherapy and Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University, Marburg, Germany,To whom correspondence should be addressed; Rudolf-Bultmann-Str. 8, Marburg 35039, Germany; tel: +49-(0)-6421-58-66429, fax: +49-(0)-6421-5865406, e-mail:
| |
Collapse
|
46
|
New information on the effects of transcranial direct current stimulation on n-back task performance. Exp Brain Res 2019; 237:1315-1324. [DOI: 10.1007/s00221-019-05500-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
47
|
Kim J, Iwata Y, Plitman E, Caravaggio F, Chung JK, Shah P, Blumberger DM, Pollock BG, Remington G, Graff-Guerrero A, Gerretsen P. A meta-analysis of transcranial direct current stimulation for schizophrenia: "Is more better?". J Psychiatr Res 2019; 110:117-126. [PMID: 30639917 DOI: 10.1016/j.jpsychires.2018.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023]
Abstract
Transcranial direct current stimulation (tDCS) has generated interest in recent years as a potential adjunctive treatment for patients with schizophrenia. The primary objective of this meta-analysis was to evaluate the efficacy of tDCS on positive symptoms, particularly auditory hallucinations, and negative symptoms. A literature search of randomized sham-controlled trials was conducted using the OVID database on October 9, 2018. The standardized mean differences (SMDs) were calculated to examine changes in symptom severity between active and sham groups for the following symptom domains: auditory hallucinations, positive symptoms (including auditory hallucinations), and negative symptoms. Moderator analyses were performed to examine the effects of study design and participant demographics. We identified 10 eligible studies. Main-analyses showed no effects of tDCS on auditory hallucinations (7 studies, n = 242), positive symptoms (9 studies, n = 313), or negative symptoms (9 studies, n = 313). Subgroup analyses of studies that applied twice-daily stimulation showed a significant reduction in the severity of auditory hallucinations (4 studies, n = 138, SMD = 1.04, p = 0.02). Studies that applied ≥10 stimulation sessions showed a reduction in both auditory hallucination (5 studies, n = 186, SMD = 0.86, p = 0.009) and negative symptom severity (7 studies, n = 257, SMD = 0.41, p = 0.04). Meta-regression analyses revealed a negative association between mean age and the SMDs for auditory hallucinations and negative symptoms, and a positive association between baseline negative symptom severity and the SMDs for negative symptoms. Our findings highlight the need to optimize tDCS parameters and suggest twice-daily or 10 or more stimulation sessions may be needed to improve clinical outcomes in patients with schizophrenia.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Schwippel T, Papazova I, Strube W, Fallgatter AJ, Hasan A, Plewnia C. Beneficial effects of anodal transcranial direct current stimulation (tDCS) on spatial working memory in patients with schizophrenia. Eur Neuropsychopharmacol 2018; 28:1339-1350. [PMID: 30292415 DOI: 10.1016/j.euroneuro.2018.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Schizophrenia is a severe and often detrimental psychiatric disorder. The individual patients' level of functioning is essentially determined by cognitive, particularly working memory (WM), deficits that are critically linked to dysfunctional activity of the dorsolateral prefrontal cortex (dlPFC). Transcranial direct current stimulation (tDCS) can transiently modulate activity of the dlPFC and remote areas and has been shown to improve WM functions. It may therefore provide a new, targeted treatment option. For this aim, the present study investigated the effect of anodal tDCS of different intensities on spatial WM in patients with schizophrenia. In two experiments, 32 patients performed a spatial n-back task with increasing WM load (1-, 2-, and 3-back) at baseline and in two sessions with anodal or sham tDCS (EXP I [n = 16]: 1 mA; EXP II [n = 16]: 2 mA) to the right dlPFC (cathode: left m. deltoideus). With 1 mA anodal tDCS, no effect on WM performance could be detected. However, 2 mA anodal tDCS increased accuracy (measured by d') of the task with the highest WM load (3-back). This effect was larger in patients with a lower level of general neurocognitive functioning. These results demonstrate a beneficial effect of 2 mA anodal tDCS on deficient WM accuracy in patients with schizophrenia particularly under challenging conditions and in subjects with higher cognitive impairments. This data will inform future clinical trials on tDCS-enhanced cognitive training to improve treatment of schizophrenia.
Collapse
Affiliation(s)
- T Schwippel
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
| | - I Papazova
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians University Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - W Strube
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians University Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - A J Fallgatter
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
| | - A Hasan
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians University Munich, Nußbaumstraße 7, 80336 Munich, Germany
| | - C Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany.
| |
Collapse
|
49
|
Papazova I, Strube W, Becker B, Henning B, Schwippel T, Fallgatter AJ, Padberg F, Palm U, Falkai P, Plewnia C, Hasan A. Improving working memory in schizophrenia: Effects of 1 mA and 2 mA transcranial direct current stimulation to the left DLPFC. Schizophr Res 2018; 202:203-209. [PMID: 29954701 DOI: 10.1016/j.schres.2018.06.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
Deficits in various cognitive processes, such as working memory, are characteristic for schizophrenia, lowering patients' functioning and quality of life. Recent research suggests that transcranial direct stimulation (tDCS) applied to the dorsolateral prefrontal cortex (DLPFC) may be a potential therapeutic intervention for cognitive deficits in schizophrenia. Here, we examined the effects of online tDCS to the DLPFC on working memory (WM) performance in 40 schizophrenia patients in two separate experiments with a double blind, sham-controlled, cross-over design. Patients underwent single sessions of active and sham tDCS in a randomized order. Stimulation parameters were anode F3, cathode right deltoid muscle, 21 min tDCS duration, 1 mA tDCS in Experiment 1 (N = 20) and 2 mA tDCS in Experiment 2 (N = 20). Primary outcome was the change in WM performance as measured by a verbal n-back paradigm (1- to 3-back). Irrespective of the stimulation intensity, data analysis showed a significant higher WM accuracy during active tDCS than during sham tDCS (p = 0.019), but no main effect of stimulation intensity (p = 0.392). Subsequent separate analyses revealed a significantly improved WM performance only during 1 mA (p = 0.048). TDCS facilitated WM functioning in schizophrenia, with an advantage of 1 mA over 2 mA. Our results support the notion that tDCS may be a potential treatment for cognitive deficits in schizophrenia and emphasize the need for future research on the specific stimulation parameters.
Collapse
Affiliation(s)
- Irina Papazova
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.
| | - Wolfgang Strube
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Becker
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Bettina Henning
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Tobias Schwippel
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology & Interventional Neuropsychiatry, University of Tübingen
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
50
|
Mehta UM. Refining strategies to drive cognitive gains through transcranial electrical stimulation. Schizophr Res 2018; 202:46-47. [PMID: 30025759 PMCID: PMC7610502 DOI: 10.1016/j.schres.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Urvakhsh Meherwan Mehta
- Assistant Professor of Psychiatry & Wellcome Trust/DBT India Alliance Early Career Fellow, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|