1
|
Peralta V, de Jalón EG, Moreno-Izco L, Sánchez-Torres AM, Gil-Berrozpe GJ, Peralta D, Janda L, Cuesta MJ. What does really matter in the premorbid background of psychosis leading to long-term disability? A 21-year follow-up cohort study of first-episode psychosis. Schizophr Res 2025; 279:31-39. [PMID: 40157254 DOI: 10.1016/j.schres.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/08/2025] [Accepted: 02/22/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Clinicians are currently unable to predict which patients are at higher risk of long-term disability based on premorbid factors. We aimed to determine the extent to which premorbid factors could prospectively predict long-term disability in patients with first-episode psychosis. METHODS We assessed 12 potential premorbid risk factors in 243 individuals with first-episode psychosis reassessed 21 years later for several domains of psychosocial disability. Hierarchical multivariate regression and Directed Acyclic Graphs (DAGs) were used sequentially to investigate independent and causal associations between risk factors and long-term disability. RESULTS The familial load of schizophrenia, lower parental SES, obstetric complications, early neurodevelopmental delay, childhood adversity, and poor adolescence social networks were independent predictors of long-term disability, accounting for 40.6 % of the variability. The DAGs analysis showed that both familial risk of schizophrenia and lower SES had statistically significant direct and indirect effects on later disability. The indirect effects were mediated by the variables indexing impaired development, although childhood adversity and poor adolescence social networks also had significant direct effects on disability. Early neurodevelopmental delay was the only developmental marker present in all statistically significant indirect paths from familial background factors to long-term disability, suggesting that it is a key component of the causal chain that leads to later disability. CONCLUSIONS In individuals with psychotic disorders, familial background factors appear to trigger a complex and multidetermined cascade of risk factors across developmental stages that interact iteratively, leading to long-term disability.
Collapse
Affiliation(s)
- Victor Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Elena García de Jalón
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Lucía Moreno-Izco
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain
| | - Ana M Sánchez-Torres
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Departamento de Ciencias de la Salud, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Gustavo J Gil-Berrozpe
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain
| | - David Peralta
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain
| | - Lucía Janda
- Mental Health Department, Servicio Navarro de Salud, Pamplona, Spain
| | - Manuel J Cuesta
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Antunes ASLM, Reis-de-Oliveira G, Martins-de-Souza D. Molecular overlaps of neurological manifestations of COVID-19 and schizophrenia from a proteomic perspective. Eur Arch Psychiatry Clin Neurosci 2025; 275:109-122. [PMID: 39028452 DOI: 10.1007/s00406-024-01842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
COVID-19, a complex multisystem disorder affecting the central nervous system, can also have psychiatric sequelae. In addition, clinical evidence indicates that a diagnosis of a schizophrenia spectrum disorder is a risk factor for mortality in patients with COVID-19. In this study, we aimed to explore brain-specific molecular aspects of COVID-19 by using a proteomic approach. We analyzed the brain proteome of fatal COVID-19 cases and compared it with differentially regulated proteins found in postmortem schizophrenia brains. The COVID-19 proteomic dataset revealed a strong enrichment of proteins expressed by glial and neuronal cells and processes related to diseases with a psychiatric and neurodegenerative component. Specifically, the COVID-19 brain proteome enriches processes that are hallmark features of schizophrenia. Furthermore, we identified shared and distinct molecular pathways affected in both conditions. We found that brain ageing processes are likely present in both COVID-19 and schizophrenia, albeit possibly driven by distinct processes. In addition, alterations in brain cell metabolism were observed, with schizophrenia primarily impacting amino acid metabolism and COVID-19 predominantly affecting carbohydrate metabolism. The enrichment of metabolic pathways associated with astrocytic components in both conditions suggests the involvement of this cell type in the pathogenesis. Both COVID-19 and schizophrenia influenced neurotransmitter systems, but with distinct impacts. Future studies exploring the underlying mechanisms linking brain ageing and metabolic dysregulation may provide valuable insights into the complex pathophysiology of these conditions and the increased vulnerability of schizophrenia patients to severe outcomes.
Collapse
Affiliation(s)
- André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | | | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, University of Campinas, Campinas, Brazil.
- D'or Institute for Research and Education, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), Estate University of Campinas, Campinas, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| |
Collapse
|
3
|
Aguirre JM, Díaz Dellarossa C, Barbagelata D, Vásquez J, Mena C, Tepper Á, Ramírez-Mahaluf JP, Aceituno D, Nachar R, Undurraga J, González-Valderrama A, Crossley NA. Cognitive function at first episode in patients subsequently developing treatment-resistant schizophrenia. Schizophr Res 2025; 276:178-184. [PMID: 39893777 DOI: 10.1016/j.schres.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/10/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Research on cognitive functions in treatment-resistant schizophrenia (TRS) has focused on chronic patients, complicating the distinction between disease-related deficits from those influenced by chronicity or antipsychotic exposure. Identifying early cognitive differences could offer insights into the nature of TRS cognitive performance and serve as potential markers of treatment resistance. METHODS Cohort study of 81 first-episode schizophrenia patients from Chile. Patients were followed-up and classified as TRS if they met TRRIP criteria or were prescribed clozapine at any point. 57 healthy controls were recruited for group comparisons. Cognitive performance was assessed using the MATRICS Consensus Cognitive Battery. RESULTS 51 patients were allocated to the treatment-responsive group (TRESP) and 30 to the TRS sample. Multivariable analyses controlling for age and sex revealed a worse TRS performance in processing speed, verbal fluency, attention/vigilance and working memory (p values <0.05). After multiple comparison corrections, only speed of processing remained significant. When accounting for symptom severity, antipsychotic dose and duration of untreated psychosis (DUP), TRS subjects still showed significantly lower processing speed (BACS, p = 0.036; TMT-A, p = 0.027), which was not significant after correcting for multiple comparisons. DISCUSSION TRS patients show slower processing speed compared to TRESP already during first episode, that is not entirely driven by symptom severity, antipsychotic dose and DUP. Processing speed emerges as an early deficit that could aid in the timely identification of patients on a treatment resistance trajectory and facilitate the prompt implementation of treatments such as clozapine.
Collapse
Affiliation(s)
- Juan M Aguirre
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | | | - Daniella Barbagelata
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Javiera Vásquez
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Cristián Mena
- Early Intervention in Psychosis Programme (PRO-ITP), Instituto Psiquiátrico José Horwitz Barack, Chile; School of Medicine, Universidad Finis Terrae, Chile
| | - Ángeles Tepper
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | | | - David Aceituno
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Rubén Nachar
- Early Intervention in Psychosis Programme (PRO-ITP), Instituto Psiquiátrico José Horwitz Barack, Chile; School of Medicine, Universidad Finis Terrae, Chile
| | - Juan Undurraga
- Department of Neurology and Psychiatry, Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Alfonso González-Valderrama
- Early Intervention in Psychosis Programme (PRO-ITP), Instituto Psiquiátrico José Horwitz Barack, Chile; School of Medicine, Universidad Finis Terrae, Chile
| | - Nicolas A Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile; Department of Psychiatry, Universidad de Antioquia, Colombia; Department of Psychiatry, University of Oxford, UK.
| |
Collapse
|
4
|
Demirlek C, Arslan B, Eyuboglu MS, Yalincetin B, Atas F, Cesim E, Demir M, Uzman Ozbek S, Kizilay E, Verim B, Sut E, Baykara B, Kaya M, Akdede BB, Bora E. Retina in Clinical High-Risk and First-Episode Psychosis. Schizophr Bull 2024:sbae189. [PMID: 39488000 DOI: 10.1093/schbul/sbae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormalities in the retina are observed in psychotic disorders, especially in schizophrenia. STUDY DESIGN Using spectral-domain optical coherence tomography, we investigated structural retinal changes in relatively metabolic risk-free youth with clinical high-risk (CHR, n = 34) and first-episode psychosis (FEP, n = 30) compared with healthy controls (HCs, n = 28). STUDY RESULTS Total retinal macular thickness/volume of the right eye increased in FEP (effect sizes, Cohen's d = 0.69/0.66) and CHR (d = 0.67/0.76) compared with HCs. Total retinal thickness/volume was not significantly different between FEP and CHR. Macular retinal nerve fiber layer (RNFL) thickness/volume of the left eye decreased in FEP compared with HCs (d = -0.75/-0.66). Peripapillary RNFL thickness was not different between groups. The ganglion cell (GCL), inner plexiform (IPL), and inner nuclear (INL) layers thicknesses/volumes of both eyes increased in FEP compared with HCs (d = 0.70-1.03). GCL volumes of both eyes, IPL thickness/volume of the left eye, and INL thickness/volume of both eyes increased in CHR compared with HCs (d = 0.64-1.01). In the macula, while central sector thickness/volume decreased (d = -0.62 to -0.72), superior outer (peri-foveal) sector thickness/volume of both eyes increased (d = 0.81 to 0.86) in FEP compared with HCs. CONCLUSIONS The current findings suggest that distinct regions and layers of the retina may be differentially impacted during the emergence and early phase of psychosis. Consequently, oculomics could play significant roles, not only as a diagnostic tool but also as a mirror reflecting neurobiological changes at axonal and cellular levels.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, United States
| | - Berat Arslan
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Merve S Eyuboglu
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ferdane Atas
- Department of Ophthalmology, Marmara University, Faculty of Medicine, Istanbul 34854, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Simge Uzman Ozbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Elif Kizilay
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Burcu Verim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
| | - Ekin Sut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Burak Baykara
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | | | - Berna B Akdede
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria 3053, Australia
| |
Collapse
|
5
|
Brouwer A, Carhart‐Harris RL, Raison CL. Psychotomimetic compensation versus sensitization. Pharmacol Res Perspect 2024; 12:e1217. [PMID: 38923845 PMCID: PMC11194300 DOI: 10.1002/prp2.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
It is a paradox that psychotomimetic drugs can relieve symptoms that increase risk of and cooccur with psychosis, such as attention and motivational deficits (e.g., amphetamines), pain (e.g., cannabis) and symptoms of depression (e.g., psychedelics, dissociatives). We introduce the ideas of psychotomimetic compensation and psychotomimetic sensitization to explain this paradox. Psychotomimetic compensation refers to a short-term stressor or drug-induced compensation against stress that is facilitated by engagement of neurotransmitter/modulator systems (endocannabinoid, serotonergic, glutamatergic and dopaminergic) that mediate the effects of common psychotomimetic drugs. Psychotomimetic sensitization occurs after repeated exposure to stress and/or drugs and is evidenced by the gradual intensification and increase of psychotic-like experiences over time. Theoretical and practical implications of this model are discussed.
Collapse
Affiliation(s)
- Ari Brouwer
- Department of Human Development and Family Studies, School of Human EcologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Robin L. Carhart‐Harris
- Department of Neurology and PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Charles L. Raison
- Department of Psychiatry, School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Vail Health Behavioral Health Innovation CenterVailColoradoUSA
- Center for the Study of Human HealthEmory UniversityAtlantaGeorgiaUSA
- Department of Spiritual HealthEmory University Woodruff Health Sciences CenterAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Hegemann L, Corfield EC, Askelund AD, Allegrini AG, Askeland RB, Ronald A, Ask H, St Pourcain B, Andreassen OA, Hannigan LJ, Havdahl A. Genetic and phenotypic heterogeneity in early neurodevelopmental traits in the Norwegian Mother, Father and Child Cohort Study. Mol Autism 2024; 15:25. [PMID: 38849897 PMCID: PMC11161964 DOI: 10.1186/s13229-024-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Autism and different neurodevelopmental conditions frequently co-occur, as do their symptoms at sub-diagnostic threshold levels. Overlapping traits and shared genetic liability are potential explanations. METHODS In the population-based Norwegian Mother, Father, and Child Cohort study (MoBa), we leverage item-level data to explore the phenotypic factor structure and genetic architecture underlying neurodevelopmental traits at age 3 years (N = 41,708-58,630) using maternal reports on 76 items assessing children's motor and language development, social functioning, communication, attention, activity regulation, and flexibility of behaviors and interests. RESULTS We identified 11 latent factors at the phenotypic level. These factors showed associations with diagnoses of autism and other neurodevelopmental conditions. Most shared genetic liabilities with autism, ADHD, and/or schizophrenia. Item-level GWAS revealed trait-specific genetic correlations with autism (items rg range = - 0.27-0.78), ADHD (items rg range = - 0.40-1), and schizophrenia (items rg range = - 0.24-0.34). We find little evidence of common genetic liability across all neurodevelopmental traits but more so for several genetic factors across more specific areas of neurodevelopment, particularly social and communication traits. Some of these factors, such as one capturing prosocial behavior, overlap with factors found in the phenotypic analyses. Other areas, such as motor development, seemed to have more heterogenous etiology, with specific traits showing a less consistent pattern of genetic correlations with each other. CONCLUSIONS These exploratory findings emphasize the etiological complexity of neurodevelopmental traits at this early age. In particular, diverse associations with neurodevelopmental conditions and genetic heterogeneity could inform follow-up work to identify shared and differentiating factors in the early manifestations of neurodevelopmental traits and their relation to autism and other neurodevelopmental conditions. This in turn could have implications for clinical screening tools and programs.
Collapse
Affiliation(s)
- Laura Hegemann
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway.
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
| | - Elizabeth C Corfield
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Adrian Dahl Askelund
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Andrea G Allegrini
- Division of Psychology & Language Sciences, Department of Clinical, Educational & Health Psychology, Faculty of Brain Sciences, University College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ragna Bugge Askeland
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Angelica Ronald
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Helga Ask
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Centre,Department of Psychology, University of Oslo, Oslo, Norway
| | - Beate St Pourcain
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laurie J Hannigan
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- PROMENTA Research Centre,Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Beazley P. Excluding autism or excluding everything? The problem of broad definitions in the England and Wales Draft Mental Health Bill. BJPsych Bull 2024; 48:187-191. [PMID: 37408479 PMCID: PMC11134010 DOI: 10.1192/bjb.2023.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The recent Draft Mental Health Bill for England and Wales proposes changes to the Mental Health Act 1983 which will include, for the first time, a legal definition of autism. This article explores the specific potential issue that the definition, owing to its breadth, potentially encompasses a number of conditions other than autism, consequently leaving the definitionally dependent concept of 'psychiatric disorder' significantly narrowed in scope. The potential implications of this - primarily the concern that a range of other conditions and presentations could be unintentionally excluded from the scope of the civil powers in the Mental Health Act - are discussed.
Collapse
|
8
|
Jonas KG, Cannon TD, Docherty AR, Dwyer D, Gur RC, Gur RE, Nelson B, Reininghaus U, Kotov R. Psychosis superspectrum I: Nosology, etiology, and lifespan development. Mol Psychiatry 2024; 29:1005-1019. [PMID: 38200290 PMCID: PMC11385553 DOI: 10.1038/s41380-023-02388-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
This review describes the Hierarchical Taxonomy of Psychopathology (HiTOP) model of psychosis-related psychopathology, the psychosis superspectrum. The HiTOP psychosis superspectrum was developed to address shortcomings of traditional diagnoses for psychotic disorders and related conditions including low reliability, arbitrary boundaries between psychopathology and normality, high symptom co-occurrence, and heterogeneity within diagnostic categories. The psychosis superspectrum is a transdiagnostic dimensional model comprising two spectra-psychoticism and detachment-which are in turn broken down into fourteen narrow components, and two auxiliary domains-cognition and functional impairment. The structure of the spectra and their components are shown to parallel the genetic structure of psychosis and related traits. Psychoticism and detachment have distinct patterns of association with urbanicity, migrant and ethnic minority status, childhood adversity, and cannabis use. The superspectrum also provides a useful model for describing the emergence and course of psychosis, as components of the superspectrum are relatively stable over time. Changes in psychoticism predict the onset of psychosis-related psychopathology, whereas changes in detachment and cognition define later course. Implications of the superspectrum for genetic, socio-environmental, and longitudinal research are discussed. A companion review focuses on neurobiology, treatment response, and clinical utility of the superspectrum, and future research directions.
Collapse
Affiliation(s)
- Katherine G Jonas
- Department of Psychiatry & Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Anna R Docherty
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dominic Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ruben C Gur
- Brain Behavior Laboratory, Department of Psychiatry and the Penn-CHOP Lifespan Brain Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Department of Psychiatry and the Penn-CHOP Lifespan Brain Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Barnaby Nelson
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Ulrich Reininghaus
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- ESRC Centre for Society and Mental Health and Centre for Epidemiology and Public Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Roman Kotov
- Department of Psychiatry & Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Tandon R, Nasrallah H, Akbarian S, Carpenter WT, DeLisi LE, Gaebel W, Green MF, Gur RE, Heckers S, Kane JM, Malaspina D, Meyer-Lindenberg A, Murray R, Owen M, Smoller JW, Yassin W, Keshavan M. The schizophrenia syndrome, circa 2024: What we know and how that informs its nature. Schizophr Res 2024; 264:1-28. [PMID: 38086109 DOI: 10.1016/j.schres.2023.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/01/2024]
Abstract
With new data about different aspects of schizophrenia being continually generated, it becomes necessary to periodically revisit exactly what we know. Along with a need to review what we currently know about schizophrenia, there is an equal imperative to evaluate the construct itself. With these objectives, we undertook an iterative, multi-phase process involving fifty international experts in the field, with each step building on learnings from the prior one. This review assembles currently established findings about schizophrenia (construct, etiology, pathophysiology, clinical expression, treatment) and posits what they reveal about its nature. Schizophrenia is a heritable, complex, multi-dimensional syndrome with varying degrees of psychotic, negative, cognitive, mood, and motor manifestations. The illness exhibits a remitting and relapsing course, with varying degrees of recovery among affected individuals with most experiencing significant social and functional impairment. Genetic risk factors likely include thousands of common genetic variants that each have a small impact on an individual's risk and a plethora of rare gene variants that have a larger individual impact on risk. Their biological effects are concentrated in the brain and many of the same variants also increase the risk of other psychiatric disorders such as bipolar disorder, autism, and other neurodevelopmental conditions. Environmental risk factors include but are not limited to urban residence in childhood, migration, older paternal age at birth, cannabis use, childhood trauma, antenatal maternal infection, and perinatal hypoxia. Structural, functional, and neurochemical brain alterations implicate multiple regions and functional circuits. Dopamine D-2 receptor antagonists and partial agonists improve psychotic symptoms and reduce risk of relapse. Certain psychological and psychosocial interventions are beneficial. Early intervention can reduce treatment delay and improve outcomes. Schizophrenia is increasingly considered to be a heterogeneous syndrome and not a singular disease entity. There is no necessary or sufficient etiology, pathology, set of clinical features, or treatment that fully circumscribes this syndrome. A single, common pathophysiological pathway appears unlikely. The boundaries of schizophrenia remain fuzzy, suggesting the absence of a categorical fit and need to reconceptualize it as a broader, multi-dimensional and/or spectrum construct.
Collapse
Affiliation(s)
- Rajiv Tandon
- Department of Psychiatry, WMU Homer Stryker School of Medicine, Kalamazoo, MI 49008, United States of America.
| | - Henry Nasrallah
- Department of Psychiatry, University of Cincinnati College of Medicine Cincinnati, OH 45267, United States of America
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Dusseldorf, Heinrich-Heine University, Dusseldorf, Germany
| | - Michael F Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, UCLA, Los Angeles, CA 90024, United States of America; Greater Los Angeles Veterans' Administration Healthcare System, United States of America
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States of America
| | - Stephan Heckers
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - John M Kane
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Glen Oaks, NY 11004, United States of America
| | - Dolores Malaspina
- Department of Psychiatry, Neuroscience, Genetics, and Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, United States of America
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannhein/Heidelberg University, Mannheim, Germany
| | - Robin Murray
- Institute of Psychiatry, Psychology, and Neuroscience, Kings College, London, UK
| | - Michael Owen
- Centre for Neuropsychiatric Genetics and Genomics, and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Jordan W Smoller
- Center for Precision Psychiatry, Department of Psychiatry, Psychiatric and Neurodevelopmental Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | - Walid Yassin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
10
|
Catalan A, McCutcheon RA, Aymerich C, Pedruzo B, Radua J, Rodríguez V, Salazar de Pablo G, Pacho M, Pérez JL, Solmi M, McGuire P, Giuliano AJ, Stone WS, Murray RM, Gonzalez-Torres MA, Fusar-Poli P. The magnitude and variability of neurocognitive performance in first-episode psychosis: a systematic review and meta-analysis of longitudinal studies. Transl Psychiatry 2024; 14:15. [PMID: 38191534 PMCID: PMC10774360 DOI: 10.1038/s41398-023-02718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Neurocognitive deficits are a core feature of psychotic disorders, but it is unclear whether they affect all individuals uniformly. The aim of this systematic review and meta-analysis was to synthesize the evidence on the magnitude, progression, and variability of neurocognitive functioning in individuals with first-episode psychosis (FEP). A multistep literature search was conducted in several databases up to November 1, 2022. Original studies reporting on neurocognitive functioning in FEP were included. The researchers extracted the data and clustered the neurocognitive tasks according to the seven Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) domains and six additional domains. Random-effect model meta-analyses, assessment of publication biases and study quality, and meta-regressions were conducted. The primary effect size reported was Hedges g of (1) neurocognitive functioning in individuals at FEP measuring differences with healthy control (HC) individuals or (2) evolution of neurocognitive impairment across study follow-up intervals. Of 30,384 studies screened, 54 were included, comprising 3,925 FEP individuals and 1,285 HC individuals. Variability analyses indicated greater variability in FEP compared to HC at baseline and follow-up. We found better neurocognitive performance in the HC group at baseline and follow-up but no differences in longitudinal neurocognitive changes between groups. Across the 13 domains, individuals with FEP showed improvement from baseline in all studied domains, except for visual memory. Metaregressions showed some differences in several of the studied domains. The findings suggest that individuals with FEP have marked cognitive impairment, but there is greater variability in cognitive functioning in patients than in HC. This suggests that subgroups of individuals suffer severe disease-related cognitive impairments, whereas others may be much less affected. While these impairments seem stable in the medium term, certain indicators may suggest potential further decline in the long term for a specific subgroup of individuals, although more research is needed to clarify this. Overall, this study highlights the need for tailored neurocognitive interventions for individuals with FEP based on their specific deficits and progression.
Collapse
Affiliation(s)
- Ana Catalan
- Department of Neuroscience, University of the Basque Country UPV/EHU; Psychiatry Department. Basurto University Hospital; Biobizkaia Health Research Institute; Centro de Investigación en Red de Salud Mental. (CIBERSAM) Instituto de Salud Carlos III , OSI Bilbao-Basurto, Av. Montevideo 18, 48013, Bilbao, Spain.
- Early Psychosis Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry. University of Oxford, Warneford Hospital, Headington, OX3 7JX, UK
- Oxford Health NHS foundation trust, Oxford, UK
| | - Claudia Aymerich
- Department of Neuroscience, University of the Basque CountryUPV/EHU. Psychiatry Department. Basurto University Hospital. BiBiobizkaia Health Research Institute. Centro de Investigaciónen Red de Salud Mental. (CIBERSAM), Instituto de Salud Carlos III, Avenida de Montevideo 18, 48013, Bilbao, Spain
| | - Borja Pedruzo
- Psychiatry Department. Basurto University Hospital, OSI Bilbao-Basurto, Bizkaia, Spain
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain
| | - Victoria Rodríguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gonzalo Salazar de Pablo
- Early Psychosis Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health. Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Malein Pacho
- Psychiatry Department. Basurto University Hospital, OSI Bilbao-Basurto, Bizkaia, Spain
| | - Jose Luis Pérez
- Psychiatry Department. Basurto University Hospital, OSI Bilbao-Basurto, Bizkaia, Spain
| | - Marco Solmi
- Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
- SCIENCES lab, Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry. University of Oxford, Warneford Hospital, Headington, OX3 7JX, UK
| | - Anthony J Giuliano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Miguel Angel Gonzalez-Torres
- Department of Neuroscience, University of the Basque Country UPV/EHU; Psychiatry Department. Basurto University Hospital; Biobizkaia Health Research Institute; Centro de Investigación en Red de Salud Mental. (CIBERSAM) Instituto de Salud Carlos III , OSI Bilbao-Basurto, Av. Montevideo 18, 48013, Bilbao, Spain
| | - Paolo Fusar-Poli
- Early Psychosis Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, , Pavia, Italy
- Outreach and Support in South London (OASIS) service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
11
|
Davidson M, Carpenter WT. Targeted Treatment of Schizophrenia Symptoms as They Manifest, or Continuous Treatment to Reduce the Risk of Psychosis Recurrence. Schizophr Bull 2024; 50:14-21. [PMID: 37929893 PMCID: PMC10754173 DOI: 10.1093/schbul/sbad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Current pharmacological treatment of schizophrenia employs drugs that interfere with dopamine neurotransmission, aiming to suppress acute exacerbation of psychosis and maintenance treatment to reduce the risk of psychosis recurrence. According to this treatment scheme, available psychotropic drugs intended to treat negative symptoms, cognitive impairment, or anxiety are administered as add-ons to treatment with antipsychotics. However, an alternative treatment scheme proposes a targeted or intermittent treatment approach, by which antipsychotic drugs are administered upon psychosis exacerbation and discontinued upon remission or stabilization, while negative symptoms, cognitive impairment, or anxiety are treated with specific psychotropics as monotherapy. Along these lines, antipsychotics are renewed only in the event of recurrence of psychotic symptoms. This 50-year-old debate between targeted and continuous treatment schemes arises from disagreements about interpreting scientific evidence and discordant views regarding benefit/risk assessment. Among the debate's questions are: (1) what is the percentage of individuals who can maintain stability without antipsychotic maintenance treatment, and what is the percentage of those who exacerbate despite antipsychotic treatment? (2) how to interpret results of placebo-controlled 9- to 18-month-long maintenance trials in a life-long chronic disorder, and how to interpret results of the targeted trials, some of which are open label or not randomized; (3) how to weigh the decreased risk for psychotic recurrence vs the almost certainty of adverse effects on patient's quality of life. Patients' profiles, preferences, and circumstances of the care provision should be considered as the targeted vs continuous treatment options are considered.
Collapse
Affiliation(s)
- Michael Davidson
- Department of Basic and Clinical Sciences, Psychiatry, University of Nicosia Medical School, 2414, Nicosia, Cyprus and Minerva Neurosciences, 1500 District Avenue, Burlington, MA 01803, USA
| | - William T Carpenter
- University of Maryland School of Medicine, Department of Psychiatry, Maryland Psychiatric Research Center, Baltimore, MD, USA
| |
Collapse
|
12
|
Stone WS, Phillips MR, Yang LH, Kegeles LS, Lieberman JA. Is schizophrenia neurodevelopmental, neurodegenerative or something else: A reply to Murray et al. (2022). Schizophr Res 2023; 261:234-235. [PMID: 37804599 DOI: 10.1016/j.schres.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Affiliation(s)
- William S Stone
- Harvard Medical School Department of Psychiatry at Beth, Israel Deaconess Medical Center, Boston, MA, USA.
| | - Michael R Phillips
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Lawrence H Yang
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA; New York University College of Global Public Health, New York, NY, USA
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | | |
Collapse
|
13
|
du Plessis S, Chand GB, Erus G, Phahladira L, Luckhoff HK, Smit R, Asmal L, Wolf DH, Davatzikos C, Emsley R. Two Neuroanatomical Signatures in Schizophrenia: Expression Strengths Over the First 2 Years of Treatment and Their Relationships to Neurodevelopmental Compromise and Antipsychotic Treatment. Schizophr Bull 2023; 49:1067-1077. [PMID: 37043772 PMCID: PMC10318886 DOI: 10.1093/schbul/sbad040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND HYPOTHESIS Two machine learning derived neuroanatomical signatures were recently described. Signature 1 is associated with widespread grey matter volume reductions and signature 2 with larger basal ganglia and internal capsule volumes. We hypothesized that they represent the neurodevelopmental and treatment-responsive components of schizophrenia respectively. STUDY DESIGN We assessed the expression strength trajectories of these signatures and evaluated their relationships with indicators of neurodevelopmental compromise and with antipsychotic treatment effects in 83 previously minimally treated individuals with a first episode of a schizophrenia spectrum disorder who received standardized treatment and underwent comprehensive clinical, cognitive and neuroimaging assessments over 24 months. Ninety-six matched healthy case-controls were included. STUDY RESULTS Linear mixed effect repeated measures models indicated that the patients had stronger expression of signature 1 than controls that remained stable over time and was not related to treatment. Stronger signature 1 expression showed trend associations with lower educational attainment, poorer sensory integration, and worse cognitive performance for working memory, verbal learning and reasoning and problem solving. The most striking finding was that signature 2 expression was similar for patients and controls at baseline but increased significantly with treatment in the patients. Greater increase in signature 2 expression was associated with larger reductions in PANSS total score and increases in BMI and not associated with neurodevelopmental indices. CONCLUSIONS These findings provide supporting evidence for two distinct neuroanatomical signatures representing the neurodevelopmental and treatment-responsive components of schizophrenia.
Collapse
Affiliation(s)
- Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Ganesh B Chand
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Radiology and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lebogang Phahladira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Hilmar K Luckhoff
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Retha Smit
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Laila Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
14
|
Holton KM, Chan SY, Brockmeier AJ, Öngür D, Hall MH. Exploring the influence of functional architecture on cortical thickness networks in early psychosis - A longitudinal study. Neuroimage 2023; 274:120127. [PMID: 37086876 DOI: 10.1016/j.neuroimage.2023.120127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023] Open
Abstract
Cortical thickness reductions differ between individuals with psychotic disorders and comparison subjects even in early stages of illness. Whether these reductions covary as expected by functional network membership or simply by spatial proximity has not been fully elucidated. Through orthonormal projective non-negative matrix factorization, cortical thickness measurements in functionally-annotated regions from MRI scans of early-stage psychosis and matched healthy controls were reduced in dimensionality into features capturing positive covariance. Rather than matching the functional networks, the covarying regions in each feature displayed a more localized spatial organization. With Bayesian belief networks, the covarying regions per feature were arranged into a network topology to visualize the dependency structure and identify key driving regions. The features demonstrated diagnosis-specific differences in cortical thickness distributions per feature, identifying reduction-vulnerable spatial regions. Differences in key cortical thickness features between psychosis and control groups were delineated, as well as those between affective and non-affective psychosis. Clustering of the participants, stratified by diagnosis and clinical variables, characterized the clinical traits that define the cortical thickness patterns. Longitudinal follow-up revealed that in select clusters with low baseline cortical thickness, clinical traits improved over time. Our study represents a novel effort to characterize brain structure in relation to functional networks in healthy and clinical populations and to map patterns of cortical thickness alterations among ESP patients onto clinical variables for a better understanding of brain pathophysiology.
Collapse
Affiliation(s)
- Kristina M Holton
- Computational Neural Information Engineering Lab, University of Delaware, 139 The Green, Newark, DE 19716, USA.
| | - Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Austin J Brockmeier
- Computational Neural Information Engineering Lab, University of Delaware, 139 The Green, Newark, DE 19716, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA; Division of Psychotic Disorders, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA.
| |
Collapse
|
15
|
Atwood B, Yassin W, Chan SY, Hall MH. Subfield-specific longitudinal changes of hippocampal volumes in patients with early-stage bipolar disorder. Bipolar Disord 2023; 25:301-311. [PMID: 36855850 PMCID: PMC10330583 DOI: 10.1111/bdi.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND The hippocampus is a heterogeneous structure composed of biologically and functionally distinct subfields. Hippocampal aberrations are proposed to play a fundamental role in the etiology of psychotic symptoms. Bipolar disorder (BPD) has substantial overlap in symptomatology and genetic liability with schizophrenia (SZ), and reduced hippocampal volumes, particularly at the chronic illness stages, are documented in both disorders. Studies of hippocampal subfields in the early stage of BPD are limited and cross-sectional findings to date report no reduction in hippocampal volumes. To our knowledge, there have been no longitudinal studies of BPD evaluating hippocampal volumes in the early phase of illness. We investigated the longitudinal changes in hippocampal regions and subfields in BPD mainly and in early stage of psychosis (ESP) patients more broadly and compared them to those in controls (HC). METHODS Baseline clinical and structural MRI data were acquired from 88 BPD, from a total of 143 ESP patients, and 74 HCs. Of those, 66 participants (23 HC, 43 patients) completed a 12-month follow-up visit. The hippocampus regions and subfields were segmented using Freesurfer automated pipeline. RESULTS We found general baseline deficits in hippocampal volumes among BPD and ESP cohorts. Both cohorts displayed significant increases in the anterior hippocampal region and dentate gyrus compared with controls. Additionally, antipsychotic medications were positively correlated with the posterior region at baseline. CONCLUSION These findings highlight brain plasticity in BPD and in ESP patients providing evidence that deviations in hippocampal volumes are adaptive responses to atypical signaling rather than progressive degeneration.
Collapse
Affiliation(s)
- Bruce Atwood
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Walid Yassin
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Choroidal structural analysis in ultra-high risk and first-episode psychosis. Eur Neuropsychopharmacol 2023; 70:72-80. [PMID: 36931136 DOI: 10.1016/j.euroneuro.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023]
Abstract
Both structural and functional alterations in the retina and the choroid of the eye, as parts of the central nervous system, have been shown in psychotic disorders, especially in schizophrenia. In addition, genetic and imaging studies indicate vascular and angiogenesis anomalies in the psychosis spectrum disorders. In this ocular imaging study, choroidal structure and vascularity were investigated using enhanced depth imaging (EDI) optical coherence tomography (OCT) in first-episode psychosis (FEP), ultra-high risk for psychosis (UHR-P), and age- and gender- matched healthy controls (HCs). There were no significant differences between groups in central choroidal thickness, stromal choroidal area (SCA), luminal choroidal area (LCA) and total subfoveal choroidal area. The LCA/SCA ratio (p<0.001) and the choroidal vascularity index (CVI) (p<0.001) were significantly different between FEP, UHR-P and HCs. CVI and LCA/SCA ratio were significantly higher in patients with FEP compared to help-seeking youth at UHR-P. CVI and LCA/SCA ratio were not different between UHR-P and HCs. However, CVI was higher in UHR-P compared to HCs after excluding the outliers for the sensitivity analysis (p = 0.002). Current findings suggest that choroidal thickness is normal, but there are abnormalities in choroidal microvasculature in prodromal and first-episode psychosis. Further longitudinal studies are needed to investigate oculomics, especially CVI, as a promising biomarker for the prediction of conversion to psychosis in individuals at clinical high-risk.
Collapse
|
17
|
DeLisi LE. Brain plasticity, language anomalies, genetic risk and the patient with schizophrenia: Trajectory of change over a lifetime. A commentary. Psychiatry Res 2023; 320:115034. [PMID: 36603384 DOI: 10.1016/j.psychres.2022.115034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research on schizophrenia has been pursued for over a century. While the ability to view the brain and also the entire human genome advanced dramatically during this time and particularly in recent years, it is still unclear whether these advances helped to understand the nature of schizophrenia. What appears, however, to be the case is that early detection and treatment of people who are at high risk for developing schizophrenia due to various clinical signs, lead to better outcomes and recovery in many cases. Medications have also dramatically improved and have not been associated with the side-effects of earlier treatments, although they still are not without new sets of adverse effects. Over the years it was shown that structural brain abnormalities were present in the brains of people with chronic schizophrenia and that these observations were present early in the onset of illness. It was then shown these were not static and changed over the years of illness. At the same time it was shown that the brain centers for perceiving and speaking language appeared particularly abnormal in patients with schizophrenia and that these abnormalities could underlie the misperceptions and experiences of auditory hallucinations so characteristic of this illness. In a separate set of investigations that began with family, then twin and adoption studies, it was shown that schizophrenia is inherited, but in a complex manner. At present many genetic studies now find that genes, whose variants can lead to a high risk for schizophrenia, are ones specifically involving brain development and functioning. At present, although still speculative, it can be concluded that the progressive changes in brain structure, particularly related to language processing, take place in genetically vulnerable people and put them ultimately at high risk for developing schizophrenia in a trajectory for a lifelong illness. It is hoped that in the future these brain changes can be prevented by intervening early on the processes of brain growth and plasticity, thus arresting the illness before it begins.
Collapse
Affiliation(s)
- Lynn E DeLisi
- Department of Psychiatry, Cambridge Health Alliance and Harvard Medical School, Cambridge, Massachusetts, United States.
| |
Collapse
|
18
|
De Salve F, Rossi C, Cavalera C, Lara M, Simona B, Sofia T, Mauro P, Osmano O. Personality traits and transition to psychosis one year after the first assessment. Front Psychol 2023; 14:1096626. [PMID: 36743236 PMCID: PMC9893640 DOI: 10.3389/fpsyg.2023.1096626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction Several studies have identified ultra-high-risk criteria that may characterize an at-risk mental state and predict the transition of psychotic evolution. Personality traits may play a crucial role in this process. Aims The current study aims to: (a) explore the evolution of an initial diagnosis over 12 months; (b) assess differences in social and occupational functioning; (c) identify common (trans-diagnostic) personality traits of psychotic risk. Methods The sample includes 97 (44 males and 53 females) young adults. They completed an assessment that consists of socio-demographic data, the Social and Occupational Functioning Scale, the Early Recognition Inventory-retrospective assessment onset of schizophrenia, and the Personality Inventory for DSM-5 (PID-5). According to the tests' assessment, the sample was divided into three different groups: Ultra-High Risk (UHR), At-Risk, and Not at risk. One year after the first evaluation, psychiatrists administered the QuickSCID-5 to verify the diagnostic trajectories of the sample. Results Overall, the most prevalent category diagnoses were anxiety/depression, personality disorders, and psychosis. Specifically, the most common diagnosis in the UHR group was psychosis. Moreover, in the UHR group, the social and occupational functioning score was the lowest. In terms of differences in PID-5 personality traits, the At-risk and UHR groups scored highest in detachment and disinhibition. No statistically significant differences were found between the groups for negative affectivity, antagonism, and psychoticism traits. Conclusion Results obtained by the current study should be considered an attempt to better understand the diagnostic trajectories and trans-diagnostic personality traits in a group of young help-seekers, specifically in UHR. Findings highlight both the importance of diagnosis and personality traits evaluation to customize a specific intervention based on the level of psychotic risk. Clinical suggestions are reported.
Collapse
Affiliation(s)
- Francesca De Salve
- Department of Psychology, Catholic University of Milan, Milan, Italy,*Correspondence: Francesca De Salve, ✉
| | - Chiara Rossi
- Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Cesare Cavalera
- Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Malvini Lara
- Department of Mental Health and Addiction Services, Niguarda Hospital, Milan, Italy
| | - Barbera Simona
- Department of Mental Health and Addiction Services, Niguarda Hospital, Milan, Italy
| | - Tagliabue Sofia
- Department of Mental Health and Addiction Services, Niguarda Hospital, Milan, Italy
| | - Percudani Mauro
- Department of Mental Health and Addiction Services, Niguarda Hospital, Milan, Italy
| | - Oasi Osmano
- Department of Psychology, Catholic University of Milan, Milan, Italy,Oasi Osmano, ✉
| |
Collapse
|
19
|
Abstract
In this paper, we examine a number of approaches that propose new models for psychiatric theory and practices: in the way that they incorporate 'social' dimensions, in the way they involve 'communities' in treatment, in the ways that they engage mental health service users, and in the ways that they try to shift the power relations within the psychiatric encounter. We examine the extent to which 'alternatives' - including 'Postpsychiatry', 'Open Dialogue', the 'Power, Threat and Meaning Framework' and Service User Involvement in Research - really do depart from mainstream models in terms of theory, practice and empirical research and identify some shortcomings in each. We propose an approach which seeks more firmly to ground mental distress within the lifeworld of those who experience it, with a particular focus on the biopsychosocial niches within which we make our lives, and the impact of systematic disadvantage, structural violence and other toxic exposures within the spaces and places that constitute and constrain many everyday lives. Further, we argue that a truly alternative psychiatry requires psychiatric professionals to go beyond simply listening to the voices of service users: to overcome epistemic injustice requires professionals to recognise that those who have experience of mental health services have their own expertise in accounting for their distress and in evaluating alternative forms of treatment. Finally we suggest that, if 'another psychiatry' is possible, this requires a radical reimagination of the role and responsibilities of the medically trained psychiatrist within and outside the clinical encounter.
Collapse
Affiliation(s)
- Diana Rose
- Australian National University, Canberra, Australia
| | - Nikolas Rose
- Australian National University, Canberra, Australia
- Institute of Advanced Studies, University College London, London, UK
| |
Collapse
|
20
|
Seeman MV. Subjective Overview of Accelerated Aging in Schizophrenia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:737. [PMID: 36613059 PMCID: PMC9819113 DOI: 10.3390/ijerph20010737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Schizophrenia, like many other human diseases, particularly neuropsychiatric diseases, shows evidence of accelerated brain aging. The molecular nature of the process of aging is unknown but several potential indicators have been used in research. The concept of accelerated aging in schizophrenia took hold in 2008 and its timing, pace, determinants and deterrents have been increasingly examined since. The present overview of the field is brief and selective, based on diverse studies, expert opinions and successive reviews. Current thinking is that the timing of age acceleration in schizophrenia can occur at different time periods of the lifespan in different individuals, and that antipsychotics may be preventive. The majority opinion is that the cognitive decline and premature death often seen in schizophrenia are, in principle, preventable.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, 260 Heath St. West, Suite #605, Toronto, ON M5P 3L6, Canada
| |
Collapse
|
21
|
Vargas TG, Mittal VA. The Critical Roles of Early Development, Stress, and Environment in the Course of Psychosis. ANNUAL REVIEW OF DEVELOPMENTAL PSYCHOLOGY 2022; 4:423-445. [PMID: 36712999 PMCID: PMC9879333 DOI: 10.1146/annurev-devpsych-121020-032354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Psychotic disorders are highly debilitating with poor prognoses and courses of chronic illness. In recent decades, conceptual models have shaped understanding, informed treatment, and guided research questions. However, these models have classically focused on the adolescent and early adulthood stages immediately preceding onset while conceptualizing early infancy through all of childhood as a unitary premorbid period. In addition, models have paid limited attention to differential effects of types of stress; contextual factors such as local, regional, and country-level characteristics or sociocultural contexts; and the timing of the stressor or environmental risk. This review discusses emerging research suggesting that (a) considering effects specific to neurodevelopmental stages prior to adolescence is highly informative, (b) understanding specific stressors and levels of environmental exposures (i.e., systemic or contextual features) is necessary, and (c) exploring the dynamic interplay between development, levels and types of stressors, and environments can shed new light, informing a specified neurodevelopmental and multifaceted diathesis-stress model.
Collapse
Affiliation(s)
- T G Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - V A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
- Departments of Psychiatry and Medical Social Sciences, Institute for Innovations in Developmental Sciences, and Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
22
|
Deegan PE. I am a person, not an illness. Schizophr Res 2022; 246:74. [PMID: 35717742 DOI: 10.1016/j.schres.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
|
23
|
DeLisi LE. Commentary on whether progressive brain change underlies the pathology of schizophrenia: Should this even be debated? Schizophr Res 2022; 244:18-20. [PMID: 35567869 DOI: 10.1016/j.schres.2022.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lynn E DeLisi
- Attending Psychiatrist and Director of Faculty Affairs, Department of Psychiatry, Cambridge Health Alliance, Professor of Psychiatry, Harvard Medical School, Cambridge, MA, United States of America.
| |
Collapse
|