1
|
Duivenvoorden T, Loi QK, Sanderson S, Searles DJ. Conductivity and Diffusivity of Ions in Aqueous MgCl 2 from Equilibrium and Nonequilibrium Simulations. J Chem Theory Comput 2025. [PMID: 40338106 DOI: 10.1021/acs.jctc.5c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Advanced electrochemical energy storage technologies require new electrolytes to be considered, so efficient computational characterization of ionic conductivity in a range of systems is of importance. In this manuscript we compare different equilibrium (EMD) and nonequilibrium molecular dynamics (NEMD) simulation algorithms to determine ionic conductivities. Aqueous magnesium ion batteries utilizing magnesium chloride as the electrolyte are a promising alternative to conventional lithium-ion batteries, so we focus on magnesium chloride electrolytes to demonstrate our results. We show the importance of accounting for ionic correlations and find that NEMD algorithms can provide more efficient calculations of ionic conductivity than EMD algorithms when ionic correlations need to be accounted for. In contrast, diffusivities and Nernst-Einstein conductivities can be determined more efficiently with EMD algorithms in the highly conductive systems considered here. We also demonstrate that the alignment of the water molecules due to the applied field in NEMD simulations is small at typical field strengths and has no impact on the calculated conductivities. Comparison of the results for the conductivity of different ions and their coupling provides insight into how force fields might be improved.
Collapse
Affiliation(s)
- Tanika Duivenvoorden
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence for the Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Quang K Loi
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen Sanderson
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Debra J Searles
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence for the Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
He X, Ling Y, Wu Y, Lei Y, Cao D, Zhang C. Research Progress of Electrolytes and Electrodes for Lithium- and Sodium-Ion Batteries at Extreme Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412817. [PMID: 40304177 DOI: 10.1002/smll.202412817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have recently received considerable attention in electrical energy storage (EES) systems due to their sustainability, high energy density, and superior energy conversion efficiency. However, with the expansion of energy storage application scenarios, the ability of batteries to operate under extreme conditions, especially low and high temperatures, is becoming increasingly important. Therefore, extending the operating temperature of electrochemically stable and safe LIBs and SIBs has become a critical research topic. In this review, the failure mechanism of batteries under extreme conditions and at the same time the problems faced by LIBs and SIBs in electrolyte and electrode materials are discussed, and various targeted optimization strategies are proposed. Additionally, the performance of LIBs and SIBs in such environments is compared, drawing an instructive understanding. Finally, a summary and perspective are presented for improving the battery electrochemical performance at low and high temperatures, respectively. Overall, this review aims to provide design guidelines for future LIBs and SIBs with high performance under extreme conditions.
Collapse
Affiliation(s)
- Xueyang He
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhang Ling
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhan Wu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Dawei Cao
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chenglin Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Wang Z, Guo X, Dong Y, Qu W, Wang K, Dong L, Yang C, Lei Z, Liang JY. Low-Concentration Electrolyte Engineering for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501215. [PMID: 40259689 DOI: 10.1002/adma.202501215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/13/2025] [Indexed: 04/23/2025]
Abstract
Low-concentration electrolytes (LCEs) present significant potential for actual applications because of their cost-effectiveness, low viscosity, reduced side reactions, and wide-temperature electrochemical stability. However, current electrolyte research predominantly focuses on regulation strategies for conventional 1 m electrolytes, high-concentration electrolytes, and localized high-concentration electrolytes, leaving design principles, optimization methods, and prospects of LCEs inadequately summarized. LCEs face unique challenges that cannot be addressed by the existing theories and approaches applicable to the three common electrolytes mentioned above; thus, tailored strategies to provide development guidance are urgently needed. Herein, a systematic overview of recent progress in LCEs is provided and subsequent development directions are suggested. This review proposes the core challenge of the high solvent ratio in LCEs, which triggers unstable organic-enriched electrolyte/electrode interface formation and anion depletion near the anode. On the basis of these issues, modification strategies for LCEs, including passivation interface construction and solvent‒anion interaction optimization, are used in various rechargeable battery systems. Finally, the role of advanced simulations and cutting-edge characterization techniques in revealing LCE failure mechanisms is further highlighted, offering new perspectives for their future development and practical application in next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Zijun Wang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaolin Guo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yueyao Dong
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wenjie Qu
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Ke Wang
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Liwei Dong
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Chunhui Yang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zuotao Lei
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jia-Yan Liang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
4
|
Pranti NJ, Faraezi S, Ohba T, Karatrantos AV, Khan MS. Interplay between organic solvent geometry and divalent cation dynamics in divalent metal batteries. RSC Adv 2025; 15:10851-10860. [PMID: 40196836 PMCID: PMC11973965 DOI: 10.1039/d5ra00757g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025] Open
Abstract
This study investigates the interplay between organic solvent geometry and divalent cation dynamics in liquid electrolytes, emphasizing their relevance for energy storage systems. Using classical molecular dynamics simulations, the structural and transport properties of Mg2+ and Ca2+ were evaluated in cyclic (ethylene carbonate, EC; propylene carbonate, PC) and linear (ethyl methyl carbonate, EMC) solvents in the presence of TFSI- anions across a range of temperatures. The results reveal that Mg2+ exhibits superior diffusion compared to Ca2+ due to its smaller ionic radius and weaker ion-pair interactions. Diffusion increases with temperature, following the solvent trend EC > EMC > PC. Coordination analysis showed compact solvation shells for both cations, with Ca2+ forming denser structures and demonstrating higher residence times compared to Mg2+. Solvent geometry significantly influenced solvation dynamics, with cyclic solvents enhancing ion coordination and linear solvents reducing solvation due to steric hindrance. These findings underscore the critical role of solvent structure and ion dynamics in optimizing divalent-ion battery performance, positioning Mg2+ as a promising candidate for sustainable energy storage solutions.
Collapse
Affiliation(s)
| | - Sharifa Faraezi
- Center for Interdisciplinary Chemistry Research (CICR) Dhaka Bangladesh
| | - Tomonori Ohba
- Graduate School of Science, Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Argyrios V Karatrantos
- Luxemburg Institute of Science and Technology 5 Avenue des Hauts-Fourneaux L-4362 Esch-sur-Alzette Luxembourg
| | - Md Sharif Khan
- Center for Interdisciplinary Chemistry Research (CICR) Dhaka Bangladesh
| |
Collapse
|
5
|
Zhang J, Zhang Z, Zhou H, Liu J, Du A, Dong S, Zhou X, Wang Q, Li G, Cui G. Critical Ingredients Revitalize Magnesium-Metal Batteries: Rationality and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417652. [PMID: 40040302 DOI: 10.1002/adma.202417652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Multivalent-metal batteries hold tremendous promise in solving safety and sustainability problems encountered by common lithium-ion batteries, but the lack of ideal electrolyte solutions restricts their large-scale adoption. Tuning electrolyte structures with functional ingredients, especially amines/methoxy-based amines and phosphates, can revitalize multivalent-metal anodes and high-voltage cathodes in conventional electrolytes, unlocking their full potential. However, a rational and clear understanding of the implications of these ingredients, notwithstanding critically important to commercially available electrolyte design, has not been widely accepted. This concise perspective aims to provide timely analysis and discussion on ingredients' functionalities of solvation shell speciation, interphase evolution, and consequently metal plating/stripping kinetics acceleration. In addition to prevailing coordination interactions, fresh understandings of intermolecular ionization/association and unique interphase formation are underscored by the close relationship between electrolyte chemistries and weakly passivated interphase properties. The existing understandings and proposed outlooks are expected to promote the next breakthroughs for rechargeable multivalent-metal batteries.
Collapse
Affiliation(s)
- Jinlei Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhonghua Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Hang Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Department of Pharmacy, Jining Medical University, Rizhao, 276826, P. R. China
| | - Aobing Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xinhong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guicun Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
6
|
Sun J, Du Y, Liu Y, Yan D, Li X, Kim DH, Lin Z, Zhou X. Recent advances in potassium metal batteries: electrodes, interfaces and electrolytes. Chem Soc Rev 2025; 54:2543-2594. [PMID: 39918241 DOI: 10.1039/d4cs00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The exceptional theoretical capacity of potassium metal anodes (687 mA h g-1), along with their low electrochemical potential, makes potassium metal batteries (PMBs) highly attractive for achieving high energy density. This review first provides an overview of potassium metal anodes, including their origin, current development status, and distinctive advantages compared to other metal anodes. Then, it discusses the composition and characteristics of emerging breakthrough PMBs, such as K-S, K-O2, K-CO2 batteries, and anode-free metal batteries. Subsequently, we delve into the pivotal challenges and theoretical research pertaining to PMBs, such as potassium metal nucleation/stripping, dendritic growth in PMBs, and unstable interfaces. Furthermore, we comprehensively examine the latest strategies in electrode design (including alloy, host, and current collector design), interface engineering (such as artificial solid electrolyte interphase layers, barrier layer design, and separator modification), and electrolyte optimization concerning nucleation, cycling stability, coulombic efficiency, and the development of PMBs. Finally, we introduce key characterization techniques, including in situ liquid phase secondary ion mass spectrometry, titration gas chromatography, neutron-based characterization, and computational simulation. This review will propel advancements in electrodes, separators, and electrolytes for innovative PMBs and other similar alkali metal batteries.
Collapse
Affiliation(s)
- Jianlu Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yijiang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- College of Chemistry and Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Dongbo Yan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaodong Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Zhang H, Pang M, Yang M, Kong Z, Ye J, Sun C, He W, Li W, Pak YL, An J, Gao X, Song J. Constructing Three-Dimensional Porous SnS 2/RGO as Superior-Rate and Long-Life Anodes for Lithium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:876-884. [PMID: 39758023 DOI: 10.1021/acs.langmuir.4c04214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Tin-based sulfides, possessing a unique layered structure and a high theoretical capacity, stand as highly prospective contenders for anode materials in lithium-ion batteries (LIBs). Nevertheless, the pronounced volume expansion that occurs during lithium storage and poor capacity retention have limited its progress toward commercialization. Herein, we designed and prepared a SnS2/RGO composite with a three-dimensional porous structure by sulfurizing the Sn6O4(OH)4/GO precursor. Through the integration of the structural architecture during the solvent reaction process and the nanomodification during the vulcanization process, the prepared SnS2/RGO composite has a porous structure, and the particle size is optimized at 2-5 nm. This structure is conducive to improving the conductivity of electrode materials, increasing reaction active sites, and enhancing the structural stability of electrode materials. Consequently, the synthesized SnS2/RGO composite is capable of retaining reversible capacities of 975 and 592 mA h g-1 after 250 cycles at 1.0 and 2.0 A g-1, respectively. Moreover, it exhibits a capacity of 349 mA h g-1 after 1100 cycles at 5.0 A g-1. This efficient and convenient preparation method provides guidance for enhancing the lithium storage properties of tin-based sulfides.
Collapse
Affiliation(s)
- Haohao Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Mingyuan Pang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Min Yang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Zhen Kong
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Jiajia Ye
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Chaoyang Sun
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Wen He
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Wensi Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yen Leng Pak
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Juan An
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
8
|
Wang W, Wang W, Xiong F, Meng J, Wu J, Yang W, Long J, Chen J, Chen J, An Q. Coupling Manipulation of Interfacial Chemistry and Coordination Structure in Vanadium Oxides Enables Rapid Magnesium Ion Diffusion Kinetics. Angew Chem Int Ed Engl 2025; 64:e202414119. [PMID: 39211954 DOI: 10.1002/anie.202414119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Rechargeable magnesium batteries (RMBs) are a highly promising energy storage system due to their high volumetric capacity and intrinsic safety. However, the practical development of RMBs is hindered by the sluggish Mg2+ diffusion kinetics, including at the cathode-electrolyte interface (CEI) and within the cathode bulk. Herein, we propose an efficient strategy to manipulate the interfacial chemistry and coordination structure in oligolayered V2O5 (L-V2O5) for achieving rapid Mg2+ diffusion kinetics. In terms of the interfacial chemistry, the specific exposed crystal planes in L-V2O5 possess strong electron donating ability, which helps to promote the degradation dynamics of C-F/C-S bonds in the electrolyte, thereby establishing the inorganic-organic interlocking CEI layer for rapid Mg2+ diffusion. In terms of the coordination structure, the straightened V-O structure in L-V2O5 provides efficient ions diffusion path for accelerating Mg2+ diffusion in the cathode. As a result, the L-V2O5 delivers a high reversible capacity (355.3 mA h g-1 at 0.1 A g-1) and an excellent rate capability (161 mAh g-1 at 1 A g-1). Impressively, the interdigital micro-RMBs is firstly assembled, exhibiting excellent flexibility and practicability. This work gives deeper insights into the interface and interior ions diffusion for developing high-kinetics RMBs.
Collapse
Affiliation(s)
- Weixiao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenwen Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Fangyu Xiong
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China
| | - Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Juncai Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiajun Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
9
|
Yu Y, Lin L, Liu YH, Hu ZY, Zhang Y, Shi XZ, Liu WQ, Tian SL, Sun LS, Zhang GX. Succinonitrile Electrolyte Additive for Stabilizing Aqueous Zinc Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1374-1384. [PMID: 39708350 DOI: 10.1021/acsami.4c19265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The utilization of water electrolytes in zinc-ion batteries offers the advantages of enhanced safety, reduced cost, and improved environmental friendliness, rendering them an optimal choice for replacing lithium-ion batteries. Nevertheless, the conventional zinc sulfate electrolyte fails to meet stringent requirements. Therefore, developing electrolytes is crucial for addressing the low cycle life of zinc ions and suppressing the growth of zinc dendrites. So we proposed a strategy for engineering dilution of aqueous Zn(OTf)2 solution with succinonitrile (SN) network electrolytes. The introduction of SN also disrupts the original hydrogen bonding network within the system and mitigates issues related to side reactions. Additionally, the inclusion of SN additives significantly diminishes the reactivity of water molecules and smoothing zinc deposition to form favorable two-component Zn3N2/ZnF2 SEI. The results indicate that symmetric cells exhibit a remarkable cycling performance (877 h at current density and capacity of 1 mA cm-2 and 1 mAh cm-2, respectively). Furthermore, after 2000 cycles at a current density of 5 A g-1, the full battery demonstrates an impressive capacity of 151.2 mAh g-1. These results show that the electrolyte structure project provides a promising direction for the design of aqueous zinc-metal batteries, aiming to achieve high reversibility and long cycle life.
Collapse
Affiliation(s)
- Yang Yu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- School of Chemistry, Tonghua Normal University, Tonghua 134001, People's Republic of China
| | - Li Lin
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yu-Hang Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhen-Yu Hu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yu Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Xin-Ze Shi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Wan-Qiang Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Song-Lin Tian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, People's Republic of China
| | - Lian-Shan Sun
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Guo-Xu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, West Dazhi 92, Harbin 150001, People's Republic of China
| |
Collapse
|
10
|
Schick BW, Vanoppen V, Uhl M, Kruck M, Riedel S, Zhao-Karger Z, Berg EJ, Hou X, Jacob T. Influence of Chloride and Electrolyte Stability on Passivation Layer Evolution at the Negative Electrode of Mg Batteries Revealed by operando EQCM-D. Angew Chem Int Ed Engl 2024; 63:e202413058. [PMID: 39523208 DOI: 10.1002/anie.202413058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Rechargeable magnesium batteries are promising for future energy storage. However, among other challenges, their practical application is hindered by low coulombic efficiencies of magnesium plating and stripping. Fundamental processes such as the formation, structure, and stability of passivation layers and the influence of different electrolyte components on them are still not fully understood. In this work, we gain unique insights into the initial Mg plating and stripping cycles by comparing magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2)- and magnesium tetrakis(hexafluoroisopropyloxy)borate (Mg[B(hfip)4]2)-based electrolytes, each with and without MgCl2, on gold electrodes by highly sensitive operando electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) applying hydrodynamic spectroscopy. With the stable Mg[B(hfip)4]2-based electrolytes, highly efficient and interphase-free cycling is possible and passivation layers are attributed to electrolyte contaminants. These are forming and degrading during the so-called initial conditioning process. With the more reactive Mg(TFSI)2-based electrolyte, thick passivation layers with small pores are growing during cycling. We demonstrate that the addition of chloride lowers the amount of passivated Mg deposits in these electrolytes and accelerates the currentless dissolution of the passivation layer. This has a positive effect since we observe the most efficient cycling and uniform deposition when no interphase is present on the electrode.
Collapse
Affiliation(s)
- Benjamin W Schick
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Viktor Vanoppen
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Matthias Uhl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Matthias Kruck
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Sibylle Riedel
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
| | - Zhirong Zhao-Karger
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Erik J Berg
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Xu Hou
- Department of Chemistry - Ångström Laboratory, Structural Chemistry, Uppsala University, Lägerhyddsvägen 1, 752 37, Uppsala, Sweden
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
11
|
Tao D, Ran L, Li T, Cao Y, Xu F. 3D Tunnel Copper Tetrathiovanadate Nanocube Cathode Achieving Ultrafast Magnesium Storage Reactions through a Charge Delocalization and Displacement Mechanism. ACS NANO 2024; 18:28810-28821. [PMID: 39377230 DOI: 10.1021/acsnano.4c08576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Rechargeable magnesium batteries are attractive candidates for large-scale energy storage applications because of the low cost and high safety, but the scarcity and inferior performance of the cathode materials are hindering the development. In the present study, a kind of copper tetrathiovanadate (Cu3VS4) cathode is designed and developed with a comprehensive consideration of the chemical and electronic structures. The vanadium and sulfur atoms form chemical bonds with high covalent proportion, facilitating electron delocalization via the vanadium-sulfur bonds. This reduces the interaction with the bivalent magnesium cation and induces the coredox of vanadium and sulfur. The crystal structure of Cu3VS4 has interlaced 3D tunnels for solid-state magnesium cation transport. The Cu3VS4 cathode shows a high capacity of 350 mA h g-1 at 100 mA g-1, an outstanding rate performance of 67 mA h g-1 at 10 A g-1, and stable cycling for 1000 cycles at 5 A g-1 without obvious capacity fading. Prominently, a high areal mass load of 3.5 mg cm-2 could be achieved without obvious rate capability decay, which is quite favorable to pair with the high-capacity magnesium metal anode in practical application. The mechanism investigation and theoretical computation demonstrate that Cu3VS4 undergoes first a magnesium intercalation and then a displacement reaction, during which the crystal structure is maintained, assisting the reaction reversibility and cycling stability. All the copper, vanadium, and sulfur elements experience redox and contribute to the high capacity. Moreover, the weakened interaction with magnesium cations, well-kept 3D cation transport tunnels, and high electronic conductivity result in the superior rate performance and high areal active material loading. The present study develops a high-performance cathode for rechargeable magnesium batteries and reveal the design principle based on both of chemical and electronic structures.
Collapse
Affiliation(s)
- Donggang Tao
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Lin Ran
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Ting Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, China
| | - Yuliang Cao
- Hubei Key Lab of Electrochemical Power Sources, College of Chemistry & Molecular Science, Wuhan University, Wuhan 430072, China
| | - Fei Xu
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Li HX, Shi WJ, Zhang X, Liu Y, Liu LY, Dou J. Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors. J Colloid Interface Sci 2024; 667:700-712. [PMID: 38670013 DOI: 10.1016/j.jcis.2024.04.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Aqueous zinc-ion capacitors (AZICs) are considered potential energy storage devices thanks to their ultrahigh power density, high safety, and extended cycling life. Carbon-based materials widely used as cathodes in AZICs face challenges, such as inappropriate pore sizes, poor electrolyte-electrode wettability, and insufficient vacancy defects and active sites. These limitations hinder efficient energy storage capacity and long-term stability. To address these issues, the B and F co-doped hierarchical porous carbon cathode materials (BFPC) are constructed through a facile annealing treatment process. The BFPC-2//Zn device exhibited high capacities of 222.4 and 118.3 mAh g-1 at current densities of 0.2 and 10 A g-1, respectively. Notably, the BFPC-2//Zn device demonstrated long-term cycling stability with a high capacity retention of 96.9 % after 20,000 cycles at 10 A g-1. Additionally, the assembled BFPC-2 based AZICs displayed a maximum energy density of 175.8 Wh kg-1 and an ultrahigh power density of 17.3 kW kg-1. Mechanism studies revealed that the exceptional energy storage ability and charge-transfer process of the BFPC cathode are attributed to the synergistic effect of B and F heteroatoms and the coupling effect between vacancy defects and pore size. This work presents a novel design strategy by incorporating B and F active sites into hierarchical porous carbon materials, providing enhanced energy storage capabilities for practical application in AZICs.
Collapse
Affiliation(s)
- Heng-Xiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Wen-Jing Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Xiaohua Zhang
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Ling-Yang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
13
|
Sun J, Kang F, Yan D, Ding T, Wang Y, Zhou X, Zhang Q. Recent Progress in Using Covalent Organic Frameworks to Stabilize Metal Anodes for Highly-Efficient Rechargeable Batteries. Angew Chem Int Ed Engl 2024; 63:e202406511. [PMID: 38712899 DOI: 10.1002/anie.202406511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Alkali metals (e.g. Li, Na, and K) and multivalent metals (e.g. Zn, Mg, Ca, and Al) have become star anodes for developing high-energy-density rechargeable batteries due to their high theoretical capacity and excellent conductivity. However, the inevitable dendrites and unstable interfaces of metal anodes pose challenges to the safety and stability of batteries. To address these issues, covalent organic frameworks (COFs), as emerging materials, have been widely investigated due to their regular porous structure, flexible molecular design, and high specific surface area. In this minireview, we summarize the research progress of COFs in stabilizing metal anodes. First, we present the research origins of metal anodes and delve into their advantages and challenges as anodes based on the physical/chemical properties of alkali and multivalent metals. Then, special attention has been paid to the application of COFs in the host design of metal anodes, artificial solid electrolyte interfaces, electrolyte additives, solid-state electrolytes, and separator modifications. Finally, a new perspective is provided for the research of metal anodes from the molecular design, pore modulation, and synthesis of COFs.
Collapse
Affiliation(s)
- Jianlu Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| | - Dongbo Yan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Tangjing Ding
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yulong Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hongkong Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, SAR 999077, China
| |
Collapse
|
14
|
Wang H, Kang X, Han B. Electrocatalysis in deep eutectic solvents: from fundamental properties to applications. Chem Sci 2024; 15:9949-9976. [PMID: 38966383 PMCID: PMC11220594 DOI: 10.1039/d4sc02318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
15
|
Miao W, Peng H, Cui S, Zeng J, Ma G, Zhu L, Lei Z, Xu Y. Fine nanostructure design of metal chalcogenide conversion-based cathode materials for rechargeable magnesium batteries. iScience 2024; 27:109811. [PMID: 38799585 PMCID: PMC11126976 DOI: 10.1016/j.isci.2024.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Magnesium-ion batteries (MIBs) a strong candidate to set off the second-generation energy storage boom due to their double charge transfer and dendrite-free advantages. However, the strong coulombic force and the huge diffusion energy barrier between Mg2+ and the electrode material have led to need for a cathode material that can enable the rapid and reversible de-insertion of Mg2+. So far, researchers have found that the sulfur-converted cathode materials have a greater application prospect due to the advantages of low price and high specific capacity, etc. Based on these advantages, it is possible to achieve the goal of increasing the magnesium storage capacity and cycling stability by reasonable modification of crystal or morphology. In this review, we focus on the application of a variety of sulfur-converted cathode materials in MIBs in recent years from the perspective of microstructural design, and provide an outlook on current challenges and future development.
Collapse
Affiliation(s)
- Wenxing Miao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuzhen Cui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingtian Zeng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lei Zhu
- School of Chemistry and Materials Science, Hubei Key Laboratory of Quality Control of Characteristic Fruits And Vegetables, Hubei Engineering University, Xiaogan, Hubei Province 432000, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Zhejiang 310024, China
| |
Collapse
|
16
|
Cao S, Xu X, Liu Q, Zhu H, Wang J, Zizheng Z, Hu T. Superlong cycle-life sodium-ion batteries supported by electrode/active material interaction and heteroatom doping: Mechanism and application. J Colloid Interface Sci 2024; 674:49-66. [PMID: 38909594 DOI: 10.1016/j.jcis.2024.06.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
To achieve both the capacity and stability of metal sulfides simultaneously remains a significant challenge. In this study, we have synthesized the manganese-doped copper sulfide three-dimensional (3D) hollow flower-like sphere (M/CuS-NSC), encapsulated in a nitrogen and sulfur co-doped carbon. The hollow lamellae structure allows the rational self-aggregation process of numerous active surface area enlarged nanosheets, thereby enhancing electrochemical activity. The subsurface framework characterized by CSC bonds enhances the pseudo-capacitive properties. Furthermore, the transformation of sulfur and the isomerization of carbon contribute to the enhancement of sodium ion storage. The incorporation of Mn into CuS lattice increases the interplanar distance, providing additional space for the accommodation of sodium ions. Mn doping facilitates the localization of electrons near the Fermi level, thereby improving conductivity. Additionally, Cu foils coated with M/CuS-NSC-2 engage with the electrolyte and sulfur, initiating the reaction sequence through the formation of Cu9S8. Consequently, M/CuS-NSC-2 exhibits highly reversible capacities of 676.24 mAh g-1 after 100 cycles at 0.1 A g-1 and 511.52 mAh g-1 after 10000 cycles at 10 A g-1, with an average attenuation ratio of only 0.009 %. In this study, we propose an effective strategy that combines structural design with heteroatom doping, providing a novel approach to enhance the electrochemical performance of monometallic sulfide.
Collapse
Affiliation(s)
- Shiyue Cao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xiaoting Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China; Duozhu Technology (Wuhan) Co., LTD, China; Suzhou Institute of Wuhan University, Suzhou 215123, China.
| | - Huijuan Zhu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Zhong Zizheng
- School of Materials Science and Engineering, HuBei University, Wuhan 430062, China
| | - Ting Hu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China; Duozhu Technology (Wuhan) Co., LTD, China
| |
Collapse
|
17
|
Li D, Guo Y, Zhang C, Chen X, Zhang W, Mei S, Yao CJ. Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance. NANO-MICRO LETTERS 2024; 16:194. [PMID: 38743294 PMCID: PMC11093963 DOI: 10.1007/s40820-024-01404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
Collapse
Affiliation(s)
- Dujuan Li
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuxuan Guo
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenxing Zhang
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xianhe Chen
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Weisheng Zhang
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shilin Mei
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
18
|
Li C, Pu S, Liu J, Huang Y, Chen J, Xiang X, Fu L, Zou C, Li X, Wang M, Lin Y, Cao H. Enhancing Kinetics in Sodium Super Ion Conductor Na 3MnTi(PO 4) 3 through Microbe-Assisted and Structural Optimization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22035-22047. [PMID: 38639478 DOI: 10.1021/acsami.4c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Sodium (Na) super ion conductor (NASICON) structure Na3MnTi(PO4)3 (NMTP) is considered a promising cathode for sodium-ion batteries due to its reversible three-electron reaction. However, the inferior electronic conductivity and sluggish reaction kinetics limit its practical applications. Herein, we successfully constructed a three-dimensional cross-linked porous architecture NMTP material (AsN@NMTP/C) by a natural microbe of Aspergillus niger (AsN), and the structure of different NMTP cathodes was optimized by adjusting different transition metal Mn/Ti ratios. Both approaches effectively altered the three-dimensional NMTP structure, not only improving electronic conductivity and controlling Na+ diffusion pathways but also enhancing the electrochemical kinetics of the material. The resultant AsN@NMTP/C-650, sintered at 650 °C, exhibits better electrochemical performance with higher reversible three-electron reactions corresponding to the voltage platforms of Ti4+/3+, Mn3+/2+, and Mn4+/3+ around 2.1, 3.6, and 4.1 V (vs Na+/Na), respectively. The capacity retention rate is up to 89.3% after 1000 cycles at a 2C rate. Moreover, a series of results confirms that the Na3.4Mn1.2Ti0.8(PO4)3 cathode has the most excellent electrochemical performance when the Mn/Ti ratio is 1.2/0.8, with a high capacity of 96.59 mAh g-1 and 97.1% capacity retention after 500 cycles.
Collapse
Affiliation(s)
- Caixia Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Shuping Pu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Jiapin Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yun Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- Energy Storage Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Southwest Petroleum University, Chengdu 610500, China
| | - Jiepeng Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xinyan Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Lei Fu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Chao Zou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xing Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- Energy Storage Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Mingshan Wang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
- Energy Storage Research Institute, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Yuanhua Lin
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu 610052, China
| |
Collapse
|
19
|
Wei Z, Wang Q, Qu M, Zhang H. Rational Design of Nanosheet Array-Like Layered-Double-Hydroxide-Derived NiCo 2O 4 In Situ Grown on Reduced-Graphene-Oxide-Coated Nickel Foam for High-Performance Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18734-18744. [PMID: 38569072 DOI: 10.1021/acsami.3c17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The investigation of high-performance supercapacitors is essential for accelerating the development of energy storage devices. In this work, a 3D hierarchical nanosheet array-like nickel cobaltite/reduced graphene oxide/nickel foam composite (NiCo2O4/rGO/NF) was assembled via an aqueous coprecipitation-hydrothermal strategy assisted by citric acid. Benefiting from a NiCo layered-double-hydroxide precursor with an atomic-level lattice confinement effect of metal ions and effective hybridization with rGO, the NiCo2O4/rGO/NF composite is featured as thin NiCo2O4 nanosheets (∼113.6 nm × 11.2 nm) composed of NiCo2O4 nanoparticles (∼10.9 nm) vertically staggered on the surface of a rGO-modified NF skeleton, leading to high surface area, abundant mesoporous structure, and active site exposure. The as-obtained NiCo2O4/rGO/NF was directly used as a binder-free integrated electrode for supercapacitors, achieving an excellent specific capacitance of 2863.4 F g-1 (1503.3 C g-1) at 1 A g-1, a superior rate performance of 2335.2 F g-1 at 20 A g-1, and a stability retention of 91.7% after 5000 cycles. More impressively, a solid-state asymmetric supercapacitor assembled by the present NiCo2O4/rGO/NF integrated electrode as the positive electrode and commercial activated carbon as the negative electrode achieved a high energy density of 69.2 Wh kg-1 at a power density of 800 W kg-1, and the energy density at a peak power density of 20004 W kg-1 still remained at 48.9 Wh kg-1, also showing a good cycling stability of 87.2% retention over 10000 cycles. The present facile synthesis strategy of the as-obtained NiCo2O4/rGO/NF nanosheet array composite can be used for the design and construction of many other transition-metal oxide/graphene/NF composite materials with excellent structural stability and performance in energy storage and other related areas.
Collapse
Affiliation(s)
- Zhuojun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinglin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meiyue Qu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Li B, Zeng Y, Zhang W, Lu B, Yang Q, Zhou J, He Z. Separator designs for aqueous zinc-ion batteries. Sci Bull (Beijing) 2024; 69:688-703. [PMID: 38238207 DOI: 10.1016/j.scib.2024.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 03/12/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are attracting worldwide attention due to their multiple merits such as extreme safety, low cost, feasible assembly, and environmentally friendly enabled by water-based electrolytes. At present, AZIBs have experienced systematic advances in battery components including cathode, anode, and electrolyte, whereas research involving separators is insufficient. The separator is the crucial component of AZIBs through providing ion transport, forming contact with electrodes, serving as a container for electrolyte, and ensuring the efficient battery operation. Considering this great yet ignored significance, it is timely to present the latest advances in design strategies, the systematic classification and summary of separators. We summarize the separator optimization strategies mainly along two approaches including the modification of the frequently used glass fiber and the exploitation of new separators. The advantages and disadvantages of the two strategies are analyzed from the material types and the characteristics of different strategies. The effects and mechanisms of various materials on regulating the uniform migration and deposition of Zn2+, balancing the excessively concentrated nucleation points, inhibiting the growth of dendrites, and the occurrence of side reactions were discussed using confinement, electric field regulation, ion interaction force, desolvation, etc. Finally, potential directions for further improvement and development of AZIBs separators are proposed, aiming at providing helpful guidance for this booming field.
Collapse
Affiliation(s)
- Bin Li
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - You Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weisong Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China.
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China.
| |
Collapse
|
21
|
Liu X, Wang G, Lv Z, Du A, Dong S, Cui G. A Perspective on Uniform Plating Behavior of Mg Metal Anode: Diffusion Limited Theory versus Nucleation Theory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306395. [PMID: 38093657 DOI: 10.1002/adma.202306395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/02/2023] [Indexed: 03/03/2024]
Abstract
Utilizing metal anode is the most attractive way to meet the urgent demand for rechargeable batteries with high energy density. Unfortunately, the formation of dendrites, which is caused by uneven plating behavior, always threaten the safety of the batteries. To explore the origin of different plating behavior and predict the plating morphology of anode under a variety of operating conditions, multifarious models have been developed. However, abuse of models has led to conflictive views. In this perspective, to clarify the controversial reports on magnesium (Mg) metal plating behavior, the previously proposed models are elaborated that govern the plating process. Through linking various models and clarifying their boundary conditions, a scheme is drawn to illustrate the strategy for achieving the most dense and uniform plating morphology, which also explains the seemingly contradictory of diffusion limited theory and nucleation theory on uniform plating. This perspective will undoubtedly enhance the understanding on the metal anode plating process and provide meaningful guidance for the development of metal anode batteries.
Collapse
Affiliation(s)
- Xin Liu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 26610, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 26610, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guixin Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 26610, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 26610, China
| | - Zhaolin Lv
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 26610, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 26610, China
| | - Aobing Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 26610, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 26610, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 26610, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 26610, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 26610, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 26610, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
22
|
Chen HZ, Wen Q, Huang YD, Wang ZY, Li PY, Wei HX, Wang HY, Zhang XH, Tang LB, Zheng JC. Enhancing Sodium-Ion Transport by Hollow Nanotube Structure Design of a V 5S 8@C Anode for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6143-6151. [PMID: 38270105 DOI: 10.1021/acsami.3c17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
V5S8 has received extensive attention in the field of sodium-ion batteries (SIBs) due to its two-dimensional (2D) layered structure, and weak van der Waals forces between V-S accelerate the transport of sodium ions. However, the long-term cycling of V5S8 still suffers from volume expansion and low conductivity. Herein, a hollow nanotube V5S8@C (H-V5S8@C) with improved conductivity was synthesized by a solvothermal method to alleviate cracking caused by volume expansion. Benefiting from the large specific surface area of the hollow nanotube structure and uniform carbon coating, H-V5S8@C exhibits a more active site and enhanced conductivity. Meanwhile, the heterojunction formed by a few residual MoS2 and the outer layer of V5S8 stabilizes the structure and reduces the ion migration barrier with fast Na+ transport. Specifically, the H-V5S8@C anode provides an enhanced rate performance of 270.1 mAh g-1 at 15 A g-1 and high cycling stability of 291.7 mAh g-1 with a retention rate of 90.98% after 300 cycles at 5 A g-1. This work provides a feasible approach for the structural design of 2D layered materials, which can promote the practical application of fast-charging sodium-ion batteries.
Collapse
Affiliation(s)
- He-Zhang Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Qing Wen
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Ying-de Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Zhen-Yu Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Pei-Yao Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Han-Xin Wei
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Hai-Yan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Xia-Hui Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Lin-Bo Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Jun-Chao Zheng
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
23
|
Han Q, Zhang W, Zhu L, Liu M, Xia C, Xie L, Qiu X, Xiao Y, Yi L, Cao X. MOF-Derived Bimetallic Selenide CoNiSe 2 Nanododecahedrons Encapsulated in Porous Carbon Matrix as Advanced Anodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6033-6047. [PMID: 38284523 DOI: 10.1021/acsami.3c18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Transition metal selenides have received considerable attention as promising candidates for lithium-ion battery (LIB) anode materials due to their high theoretical capacity and safety characteristics. However, their commercial viability is hampered by insufficient conductivity and volumetric fluctuations during cycling. To address these issues, we have utilized bimetallic metal-organic frameworks to fabricate CoNiSe2/C nanodecahedral composites with a high specific surface area, abundant pore structures, and a surface-coated layer of the carbon-based matrix. The optimized material, CoNiSe2/C-700, exhibited impressive Li+ storage performance with an initial discharge specific capacity of 2125.5 mA h g-1 at 0.1 A g-1 and a Coulombic efficiency of 98% over cycles. Even after 1000 cycles at 1.0 A g-1, a reversible discharge specific capacity of 549.9 mA h g-1 was achieved. The research highlights the synergistic effect of bimetallic selenides, well-defined nanodecahedral structures, stable carbon networks, and the formation of smaller particles during initial cycling, all of which contribute to improved electronic performance, reduced volume change, increased Li+ storage active sites, and shorter Li+ diffusion paths. In addition, the pseudocapacitance behavior contributes significantly to the high energy storage of Li+. These features facilitate rapid charge transfer and help maintain a stable solid-electrolyte interphase layer, which ultimately leads to an excellent electrochemical performance. This work provides a viable approach for fabricating bimetallic selenides as anode materials for high-performance LIBs through architectural engineering and compositional tailoring.
Collapse
Affiliation(s)
- Qing Han
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Weifan Zhang
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Limin Zhu
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Minlu Liu
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Changle Xia
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xuejing Qiu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yongmei Xiao
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiaoyu Cao
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
24
|
Zhang Z, Huang B, Lai T, Sheng A, Zhong S, Yang J, Li Y. Scalable synthesis of N/S co-doped hard carbon microspheres as a high-performance anode material for sodium-ion batteries. NANOTECHNOLOGY 2023; 35:115601. [PMID: 38081064 DOI: 10.1088/1361-6528/ad1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Hard carbon is a promising anode material for sodium-ion batteries (SIBs) due to its abundance. However, it exhibits low reversible capacity and slow kinetics if inappropriate microstructural features are developed during synthesis. Herein, N/S co-doped phenolic resin-based hard carbon microspheres are prepared by a scalable strategy, and the electrochemical performance is assessed both in half cells and full cells. We demonstrate that the expanded interlayer spacing, the increased active sites, and the enhanced capacitive behavior result in the enhanced reversible capacity and promoted kinetics for Na+storage. The sample with appropriate doping amount exhibits an initial charge capacity of 536.8 mAh g-1at 50 mA g-1and maintains 445.9 mAh g-1after 1000 cycles at a current density of 1 A g-1in a Na-metal half cell. Coupled with a carbon-coated Na4Fe3(PO4)2P2O7(NFPP) cathode, the full cell exhibits a capacity of 92.5 mAh g-1after 90 cycles, with a capacity retention of 91.6%. This work provides a facile and scalable method for synthesizing high-performance hard carbon anode materials for SIBs.
Collapse
Affiliation(s)
- Zifang Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Bin Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Tingmin Lai
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Ao Sheng
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shengkui Zhong
- Yazhou Bay Innovation Research Institute, College of Marine Science & Technology, Hainan Tropical Ocean University, Sanya 572022, People's Republic of China
| | - Jianwen Yang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yanwei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
25
|
Miao Y, Xue X, Wang Y, Shi M, Tang H, Huang T, Liu S, Zhang M, Meng Q, Qi J, Wei F, Huang S, Cao P, Hu Z, Meng D, Sui Y. Interlayer Engineering of VS 2 Nanosheets via In Situ Aniline Intercalative Polymerization toward Long-Cycling Magnesium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019533 DOI: 10.1021/acsami.3c13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Rechargeable magnesium batteries (RMBs) show great potential in large-scale energy storage systems, due to Mg2+ with high polarity leading to strong interactions within the cathode lattice, and the limited discovery of functional cathode materials with rapid kinetics of Mg2+ diffusion and desirable cyclability retards their development. Herein, we innovatively report the confined synthesis of VS2/polyaniline (VS2/PANI) hybrid nanosheets. The VS2/PANI hybrids with expanded interlayer spacing are successfully prepared through the exfoliation of VS2 and in situ polymerization between VS2 nanosheets and aniline. The intercalated PANI increases the interlayer spacing of VS2 from 0.57 to 0.95 nm and improves its electronic conductivity, leading to rapid Mg-ion diffusivity of 10-10-10-12 cm2 s-1. Besides, the PANI sandwiched between layers of VS2 is conducive to maintaining the structural integrity of electrode materials. Benefiting from the above advantages, the VS2/PANI-1 hybrids present remarkable performance for Mg2+ storage, showing high reversible discharge capacity (245 mA h g-1 at 100 mA g-1) and impressive long lifespan (91 mA h g-1 after 2000 cycles at 500 mA g-1). This work provides new perspectives for designing high-performance cathode materials based on layered materials for RMBs.
Collapse
Affiliation(s)
- Yidong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Xiaolan Xue
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Yanyan Wang
- Jiangsu FERY Battery Technology Co., Ltd., Xuzhou 221116, China
| | - Meiyu Shi
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Hailin Tang
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Tianlong Huang
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Shuhang Liu
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Man Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Qingkun Meng
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Jiqiu Qi
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Fuxiang Wei
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| | - Saifang Huang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Peng Cao
- Department of Chem & Materials Engineering, University Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zhenghai Hu
- Jiangsu FERY Battery Technology Co., Ltd., Xuzhou 221116, China
| | - Dongmei Meng
- Jiangsu FERY Battery Technology Co., Ltd., Xuzhou 221116, China
| | - Yanwei Sui
- Jiangsu Province High-Efficiency Energy Storage Technology and Equipment Engineering Laboratory, School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, P. R. China
| |
Collapse
|
26
|
Qin N, Tong B, Ling X, Shi J, Wei W, Mi L. Fabrication of Nitrogen-Doped Carbon-Coated NiS 1.97 Quantum Dots for Advanced Magnesium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16111-16117. [PMID: 37924327 DOI: 10.1021/acs.langmuir.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Magnesium (Mg) batteries have garnered considerable interest because of their safety characteristics and low costs. However, the practical application of Mg batteries is hindered by the slow diffusion of Mg ions in the cathode materials. In this study, we prepared NiS1.97 quantum dot composites with nitrogen doping and carbon coating (NiS1.97 QDs@NC) using a one-step sulfurization process with NiO QDs/Ni@NC as the precursor. We applied the prepared NiS1.97 QDs/Ni@NC-based cathodes to Mg batteries because of the large surface area of the quantum dot composite, which provided abundant intercalation sites. This design ensured efficient deintercalation of magnesium ions during charge-discharge processes. The fabricated NiS1.97 QDs@NC displayed a high reversible Mg storage capacity of 259.1 mAh g-1 at 100 mA g-1 and a good rate performance of 96.0 mAh g-1 at 1000 mA g-1. Quantum dot composites with large surface areas provide numerous embedded sites, which ensure effective deintercalation of Mg ions during cycling. Thus, the proposed cathode synthesis strategy is promising for Mg-ion-based energy storage systems.
Collapse
Affiliation(s)
- Na Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Boli Tong
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Ximin Ling
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Juan Shi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Wutao Wei
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| |
Collapse
|