1
|
Shreenag Meda U, Madan Raikar O, Adaguru Rudregowda C, Rangappa D, Rani N, Ranga SS, Pandey A. MXenes as Versatile Materials for Hydrogen Technology and Multifunctional Applications. Chem Asian J 2025; 20:e202401678. [PMID: 40070074 DOI: 10.1002/asia.202401678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
MXenes are the carbides and nitrides of transition metals which are two dimensional in structure. High surface area, remarkable hydrophilicity, enhanced electrical conductivity, and unique surface functional groups are some of the distinguished properties of MXenes. These features make them suitable for numerous applications across domains such as sensing, biomedicine, catalysis, and electromagnetic interference shielding followed by hydrogen generation and storage at the forefront. This article encompasses the discovery, structure, fabrication routes, and varied applications of MXenes with an emphasis on electrocatalysis in hydrogen evolution reactions and storage. The article depicts diverse compositions and surface modification routes for enhancing their properties. MXene-derived Z-scheme photocatalysts have also been explored for their applications in degrading organic pollutants and volatile organic compounds. The article brings out various concerns such as the self-restacking of MXenes due to van der Waals forces of attraction and their aggregation. Furthermore, it sheds light on the current status of MXenes and future development for sustainable energy technologies. Scaleup and high production costs are a few challenges that need to be addressed.
Collapse
Affiliation(s)
- Ujwal Shreenag Meda
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Om Madan Raikar
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Charanya Adaguru Rudregowda
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Dinesh Rangappa
- Department of Applied Sciences, VIAT, Visvesvaraya Technological University, Muddenahalli Campus, Chikkaballapur, India
| | - Navya Rani
- Center for Research and Development, Department of Chemistry, Nagarjuana College of Engineering and Technology, Bengaluru, India
| | - Shravan S Ranga
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| | - Aditi Pandey
- Department of Chemical Engineering, RV College of Engineering, Bengaluru, India
- Centre for Hydrogen and Green Technology, RV College of Engineering, Bengaluru, India
| |
Collapse
|
2
|
Li M, Dong X, Li Q, Liu Y, Cao S, Hou CC, Sun T. Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction. SMALL METHODS 2025; 9:e2401569. [PMID: 39529541 DOI: 10.1002/smtd.202401569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/26/2024] [Indexed: 11/16/2024]
Abstract
MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti3C2Tx MXene (Ti3C2Ox) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti3C2Ox. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec-1 at a current density of -10 mA cm-2 in 0.5 m H2SO4 solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti3C2Ox. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.
Collapse
Affiliation(s)
- Mengrui Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaoxiao Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Qinzhu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yaru Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Shuang Cao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Chun-Chao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
3
|
Asim Ali S, Khanam M, Sadiq I, Shaheen S, Ahmad T. Physicochemical Modulations in MXenes for Carbon Dioxide Mitigation and Hydrogen Generation: Tandem Dialogue between Theoretical Anticipations and Experimental Evidences. J Colloid Interface Sci 2025; 679:1046-1075. [PMID: 39418892 DOI: 10.1016/j.jcis.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The dawn of MXenes has fascinated researchers under their intriguing physicochemical attributes that govern their energy and environmental applications. Modifications in the physicochemical properties of MXenes pave the way for efficient energy-driven operations such as carbon capture and hydrogen generation. The physicochemical modulations such as interface engineering through van der Waals coupling with homo/hetero-junctions render the tunability of optoelectronic variables driving the photochemical and electrochemical processes. Herein, we have reviewed the recent achievements in physicochemical properties of MXenes by highlighting the role of intercalants/terminal groups, atomic defects, surface chemistry and few/mono-layer formation. Recent findings of MXenes-based materials are systematically surveyed in a tandem manner with the future outlook for constructing next-generation multi-functional catalytic systems. Theoretical modelling of MXenes surface engineering proffers the mechanistic comprehension of surface phenomena such as termination, interface formation, doping and functionalization, thereby enabling the researchers to exploit them for targeted applications. Therefore, theoretical anticipations and experimental evidences of electrochemical/photochemical carbon dioxide reduction and hydrogen evolution reactions are synergistically discussed.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Madeeha Khanam
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Iqra Sadiq
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saman Shaheen
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
4
|
Zhao J, Ma N, Wang T, Wang Y, Liang B, Zhang Y, Luo S, Xiong Y, Wang Q, Fan J. Theoretical insights and design of MXene for aqueous batteries and supercapacitors: status, challenges, and perspectives. NANOSCALE HORIZONS 2024; 10:78-103. [PMID: 39535177 DOI: 10.1039/d4nh00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aqueous batteries and supercapacitors are promising electrochemical energy storage systems (EESSs) due to their low cost, environmental friendliness, and high safety. However, aqueous EESS development faces challenges like narrow electrochemical windows, irreversible dendrite growth, corrosion, and low energy density. Recently, two-dimensional (2D) transition metal carbide and nitride (MXene) have attracted more attention due to their excellent physicochemical properties and potential applications in aqueous EESSs. Understanding the atomic-level working mechanism of MXene in energy storage through theoretical calculations is necessary to advance aqueous EESS development. This review comprehensively summarizes the theoretical insights into MXene in aqueous batteries and supercapacitors. First, the basic properties of MXene, including structural composition, experimental and theoretical synthesis, and advantages in EESSs are introduced. Then, the energy storage mechanism of MXene in aqueous batteries and supercapacitors is summarized from a theoretical calculation perspective. Additionally, the theoretical insights into the side reactions and stability issues of MXene in aqueous EESSs are emphasized. Finally, the prospects of designing MXene for aqueous EESSs through computational methods are given.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Tairan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yuhang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Bochun Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shuang Luo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yu Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Qianqian Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Li H, Chen Y, Tang Q. Surface Termination (-O, -F or -OH) and Metal Doping on the HER Activity of Mo 2CT x MXene. Chemphyschem 2024; 25:e202400255. [PMID: 38839572 DOI: 10.1002/cphc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Two-dimensional MXenes have recently garnered significant attention as electrocatalytic materials for hydrogen evolution reaction (HER). However, previous theoretical studies mainly focused on the effect of pure functional groups while neglecting hybrid functional groups that are commonly observed in experiments. Herein, we investigated the hybrid functionalized Mo2CTx MXene (T=-O, -F or -OH) to probe the HER properties. In binary O/F co-functionalization, the presence of F groups would attenuate the H adsorption and lead to the enhanced HER activity than the fully O-terminated Mo2CO2. However, the surface HER activity of ternary O/F/OH functionalized Mo2CTx is not satisfactory owing to the relatively weak H adsorption capacity. To further enhance the catalytic activity, modification was performed by introducing another metal element into its lattice structure. The doped metal (Fe, Co, Ni, Cu) exhibits reduced charge transfer to O compared to Mo atoms, leading to enhanced H adsorption and improved overall activity. The synergistic effect of hybrid functionalization and TM modification provides useful guidance for achieving feasible Mo2CTx candidates with high HER performance, which can be applied to the electrocatalytic applications of other MXenes.
Collapse
Affiliation(s)
- Huidong Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
6
|
Khan K, Tareen AK, Ahmad W, Hussain I, Chaudhry MU, Mahmood A, Khan MF, Zhang H, Xie Z. Recent Advances in Non-Ti MXenes: Synthesis, Properties, and Novel Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303998. [PMID: 38894594 PMCID: PMC11423233 DOI: 10.1002/advs.202303998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/10/2023] [Indexed: 06/21/2024]
Abstract
One of the most fascinating 2D nanomaterials (NMs) ever found is various members of MXene family. Among them, the titanium-based MXenes, with more than 70% of publication-related investigations, are comparatively well studied, producing fundamental foundation for the 2D MXene family members with flexible properties, familiar with a variety of advanced novel technological applications. Nonetheless, there are still more candidates among transitional metals (TMs) that can function as MXene NMs in ways that go well beyond those that are now recognized. Systematized details of the preparations, characteristics, limitations, significant discoveries, and uses of the novel M-based MXenes (M-MXenes), where M stands for non-Ti TMs (M = Sc, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, and Lu), are given. The exceptional qualities of the 2D non-Ti MXene outperform standard Ti-MXene in several applications. There is many advancement in top-down as well as bottom-up production of MXenes family members, which allows for exact control of the M-characteristics MXene NMs to contain cutting-edge applications. This study offers a systematic evaluation of existing research, covering everything in producing complex M-MXenes from primary limitations to the characterization and selection of their applications in accordance with their novel features. The development of double metal combinations, extension of additional metal candidates beyond group-(III-VI)B family, and subsequent development of the 2D TM carbide/TMs nitride/TM carbonitrides to 2D metal boride family are also included in this overview. The possibilities and further recommendations for the way of non-Ti MXene NMs are in the synthesis of NMs will discuss in detail in this critical evaluation.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, China
- Shenzhen Nuoan Environmental and Safety Inc., Shenzhen, 518107, China
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Waqas Ahmad
- Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Mujeeb U Chaudhry
- Department of Engineering, Durham University, Lower Mountjoy, South Rd, Durham, DH1 3LE, UK
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2006, Australia
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen, Guangdong, 518038, P. R. China
| |
Collapse
|
7
|
Yang L, Du J, Deng J, Sulaiman NHM, Feng X, Liu C, Zhou X. Defective Nb 2C MXene Cocatalyst on TiO 2 Microsphere for Enhanced Photocatalytic CO 2 Conversion to Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307007. [PMID: 38054782 DOI: 10.1002/smll.202307007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Sustainable and scalable solar-energy-driven CO2 conversion into fuels requires earth-abundant and stable photocatalysts. In this work, a defective Nb2C MXene as a cocatalyst and TiO2 microspheres as photo-absorbers, constructed via a coulombic force-driven self-assembly, is synthesized. Such photocatalyst, at an optimized loading of defective Nb2C MXene (5% def-Nb2C/TiO2), exhibits a CH4 production rate of 7.23 µmol g-1 h-1, which is 3.8 times higher than that of TiO2. The Schottky junction at the interface improves charge transfer from TiO2 to defective Nb2C MXene and the electron-rich feature (nearly free electron states) enables multielectron reaction of CO2, which apparently leads to high activity and selectivity to CH4 (sel. 99.5%) production. Moreover, DFT calculation demonstrates that the Fermi level (EF) of defective Nb2C MXene (-0.3 V vs NHE) is more positive than that of Nb2C MXene (-1.0 V vs NHE), implying a strong capacity to accept photogenerated electrons and enhance carrier lifetime. This work gives a direction to modify the earth-abundant MXene family as cocatalysts to build high-performance photocatalysts for energy production.
Collapse
Affiliation(s)
- Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiajun Du
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | | | - Xuan Feng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Yi M, Ren Y, Zhang X, Zhu Z, Zhang J. Ionic liquid-assisted synthesis of N, F, and B co-doped BiOBr/Bi 2Se 3 on Mo 2CT x for enhanced performance in hydrogen evolution reaction and supercapacitors. J Colloid Interface Sci 2024; 658:334-342. [PMID: 38113542 DOI: 10.1016/j.jcis.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Heteroatom doping and heterojunction formation are effective strategies to enhance electrochemical performance. In this study, we present a novel approach that utilizes an ionic liquid-assisted synthesis method to fabricate a BiOBr-based material, which is subsequently loaded onto Mo2CTx via a selenization treatment to create a BiOBr/Bi2Se3 heterostructure, denoted as NBF-BiOBr/Bi2Se3/Mo2CTx. The incorporation of heteroatoms improves its hydrophilicity and electronegativity, while the formation of heterojunctions adjusts the electronic structure at the interface, resulting in lower OH-/H+ adsorption energy. The specific surface area of NBF-BiOBr/Bi2Se3/Mo2CTx is 193.1 m2/g. In hydrogen evolution reaction (HER) tests, NBF-BiOBr/Bi2Se3/Mo2CTx exhibits exceptional catalytic performance in acidic media, requiring only an overpotential of 109 mV to achieve a current density of 10 mA cm-2. Furthermore, NBF-BiOBr/Bi2Se3/Mo2CTx demonstrates superior electrochemical performance in an asymmetric supercapacitor, with an energy density as high as 55.6 Wh kg-1 at a power density of 749.9 Wh kg-1. This work provides a novel approach for heteroatom doping and heterojunction synthesis, offering promising prospects for further advancements in the field.
Collapse
Affiliation(s)
- Mingjie Yi
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian University, Putian 351100, China; State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi Ren
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xueting Zhang
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhenye Zhu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Pan L, Kang X, Gao S, Duan X. HER catalytic activity and regulation of a transition metal atom-anchored BC 3 monolayer: a first-principles study. Phys Chem Chem Phys 2024; 26:1011-1016. [PMID: 38093621 DOI: 10.1039/d3cp04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
An atomic-level understanding of the hydrogen evolution reaction (HER) on a transition metal (TM) atom-anchored 2D monolayer is vital to explore highly efficient catalysts for hydrogen production. Here, the catalytic activities and modulation of TM atom (Ti, Fe, Cu, Zn, Mo, Ag, Au)-doped BC3 monolayers are investigated by first-principles calculations. Au@BC3 and Fe@BC3 are proven to be potentially excellent HER catalysts. Partial oxidation engineering on Zn@BC3 could improve its performance. Au@BC3 and Ti, Cu and Mo-anchored BC3 with the support of a NbB2 (0001) surface are expected to replace Pt due to the Gibbs free energy changes extremely close to zero. It is revealed that the catalytic activity of the adsorption site is highly related to the degree of charge transfer between the adsorption site and substrate.
Collapse
Affiliation(s)
- Liying Pan
- School of Physical Science and Technology, Ningbo University, Ningbo-315211, P. R. China.
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo-315211, P. R. China.
| | - Shan Gao
- School of Physical Science and Technology, Ningbo University, Ningbo-315211, P. R. China.
- Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, China
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo-315211, P. R. China.
- Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Peera SG, Koutavarapu R, Chao L, Singh L, Murugadoss G, Rajeshkhanna G. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review. MICROMACHINES 2022; 13:1499. [PMID: 36144122 PMCID: PMC9500977 DOI: 10.3390/mi13091499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 05/27/2023]
Abstract
MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.
Collapse
Affiliation(s)
- Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Liu Chao
- Engineering Research Center for Hydrogen Energy Materials and Devices, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi 175001, Himachal Pradesh, India
- Department of Civil Engineering, Center for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
12
|
Liu B, Chen Z, Xiong R, Yang X, Zhang Y, Xie T, Wen C, Sa B. Enhancing hydrogen evolution reaction performance of transition metal doped two-dimensional electride Ca2N. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Sun F, Tang Q, Jiang DE. Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Zhao Y, Yan C, Hou T, Dou H, Shen H. Multifunctional Ti 3C 2T x MXene-Based Composite Coatings with Superhydrophobic Anti-icing and Photothermal Deicing Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26077-26087. [PMID: 35608175 DOI: 10.1021/acsami.2c07087] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although advances in industrial products have brought convenience to our lives, severe weather has increased the safety risks to industrial facilities. Considerable efforts have been made to develop high-performance superhydrophobic anti-icing coatings. Nevertheless, designing a functional coating with both anti-icing properties and self-deicing remains a major challenge. Here, we propose a design strategy to exploit a photothermal superhydrophobic multifunctional coating with excellent anti-icing and deicing properties based on MXene by high-temperature sintering and layer-by-layer coating. Specifically, poly(tetrafluoroethylene) (PTFE) particles provide low surface energy and binding effects. Room-temperature-vulcanized silicone rubber (RTV) enhances the dispersion of the composite particles and the adhesion of the functional coating to a glass substrate. Furthermore, the functional coatings constructed with MXene exhibit outstanding photothermal effects, imparting excellent superhydrophobicity (CA = 160.18°, SA = 1.8°) and efficient photothermal conversion (equilibrium temperature of 109.3 °C). An anti-icing/deicing test is simulated to confirm their efficient anti-icing/deicing performance in practical applications. Overall, the functional coatings designed in this work can be applied in real industrial facilities.
Collapse
Affiliation(s)
- Yushun Zhao
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Cheng Yan
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Tianqi Hou
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Hongli Dou
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| | - Hao Shen
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Xi D, Li J, Low J, Mao K, Long R, Li J, Dai Z, Shao T, Zhong Y, Li Y, Li Z, Loh XJ, Song L, Ye E, Xiong Y. Limiting the Uncoordinated N Species in M-N x Single-Atom Catalysts toward Electrocatalytic CO 2 Reduction in Broad Voltage Range. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104090. [PMID: 34510607 DOI: 10.1002/adma.202104090] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Carbon-supported single-atom catalysts (SACs) are extensively studied because of their outstanding activity and selectivity toward a wide range of catalytic reactions. Amidst its development, excess dopants (e.g., nitrogen) are always required to ensure the high loading content of SACs on the carbon support. However, the use of excess dopants is accompanied by formation of miscellaneous structures (particularly the uncoordinated N species) on catalysts, leading to adverse effects on their performance. Herein, the synthesis of carbon-supported Ni SACs with precisely controlled single-atom structure via joule heating strategy, showing the coordination of 80% of N dopants with metal elements, is reported. The preclusion of the unfavorable N species is confirmed to be the main reason for the superior performance of optimized Ni SACs in electrocatalytic carbon dioxide reduction reaction, which demonstrates unprecedented activity, selectivity, and stability under an exceptionally broad voltage range (>92% CO selectivity in the range of -0.7 to -1.9 V reversible hydrogen electrode). Such a synthetic strategy is further applicable for the design of SACs with various metals. This work demonstrates a facile method for preclusion of unfavorable dopants in the SACs and its importance in catalytic application.
Collapse
Affiliation(s)
- Dawei Xi
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiayi Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui, 243032, China
| | - Ran Long
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiawei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zehui Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tianyi Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuan Zhong
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, , 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, , 138634, Singapore
| | - Li Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, , 138634, Singapore
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Frontiers Science Center for Planetary Exploration and Emerging Technologies, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
|
17
|
Leong CC, Qu Y, Kawazoe Y, Ho SK, Pan H. MXenes: Novel electrocatalysts for hydrogen production and nitrogen reduction. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Xiong G, Jia J, Zhao L, Liu X, Zhang X, Liu H, Zhou W. Non-thermal radiation heating synthesis of nanomaterials. Sci Bull (Beijing) 2021; 66:386-406. [PMID: 36654418 DOI: 10.1016/j.scib.2020.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/18/2020] [Accepted: 08/21/2020] [Indexed: 01/20/2023]
Abstract
The nanoscale effect enables the unique magnetic, optical, thermal and electrical properties of nanostructured materials and has attracted extensive investigation for applications in catalysis, biomedicine, sensors, and energy storage and conversion. The widely used synthesis methods, such as traditional hydrothermal reaction and calcination, are bulk heating processes based on thermal radiation. Differing from traditional heating methods, non-thermal radiation heating technique is a local heating mode. In this regard, this review summarizes various non-thermal radiation heating methods for synthesis of nanomaterials, including microwave heating, induction heating, Joule heating, laser heating and electron beam heating. The advantages and disadvantages of these non-thermal radiation heating methods for the synthesis of nanomaterials are compared and discussed. Finally, the future development and challenges of non-thermal radiation heating method for potential synthesis of nanomaterials are discussed.
Collapse
Affiliation(s)
- Guowei Xiong
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Jin Jia
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| | - Lili Zhao
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Xiaoyan Liu
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hong Liu
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Weijia Zhou
- Collaorative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.
| |
Collapse
|
19
|
Li S, Miao P, Zhang Y, Wu J, Zhang B, Du Y, Han X, Sun J, Xu P. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000086. [PMID: 32201994 DOI: 10.1002/adma.202000086] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 05/21/2023]
Abstract
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon-driven photochemical reactions (coupling reactions, O2 dissociation and oxidation reactions, H2 dissociation and hydrogenation reactions, N2 fixation and NH3 decomposition, and CO2 reduction) and plasmon-enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon-related chemistry in the field of energy conversion and storage is given in conclusion.
Collapse
Affiliation(s)
- Siwei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peng Miao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yuanyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jie Wu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Bin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
20
|
Bao H, Qiu Y, Peng X, Wang JA, Mi Y, Zhao S, Liu X, Liu Y, Cao R, Zhuo L, Ren J, Sun J, Luo J, Sun X. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat Commun 2021; 12:238. [PMID: 33431864 PMCID: PMC7801608 DOI: 10.1038/s41467-020-20336-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Electrochemical carbon monoxide reduction is a promising strategy for the production of value-added multicarbon compounds, albeit yielding diverse products with low selectivities and Faradaic efficiencies. Here, copper single atoms anchored to Ti3C2Tx MXene nanosheets are firstly demonstrated as effective and robust catalysts for electrochemical carbon monoxide reduction, achieving an ultrahigh selectivity of 98% for the formation of multicarbon products. Particularly, it exhibits a high Faradaic efficiency of 71% towards ethylene at -0.7 V versus the reversible hydrogen electrode, superior to the previously reported copper-based catalysts. Besides, it shows a stable activity during the 68-h electrolysis. Theoretical simulations reveal that atomically dispersed Cu-O3 sites favor the C-C coupling of carbon monoxide molecules to generate the key *CO-CHO species, and then induce the decreased free energy barrier of the potential-determining step, thus accounting for the high activity and selectivity of copper single atoms for carbon monoxide reduction.
Collapse
Affiliation(s)
- Haihong Bao
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuan Qiu
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xianyun Peng
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jia-Ao Wang
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuying Mi
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shunzheng Zhao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xijun Liu
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China.
| | - Yifan Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, United States.
| | - Longchao Zhuo
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, Shanxi, China
| | - Junqiang Ren
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, Gansu, China
| | - Jiaqiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, Shanxi, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
21
|
Wang Z, Xu W, Yu K, Feng Y, Zhu Z. 2D heterogeneous vanadium compound interfacial modulation enhanced synergistic catalytic hydrogen evolution for full pH range seawater splitting. NANOSCALE 2020; 12:6176-6187. [PMID: 32133477 DOI: 10.1039/d0nr00207k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel electrocatalytic material VS2@V2C was proposed for the first time and successfully prepared by a one-step hydrothermal method. T-VS2 nanosheets were uniformly and vertically embedded on the V2C (MXene) matrix with a fewer layer structure. Owing to the fast charge transfer process at the interface of the two-phase structure and good conductivity, the composite material showed a lower hydrogen evolution overpotential and a very low Tafel slope in highly alkaline and highly acidic electrolytes (164 mV and 47.6 mV dec-1 in 1.0 M KOH; 138 mV and 37.9 mV dec-1 in 0.5 M H2SO4) under a current density of 20 mV cm-2. More importantly, high-efficiency and stable electrolysis of seawater was achieved at a current density greater than 100 mA cm-2, and the catalytic performance was significantly better than that of platinum-based alloys. First-principles calculations mechanically confirmed that VS2@V2C had higher carrier mobility and lower free energy of hydrogen adsorption. The VS2 nanosheets that grew outwards could provide support to avoid agglomeration on the catalyst surface and the edge sulfur sites of VS2 could promote the binding of adsorbed hydrogen atoms and the desorption of hydrogen molecules. Our work is expected to provide a valuable reference for the design and synthesis of the structure of industrial catalysts for hydrogen production from seawater in the future.
Collapse
Affiliation(s)
- Zhenguo Wang
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| | - Wangqiong Xu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yu Feng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| | - Ziqiang Zhu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
22
|
Chia HL, Mayorga-Martinez CC, Antonatos N, Sofer Z, Gonzalez-Julian JJ, Webster RD, Pumera M. MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Anal Chem 2020; 92:2452-2459. [PMID: 31976642 DOI: 10.1021/acs.analchem.9b03634] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transition metal carbides, known as MXenes, are generated via the selective etching of "A" layers from their layered, ternary parent compounds, MAX phases, where M corresponds to early d-transition metal, A being a main group sp-element from either Group 13 or 14 and carbon or nitrogen being denoted by X. MXenes are being recognized as a new and uprising class of 2D materials with extraordinary physical and electrochemical properties. The huge specific surface area and outstanding electrical conductivity of MXenes, make them ideal candidates for sensing and energy applications. Herein, we demonstrated the successful incorporation of pristine MXene, Ti3C2 produced via HF etching and subsequent delamination with TBAOH, as a transducer platform toward the development of a second generation electrochemical glucose biosensor. Chronoamperometric studies demonstrate that the proposed biosensing system exhibits high selectivity and excellent electrocatalytic activity toward the detection of glucose, spanning over wide linear ranges of 50-27 750 μM and possess a low limit of detection of 23.0 μM. The findings reported in this study conceptually proves the probable applications of pristine MXenes toward the field of biosensors and pave ways for the future developments of highly selective and sensitive electrochemical biosensors for biomedical and food sampling applications.
Collapse
Affiliation(s)
- Hui Ling Chia
- NTU Institute for Health Technologies, Interdisciplinary Graduate School , Nanyang Technological University , 50 Nanyang Drive , 637553 , Singapore.,Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic
| | - Nikolas Antonatos
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic
| | - Jesus J Gonzalez-Julian
- Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Richard D Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6 , Dejvice Czech Republic.,Department of Medical Research, China Medical University Hospital , China Medical University , No. 91 Hsueh-Shih Road , Taichung , Taiwan.,Future Energy and Innovation Laboratory, Central European Institute of Technology , Brno University of Technology , Purkyňova 656/123 , Brno , CZ-616 00 , Czech Republic.,Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro, Seodaemun-gu , Seoul 03722 , Korea
| |
Collapse
|
23
|
Fan Y, Ma X, Wang J, Song X, Wang A, Liu H, Zhao M. Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers: the roles of intrinsic electric filed and vacancy defects. Sci Bull (Beijing) 2020; 65:27-34. [PMID: 36659065 DOI: 10.1016/j.scib.2019.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 01/21/2023]
Abstract
Two-dimensional (2D) van der Waals materials have been widely adopted as photocatalysts for water splitting, but the energy conversion efficiency remains low. On the basis of first-principles calculations, we demonstrate that the 2D Janus group-III chalcogenide multilayers: InGaXY, M2XY and InGaX2 (M = In/Ga; X, Y = S/Se/Te), are promising photocatalysts for highly-efficient overall water splitting. The intrinsic electric field enhances the spatial separations of photogenerated carriers and alters the band alignment, which is more pronounced compared with the Janus monolayers. High solar-to-hydrogen (STH) efficiency with the upper limit of 38.5% was predicted in the Janus multilayers. More excitingly, the Ga vacancy of InGaSSe bilayer effectively lowers the overpotentials of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) to the levels provided solely by the photogenerated carriers. Our theoretical results suggest that the 2D Janus group-III chalcogenide multilayers could be utilized as highly efficient photocatalysts for overall water splitting without the needs of sacrificial reagents.
Collapse
Affiliation(s)
- Yingcai Fan
- School of Physics, Shandong University, Jinan 250100, China; School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
| | - Xikui Ma
- School of Physics, Shandong University, Jinan 250100, China
| | - Junru Wang
- School of Physics, Shandong University, Jinan 250100, China
| | - Xiaohan Song
- School of Physics, Shandong University, Jinan 250100, China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Mingwen Zhao
- School of Physics, Shandong University, Jinan 250100, China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; School of Physics and Electrical Engineering, Kashgar University, Kashi 844006, China.
| |
Collapse
|
24
|
Li Q, Ouyang Y, Lu S, Bai X, Zhang Y, Shi L, Ling C, Wang J. Perspective on theoretical methods and modeling relating to electro-catalysis processes. Chem Commun (Camb) 2020; 56:9937-9949. [DOI: 10.1039/d0cc02998j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical methods and models for the description of thermodynamics and kinetics in electro-catalysis, including solvent effects, externally applied potentials, and many-body interactions, are discussed.
Collapse
Affiliation(s)
- Qiang Li
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Yixin Ouyang
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Shuaihua Lu
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Xiaowan Bai
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Yehui Zhang
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Li Shi
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Chongyi Ling
- School of Physics
- Southeast University
- Nanjing 211189
- China
| | - Jinlan Wang
- School of Physics
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
25
|
Wang Y, Chen L, Mao Z, Peng L, Xiang R, Tang X, Deng J, Wei Z, Liao Q. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions. Sci Bull (Beijing) 2019; 64:1095-1102. [PMID: 36659770 DOI: 10.1016/j.scib.2019.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
Metal-nitrogen doped carbon catalysts (M-N/C) with abundantly accessible M-Nx sites, particularly single metal atom M-N/C (SAM-N/C), have been developed as a substitute for expensive Pt-based catalysts. These catalysts are used to increase the efficiency of otherwise sluggish oxygen reduction reactions (ORR) and hydrogen evolution reactions (HER). However, although the agglomerated metal nanoparticles are usually easy to form, they are very difficult to remove due to the protective surface-coating carbon layers, a factor that significantly hampers SAM-N/C fabrication. Herein, we report a one-step pyrolysis approach to successfully fabricate single cobalt atom Co-N/C (SACo-N/C) by using a Co2+-SCN- coordination compound as the metal precursor. Thanks to the decomposition of Co2+-SCN- compound at lower temperature than that of carbon layer deposition, Co-rich particles grow up to larger ones before carbon layers formation. Even though encapsulated by the carbon layers, it is difficult for the large Co-rich particle to be completely sealed. And thus, it makes the Co atoms possible to escape from incomplete carbon layer, to coordinate with nitrogen atoms, and to form SACo-N/C catalysts. This SACo-N/C exhibits excellent performances for both ORR (half-wave potential of 0.878 V) and HER (overpotential at 10 mA/cm2 of 178 mV), and is thus a potential replacement for Pt-based catalysts. When SACo-N/C is integrated into a Zn-O2 battery, battery with high open-circuit voltage (1.536 V) has high peak power density (266 mW/cm2) and large gravimetric energy density (755 mA h/gZn) at current densities of 100 mA/cm2. Thus, we believe that this strategy may offer a new direction for the effective generation of SAM-N/C catalysts.
Collapse
Affiliation(s)
- Yao Wang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China; Institute of New-Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
| | - Linhui Chen
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China
| | - Zhanxin Mao
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China
| | - Lishan Peng
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China
| | - Rui Xiang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China
| | - Xianyi Tang
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China
| | - Jianghai Deng
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical Engineering. Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| |
Collapse
|