1
|
Lagueux-Tremblay PL, Tam KM, Jiang M, Arndtsen BA. Electrifying Redox-Neutral Palladium-Catalyzed Carbonylations: Multielectron Transfer as a Catalyst Driving Force. J Am Chem Soc 2025; 147:17239-17250. [PMID: 40262090 DOI: 10.1021/jacs.5c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Palladium-catalyzed bond-forming reactions such as carbonylations offer an efficient and versatile avenue to access products from often feedstock reagents. However, the use of catalysts also comes with a cost, as their need to be regenerated after each product-forming cycle requires balancing thermal operations. The latter can lead to high barriers even with catalysts as well as restrict their application to many products. We introduce herein an alternative approach to palladium catalyst design, where instead electrochemical potential can drive catalysis by continual two-electron cycling of the metal oxidation state. The power behind these redox steps offers a route to carry out carbonylation reactions, including the catalytic synthesis of high-energy aroyl halide electrophiles, at unprecedentedly mild ambient temperature and pressure. More generally, analysis suggests this catalyst functions by a distinct multi-electron exchange pathway, where two-electron reduction enables oxidative addition and two-electron oxidation drives product elimination. The combination creates a unique platform where both these reverse operations are favored in the same system and with electrochemical potential energy as the only added energy source.
Collapse
Affiliation(s)
| | - Kwan Ming Tam
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Meijing Jiang
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
3
|
Xie P, Shi A, Qiu Y. Electrochemical β-selective silylcarboxylation of styrenes with CO 2. Sci Bull (Beijing) 2025:S2095-9273(25)00471-2. [PMID: 40368656 DOI: 10.1016/j.scib.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025]
Affiliation(s)
- Pengfei Xie
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Anzai Shi
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Youai Qiu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Hu P, Xu W, Tian L, Zhu H, Li F, Qi X, Lu Q. Electrocatalytic Hydrogenation of Olefins. Angew Chem Int Ed Engl 2025; 64:e202501215. [PMID: 40024900 DOI: 10.1002/anie.202501215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Electrochemical synthesis offers a powerful and sustainable alternative to conventional chemical manufacturing techniques. The direct and selective electrohydrogenation of olefins has enormous potential applicability; however, this reactivity has not been sufficiently demonstrated. Herein, we show that an efficient Pt-based electrocatalyst from commercially available PtCl2 can promote such transformations. This approach enables olefins to be electrohydrogenated (often below -3.0 V vs. Ag/AgCl) at high current density (JGeo up to 133 mA cm-2) using protons and electrons as the hydrogen source. This reaction exhibits broad functional group compatibility, requires low catalyst loading, and affords a diverse series of valuable molecules (more than 60 examples) with high chemoselectivity. In addition, highly regioselective electrocatalytic hydrogenation of olefins (r.r. > 19:1) is demonstrated using PtCl2 and 2,2'-bipyridine.
Collapse
Affiliation(s)
- Ping Hu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Wentao Xu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Lang Tian
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P.R. China
| | - Hance Zhu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430062, P.R. China
| | - Fabao Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P.R. China
| | - Xiaotian Qi
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430062, P.R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
5
|
Huang YQ, Zhu L, Mei TS. Cathodic oxygen reduction-enabled rhodium-catalyzed (5 + 1) C-H/O-H annulation inspired by fuel cells. Nat Commun 2025; 16:4073. [PMID: 40307225 PMCID: PMC12043932 DOI: 10.1038/s41467-025-59405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
Transition metal-catalyzed electrochemical C-H annulation with alkynes has emerged as a promising method for constructing heterocycles via formal cycloadditions. However, catalytic electrochemical C-H annulation with alkenes has been less explored. In this study, we report a cathodic oxygen reduction-enabled rhodium catalyzed (5 + 1) annulation reaction between readily available alkenylphenols and alkenes, yielding valuable 2-substituted 2H-chromenes. Unlike existing methods that involve direct oxidation of catalysts at the anode, our protocol uses a sacrificial anode to protect the substrate from overoxidation, while the cathode reduces oxygen, coupling with the RhI. to regenerate the rhodium catalyst. This efficient, atom-economical heterocyclization reaction demonstrates a broad scope and functional-group tolerance for diverse biologically relevant molecules, with a Faradaic efficiency greater than 100%.
Collapse
Affiliation(s)
- Yuan-Qiong Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Li Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
6
|
Xu Y, Wu H, Zhu C, Tu M, Zhang L. A General Strategy for C(sp 3)─H Bond Etherification via Quinoline Derivative-Mediated Electrolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416803. [PMID: 40285672 DOI: 10.1002/advs.202416803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/11/2025] [Indexed: 04/29/2025]
Abstract
Electrooxidative coupling of C(sp3)─H bonds with nucleophiles offers an attractive method for constructing C─C and C─X bonds without sacrificial oxidants. However, the direct electrochemical approach requires the nucleophilic reagent to have a higher potential than the C(sp3)─H coupling partners, which restricts the substrate scope. In this study, a quinoline derivative is introduced as an electrochemical mediator, enabling efficient C─H bond etherification with reduced reliance on the electronic properties of substrates. The catalytic system demonstrates broad substrate compatibility, extending to C(sp3)─H coupling partners featuring a diverse range of C─H bonds, including tertiary benzylic C─H bonds and unactivated C(sp3)─H bonds. Mechanistic investigations confirm the role of the electrocatalyst in the hydrogen atom transfer (HAT) process. This method provides a versatile and efficient strategy for the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Yousen Xu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Hao Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - ChenXi Zhu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Minjun Tu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Lei Zhang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
7
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
8
|
Huang PF, Peng Y, Fu JL, Li B, Zhou Q, Liu Y. Electro-Oxidative Three-Component Synthesis of 3,5-Disubstituted-1,2,4-Thiadiazoles from Amines, Amidines, and CS 2. J Org Chem 2025; 90:4819-4828. [PMID: 40156547 DOI: 10.1021/acs.joc.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
1,2,4-Thiadiazoles, a significant class of heterocyclic compounds, are widely found in biologically active molecules. Herein, we report a green electrochemical three-component reaction of amines, amidines, and CS2 for the effective synthesis of 3,5-disubstituted-1,2,4-thiadiazoles under metal- and oxidant-free conditions. Both aliphatic and aryl amines are well-tolerated at room temperature in a simple undivided cell. A series of 1,2,4-thiadiazoles are prepared with excellent functional groups.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
9
|
Huang PF, Fu JL, Quan ZG, Tang KW, Liu Y. Synthesis of 2-Organoselenyl Quinolines via Electro-Oxidative Selenocyclization of Isocyanides. J Org Chem 2025; 90:4070-4079. [PMID: 40072945 DOI: 10.1021/acs.joc.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Organoselenium compounds and quinolines are widely used in drugs and materials. Herein, we report an electro-oxidative cyclization between isocyanides and diselenides to effectively synthesize 2-organoselenyl quinolines in a simple undivided cell without transition-metal catalysts or toxic oxidants. Gram-scale synthesis and postsynthetic modifications highlighted the practicality of this electrochemical strategy. A series of 2-organoselenyl quinolines are produced with up to 82% yield, good functional group tolerance and high atom efficiency under room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Zhi-Gang Quan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
10
|
Zhao Z, Yan H, Gu L. An electrocatalytic mono-functionalization of alkenes towards alkenyl selenium sulfonates. Chem Commun (Camb) 2025; 61:3868-3871. [PMID: 39930842 DOI: 10.1039/d4cc06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this study, a straightforward and environmentally benign electrochemical mono-functionalization of alkenes has been established for the synthesis of alkenyl selenium sulfonates using elemental selenium as the selenium source, without the need for chemical redox reagents or acids/bases. The reaction is conducted in an undivided cell with high chemo- and regioselectivity.
Collapse
Affiliation(s)
- Zhiheng Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricu ltural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Hongyan Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricu ltural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Lijun Gu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricu ltural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
11
|
Ma C, Guo JF, Xu SS, Mei TS. Recent Advances in Asymmetric Organometallic Electrochemical Synthesis (AOES). Acc Chem Res 2025; 58:399-414. [PMID: 39829007 DOI: 10.1021/acs.accounts.4c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
ConspectusIn recent years, our research group has dedicated significant effort to the field of asymmetric organometallic electrochemical synthesis (AOES), which integrates electrochemistry with asymmetric transition metal catalysis. On one hand, we have rationalized that organometallic compounds can serve as molecular electrocatalysts (mediators) to reduce overpotentials and enhance both the reactivity and selectivity of reactions. On the other hand, the conditions for asymmetric transition metal catalysis can be substantially improved through electrochemistry, enabling precise modulation of the transition metal's oxidation state by controlling electrochemical potentials and regulating the electron transfer rate via current adjustments. This synergistic approach addresses key challenges inherent in traditional asymmetric transition metal catalysis, particularly those related to the use of redox-active chemical reagents. Furthermore, the redox potentials of molecular electrocatalysts can be conveniently tuned by modifying their ligands, thereby governing the reaction regioselectivity and stereoselectivity. As a result, the AOES has emerged as a powerful and promising tool for the synthesis of chiral compounds.In this Account, we summarize and contextualize our recent efforts in the field of AOES. Our primary strategy involves leveraging the controllability of electrochemical potential and current to regulate the oxidation state of organometallics, thereby facilitating the desired reactions. An efficient asymmetric synthesis platform was established under mild conditions, significantly reducing the reliance on chemical redox reagents. Our research has been systematically categorized into three sections based on distinct electrolysis modes: asymmetric transition metal catalysis combined with anodic oxidation, cathodic reduction, and paired electrolysis. In each section, we highlight our innovative discoveries tailored to the unique characteristics of the respective electrolysis modes.In many transformations, transition metal-catalyzed reactions involving traditional chemical redox reagents and those utilizing electrochemistry exhibit similar reactivities. However, we also observed notable differences in certain cases. These findings include the following: (1) Enhanced efficiency in asymmetric electrochemical synthesis: for instance, the Rh-catalyzed enantioselective electrochemical functionalization of C-H bonds demonstrates superior efficiency. (2) Expanded scope of transformations: certain transformations, previously challenging in traditional transition metal catalysis, can be achieved through electrochemistry due to the tunability of redox potentials. A notable example is the enantioselective reductive coupling of aryl chlorides, which significantly expands the range of accessible transformations. Additionally, our mechanistic studies explore unique techniques intrinsic to electrochemistry, such as controlled potential electrolysis experiments, the impact of electrode materials on catalyst performance, and cyclic voltammetry studies. These investigations provide a more intuitive understanding of the behavior of metal catalysts through the study of electrochemical mechanisms, which can also guide the design of new catalytic systems.The advancements in this field offer a robust platform for environmentally friendly and sustainable selective asymmetric transformations. By integrating electrochemistry with transition metal catalysis, we have developed a versatile approach for organic synthesis that not only enhances the efficiency and selectivity of reactions but also reduces the environmental impact. We anticipate that this Account will stimulate further research and innovation in the realm of AOES, leading to the discovery of new catalytic systems and the development of more sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Phan H, Gueret R, Martínez‐Pardo P, Valiente A, Jaworski A, Slabon A, Martín‐Matute B. Synthesis of Benzoic Acids from Electrochemically Reduced CO 2 Using Heterogeneous Catalysts. CHEMSUSCHEM 2025; 18:e202401084. [PMID: 39310956 PMCID: PMC11790006 DOI: 10.1002/cssc.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
A method for the synthesis of benzoic acids from aryl iodides using two of the most abundant and sustainable feedstocks, carbon dioxide (CO2) and water, is disclosed. Central to this method is an effective and selective electrochemical reduction of CO2 (eCO2RR) to CO, which mitigates unwanted dehalogenation reactions occurring when H2 is produced via the hydrogen evolution reaction (HER). In a 3-compartment set-up, CO2 was reduced to CO electrochemically by using a surface-modified silver electrode in aqueous electrolyte. The ex-situ generated CO further underwent hydroxycarbonylation of aryl iodides by MOF-supported palladium catalyst in excellent yields at room temperature. The method avoids the direct handling of hazardous CO gas and gives a wide range of benzoic acid derivatives. Both components of the tandem system can be recycled for several consecutive runs while keeping a high catalytic activity.
Collapse
Affiliation(s)
- Ha Phan
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Robin Gueret
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Pablo Martínez‐Pardo
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Alejandro Valiente
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Aleksander Jaworski
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| | - Adam Slabon
- Department of Materials and Environmental ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
- Faculty of Mathematics and Natural SciencesChair of Inorganic ChemistryUniversity of WuppertalGaußstraße 2042219WuppertalGermany
| | - Belén Martín‐Matute
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-106 91StockholmSweden
| |
Collapse
|
13
|
Zhao L, Yang J, Yan K, Cheng X, Xiao Z, Wen J. Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates. Chem Commun (Camb) 2025; 61:2079-2082. [PMID: 39791194 DOI: 10.1039/d4cc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access N-substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of IrI-IrIII-IrV exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.
Collapse
Affiliation(s)
- LuLu Zhao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Xingda Cheng
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Ziyang Xiao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| |
Collapse
|
14
|
Wang YZ, Sun B, Guo JF, Zhu XY, Gu YC, Han YP, Ma C, Mei TS. Enantioselective reductive cross-couplings to forge C(sp 2)-C(sp 3) bonds by merging electrochemistry with nickel catalysis. Nat Commun 2025; 16:1108. [PMID: 39875390 PMCID: PMC11775263 DOI: 10.1038/s41467-025-56377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability. The combination of cyclic voltammetry analysis with electrode potential studies suggests that NiI species activate aryl halides via oxidative addition and alkyl chlorides via single electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
15
|
Wang JB, Shen Y, Yan QL, Kong WJ, Nian Y, Shang M. Modular Access to C2'-Aryl/Alkenyl Nucleosides with Electrochemical Stereoselective Cross-Coupling. Angew Chem Int Ed Engl 2025; 64:e202418806. [PMID: 39620453 DOI: 10.1002/anie.202418806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Chemically modified oligonucleotides have garnered significant attention in medicinal chemistry, chemical biology, and synthetic biology due to their enhanced stability in vivo compared to naturally occurring oligonucleotides. However, current methods for synthesizing modified nucleosides, particularly at the C2'-position, are limited in terms of efficiency, modularity, and selectivity. Herein, we report a new approach for the synthesis of highly functionalized C2'-α-aryl/alkenyl nucleosides via an electrochemical nickel-catalyzed cross-coupling of 2'-bromo nucleosides with a variety of (hetero)aryl and alkenyl iodides. This method affords a diverse array of C2'- α-aryl/alkenyl nucleosides with excellent stereoselectivity, broad substrate scope, and good functional group compatibility. We further synthesized oligonucleotides incorporating C2'-aryl-modified thymidine moieties and demonstrated that their annealed double-stranded DNAs exhibit decreased melting temperatures (Tm). Additionally, oligonucleotides with C2'-aryl modifications at the 3' end showed enhanced resistance to 3'-exonuclease degradation and C2'-aryl modifications did not impede the cellular uptake process, highlighting the potential of these modified oligonucleotides for therapeutic applications.
Collapse
Affiliation(s)
- Jia-Bao Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yu Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qing-Long Yan
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan, 314102, Zhejiang, People's Republic of China
| | - Wei-Jun Kong
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, People's Republic of China
| | - Yong Nian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
16
|
Yao X, Liu G, Huang Y, Huang C, Chen X, Xuan Z, Shi M, Yang Y, Huang X, Chen Y, Lan YQ. Interweavable Metalloporphyrin-Based Fibers for Indirect Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202417439. [PMID: 39473190 DOI: 10.1002/anie.202417439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/22/2024]
Abstract
The applications of indirect electrocatalysis toward potential industrial processes are drastically limited by the utilization or processing forms of electrocatalysts. The remaining challenges of electrocatalysts like the recycling in homogeneous systems or pulverization in heterogeneous systems call for advanced processing forms to meet the desired requirements. Here, we report a series of metalloporphyrin-based polymer fibers (M-PF, M=Ni, Cu and Zn) through a rigid-flexible polymerization strategy based on rigid metalloporphyrin and flexible thiourea units that can be applied as heterogeneous redox-mediators in indirect electrocatalysis. These functional fibers with high strength and flexibility exhibit interweavable and designable functions that can be processed into different fiber-forms like knotted, two-spiral, three-ply, five-ply fibers or even interweaved networks. Interestingly, they can be readily applied in S-S bond cleaving/cyclization reaction or extended oxidative self-coupling reaction of thiols with high efficiency. Remarkably, it enables the scale-up production (1.25 g in a batch-experiment) under laboratory conditions.
Collapse
Affiliation(s)
- Xiaoman Yao
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Gang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yingying Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Caier Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xuanxu Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhe Xuan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mingjin Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yiwen Yang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yifa Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
17
|
Liu H, Guo M, Jia M, Zhang J, Xu X. Electrochemical Cyclizative Carboxylation of Alkene-Tethered Aryl Isocyanides with Carbon Dioxide. Org Lett 2025; 27:778-782. [PMID: 39804334 DOI: 10.1021/acs.orglett.4c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Herein, we present an unprecedented electrochemical reductive cyclizative carboxylation of o-vinylphenyl isocyanides with carbon dioxide achieved without the use of metal catalysts. This protocol demonstrates a broad substrate scope and good functional group tolerance, facilitating the rapid assembly of 2-oxoindolin-3-acetic acids in good to high yields with excellent regioselectivity. Furthermore, these structural motifs may have potential applications in formal synthesis of bioactive natural products.
Collapse
Affiliation(s)
- Haitao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Meng Guo
- School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianwei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
18
|
Xiong P, Xu HC. Molecular Photoelectrocatalysis for Radical Reactions. Acc Chem Res 2025; 58:299-311. [PMID: 39803752 DOI: 10.1021/acs.accounts.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis. These studies showcased the immense synthetic potential of this hybrid strategy, which not only inherits the strengths of its parent fields but also unlocks unprecedented reactivity and selectivity, enabling challenging transformations under mild conditions while minimizing the reliance on external stoichiometric harsh oxidants or reductants.In this Account, we present our efforts to develop photoelectrocatalytic strategies that leverage homogeneous catalysts to facilitate diverse radical reactions. By integrating electrocatalysis with key photoinduced processes such as single electron transfer (SET), ligand-to-metal charge transfer (LMCT), and hydrogen atom transfer (HAT), we have established photoelectrocatalytic methods to transform substrates such as organotrifluoroborates, arenes, carboxylic acids, and alkanes into reactive radical intermediates. These intermediates subsequently engage in heteroarene C-H functionalization reactions. Importantly, under these photoelectrochemical conditions with homogeneous catalysts, reactive radical intermediates generated in the bulk solution readily participate in efficient radical reactions without undergoing further overoxidation into carbocations, a common challenge in conventional electrochemical systems.By further integration of photoelectrocatalysis with asymmetric catalysis, we have developed photoelectrochemical asymmetric catalysis (PEAC), which proves to be efficient in the enantioselective synthesis of chiral nitriles. This approach involves two relay catalytic cycles: the initial photoelectrocatalytic process engenders benzylic radicals from precursors such as alkyl arenes, benzylic carboxylic acids, and aryl alkenes, and these C-radicals are then subjected to enantioselective cyanation in a subsequent copper-electrocatalytic cycle.Within the realm of oxidative photoelectrochemical transformations, the anode serves as a crucial component for recycling or generating the photocatalyst, while the cathode promotes proton reduction. This dual functionality enables oxidative transformations via H2 evolution, eliminating the reliance on external chemical oxidants. Furthermore, the adaptability of electrochemical systems, achieved through precise manipulation of electric current or potential, ensures meticulous control over the generation and turnover of multiple catalytic species of diverse electrochemical properties. This unique tunability allows for exceptional control over the catalytic process. As a result, despite being a relatively nascent field, molecular photoelectrocatalysis has become instrumental in enabling numerous challenging transformations that were once difficult or required harsh conditions.
Collapse
Affiliation(s)
- Peng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
19
|
Liang K, Li N, Liu M, Song J, Guo C. Enantioselective Electrocatalysis for Cross-Dehydrogenative Heteroarylation with Indoles, Pyrroles, and Furans. Angew Chem Int Ed Engl 2025; 64:e202415723. [PMID: 39428829 DOI: 10.1002/anie.202415723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/22/2024]
Abstract
Oxidative cross-dehydrogenative C-H/C-H functionalizations represent an exemplary approach for synthesizing carbonyl compounds via α-heteroarylation. Here we present the development of a direct anodic oxidative coupling process between 2-acylimidazoles and divergent heterocyclic systems including indole, pyrrole, and furan, facilitated by ferrocene-assisted asymmetric nickel electrocatalysis with high levels of enantioselectivity. Mechanistic investigations indicate that the reaction initially involves the formation of a chiral Ni-bound α-carbonyl radical, which is then captured by the heteroarene radical cation via intermolecular stereoselective radical/radical cation coupling. The mild, scalable, and robust reaction conditions allow for a broad substrate scope and excellent functional group tolerance, enabling access to a wide range of chiral hetero-compounds. The consequential α-heteroaromatic carbonyl products can potentially be transformed into a plethora of synthetically valuable frameworks, as exemplified by their application in the asymmetric total synthesis of (-)-COX-2 inhibitor, (+)-acremoauxin A, and (+)-pemedolac.
Collapse
Affiliation(s)
- Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ning Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Ren LC, Wang M, Zha X, Jian YR, Zhang LR, Tan JJ, Cui BD, Zhang Y, Mou XQ, Chen YZ. Electrochemical Oxidative Cascade Cyclization of Alkenyl Alcohols with External Nucleophiles to Access Amino- and Hydroxy-Functionalized O-Heterocycles. J Org Chem 2025; 90:412-427. [PMID: 39705110 DOI: 10.1021/acs.joc.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
A convenient electrochemical oxidative cascade cyclization of alkenes equipped with pendant alcohols with general nucleophiles was developed. Using readily available diarylmethanimine and carboxylic acids as nucleophilic sources, a broad range of internal alkene and terminal alkene substrates could produce RCO2- and Ar2CN-functionalized O-heterocycles in moderate to high yields without the requirement for external oxidants and metals. These resulting products can subsequently be hydrolyzed to yield valuable NH2- and OH-functionalized tetrahydrofurans and tetrahydropyranes under mild conditions. Importantly, the efficient conversion of secondary alcohol products to amines with complete inversion of configuration enhances the methodology, enabling the construction of 2-aryl-3-amino tetrahydrofuran with high and complementary diastereoselectivity.
Collapse
Affiliation(s)
- Liang-Chen Ren
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Min Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Xiao Zha
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yu-Rui Jian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Li-Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Jia-Jing Tan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
21
|
Li S, Wang S, Wang Y, He J, Li K, Gerken JB, Stahl SS, Zhong X, Wang J. Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical. Nat Commun 2025; 16:266. [PMID: 39747151 PMCID: PMC11697391 DOI: 10.1038/s41467-024-55616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Electrochemical alcohol oxidation (EAO) represents an effective method for the production of high-value carbonyl products. However, its industrial viability is hindered by suboptimal efficiency stemming from low reaction rates. Here, we present a synergistic electrocatalysis approach that integrates an active electrode and aminoxyl radical to enhance the performance of EAO. The optimal aminoxyl radical (4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl) and Ni0.67V0.33-layered double hydroxide (LDH) are screen as cooperative electrocatalysts by integrating theoretical predictions and experiments. The Ni0.67V0.33-LDH facilitates the adsorption and activation of N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)acetamide (ACTH) via interactions with ketonic oxygen, thereby improving selectivity and yield at high current densities. The electrolysis process is scaled up to produce 200 g of the steroid carbonyl product 8b (19-Aldoandrostenedione), achieving a yield of 91% and a productivity of 243 g h-1. These results represent a promising method for accelerating electron transfer to enhance alcohol oxidation, highlighting its potential for practical electrosynthesis applications.
Collapse
Affiliation(s)
- Suiqin Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Yuhang Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Jiahui He
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Kai Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - James B Gerken
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China.
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China.
| |
Collapse
|
22
|
Wang YR, Yue M, Liu G, Zhang JL, Li Q, Shi JW, Weng JY, Li RH, Chen Y, Li SL, Lan YQ. Solid-Liquid-Gas Three-Phase Indirect Electrolysis Enabled by Affinity Auxiliary Imparted Covalent Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202413030. [PMID: 39313470 DOI: 10.1002/anie.202413030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
The design of efficient heterogeneous redox mediators with favorable affinity to substrate and electrolyte are much desired yet still challenging for the development of indirect electrolysis system. Herein, for the first time, we have developed a solid-liquid-gas three-phase indirect electrolysis system based on a covalent organic framework (Dha-COF-Cu) as heterogeneous redox mediator for S-S coupling reaction. Dha-COF-Cu with the integration of high porosity, nanorod morphology, abundant hydroxyl groups and active Cu sites is much beneficial for the adsorption/activation of thiols, uniform dispersion and high wettability in electrolyte, and efficient interfacial electron transfer. Notably, Dha-COF-Cu as solid-phase redox mediator exhibits excellent electrocatalytic efficiency for the formation of value-added liquid-phase S-S bond product (yields up to 99 %) coupling with the generation of gas-phase product of H2 (~1.40 mmol g-1 h-1), resulting in a powerful three-phase indirect electrolysis system. This is the first work about COFs that can be applied in three-phase indirect electrolysis system, which might promote the development of porous crystalline materials in this field.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ming Yue
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Gang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, Shandong, P. R. China
| | - Jia-Li Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jing-Wen Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jia-Yong Weng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Yifa Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
23
|
Li D, Zhang L, Li D, Yu P, Shen T. Paired electrocatalysis enabled oxidative coupling of styrenes with alkyl radicals. Org Biomol Chem 2024; 23:78-82. [PMID: 39506522 DOI: 10.1039/d4ob01605j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
A paired electrocatalysis strategy for intermolecular oxidative cross-dehydrocoupling between styrenes and ethers or p-methylphenol derivatives using ketone as a mild oxidant is described. This approach enables the generation of Csp3 carbon-centered radicals through anodic oxidation, followed by reductive coupling of ketones at the cathode, ultimately yielding valuable oxidative alkylation products.
Collapse
Affiliation(s)
- Dong Li
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China.
| | - Ling Zhang
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Daixi Li
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Peng Yu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, P. R. China.
| | - Tao Shen
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, ZhangJiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
24
|
Xiao F, Xu X, Zhang J, Chen X, Ruan X, Wei Q, Zhang X, Huang Q. Rhodaelectro-Catalyzed Synthesis of Pyrano[3,4- b]indol-1(9 H)-ones via the Double Dehydrogenative Heck Reaction between Indole-2-carboxylic Acids and Alkenes. J Org Chem 2024; 89:17550-17561. [PMID: 39531595 DOI: 10.1021/acs.joc.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A rhodaelectro-catalyzed double dehydrogenative Heck reaction of indole-2-carboxylic acids with alkenes has been developed for the synthesis of pyrano[3,4-b]indol-1(9H)-ones. The weakly coordinating carboxyl group is utilized twice as a directing group to activate the C-H bonds throughout the reaction. This reaction precedes an acceptorless dehydrogenation under exogenous oxidant-free conditions in an undivided cell with a constant current.
Collapse
Affiliation(s)
- Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xinlu Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xin Ruan
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qi Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
25
|
Zou Y, Xin J, Jin Y, Tao S. Flux-Screened Copper/Electric Dual-Catalyzed Chemo- and Enantioselective Ullmann-Type C-C Coupling Reactions. Org Lett 2024; 26:9022-9027. [PMID: 39347557 DOI: 10.1021/acs.orglett.4c03196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This study introduces an innovative copper/electric dual-catalyzed approach to Ullmann coupling reactions. Our research delineates a series of chemoselective cross-couplings among various halogenated aromatics and enantioselective couplings involving halogenated aryl aldehydes. We employed a flux screening technique to refine the reaction parameters, which is rarely reported in the field of electrochemical synthesis. This advancement accelerates the determination of optimal reaction conditions and affords some inspiration for developing sustainable and ecofriendly chemical synthesis.
Collapse
Affiliation(s)
- Yun Zou
- School of Chemistry, Dalian University of Technology (DUT), Dalian, 116081, China
| | - Jia Xin
- School of Chemistry, Dalian University of Technology (DUT), Dalian, 116081, China
| | - Yunhe Jin
- School of Chemistry, Dalian University of Technology (DUT), Dalian, 116081, China
| | - Shengyang Tao
- School of Chemistry, Dalian University of Technology (DUT), Dalian, 116081, China
| |
Collapse
|
26
|
Kushwaha P, Saxena A, von Münchow T, Dana S, Saha B, Ackermann L. Metallaelectro-catalyzed alkyne annulations via C-H activations for sustainable heterocycle syntheses. Chem Commun (Camb) 2024; 60:12333-12364. [PMID: 39370984 PMCID: PMC11456994 DOI: 10.1039/d4cc03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Alkyne annulation represents a versatile and powerful strategy for the assembly of structurally complex compounds. Recent advances successfully enabled electrocatalytic alkyne annulations, significantly expanding the potential applications of this promising technique towards sustainable synthesis. The metallaelectro-catalyzed C-H activation/annulation stands out as a highly efficient approach that leverages electricity, combining the benefits of electrosynthesis with the power of transition-metal catalyzed C-H activation. Particularly attractive is the pairing of the electro-oxidative C-H activation with the valuable hydrogen evolution reaction (HER), thereby addressing the growing demand for green energy solutions. Herein, we provide an overview of the evolution of electrochemical C-H annulations with alkynes for the construction of heterocycles, with a topical focus on the underlying mechanism manifolds.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Click chemistry Research & Studies, Amity University, Noida, 201303, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Suman Dana
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Shi Y, Li G, Wang R, Zhao XJ, He Y. Copper and electrocatalytic synergy for the construction of fused quinazolinones with 2-aminobenzaldehydes and cyclic amines. RSC Adv 2024; 14:32195-32199. [PMID: 39399257 PMCID: PMC11467720 DOI: 10.1039/d4ra06539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A new copper and electrocatalytic synergy strategy for efficiently constructing fused quinazolinones has been developed. In the presence of cupric acetate and oxygen, aryl ketones and 1,2,3,4-tetrahydroisoquinoline can smoothly participate in this transformation, thus providing a variety of substituted quinazolones in an undivided cell. The reaction shows good functional group tolerance and provides universal quinazolinones at a good yield under mild conditions.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650000 P. R. China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
28
|
Tu JL, Huang B. Direct C(sp 3)-H functionalization with aryl and alkyl radicals as intermolecular hydrogen atom transfer (HAT) agents. Chem Commun (Camb) 2024; 60:11450-11465. [PMID: 39268687 DOI: 10.1039/d4cc03383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Recent years have witnessed the emergence of direct intermolecular C(sp3)-H bond functionalization using in situ generated aryl/alkyl radicals as a unique class of hydrogen atom transfer (HAT) agents. A variety of precursors have been exploited to produce these radical HAT agents under photocatalytic, electrochemical or thermal conditions. To date, viable aryl radical precursors have included aryl diazonium salts or aryl azosulfones, diaryliodonium salts, O-benzoyl oximes, aryl sulfonium salts, aryl thioesters, and aryl halides; and applicable alkyl radical sources have included tetrahalogenated methanes (e.g., CCl3Br, CBr4 and CF3I), N-hydroxyphthalimide esters, alkyl bromides, and acetic acid. This review summarizes the current advances in direct intermolecular C(sp3)-H functionalization through key HAT events with in situ generated aryl/alkyl radicals and categorizes the procedures by the specific radical precursors applied. With an emphasis on the reaction conditions, mechanisms and representative substrate scopes of these protocols, this review aims to demonstrate the current trends and future challenges of this emerging field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
29
|
Králik M, Koóš P, Markovič M, Lopatka P. Organic and Metal-Organic Polymer-Based Catalysts-Enfant Terrible Companions or Good Assistants? Molecules 2024; 29:4623. [PMID: 39407552 PMCID: PMC11477782 DOI: 10.3390/molecules29194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
This overview provides insights into organic and metal-organic polymer (OMOP) catalysts aimed at processes carried out in the liquid phase. Various types of polymers are discussed, including vinyl (various functional poly(styrene-co-divinylbenzene) and perfluorinated functionalized hydrocarbons, e.g., Nafion), condensation (polyesters, -amides, -anilines, -imides), and additional (polyurethanes, and polyureas, polybenzimidazoles, polyporphyrins), prepared from organometal monomers. Covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and their composites represent a significant class of OMOP catalysts. Following this, the preparation, characterization, and application of dispersed metal catalysts are discussed. Key catalytic processes such as alkylation-used in large-scale applications like the production of alkyl-tert-butyl ether and bisphenol A-as well as reduction, oxidation, and other reactions, are highlighted. The versatile properties of COFs and MOFs, including well-defined nanometer-scale pores, large surface areas, and excellent chemisorption capabilities, make them highly promising for chemical, electrochemical, and photocatalytic applications. Particular emphasis is placed on their potential for CO2 treatment. However, a notable drawback of COF- and MOF-based catalysts is their relatively low stability in both alkaline and acidic environments, as well as their high cost. A special part is devoted to deactivation and the disposal of the used/deactivated catalysts, emphasizing the importance of separating heavy metals from catalysts. The conclusion provides guidance on selecting and developing OMOP-based catalysts.
Collapse
Affiliation(s)
- Milan Králik
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | - Peter Koóš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (M.M.); (P.L.)
| | | | | |
Collapse
|
30
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
31
|
He JY, Zhu C, Duan WX, Kong LX, Wang NN, Wang YZ, Fan ZY, Qiao XY, Xu H. Bifunctional Chiral Electrocatalysts Enable Enantioselective α-Alkylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202401355. [PMID: 38967087 DOI: 10.1002/anie.202401355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Herein, we describe an innovative approach to the asymmetric electrochemical α-alkylation of aldehydes facilitated by a newly designed bifunctional chiral electrocatalyst. The highly efficient bifunctional chiral electrocatalyst combines a chiral aminocatalyst with a redox mediator. It plays a dual role as a redox mediator for electrooxidation, while simultaneously providing remarkable asymmetric induction for the stereoselective α-alkylation of aldehydes. Additionally, this novel catalyst exhibits enhanced catalytic activity and excellent stereoselective control comparable to conventional catalytic systems. As a result, this strategy provides a new avenue for versatile asymmetric electrochemistry. The electrooxidation of diverse phenols enables the C-H/C-H oxidative α-alkylation of aldehydes in a highly chemo- and stereoselective fashion. Detailed mechanistic studies by control experiments and cyclic voltammetry analysis demonstrate possible reaction pathways and the origin of enantio-induction.
Collapse
Affiliation(s)
- Jin-Yu He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wen-Xi Duan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ling-Xuan Kong
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Na-Na Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Zhao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Yong Fan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin-Ying Qiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
32
|
Zhong Q, Wang PL, Gao H, Liu F, Li H. Manganaelectro-Catalyzed Cyclization of o-Aminoarylketones with Ammonia: An Approach to 1,2-Dihydroquinazolines. J Org Chem 2024; 89:13253-13262. [PMID: 39264296 DOI: 10.1021/acs.joc.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A manganaelectro-catalyzed cyclization reaction of 2-aminoarylketones with simple alcohols and ammonia under mild conditions is reported for the first time. The cooperative catalysis effectively enhances the oxidation of primary alcohols into aldehydes, thus enabling the synthesis of substituted 1,2-dihydroquinazolines in good to excellent yields. In addition, the utilities of this method are highlighted in the construction of biologically active molecules that would otherwise be difficult to access through a traditional method.
Collapse
Affiliation(s)
- Qiang Zhong
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fanghua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
33
|
Tao Y, Ma W, Sun R, Huang C, Lu Q. Asymmetric Paired Electrolysis: Enantioselective Alkylation of Sulfonylimines via C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202409222. [PMID: 38958225 DOI: 10.1002/anie.202409222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Enantioselective transformation of ubiquitous C(sp3)-H bonds into three-dimensional chiral scaffolds is of longstanding interest to synthetic chemists. Herein, an asymmetric paired electrolysis enables a highly efficient and sustainable approach to the enantioselective alkylation of sulfonylimines via C(sp3)-H functionalization. In this protocol, anodic oxidation for benzylic radical formation and Lewis acid-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled (up to 88 % yield). Enantioenriched chiral amines containing a tetrasubstituted carbon stereocenter are accessed with high enantioselectivity (up to 96 % ee). Mechanistic studies suggest that the amine generated in situ could serve as a base to deprotonate phenols and decrease the oxidation potential of the reaction, allowing phenols with lower potentials to be preferentially oxidized.
Collapse
Affiliation(s)
- Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
34
|
Chen Y, Chen Q, Zhang S, Feng K, Xu YQ, Chen X, Cao ZY, Kong X. Electrochemically Driven Denitrative Cyanation of Nitroarenes. Org Lett 2024; 26:7555-7559. [PMID: 39226075 DOI: 10.1021/acs.orglett.4c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A practical denitrative cyanation of feedstock nitroarenes under mild and transition metal-free reaction conditions has been developed. The key to success lies in the use of electrochemically driven, inexpensive ionic liquid N-methylimidazolium p-toluenesulfonate-promoted selective cathode reduction of nitroarenes to anilines, followed by diazoation, cathode reduction to form the aryl radical, and the essential radical cyanation process in one pot. Our protocol shows broad functional group tolerance and can be applied for the modification of bioactive targets.
Collapse
Affiliation(s)
- Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qisheng Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shuangquan Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Kun Feng
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yuan-Qing Xu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| |
Collapse
|
35
|
Zheng Y, Chen C, Lu Y, Huang S. Recent advances in electrochemically enabled construction of indoles from non-indole-based substrates. Chem Commun (Camb) 2024; 60:8516-8525. [PMID: 39036971 DOI: 10.1039/d4cc03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Indole motifs are important heterocycles found in natural products, pharmaceuticals, agricultural chemicals, and materials. Although there are well-established classical name reactions for indole synthesis, these transformations often require harsh reaction conditions, have a limited substrate scope, and exhibit poor regioselectivity. As a result, organic synthesis chemists have been exploring efficient and practical methods, leading to numerous strategies for synthesizing a variety of functionalized indoles. In recent years, electrochemistry has emerged as an environmentally friendly and sustainable synthetic tool, with widespread applications in organic synthesis. This technology allows for elegant synthetic routes to be developed for the construction of indoles under external oxidant-free conditions. This feature article specifically focuses on recent advancements in indole synthesis from non-indole-based substrates, as well as the mechanisms underlying these transformations.
Collapse
Affiliation(s)
- Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunxi Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
36
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
37
|
Zhao Z, Zhang H, Yan H, Yu X, Gu L, Zhang S. Electrophotocatalytic Tellurosulfonylation of Alkynes for the Synthesis of β-(Telluro)vinyl Sulfones. Org Lett 2024; 26:6114-6119. [PMID: 38968081 DOI: 10.1021/acs.orglett.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Difunctionalization of alkynes has gained a lot of interest in current organic chemistry. Herein, we developed an electrophotocatalytic multicomponent cascade reaction of alkynes and indoles with sulfinic acid sodium salts using elemental tellurium as the tellurium source. Using synergistic anodic oxidation and visible-light irradiation, various β-(telluro)vinyl sulfones have been prepared. This strategy features mild reaction conditions, excellent substrate scope, readily available starting materials, and great functional group tolerance.
Collapse
Affiliation(s)
- Zhiheng Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Huiping Zhang
- College of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Hongyan Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Xixi Yu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Lijun Gu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
38
|
Michiyuki T, Homölle SL, Pandit NK, Ackermann L. Electrocatalytic Formal C(sp 2)-H Alkylations via Nickel-Catalyzed Cross-Electrophile Coupling with Versatile Arylsulfonium Salts. Angew Chem Int Ed Engl 2024; 63:e202401198. [PMID: 38695843 DOI: 10.1002/anie.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Indexed: 06/15/2024]
Abstract
Producing sp3-hybridized carbon-enriched molecules is of particular interest due to their high success rate in clinical trials. The installation of aliphatic chains onto aromatic scaffolds was accomplished by nickel-catalyzed C(sp2)-C(sp3) cross-electrophile coupling with arylsulfonium salts. Thus, simple non-prefunctionalized arenes could be alkylated through the formation of aryldibenzothiophenium salts. The reaction employs an electrochemical approach to avoid potentially hazardous chemical redox agents, and importantly, the one-pot alkylation proved also viable, highlighting the robustness of our approach.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Neeraj K Pandit
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
39
|
Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Photoelectrochemical Fe/Ni cocatalyzed C-C functionalization of alcohols. Nat Commun 2024; 15:5245. [PMID: 38898017 PMCID: PMC11187109 DOI: 10.1038/s41467-024-49557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The simultaneous activation of reactants on the anode and cathode via paired electrocatalysis has not been extensively demonstrated. This report presents a paired oxidative and reductive catalysis based on earth-abundant iron/nickel cocatalyzed C-C functionalization of ubiquitous alcohols. A variety of alcohols (i.e., primary, secondary, tertiary, or unstrained cyclic alcohols) can be activated at very low oxidation potential of (~0.30 V vs. Ag/AgCl) via photoelectrocatalysis coupled with versatile electrophiles. This reactivity yields a wide range of structurally diverse molecules with broad functional group compatibility (more than 50 examples).
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaofan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
40
|
Li Y, Xu J, Oliveira JC, Scheremetjew A, Ackermann L. Electrochemical Enantioselective C-H Annulation by Achiral Rhodium(III)/Chiral Brønsted Base Domino Catalysis. ACS Catal 2024; 14:8160-8167. [PMID: 38868099 PMCID: PMC11165455 DOI: 10.1021/acscatal.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Rhodium(III)-catalyzed enantioselective C-H activation has emerged as a powerful tool for assembling enabling chiral molecules. However, this approach is significantly hampered by the cumbersome synthetic routes for preparing chiral rhodium catalysts. In sharp contrast, we herein report on an electrochemical domino catalysis system that exploits an achiral Cp*-rhodium catalyst along with an easily accessible chiral Brønsted base for an enantioselective C-H activation/annulation reaction of alkenes by benzoic acids. Our strategy offers an environmentally benign and most user-friendly approach for assembling synthetically useful chiral phthalides in good enantioselectivity, employing electricity as the sustainable oxidant.
Collapse
Affiliation(s)
- Yanjun Li
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiawei Xu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Lian F, Li JL, Xu K. When transition-metal catalysis meets electrosynthesis: a recent update. Org Biomol Chem 2024; 22:4390-4419. [PMID: 38771266 DOI: 10.1039/d4ob00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While aiming at sustainable synthesis, organic electrosynthesis has attracted increasing attention in the past few years. In parallel, with a deeper understanding of catalyst and ligand design, 3d transition-metal catalysis allows the conception of more straightforward synthetic routes in a cost-effective fashion. Owing to their intrinsic advantages, the merger of organic electrosynthesis with 3d transition-metal catalysis has offered huge opportunities for conceptually novel transformations while limiting ecological footprint. This review summarizes the key advancements in this direction published in the recent two years, with specific focus placed on strategy design and mechanistic aspects.
Collapse
Affiliation(s)
- Fei Lian
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Jiu-Ling Li
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
42
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
43
|
Li HR, Ran YA, Zhu YY, Guo W, Ni SF, Wen LR, Li M, Zhang LB. Electrochemical stereoselective synthesis of polysubstituted 1,4-dicarbonyl Z-alkenes via three-component coupling of sulfoxonium ylides and alkynes with water. Chem Sci 2024; 15:8156-8162. [PMID: 38817557 PMCID: PMC11134330 DOI: 10.1039/d4sc01141d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The first straightforward strategy for the synthesis of 1,4-dicarbonyl Z-alkenes has been developed via an electrochemical cross-coupling reaction of sulfoxonium ylides and alkynes with water. The metal-free protocol showed an easy-to-handle nature, good functional group tolerance, and high Z-stereoselectivity, which is rare in previous cases. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments, cyclic voltammetry experiments, and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Hao-Ran Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yi-An Ran
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yu-Yi Zhu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shao-Fei Ni
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
44
|
Xue M, Pan T, Shao Z, Wang W, Li H, Zhao L, Zhou X, Zhang Y. Sustainable Electrochemical Benzylic C-H Oxidation Using MeOH as an Oxygen Source. CHEMSUSCHEM 2024; 17:e202400028. [PMID: 38225209 DOI: 10.1002/cssc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
New methods and strategies for the direct oxidation of benzylic C-H bonds are highly desirable, owing to the importance of ketone motifs in significant organic transformations and the synthesis of valuable molecules, including pharmaceuticals, pesticides, and fine chemicals. Herein, we describe an electrochemical benzylic C-H oxidation strategy for the synthesis of ketones using MeOH as an oxygen source. Inexpensive and safe KBr serves as both an electrolyte and a bromide radical precursor in the reaction. This transformation also offers several advantages such as mild conditions, broad functional group tolerance, and operational simplicity. Mechanistic investigations by control experiments, radical scavenging experiments, electron paramagnetic resonance (EPR), kinetic studies, cyclic voltammetry (CV), and in-situ Fourier transform infrared (FTIR) spectroscopy support a pathway involving the formation and transformation of benzyl methyl ether via hydrogen atom transfer (HAT) and single-electron transfer (SET). The practical application of our strategy is highlighted by the successful synthesis of five pharmaceuticals, namely lenperone, melperone, diphenhydramine, cinnarizine, and flunarizine.
Collapse
Affiliation(s)
- Meng Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tao Pan
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhichao Shao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Wenxuan Wang
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Lixing Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuexia Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
45
|
Xie S, Fu L, Ding Y, Wang Q, He C, Xu W, Wang Q, Zhong Y, Fan X, Yang M. Electrochemical C-H Mono-/Multi-Bromination Regulation of N-Sulfonylanilines on a Cost-Effective Carbon Fiber Electrode and Its Prospective Electroactive Molecule Screening. J Org Chem 2024; 89:6759-6769. [PMID: 38683949 DOI: 10.1021/acs.joc.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Electrochemical C-H mono/multi-bromination regulation of N-sulfonylanilines on the cost-effective CF electrode is described. This reaction proceeds smoothly under mild conditions with a broad substrate scope, affording diverse mono/multi-brominated anilines in moderate to good yields. Mechanism study reveals that this transformation involves anodic oxidation, aromatic electrophilic substitution, and deprotonation. Preliminary electroactive molecule screening results in its prospective application in electroactive MBs for electrochemical biosensors.
Collapse
Affiliation(s)
- Shuchun Xie
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Li Fu
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Yechun Ding
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Qi Wang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Chen He
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Xu
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Qing Wang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Yingfang Zhong
- Academic Affairs Office, Gannan Medical University, Ganzhou 341000, China
| | - Xiaona Fan
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| | - Min Yang
- School of Pharmacy, Key Laboratory for Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
46
|
Huang PF, Fu JL, Peng Y, Tang KW, Liu Y. Electrochemical Oxidative (4 + 2) Cyclization of Anilines and o-Phenylenediamines for the Synthesis of Phenazines. Org Lett 2024; 26:3756-3761. [PMID: 38678581 DOI: 10.1021/acs.orglett.4c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Phenazines, crucial constituents of nitrogen-containing heterocycles, widely exist in functional compounds. Herein, we report an anodic oxidative (4 + 2) cyclization between anilines and o-phenylenediamines for the uniform construction of phenazines in a simple undivided cell. Dual C-H amination followed by oxidation represents an outstanding step and atom efficiency. A sequence of phenazines is produced with excellent functional group tolerance at room temperature.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
47
|
Li F, Liu H, Xing W, Zhang Q, Wang L. Electrochemical nickel-catalyzed cross-coupling of glycosyl thiols with preactivated phenols and ketones. Org Biomol Chem 2024; 22:3597-3601. [PMID: 38625707 DOI: 10.1039/d4ob00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
An efficient electrochemical nickel-catalyzed cross-coupling reaction has been reported here for the synthesis of S-glycosides from preactivated phenols and ketones under mild conditions. Various glycosyl thiols, including unprotected sugar, and a diverse range of aryl/alkenyl triflates, including some complex biorelevant phenols and ketones, were well tolerated in this method.
Collapse
Affiliation(s)
- Fuxin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Wanyu Xing
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| |
Collapse
|
48
|
Huang PF, Fu JL, Peng Y, Fan JH, Zhong LJ, Tang KW, Liu Y. Electro-oxidative three-component cascade coupling of isocyanides with elemental sulfur and amines for the synthesis of 2-aminobenzothiazoles. Org Biomol Chem 2024; 22:3752-3760. [PMID: 38652536 DOI: 10.1039/d4ob00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
2-Aminobenzothiazoles are commonly encountered in various functional compounds. Herein, we disclose an electro-oxidative three-component reaction for the effective synthesis of 2-aminobenzothiazoles under mild conditions, utilizing non-toxic and abundant elemental sulfur as the sulfur source. Both aliphatic amines and aryl amines demonstrate good compatibility at room temperature, highlighting the broad functional group tolerance of this approach. Additionally, elemental selenium demonstrated reactivities comparable to those of elemental sulfur.
Collapse
Affiliation(s)
- Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Le Fu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ying Peng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
49
|
Gao Y, Wang M, Sun J, Zhao XJ, He Y. Electrochemical-induced solvent-tuned selective C(sp 3)-H bond activation towards the synthesis of C3-functionalized chromone derivatives. Chem Commun (Camb) 2024; 60:5050-5053. [PMID: 38634308 DOI: 10.1039/d4cc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An unprecedented solvent-tuned electrochemical method for selective C(sp3)-H bond activation towards the synthesis of C3 functionalized chromone derivatives has been developed. This electrosynthesis protocol provides an efficient and green way to access various C3-functionalized chromones by avoiding traditionally employed transition metals and high temperatures. The swappable chemoselectivity was controlled mainly by altering the solvent and the current. A plausible reaction mechanism has been proposed with the help of radical capture and cyclic voltammetry experiments.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Mingxu Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Jingxian Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education; Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
50
|
Buravets V, Hosek F, Burtsev V, Miliutina E, Maixner J, Lapcak L, Bajtosova L, Cieslar M, Procházka M, Minar J, Kolska Z, Svorcik V, Lyutakov O. Rapid and Universal Synthesis of 2D Transition Metal (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Sulfides through Oxide Sulfurization in CS 2 Vapor. Inorg Chem 2024; 63:8215-8221. [PMID: 38655681 PMCID: PMC11080058 DOI: 10.1021/acs.inorgchem.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Frantisek Hosek
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vasilii Burtsev
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Elena Miliutina
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Maixner
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Ladislav Lapcak
- Central
Laboratories, University of Chemistry and
Technology, Prague 166 28, Czech Republic
| | - Lucia Bajtosova
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Miroslav Cieslar
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czech Republic
| | - Michal Procházka
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Jan Minar
- New
Technologies−Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30614, Czech Republic
| | - Zdenka Kolska
- CENAB,
Faculty of Science, J. E. Purkyne University, Usti nad Labem 40096, Czech Republic
| | - Vaclav Svorcik
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department
of Solid State Engineering, University of
Chemistry and Technology, Prague 166 28, Czech Republic
| |
Collapse
|