1
|
Wang D, Tang X, Li R, Hu Y, Gu J, Wang Z. Suppressing sediment nutrient release via electrokinetic drainage of porewater: apparent paradox and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125492. [PMID: 40267808 DOI: 10.1016/j.jenvman.2025.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Sediment nitrogen and phosphorus release drives internal eutrophication in many waterbodies, with nutrient-rich porewater serving as the key pathway for nutrient transfer to overlying water. In this study, electrokinetic geosynthetics (EKGs) were employed as electrodes to drain porewater and suppress sediment nutrient release. Five treatment groups with varying voltage gradients and power-on modes were tested. Nitrogen and phosphorus were primarily drained as ammonium (NH4+) and phosphate (PO43-), respectively. The total nitrogen removal from sediments was 16-20 times greater than that of phosphorus; however, the increase in nitrogen concentration in the overlying water was also nearly 10 times higher than that of phosphorus. This apparent paradox likely resulted from two key mechanisms. On one hand, NH4+ was rapidly mobilized and drained under the electric field, whereas PO43- required a series of acidification reactions before it could be released and transported. On the other hand, even when phosphate entered the overlying water, it was readily re-adsorbed or precipitated by the sediment, while nitrogen continued to accumulate through ongoing biogeochemical processes. Despite the differing removal efficiencies, electrokinetic drainage of porewater reduced sediment nutrient content in situ and suppressed nutrient enrichment in the overlying water, offering a promising strategy for the mitigation of internal eutrophication.
Collapse
Affiliation(s)
- Danyang Wang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Xianqiang Tang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China.
| | - Rui Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China; Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| | - Yanping Hu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Junjun Gu
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| | - Zhenhua Wang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, China
| |
Collapse
|
2
|
Wang S, Li H, Jiao Y, Li L, Zhou Q, Sun H, Shao Z, Wang C, Jing J, Gao Z. Insight into the effect of electric fields on bioremediation of petroleum-contaminated soil: A micro-ecological response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124624. [PMID: 39986164 DOI: 10.1016/j.jenvman.2025.124624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
The voltage gradient plays a crucial role in the process of electro-bioremediation for petroleum-contaminated soil. However, the micro-ecological response mechanisms of relevance have been scarcely documented. This study compared petroleum degradation characteristics, soil physicochemical properties, and bacterial microbiome indicators under 0.5 V cm-1, 1 V cm-1, and 2 V cm-1 conditions to elucidate the interaction mechanism among soil micro-ecological factors. The findings indicated that the treatment at 1 V cm-1 resulted in the most effective synergistic enhancement of electrokinetics and bioremediation, yielding a peak petroleum degradation ratio of 43.54 ± 1.64% over 105 days. The improvement in biodegradation resulted from the direct stimulation of bio-metabolism by higher ratios of "window condition" (RWC, 0.5331) and the indirect sustenance of microbial physiological activity by favorable soil conditions. The 1 V cm-1 voltage gradient either maintained or fostered the soil microbiome's response to the remediation system. The structural equation models (SEMs) demonstrated that variations in microbiome properties across different voltage gradients resulted from the influences of effective current intensity, soil pH, redox potential (Eh), dissolved organic carbon (DOC), and electrical conductivity (EC). Optimizing voltage gradients is a practical approach for developing effective micro-ecosystems to efficiently remediate petroleum-contaminated soil and implement electro-bioremediation in various engineering applications.
Collapse
Affiliation(s)
- Sa Wang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Hui Li
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yaqi Jiao
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Li Li
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Qin Zhou
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Hao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zhigou Shao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - Changxian Wang
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zishu Gao
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
3
|
Fardin AB, Jamshidi-Zanjani A, Saeedi M. A comprehensive review of soil remediation contaminated by persistent organic pollutants using electrokinetic: Challenging enhancement techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123587. [PMID: 39657472 DOI: 10.1016/j.jenvman.2024.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
The hydrophobic, hard-to-naturally-decompose compounds, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pesticides, are categorized as persistent organic pollutants (POPs). POPs are toxic/hazardous and present serious risks to human health. Electrokinetic (EK) remediation is highly flexible and cost-effective, suitable for both in-situ and ex-situ applications. It effectively targets a wide range of contaminants, including metals and organic compounds, especially in low-permeability and low-hydraulic conductivity soils, where traditional methods are less effective. This technology is easy to install and can be combined with other strategies for enhanced remediation in complex soil environments. This paper underscores EK remediation as a promising method for addressing soil pollution caused by these organic pollutants, especially in low-permeability soil. The present review starts with the classification, toxicity effects, and source of POPs in the environment. Theoretical aspects and fundamentals of EK, including transport mechanisms and principles, are also reviewed. The theoretical underpinnings of effective factors are comprehensively explored, such as surface charge, zeta potential, pHpzc, and numerical modeling of transport fluxes. Moreover, a comprehensive examination is undertaken regarding the operation and design considerations of the EK process, encompassing factors like pH, electrode arrangement, electrolyte, and voltage. Subsequently, it is highlighted that EK has the potential to come in synergistically in contact with other remediation technologies to augment the POPs' degradation. Various enhancement techniques are also explored, including solvent extraction, chemical oxidation, bioremediation, and permeable reactive barriers to combine with EK. Each method is examined in terms of its advantages, limitations, recent developments, and ongoing research. Finally, the potential and challenges associated with enhanced EK methods combined with other techniques for the removal of POPs were reviewed.
Collapse
Affiliation(s)
- Ali Barati Fardin
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Saeedi
- University Canada West, 1461, Granville St., Vancouver, BC, V6Z 0E5, Canada
| |
Collapse
|
4
|
Li Z, Li X. Bibliometric analysis and systematic review on the electrokinetic remediation of contaminated soil and sediment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:15. [PMID: 39666177 DOI: 10.1007/s10653-024-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Electrokinetic remediation (EKR) is a proficient, environmentally friendly separation technology for in-situ removal of contaminants in soil/sediment, distinguished for its ease of implementation and minimal prerequisites compared to other remediation technologies. To comprehensively understand the research focus and progress related to EKR of contaminated soil/sediment, a bibliometric analysis was conducted on 1593 publications retrieved from the Web of Science Core Collection (WOSCC) database. This analysis utilized data mining and knowledge discovery techniques through Bibliometrix, VOSviewer, and CiteSpace software. The results revealed a rising trend in annual publication numbers, with China leading in the number of publications. The primary journals in this field included the Journal of Hazardous Materials, Chemosphere, and Separation and Purification Technology. The primary disciplines contributed to this field included "Environmental Sciences", "Engineering, Environmental", "Engineering, Chemical", and "Electrochemistry". Keyword co-occurrence and burst analysis indicated that current EKR-related research mainly focuses on the remediation of soil/sediments contaminated by heavy metals (HMs) and organic pollutants (OPs). Furthermore, the EKR remediation improvement method emerged as the prevailing and future research hotspots and development directions. Future research could integrate numerical simulations and various methodologies to predict and assess the migration of pollutants and the efficiency of remediation efforts. Additionally, these studies could explore the effects of EKR on the physicochemical properties and microbial diversity of soil/sediment to provide a theoretical foundation for applying EKR in soil/sediment remediation.
Collapse
Affiliation(s)
- Zhonghong Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaoguang Li
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Liu Q, Zhang N, Ge J, Zhang L, Guo L, Zhang H, Song K, Luo J, Zhao L, Yang S. Aquatic plants combined with microbial fuel cells promote sulfamethoxazole and sul genes removal from aquaculture pond sediments via bioelectrochemistry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124680. [PMID: 39116922 DOI: 10.1016/j.envpol.2024.124680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in the aquaculture environment are receiving increasing public attention as emerging contaminants. In this study, aquatic plant (P) and sediment microbial fuel cells (SMFC) were used individually and in combination (P-SMFC) to simulate in situ remediation of sulfamethoxazole (SMX) and sul genes in aquaculture environments. The results showed that the average power densities of SMFC and P-SMFC were 622.18 mW m-2 and 565.99 mW m-2, respectively. The addition of 5 mg kg-1 of SMX to the sediment boosted the voltages of SMFC and P-SMFC by 36.3% and 51.5%, respectively. After 20 days of treatment, the removal efficiency of SMX from the sediment was 86.17% and 89.60% for SMFC and P-SMFC group, respectively, which were significantly higher than the control group (P < 0.05). However, removal of SMX by plants was not observed. P-SMFC group significantly reduced the biotoxicity of SMX to Staphylococcus aureus and Escherichia coli in the overlying water (P < 0.05). P and P-SMFC groups significantly reduced the abundance of ARGs intl1 and sul1 (P < 0.05). The removal rate of ARGs intl1, sul1 and sul2 from sediments by P-SMFC ranged from 94.22% to 97.08%. However, SMFC increased the abundance of sul3. SMFC and P-SMFC increased the relative abundance of some of sulfate-reducing bacteria such as Desulfatiglans, Thermodesulfovibrionia and Sva0485 in sediments. These results showed that aquatic plants promoted the removal of ARGs and SMFC promoted the removal of antibiotics, and the combination with aquatic plants and SMFC achieved a synergistic removal of both SMX and ARGs. Therefore, current study provides a promising approach for the in situ removal of antibiotics and ARGs in the aquaculture environment.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Nisha Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Leji Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lipeng Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hanwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kaige Song
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
6
|
Li F, Li J, Tong M, Xi K, Guo S. Effect of electric fields strength on soil factors and microorganisms during electro-bioremediation of benzo[a]pyrene-contaminated soil. CHEMOSPHERE 2023; 341:139845. [PMID: 37634583 DOI: 10.1016/j.chemosphere.2023.139845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Electro-bioremediation is a promising technology for remediating soils contaminated with polycyclic aromatic hydrocarbons (PAHs). However, the resulting electrokinetic effects and electrochemical reactions may inevitably cause changes in soil factors and microorganism, thereby reducing the remediation efficiency. To avoid negative effect of electric field on soil and microbes and maximize microbial degradability, it is necessary to select a suitable electric field. In this study, artificial benzo [a]pyrene (BaP)-contaminated soil was selected as the object of remediation. Changes in soil factors and microorganisms were investigated under the voltage of 1.0, 2.0, and 2.5 V cm-1 using chemical analysis, real-time PCR, and high-throughput sequencing. The results revealed noticeable changes in soil factors (pH, moisture, electrical conductivity [EC], and BaP concentration) and microbes (PAHs ring-hydroxylating dioxygenase [PAHs-RHDα] gene and bacterial community) after the application of electric field. The degree of change was related to the electric field strength, with a suitable strength being more conducive to BaP removal. At 70 d, the highest mean extent of BaP removal and PAHs-RHDα gene copies were observed in EK2.0 + BIO, reaching 3.37 and 109.62 times those in BIO, respectively, indicating that the voltage of 2.0 V cm-1 was the most suitable for soil microbial growth and metabolism. Changes in soil factors caused by electric fields can affect microbial activity and community composition. Redundancy analysis revealed that soil pH and moisture had the most significant effects on microbial community composition (P < 0.05). The purpose of this study was to determine the appropriate electric field that could be used for electro-bioremediation of PAH-contaminated soil by evaluating the effects of electric fields on soil factors and microbial communities. This study also provides a reference for efficiency enhancement and successful application of electro-bioremediation of soil contaminated with PAHs.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xi
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
7
|
Wang S, Guo S. Effects of soil organic carbon metabolism on electro-bioremediation of petroleum-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132180. [PMID: 37527589 DOI: 10.1016/j.jhazmat.2023.132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Soil organic carbon (SOC) potentially interacts with microbial metabolism and may affect the degradation of petroleum-derived carbon (PDC) in the electro-bioremediation of petroleum-contaminated soil. This study evaluated the interactions among organic carbon, soil properties, and microbial communities to explore the role of SOC during the electro-bioremediation process. The results showed that petroleum degradation exerted superposition and synergistic electrokinetic and bioremediation effects, as exemplified by the EB and EB-PR tests, owing to the maintenance and enhancement of SOC utilization (P/S value), respectively. The highest P/S value (2.0-2.4) was found in the electrochemical oxidation zone due to low SOC consumption. In the biological oxidation zones, electric stimulation enhanced the degradation of PDC and SOC, with higher average P/S values than those of the Bio test. Soil pH, Eh, inorganic ions, and bioavailable petroleum fractions were the main factors reshaping the microbial communities. SOC metabolism effectively buffered the stress of environmental factors and pollutants while maintaining functional bacterial abundance, microbial alpha diversity, and community similarity, thus saving the weakened PDC biodegradation efficiency in the EB and EB-PR tests. The study of the effect of SOC metabolism on petroleum biodegradation contributes to the development of sustainable low-carbon electro-bioremediation technology.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
8
|
Biabani R, Ferrari P, Vaccari M. Best management practices for minimizing undesired effects of thermal remediation and soil washing on soil properties. A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103480-103495. [PMID: 37702866 DOI: 10.1007/s11356-023-29656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
The use of remediated soils as end-of-life materials raises some challenges including policy and regulation, permits and specifications, technological limitations, knowledge and information, costs, as well as quality and performance associated with using them. Therefore, a set of procedures must be followed to preserve the quality and fundamental properties of soil during a remediation process. This study presented a comprehensive review regarding the fundamental impacts of thermal desorption (TD) and soil washing (SW) on soil characteristics. The effects of main operating parameters of TD and SW on the physical, chemical, and biological properties of soil were systematically reviewed. In TD, temperature has a more remarkable effect on physic-chemical and biological characteristics of soil than heating time. Therefore, decrease in temperature within a suitable range prevents unreversible changes on soil properties. In SW, more attention should be paid to extraction process of contaminants from soil particles. Using the right dosage and type of chelating agents, surfactants, solvents, and other additives can help to avoid problems with recovery or treatment using conventional methods. In addition, this review introduced a framework for implementing sustainable remediation approaches based on a holistic approach to best management practices (BMPs), which, besides reducing the risks associated with different pollutants, might provide new horizons for decreasing the unfavourable impacts of TD and SW on soil.
Collapse
Affiliation(s)
- Roya Biabani
- Sanitary and Environmental Engineering, Department of Civil Engineering, Architecture, Land and Environment, University of Brescia, Via Branze 38, 25123, Brescia, Italy.
| | - Piero Ferrari
- Research and Innovation, Brixiambiente Srl, 22 Via Molino Emili, Maclodio, Italy
| | - Mentore Vaccari
- Sanitary and Environmental Engineering, Department of Civil Engineering, Architecture, Land and Environment, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| |
Collapse
|
9
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
10
|
Maqbool T, Jiang D. Electrokinetic remediation leads to translocation of dissolved organic matter/nutrients and oxidation of aromatics and polysaccharides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162703. [PMID: 36906032 DOI: 10.1016/j.scitotenv.2023.162703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Dissolved organic matter (DOM) in the sediment matrix affects contaminant remediation through consumption of oxidants and binding with contaminants. Yet the change in DOM during remediation processes, particularly during electrokinetic remediation (EKR), remains under-investigated. In this work, we elucidated the fate of sediment DOM in EKR using multiple spectroscopic tools under abiotic and biotic conditions. We found that EKR led to significant electromigration of the alkaline-extractable DOM (AEOM) toward the anode, followed by transformation of the aromatics and mineralization of the polysaccharides. The AEOM remaining in the cathode (largely polysaccharides) was resistant to reductive transformation. Limited difference was noted between abiotic and biotic conditions, indicating the dominance of electrochemical processes when relatively high voltages were applied (1-2 V/cm). The water-extractable organic matter (WEOM), in contrast, showed an increase at both electrodes, which was likely attributable to pH-driven dissociations of humic substances and amino acid-type constituents at the cathode and the anode, respectively. Nitrogen migrated with the AEOM toward the anode, but phosphorus remained immobilized. Understanding the redistribution and transformation of DOM could inform studies on contaminant degradation, carbon and nutrient availability, and sediment structural changes in EKR.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
11
|
Shi C, Tong M, Cai Q, Li Z, Li P, Lu Y, Cao Z, Liu H, Zhao HP, Yuan S. Electrokinetic-Enhanced Bioremediation of Trichloroethylene-Contaminated Low-Permeability Soils: Mechanistic Insight from Spatio-Temporal Variations of Indigenous Microbial Community and Biodehalogenation Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5046-5055. [PMID: 36926893 DOI: 10.1021/acs.est.3c00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrokinetic-enhanced bioremediation (EK-Bio), particularly bioaugmentation with injection of biodehalogenation functional microbes such as Dehalococcoides, has been documented to be effective in treating a low-permeability subsurface matrix contaminated with chlorinated ethenes. However, the spatio-temporal variations of indigenous microbial community and biodehalogenation activity of the background matrix, a fundamental aspect for understanding EK-Bio, remain unclear. To fill this gap, we investigated the variation of trichloroethylene (TCE) biodehalogenation activity in response to indigenous microbial community succession in EK-Bio by both column and batch experiments. For a 195 day EK-Bio column (∼1 V/cm, electrolyte circulation, lactate addition), biodehalogenation activity occurred first near the cathode (<60 days) and then spread to the anode (>90 days), which was controlled by electron acceptor (i.e., Fe(III)) competition and microbe succession. Amplicon sequencing and metagenome analysis revealed that iron-reducing bacteria (Geobacter, Anaeromyxobacter, Geothrix) were enriched within initial 60 d and were gradually replaced by organohalide-respiring bacteria (versatile Geobacter and obligate Dehalobacter) afterward. Iron-reducing bacteria required an initial long time to consume the competitive electron acceptors so that an appropriate reductive condition could be developed for the enrichment of organohalide-respiring bacteria and the enhancement of TCE biodehalogenation activity.
Collapse
Affiliation(s)
- Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Qizheng Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Zhengtao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Zixuan Cao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310030, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| |
Collapse
|
12
|
Hernik D, Gatti F, Brenna E, Szczepańska E, Olejniczak T, Boratyński F. Stereoselective synthesis of whisky lactone isomers catalyzed by bacteria in the genus Rhodococcus. Front Microbiol 2023; 14:1117835. [PMID: 36744099 PMCID: PMC9893411 DOI: 10.3389/fmicb.2023.1117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Whisky lactone is a naturally occurring fragrance compound in oak wood and is widely used as a sensory additive in food products. However, safe and efficient methods for the production of its individual enantiomers for applications in the food industry are lacking. The aim of this study was to develop an efficient and highly stereoselective process for the synthesis of individual enantiomeric forms of whisky lactones. The proposed three-step method involves (1) column chromatography separation of a diastereoisomeric mixture of whisky lactone, (2) chemical reduction of cis-and trans-whisky lactones to corresponding syn-and anti-diols, and (3) microbial oxidation of racemic diols to individual enantiomers of whisky lactone. Among various bacteria in the genera Dietzia, Gordonia, Micrococcus, Rhodococcus, and Streptomyces, R. erythropolis DSM44534 and R. erythropolis PCM2150 effectively oxidized anti-and syn-3-methyl-octane-1,4-diols (1a-b) to corresponding enantiomerically pure cis-and trans-whisky lactones, indicating high alcohol dehydrogenase activity. Bio-oxidation catalyzed by whole cells of these strains yielded enantiomerically pure isomers of trans-(+)-(4S,5R) (2a), trans-(-)-(4R,5S) (2b), and cis-(+)-(4R,5R) (2d) whisky lactones. The optical density of bacterial cultures and the impact of the use of acetone powders as catalysts on the course of the reaction were also evaluated. Finally, the application of R. erythropolis DSM44534 in the form of an acetone powder generated the enantiomerically enriched cis-(-)-(4S,5S)-isomer (2c) from the corresponding syn-diol (1b). The newly developed method provides an improved approach for the synthesis of chiral whisky lactones.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland,*Correspondence: Dawid Hernik, ✉
| | - Francesco Gatti
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland,Filip Boratyński, ✉
| |
Collapse
|
13
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
14
|
An Overview of Emerging Cyanide Bioremediation Methods. Processes (Basel) 2022. [DOI: 10.3390/pr10091724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cyanide compounds are hazardous compounds which are extremely toxic to living organisms, especially free cyanide in the form of hydrogen cyanide gas (HCN) and cyanide ion (CN−). These cyanide compounds are metabolic inhibitors since they can tightly bind to the metals of metalloenzymes. Anthropogenic sources contribute significantly to CN− contamination in the environment, more specifically to surface and underground waters. The treatment processes, such as chemical and physical treatment processes, have been implemented. However, these processes have drawbacks since they generate additional contaminants which further exacerbates the environmental pollution. The biological treatment techniques are mostly overlooked as an alternative to the conventional physical and chemical methods. However, the recent research has focused substantially on this method, with different reactor configurations that were proposed. However, minimal attention was given to the emerging technologies that sought to accelerate the treatment with a subsequent resource recovery from the process. Hence, this review focuses on the recent emerging tools that can be used to accelerate cyanide biodegradation. These tools include, amongst others, electro-bioremediation, anaerobic biodegradation and the use of microbial fuel cell technology. These processes were demonstrated to have the possibility of producing value-added products, such as biogas, co-factors of neurotransmitters and electricity from the treatment process.
Collapse
|
15
|
Góngora E, Chen YJ, Ellis M, Okshevsky M, Whyte L. Hydrocarbon bioremediation on Arctic shorelines: Historic perspective and roadway to the future. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119247. [PMID: 35390417 DOI: 10.1016/j.envpol.2022.119247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Climate change has become one of the greatest concerns of the past few decades. In particular, global warming is a growing threat to the Canadian high Arctic and other polar regions. By the middle of this century, an increase in the annual mean temperature of 1.8 °C-2.7 °C for the Canadian North is predicted. Rising temperatures lead to a significant decrease of the sea ice area covered in the Northwest Passage. As a consequence, a surge of maritime activity in that region increases the risk of hydrocarbon pollution due to accidental fuel spills. In this review, we focus on bioremediation approaches on Arctic shorelines. We summarize historical experimental spill studies conducted at Svalbard, Baffin Island, and the Kerguelen Archipelago, and review contemporary studies that used modern omics techniques in various environments. We discuss how omics approaches can facilitate our understanding of Arctic shoreline bioremediation and identify promising research areas that should be further explored. We conclude that specific environmental conditions strongly alter bioremediation outcomes in Arctic environments and future studies must therefore focus on correlating these diverse parameters with the efficacy of hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Esteban Góngora
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Madison Ellis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
16
|
Fan R, Tian H, Wu Q, Yi Y, Yan X, Liu B. Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126959. [PMID: 34449353 DOI: 10.1016/j.jhazmat.2021.126959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism of bio-electrokinetic (BIO-EK) remediation to improve the degradation of pyrene was evaluated based on an analysis of the intermediate products and the microbial community. The results show that BIO-EK remediation has a higher pyrene degradation efficiency on pyrene and its intermediate products than the bioremediation and electrokinetic (EK) remediation processes. A series of intermediate products were detected. According to the type of the intermediate products, two degradation pathways, biological metabolism and electrochemical oxidation, are proposed in the BIO-EK remediation of pyrene. Furthermore, the primary microbial taxa involved in the pollutant degradation changed, which led to variations in the functional gene components. The abundant and functional genes related to metabolism were specifically analyzed. The results indicate that the electric field promotes the expression of metabolisms associated with 14 carbohydrates, 13 lipids, 13 amino acids, five energies, and in particular, 11 xenobiotics. These results suggest that in addition to the promotion effect on the microbial metabolism caused by the electric field, BIO-EK remediation can promote the degradation of pollutants due to the coexistence of a microbial metabolic pathway and an electrochemical oxidation pathway.
Collapse
Affiliation(s)
- Ruijuan Fan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China.
| | - Haihua Tian
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Qiong Wu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Yuanyuan Yi
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Xingfu Yan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| | - Bingru Liu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| |
Collapse
|
17
|
Shouli Pour F, Jensen PE, Pedersen KB, Lejon T. Comparison of 2- and 3-compartment electrodialytic remediation cells for oil polluted soil from northwest Russia. ENVIRONMENTAL TECHNOLOGY 2021; 42:3900-3906. [PMID: 32241239 DOI: 10.1080/09593330.2020.1749943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Electrodialytic remediation is a method based on electrokinetics, in which an electric field of low intensity increases the availability of pollutants in solid waste materials. The electric field induces processes that mobilise and transport inorganic and organic pollutants. The transport of ions in the electrodialytic cell is controlled by employing ion-exchange membranes, allowing separation of the electrodes from the solids. In this study, using a two cell design, electrodialytic experiments were conducted to compare remediation of a heavily oil-polluted soil from Arkhangelsk, Russia. The 2-compartment cell has not previously been employed for electrodialytic removal of organic pollutants and was tested along with the traditional 3-compartment design. The influence of experimental variables (current density, remediation time, stirring and light) and settings on the two cell designs was investigated. The highest removal (77%) of total hydrocarbons (THC) was observed in the 3-compartment cell at high current density (0.68 mA/cm2), longer remediation time (28 days), stirring and exposure to daylight. High current density and stirring increased the removal efficiencies in both cell designs. Within the studied experimental domain, the removal efficiencies in the 3-compartment cell (10-77%) were, however, higher than those observed in the 2-compartment cell (0-38%).
Collapse
Affiliation(s)
- Fatemeh Shouli Pour
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsoe, Norway
| | - Pernille E Jensen
- Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Tore Lejon
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsoe, Norway
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
18
|
The influence of electrokinetic bioremediation on subsurface microbial communities at a perchloroethylene contaminated site. Appl Microbiol Biotechnol 2021; 105:6489-6497. [PMID: 34417847 DOI: 10.1007/s00253-021-11458-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is an increased interest in finding remedies for contamination in low permeability and advection-limited aquifers. A technology applicable at these sites, electrokinetic-enhanced bioremediation (EK-BIO), combines traditional bioremediation and electrokinetic technologies by applying direct current to transport bioremediation amendments and microbes in situ. The effect of this technology on the native soil microbial community has only been previously investigated at the bench scale. This research explored the influence of EK-BIO on subsurface microbial communities at a field-scale demonstration site. The results showed that, similar to the findings in laboratory studies, alpha diversity decreased and beta diversity differed temporally, based on treatment phase. Enrichments in specific taxa were linked to the bioaugmentation culture and electron donor. Overall, findings from our study, one of the first field-scale investigations of the influence of electrokinetic bioremediation on subsurface microbial communities, are very similar to bench-scale studies on the topic, suggesting good correlation between laboratory and field experiments on EK-BIO and showing that lessons learned at the benchtop are important and relevant to field-scale implementation. KEY POINTS: • Microbial community analysis of field samples validates laboratory study results • Bioaugmentation cultures and electron donors have largest effect on microbial community.
Collapse
|
19
|
Inglis AM, Head NA, Chowdhury AIA, Nunez Garcia A, Reynolds DA, Hogberg D, Edwards E, Lomheim L, Weber K, Wallace SJ, Austrins LM, Hayman J, Auger M, Sidebottom A, Eimers J, Gerhard JI, O'Carroll DM. Electrokinetically-enhanced emplacement of lactate in a chlorinated solvent contaminated clay site to promote bioremediation. WATER RESEARCH 2021; 201:117305. [PMID: 34119968 DOI: 10.1016/j.watres.2021.117305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Bioremediation through the injection of electron donors and bacterial cultures is effective at treating chlorinated solvent contamination. However, it has had limited application in low permeability zones where amendments cannot be delivered successfully. This field-scale study investigated the application of electrokinetics to enhance the delivery of lactate at a clay site contaminated with chlorinated solvents. Groundwater and soil samples were collected before, during and for 1 year after the 71-day field test and analyzed for a wide suite of chemical and biological parameters. Lactate was successfully delivered to all monitoring locations. Lactate emplacement resulted in the stimulation of bacterial populations, specifically within the phylum Firmicutes, which contains fermenters and strict anaerobes. This likely led to biodegradation, as the field trial resulted in significant decreases in both soil and aqueous phase chlorinated solvent concentrations. Contaminant decreases were also partially attributable to dilution, given evidence of some advective lactate flux. This research provides evidence that electrokinetically-enhanced bioremediation has potential as a treatment strategy for contaminated low permeability strata.
Collapse
Affiliation(s)
- Ainsley M Inglis
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Nicholas A Head
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Ahmed I A Chowdhury
- Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - David A Reynolds
- Geosyntec Consultants, 130 Stone Road W, Guelph, N1G 3Z2, ON, Canada
| | - Dave Hogberg
- Geosyntec Consultants, 130 Stone Road W, Guelph, N1G 3Z2, ON, Canada
| | - Elizabeth Edwards
- University of Toronto, 27 King's College Cir, Toronto, ON M5S 3H7, Canada
| | - Line Lomheim
- University of Toronto, 27 King's College Cir, Toronto, ON M5S 3H7, Canada
| | - Kela Weber
- Royal Military College of Canada, 13 General Crerar Crescent, Kingston, ON K7K 7B4, Canada
| | - Sarah J Wallace
- Royal Military College of Canada, 13 General Crerar Crescent, Kingston, ON K7K 7B4, Canada
| | - Leanne M Austrins
- Dow Chemical, Environmental Remediation and Compliance, Midland, MI, 48674, USA
| | | | - Marlaina Auger
- Geosyntec Consultants, 130 Stone Road W, Guelph, N1G 3Z2, ON, Canada
| | | | - Jake Eimers
- Jacobs, 72 Victoria St S, Kitchener, N2G 4Y9, ON, Canada
| | - Jason I Gerhard
- Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052 Australia.
| |
Collapse
|
20
|
Zhang M, Wu B, Guo P, Wang S, Guo S. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil under the superimposed electric field condition. CHEMOSPHERE 2021; 273:128723. [PMID: 33127102 DOI: 10.1016/j.chemosphere.2020.128723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
An innovative superimposed electric field (SEF) was designed with the aim to achieve uniform removal of polycyclic aromatic hydrocarbons (PAHs) in soil. Also the influence of SEF on the bioremediation efficiency of PAHs was investigated in compared with the common electric field (CEF). Five experiments were conducted in this study, namely EK-CEF (applied CEF), EKB-CEF (CEF enhanced bioremediation), EK-SEF (applied SEF), EKB-SEF (SEF enhanced bioremediation), and Bio (bioremediation). The results indicated that electric field with periodically reversed polarity could effectively prevent the occurrence of large changes in soil pH, temperature, and electric current. The electric field intensity of SEF was concentrated in the range of 0.5-1.5 V/cm, and the difference between the maximum and minimum PAHs removal percentage in EK-SEF was just 5.4%, in comparison to 14.8% in EK-CEF. The bioremediation promoting effect did not show significant difference between SEF and CEF. Compared to Bio, the removal percentages of the 5-ring and 6-ring PAHs attributed to the degrading bacteria were much higher in EKB-SEF and EKB-CEF. Moreover, the microbial number increased with the distance away from electrodes, and the microbial community changed correspondingly. All these would be resulted in differences removal efficiencies among different PAHs components. Despite its intrinsic advantages, the influence of SEF on soil physicochemical and biological properties needs further study.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
21
|
Guedes P, Dionísio J, Couto N, Mateus EP, Pereira CS, Ribeiro AB. Electro-bioremediation of a mixture of structurally different contaminants of emerging concern: Uncovering electrokinetic contribution. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124304. [PMID: 33153782 DOI: 10.1016/j.jhazmat.2020.124304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/02/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
This study analyses the electrokinetic (EK) contribution to the removal from a clay soil of a mixture of 10 different contaminants of emerging concern (CECs; 17β-estradiol, E2; sulfamethoxazole, SMX; bisphenol A, BPA; ibuprofen, IBU; 17α-ethinylestradiol, EE2; oxybenzone, OXY; diclofenac, DCF; triclosan, TCS; caffeine, CAF; carbamazepine, CBZ). After 4 days, the CECs natural attenuation was between 0% (CBZ) and 90% (E2) yet increasing with the application of EK (20 mA, 12 h ON/OFF) to 14% (CBZ) and 100% (E2). When EK was applied, the CECs more recalcitrant to biodegradation (i.e. ≤ 13% biotic decay) mostly underwent electro-chemical induced degradation (OXY, DCF, TCS, CAF, CBZ). Daily irrigation enhanced the rates of the electro-oxidation -osmosis and -migration, increasing the CECs decay. After 8 days of EK treatment, the CECs decay increased, surpassing the decay lag phase of some compounds (OXY, TCS, and CBZ). Yet after 16 days, most CECs showed similar removals with and without EK, with EK only acting positively on SMX, OXY, TCS and CBZ (ca. +10%). Our results support that EK application can improve the removal of CECs from soil, however, under the conditions tested, 16-day treatment lead to pH alterations that decreased the bioremediation efficiency and inhibited electro-degradation near the cathode.
Collapse
Affiliation(s)
- Paula Guedes
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Joana Dionísio
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Nazaré Couto
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Eduardo P Mateus
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alexandra B Ribeiro
- CENSE - Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
22
|
Sustainability in ElectroKinetic Remediation Processes: A Critical Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su13020770] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, the development of suitable technologies for the remediation of environmental contaminations has attracted considerable attention. Among these, electrochemical approaches have gained prominence thanks to the many possible applications and their proven effectiveness. This is particularly evident in the case of inorganic/ionic contaminants, which are not subject to natural attenuation (biological degradation) and are difficult to treat adequately with conventional methods. The purpose of this contribution is to present a critical overview of electrokinetic remediation with particular attention on the sustainability of the various applications. The basis of technology will be briefly mentioned, together with the phenomena that occur in the soil and how that will allow its effectiveness. The main critical issues related to this approach will then be presented, highlighting the problems in terms of sustainability, and discussing some possible solutions to reduce the environmental impact and increase the cost-effectiveness and sustainability of this promising technology.
Collapse
|
23
|
Refaey M, Abdel-Azeem AM, Abo Nahas HH, Abdel-Azeem MA, El-Saharty AA. Role of Fungi in Bioremediation of Soil Contaminated with Heavy Metals. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Fan R, Ma W, Zhang H. Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142463. [PMID: 33113694 DOI: 10.1016/j.scitotenv.2020.142463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the interactions among total petroleum hydrocarbons (TPH), soil parameters, and microbial communities during the bio-electrokinetic (BIO-EK) remediation process. The study was conducted on a petroleum-contaminated saline-alkali soil inoculated with petroleum-degrading bacteria with a high saline-alkali resistance. The results showed that the degradation of TPH was better explained by second-order kinetics, and the efficacy and sustainability of the BIO-EK were closely related to soil micro-environmental factors and microbial community structures. During a 98-d remediation process, the removal rate of TPH was highest in the first 35 d, and then decreased gradually in the later period, which was concurrent with changes in the soil physicochemical properties (conductivity, inorganic ions, pH, moisture, and temperature) and subsequent shifts in the microbial community structures. According to the redundancy analysis (RDA), TPH, soil temperature, and electric conductivity, as well as SO42-, Cl-, and K+ played a better role in explaining the changes in the microbial community at 0-21 d. However, pH and NO3- better explained the changes in the microbial community at 63-98 d. In particular, the dominant genera, Marinobacter and Bacillus, showed a positive correlation with TPH, conductivity, and SO42-, Cl-, and K+, but a negative relationship with pH and NO3. Rhodococcus was positively correlated with soil temperature. The efficacy and sustainability of the BIO-EK remediation process is likely to be improved by controlling these properties.
Collapse
Affiliation(s)
- Ruijuan Fan
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Wenping Ma
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Hanlei Zhang
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
25
|
Wang Z, Wang H, Wang H, Li Q, Li Y. Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110981. [PMID: 32678759 DOI: 10.1016/j.ecoenv.2020.110981] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination in soil due to human activities is a global environmental problem. To find a washing solution that can significantly decontaminate heavy metals and minimize damage to soil quality, six washing solutions (H3PO4, K2CO3, CH3COOK, KH2PO4, HNO3 and KNO3) were used at different concentrations to treat contaminated soil collected from the field. Furthermore, changes in soil physicochemical properties and heavy metal speciation among prewashed, postwashed and neutralized samples were tested. Additionally, soil enzyme activities and soil microbial diversities in contaminated soil among the prewashed, postwashed and neutralized samples were also measured. Finally, a pot experiment was conducted with Mentha haplocalyx to test the efficiency of soil washing. The results revealed that the optimum washing solution was 1% HNO3 and that the removal rates of Cd and Pb were 75.7% and 60.6%, respectively, under treatment conditions of 35 °C, 90 min and a solid-liquid ratio of 1:10. The pH, total phosphorous, available potassium, soil enzyme activities and soil microbial diversity decreased significantly after washing. However, after the neutralization of washed soil with Ca(OH)2, the available phosphorous, total nitrogen and some microorganisms increased significantly compared with those of the soil before washing. After treatment with 1% HNO3, the chemical forms of Cd and Pb in soil mainly existed as F1 (exchangeable) fractions, but the main forms of the two metals changed to F5 (residual) and F3 (bound to Fe-Mn oxides) fractions after neutralization with Ca(OH)2. In addition, the plant height, root length, and fresh and dry weight of M. haplocalyx were not significantly affected by soil neutralization, while the Pb, Cu and As concentrations in the aboveground parts significantly decreased. Therefore, although soil washing could effectively remove Pb and Cd in soil, it also resulted in a significant decline in soil quality, but soil neutralization could effectively alleviate the negative effects during soil washing.
Collapse
Affiliation(s)
- Zhongzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Yang Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| |
Collapse
|
26
|
Terzis D, Hicher P, Laloui L. Direct currents stimulate carbonate mineralization for soil improvement under various chemical conditions. Sci Rep 2020; 10:17014. [PMID: 33046811 PMCID: PMC7552400 DOI: 10.1038/s41598-020-73926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022] Open
Abstract
The present study integrates direct electric currents into traditional calcium carbonate mineralization to investigate electrochemical interactions and the subsequent crystalline growth of CaCO3 bonds in sand. A specific line of focus refers to the effect of three chemical reactive species involved in the stimulated geo-chemo-electric system, namely CaCl2, Ca(CH3COO)2 and Ca(CH3CH2(OH)COO)2. By altering treatment conditions and the applied electric field, we capture distinctive trends related to the: (i) overall reaction efficiencies and distribution of CaCO3 crystals is sand samples; (ii) promotion of CaCO3 mineralization due to DC (iii) crystallographic and textural properties of mineralized bonds. The study introduces the concept of EA-MICP which stands for Electrically Assisted Microbially Induced Carbonate Precipitation as a means of improving the efficiency of soil bio-cementation compared to traditional MICP-based works. Results reveal both the detrimental and highly beneficial effects that electric currents can hold in the complex, reactive and transport processes involved. An interesting observation refers to the “doped” morphology of CaCO3 crystals, which precipitate under electric fields, validated by crystallographic analyses and microstructural observations.
Collapse
Affiliation(s)
- Dimitrios Terzis
- Soil Mechanics Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL ENAC IIC LMS Station 18, 1015, Lausanne, Switzerland.
| | - Patrick Hicher
- Soil Mechanics Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL ENAC IIC LMS Station 18, 1015, Lausanne, Switzerland
| | - Lyesse Laloui
- Soil Mechanics Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL ENAC IIC LMS Station 18, 1015, Lausanne, Switzerland
| |
Collapse
|
27
|
Crognale S, Cocarta DM, Streche C, D’Annibale A. Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. N Biotechnol 2020; 58:38-44. [DOI: 10.1016/j.nbt.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
|
28
|
Li F, Guo S, Wang S, Zhao M. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil. CHEMOSPHERE 2020; 254:126880. [PMID: 32957287 DOI: 10.1016/j.chemosphere.2020.126880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Electro-bioremediation is a promising technology for remediation of soil contaminated with persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs). During electro-bioremediation, electrical fields have been shown to increase pollutant degradation. However, it remains unclear whether there is an optimal strength for the electrical field applied that is conductive to the maximum role played by microbes. This study aimed to determine the optimal strength of electric field through the analysis of the effects of different voltages on the microbial community and activity. Four bench-scale experiments with voltages of 0, 1, 2 and 3 V cm-1 were conducted for 90 days in an aged PAH-contaminated soil. The spatiotemporal changes of the soil pH, moisture content and temperature, microbial biomass and community structure, and the degradation extent of PAHs were researched over 90 days. The results indicated that the total microbial biomass and degradation activity were highest at voltages of 2 V cm-1. The concentration of total phospholipid fatty acids, used to quantify soil microbial biomass, reached 65.7 nmol g-1 soil, and the mean degradation extent of PAHs was 44.0%. Similarly, the maximum biomass of actinomycetes, bacteria and fungus also occurred at the voltage of 2 V cm-1. The Gram-positive/Gram-negative and (cy17:0+cy 19:0)/(16:1ω7+18:1ω7) ratios also showed that the intensity of electric field and electrode reactions strongly influenced the microbial community structure. Therefore, to optimize the electro-bioremediation of PAH-contaminated soil, the strength of electric field needs to be selected carefully. This work provides reference for the development of novel electrokinetically enhanced bioremediation processes.
Collapse
Affiliation(s)
- Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Mingyang Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
29
|
Lu Q. Insights into the remediation of cadmium-pyrene co-contaminated soil by electrokinetic and the influence factors. CHEMOSPHERE 2020; 254:126861. [PMID: 32348925 DOI: 10.1016/j.chemosphere.2020.126861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The remediation of cadmium-pyrene co-contaminated soil by electrokinetic (EK) and the influence factors were investigated in this study. The artificial contaminated soils were treated for 20 days in EK experimental setups without electrolyte solution reservoirs, to simulate in-situ remediation of unsaturated soil. The results indicated that polarity-reversing electric field had maintained soil pH in the range of 7.27-7.67. Cadmium (Cd) contaminant would aggregate near electrodes, and the average Cd concentration in these areas had reached 72.21 mg/kg (original 51.6 mg/kg), while the value in soil farthest away from electrodes was 33.58 mg/kg. The reasons for Cd aggregated were: the insoluble hydroxide formations attribute to the frequently alternation of acid-base environment, and the decrease of pH and water holding capacity in soil away from electrodes would promote the dissolved Cd movement by electro-osmosis flow. Although the applied electric field could promote the growth and activity of pyrene-degrading microorganisms (PDM), the soluble Cd would be the restriction factor, especially in soil near electrodes. However, the highest (56.38%) pyrene removal efficiency (PRE) was achieved near electrodes due to the synergistic effect of electric filed and PDM, and PRE was positively correlated with the PDM number in soil away from electrodes.
Collapse
Affiliation(s)
- Qiang Lu
- Shanghai Prestige Environmental Engineering Co., LTD., Shanghai, 201499, China.
| |
Collapse
|
30
|
Liu S, Yang B, Liang Y, Xiao Y, Fang J. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16069-16085. [PMID: 32173779 DOI: 10.1007/s11356-020-08282-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 04/16/2023]
Abstract
Accumulation of heavy metals in agricultural soils due to human production activities-mining, fossil fuel combustion, and application of chemical fertilizers/pesticides-results in severe environmental pollution. As the transmission of heavy metals through the food chain and their accumulation pose a serious risk to human health and safety, there has been increasing attention in the investigation of heavy metal pollution and search for effective soil remediation technologies. Here, we summarized and discussed the basic principles, strengths and weaknesses, and limitations of common standalone approaches such as those based on physics, chemistry, and biology, emphasizing their incompatibility with large-scale applications. Moreover, we explained the effects, advantages, and disadvantages of the combinations of common single repair approaches. We highlighted the latest research advances and prospects in phytoremediation-chemical, phytoremediation-microbe, and phytoremediation-genetic engineering combined with remediation approaches by changing metal availability, improving plant tolerance, promoting plant growth, improving phytoextraction and phytostabilization, etc. We then explained the improved safety and applicability of phytoremediation combined with other repair approaches compared to common standalone approaches. Finally, we established a prospective research direction of phytoremediation combined with multi-technology repair strategy.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunshan Liang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, 410128, People's Republic of China.
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha, 410128, People's Republic of China.
| |
Collapse
|
31
|
Zhang M, Guo P, Wu B, Guo S. Change in soil ion content and soil water-holding capacity during electro-bioremediation of petroleum contaminated saline soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:122003. [PMID: 31901846 DOI: 10.1016/j.jhazmat.2019.122003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
This study investigated changes in soil ion content and soil water-holding capacity during electro-bioremediation (EK-Bio) of petroleum contaminated saline soil (ion content of 3.92 g/kg). The results indicated that the soil ions surrounded the electrodes with increasing time, thus changing the soil water-holding capacity. According to the Van Genuchten model fitting results, the soil residual water content (θr) increased with the soil ion content, which represented a capacity decrease of the soil water supply. At the end of the EK-Bio experiment, the θr values in the soil near (site A) and far from (site B) the electrodes were 19.1 % and 12.1 %, where the soil ion content was 7.92 g/kg and 0.55 g/kg, respectively. The ion aggregation process significantly impacted the growth of soil microbial. The bacteria numbers decreased when the soil ion content was high (7.41 g/kg, site A) and low (0.84 g/kg, site B) after 70 days of treatment. The applied electric field significantly enhanced the bioremediation efficiency. However, the biodegradation promotion effect was the weakest at site A. The synergistic effect between the applied electric field and degrading bacteria was delayed.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
32
|
Han Z, Jiao W, Tian Y. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties. CHEMOSPHERE 2020; 239:124496. [PMID: 31505446 DOI: 10.1016/j.chemosphere.2019.124496] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Electrical resistance heating (ERH) is a promising thermal remediation method for treating volatile soil pollutants. However, the remediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) based on lab-scale ERH devices must be extensively studied to determine the factors affecting the remediation. Therefore, this study used a lab-scale ERH equipment to investigate the influence factors of ERH, PAH removal efficiency, and changes in soil properties through the treatment process. The results suggested that moisture and salinity were basic factors affecting electric conductive capability; heating 15 g of soil to the target temperature required at least 4 g solution of 0.1% salt. Meanwhile, higher electric strength can ensure heating efficiency and maximum temperature. The removal efficiency of PAHs, which is highly related to boiling point, was significantly affected by its benzene rings and bond structure; during 90 min ERH treatment, more than 40% of the pollutants were removed synchronously with the evaporation of water. Hence, co-boiling with water was confirmed to be the primary mechanism of ERH. The influence of the treatment on soil properties (organic matter, particle size, fertility, enzymatic activity) was limited, suggesting that soil functionality can be retained by ERH.
Collapse
Affiliation(s)
- Ziyu Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China 18 Shuangqing Road,Haidian District Beijing 100085, PR China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China 18 Shuangqing Road,Haidian District Beijing 100085, PR China.
| | - Yao Tian
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China 18 Shuangqing Road,Haidian District Beijing 100085, PR China
| |
Collapse
|
33
|
Hassan IA, Mohamedelhassan EE, Yanful EK, Weselowski B, Yuan ZC. Isolation and characterization of novel bacterial strains for integrated solar-bioelectrokinetic of soil contaminated with heavy petroleum hydrocarbons. CHEMOSPHERE 2019; 237:124514. [PMID: 31408796 DOI: 10.1016/j.chemosphere.2019.124514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the isolation and characterization of three novel bacterial strains; Acinetobacter calcoaceticus, Sphingobacterium multivorum, and Sinorhizobium, isolated form agriculture land. From three hundred strains of bacteria, the three isolates were identified for their superior diesel degradation ability by a series of bench-scale tests. The isolates were further investigated in bench tests for their ability to grow in different diesel fuel concentrations, temperature and pH; degrade diesel fuel in vitro; and for the identification of functional genes. Semi-pilot bioelectrokinetic tests were conducted in three electrokinetic cells. An innovative electrode configuration was adopted to stabilize the soil pH and water content during the test. The genes expressed in the diesel degradation process including Lipases enzymes Lip A, LipB, Alk-b2, rubA, P450, and 1698/2041 were detected in the three isolates. The results showed that the solar panel voltage output is in agreement with the trapezoid model. The temperatures in the cells were found to be 5-7 °C higher than the ambient temperature. The electrode configuration succeeded in stabilizing the soil pH and water content, preventing the development of a pH gradient, important progress for the survival of bacteria. The diesel degradation in the soil after bioelectrokinetic tests were 20-30%, compared to 10-12% in the controls. The study succeeded in developing environmentally friendly technology employing novel bacterial strains to degrade diesel fuel and utilizing solar panels to produce renewable energy for bioelectrokinetics during the winter season.
Collapse
Affiliation(s)
- Ikrema A Hassan
- Department of Civil and Environmental Engineering, Taibah University, Al Medina, Saudi Arabia; London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada.
| | | | - Ernest K Yanful
- Department of Civil and Environmental Engineering, Western University, London, Canada
| | - Brian Weselowski
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada
| | - Ze-Chun Yuan
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada; Department of Microbiology and Immunology, Western University, London, Canada
| |
Collapse
|
34
|
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019; 20:E4787. [PMID: 31561555 PMCID: PMC6801914 DOI: 10.3390/ijms20194787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
The application of purified enzymes as well as whole-cell biocatalysts in synthetic organic chemistry is becoming more and more popular, and both academia and industry are keen on finding and developing novel enzymes capable of performing otherwise impossible or challenging reactions. The diverse genus Rhodococcus offers a multitude of promising enzymes, which therefore makes it one of the key bacterial hosts in many areas of research. This review focused on the broad utilization potential of the genus Rhodococcus in organic chemistry, thereby particularly highlighting the specific enzyme classes exploited and the reactions they catalyze. Additionally, close attention was paid to the substrate scope that each enzyme class covers. Overall, a comprehensive overview of the applicability of the genus Rhodococcus is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Hanna Busch
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
35
|
Huang H, Tang J, Niu Z, Giesy JP. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. CHEMOSPHERE 2019; 229:418-425. [PMID: 31082709 DOI: 10.1016/j.chemosphere.2019.04.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 03/09/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
An electrokinetics (EK)-enhanced phytoremediation system with ryegrass was constructed to remediate crude oil-polluted soil. The four treatments employed in this study included (1) without EK or ryegrass (CK-NR), (2) EK only (EK-NR), (3) ryegrass only (CK-R), and (4) EK and ryegrass (EK-R). After 30d of ryegrass growth, EK at 1.0 V·cm-1 with polarity reversal (PR-EK) was supplied for another 30 d. The electric current was recorded during remediation. The pH, electrical conductivity, total petroleum hydrocarbon content (TPH), 16S rDNA, functional genes of AlkB, Nah, and Phe, DGGE, and dehydrogenase activity in soil were measured. The physical-chemical indexes of the plant included the length, dry mass, and chlorophyll contents of the ryegrass. Results showed that EK-R removed 18.53 ± 0.53% of TPH, which was higher than that of other treatments (13.34-14.31%). Meanwhile, the values of 16S rDNA, AlkB, Nah, Phe, and dehydrogenase activity in the bulk soil of EK-R all increased. Further clustering analysis with numbers of genes and DGGE demonstrated that EK-R was similar to the ryegrass rhizosphere soils in both EK-R and CK-R, while the EK treatment of EK-NR was similar to that of CK-NR without EK and ryegrass. These results indicate that the PR-EK treatment used in this experiment successfully enlarged the existing scale of the rhizosphere microorganisms, improved microbial activity and enhanced degradation of TPH.
Collapse
Affiliation(s)
- Hua Huang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhirui Niu
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
36
|
Yang GCC. Integrated electrokinetic processes for the remediation of phthalate esters in river sediments: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:963-972. [PMID: 31096426 DOI: 10.1016/j.scitotenv.2018.12.334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Concerning the contamination of phthalate esters (PAEs) in river sediments, this mini-review introduces four recently reported novel "integrated electrokinetic (EK) processes" for the remediation purpose, namely two combined technologies of the EK process and advanced oxidation process (EK-AOP Processes) and two combined technologies of the EK process and biological process (EK-BIO Processes). The following is a comprehensive summary for these remediation processes: (1) the EK process coupled with nano-Fe3O4/S2O82- oxidation process - Test results have shown that nanoscale Fe3O4 played a significant role in activating persulfate oxidation. Even a recalcitrant compound like di(2‑ethylhexyl)phthalate (DEHP), its concentration in test sediment was reduced to 1.97 mg kg-1, far below the regulatory levels set by Taiwan EPA; (2) the EK process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite (nano-SHM) - Test results have revealed that simultaneous injection of nano-SHM slurry and H2O2 into the anode reservoir and sediment compartment is a good practice. 70-99% in removal efficiency was obtained for various target PAEs; (3) enhanced in situ bioremediation coupled with the EK process for promoting the growth of intrinsic microorganisms by adding H2O2 as an oxygen release compound (ORC) - Test results have demonstrated that an intermittent mode of injecting lab-prepared ORC directly into the contaminant zone would be beneficial to the growth of intrinsic microorganisms in test sediment for in situ bioremediation of target PAEs; and (4) coupling of a second-generation ORC (designated 2G-ORC) with the EK-biological process - Test results have proved that 2G-ORC is long-lasting and can be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced biodegradation of PAEs. Except DEHP having a residual concentration of 4 μg kg-1, all other target PAEs in test sediment were totally removed by this novel combined remediation process.
Collapse
Affiliation(s)
- Gordon C C Yang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
37
|
Hassan IA, Mohamedelhassan EE, Yanful EK, Yuan ZC. Mitigation of soil contaminated with diesel fuel using bioelectrokinetics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:416-426. [PMID: 30676255 DOI: 10.1080/10934529.2018.1558903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the effectiveness of bioelectrokinetics in rehabilitating a silty clayey sand contaminated with diesel fuel using three novel bacterial strains; Acinetobacter calcoaceticus, Sphingobacterium multivorum, and Sinorhizobium, isolated form agriculture land. Three electrokinetic bioremediation cells were used to conduct the tests and a novel electrode configuration technique was used to stabilize pH and water content in the soil specimen. Solar photovoltaic panels were used to generate sustainable energy for the process. The tests were carried out in outdoors for 55 days. Applied voltage, current passing through the electrokinetic cell, and the temperature of the soil specimen were recorded periodically during the test. The pH, water content, and diesel concentration were determined at the end of the tests. Over the test period, the voltage typically increased from zero before sunrise, remained relatively stabilized for about 4 h, and then started to decrease and dropped to zero by sunset. The temperatures in the cells were found to be 5-7 °C higher than the ambient temperature. The innovative electrode configuration succeeded in keeping the pH of soil to remain the same and thereby prevented the development of a pH gradient in the soil, an important development for survival of the bacteria. The diesel degradation in the soil after bioelectrokinetics were 20-30%, compared to 10-12% in the control test. The study was successful in developing environmentally friendly technology employing novel bacterial strains to degrade diesel fuel and utilizing solar panel to produce renewable energy for bioelectrokinetic during the winter season.
Collapse
Affiliation(s)
- Ikrema A Hassan
- a Department of Civil and Environmental Engineering , Western University , London , Ontario, Canada
- b London Research and Development Centre , Agriculture and Agri-Food Canada , London , Ontario, Canada
| | | | - Ernest K Yanful
- c Department of Civil Engineering , Lakehead University , Thunder Bay , Ontario, Canada
| | - Ze-Chun Yuan
- d Department of Microbiology and Immunology , Western University , London , Ontario, Canada
| |
Collapse
|
38
|
Zampolli J, Zeaiter Z, Di Canito A, Di Gennaro P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl Microbiol Biotechnol 2018; 103:1069-1080. [PMID: 30554387 DOI: 10.1007/s00253-018-9539-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/05/2023]
Abstract
The past few years observed a breakthrough of genome sequences of bacteria of Rhodococcus genus with significant biodegradation abilities. Invaluable knowledge from genome data and their functional analysis can be applied to develop and design strategies for attenuating damages caused by hydrocarbon contamination. With the advent of high-throughput -omic technologies, it is currently possible to utilize the functional properties of diverse catabolic genes, analyze an entire system at the level of molecule (DNA, RNA, protein, and metabolite), simultaneously predict and construct catabolic degradation pathways. In this review, the genes involved in the biodegradation of hydrocarbons and several emerging plasticizer compounds in Rhodococcus strains are described in detail (aliphatic, aromatics, PAH, phthalate, polyethylene, and polyisoprene). The metabolic biodegradation networks predicted from omics-derived data along with the catabolic enzymes exploited in diverse biotechnological and bioremediation applications are characterized.
Collapse
Affiliation(s)
- Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Zahraa Zeaiter
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Alessandra Di Canito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
39
|
Guo X, Zhao G, Zhang G, He Q, Wei Z, Zheng W, Qian T, Wu Q. Effect of mixed chelators of EDTA, GLDA, and citric acid on bioavailability of residual heavy metals in soils and soil properties. CHEMOSPHERE 2018; 209:776-782. [PMID: 29960945 DOI: 10.1016/j.chemosphere.2018.06.144] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Soil washing is an effective technology for the remediation of multi-metal contaminated soils. However, bioavailability of residual heavy metals in soils and soil properties could be changed during washing processes. This study investigated the effects of EDTA, FeCl3 and mixed chelators (MC) on bioavailability of residual heavy metals in soils and soil biological properties after soil washing. The results showed that soil washing by chelators successfully decreased the total concentration of heavy metals in soils, while it did not effectively decrease the exchangeable fraction of heavy metals, especially for calcareous contaminated soil. The toxic effects of the washed soils seemed to exhibit higher correlations with the changes in the soil properties such as soil pH and nutrient concentrations. As compared with FeCl3 and EDTA, MC tended to moderately change soil properties (e.g., pH, total N, available N, available P, and exchangeable K, Ca, and Mg). Additionally, MC-washed soil had the least influence on the soil enzymes activities, and had the highest germination and growth of Chinese cabbage. Accordingly, MC is a moderate washing solution in the removal of heavy metals from multi-metal contaminated soils, and had minimal negative effects on soil qualities.
Collapse
Affiliation(s)
- Xiaofang Guo
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Guohui Zhao
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Guixiang Zhang
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Qiusheng He
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| | - Zebin Wei
- College of Natural Resources and Environment, Key Laboratory of Ecological Agriculture of Ministry of Agriculture of China, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Zheng
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Tianwei Qian
- School of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Qitang Wu
- College of Natural Resources and Environment, Key Laboratory of Ecological Agriculture of Ministry of Agriculture of China, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
40
|
Gao YC, Guo SH, Wang JN, Zhang W, Chen GH, Wang H, Du J, Liu Y, Naidu R. Novel Bacillus cereus strain from electrokinetically remediated saline soil towards the remediation of crude oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26351-26360. [PMID: 29981021 DOI: 10.1007/s11356-018-2495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
A new strain SWH-15 was successfully isolated after initial electrokinetic remediation experiment using the same saline soil sampled from Shengli Oilfield, China. Four methods (morphological and biochemical characteristics, whole-cell fatty acid methyl esters (FAMEs) analysis, 16S rRNA sequence analysis and DNA G + C content and DNA-DNA hybridization analysis) were used to identify the taxonomic status of SWH-15 and confirmed that SWH-15 was a novel species of the Bacillus (B.) cereus group. Then, we assessed the degrading ability of the novel strain SWH-15 to crude oil through a microcosm experiment with four treatments, including control (CK), bioremediation using SWH-15 (Bio), electrokinetic remediation (EK), and combined bioremediation and electrokinetic remediation (Bio + EK). The results showed that the Bio + EK combined remediation treatment was more effective than the CK, Bio, and EK treatments in degrading crude oil contaminants. Bioaugmentation, by addition of the strain SWH-15 had synergistic effect with EK in Bio + EK treatment. Bacterial community analysis showed that electrokinetic remediation alone significantly altered the bacterial community of the saline soil. The addition of the strain SWH-15 alone had a weak effect on the bacterial community. However, the strain SWH-15 boosted the growth of other bacterial species in the metabolic network and weakened the impact of electrical field on the whole bacterial community structure in the Bio + EK treatment.
Collapse
Affiliation(s)
- Yong-Chao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Shu-Hai Guo
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China.
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.
| | - Jia-Ning Wang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Wen Zhang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Guan-Hong Chen
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Hui Wang
- School of Resources and Environment, University of Jinan, Jinan, 250022, China
| | - Jianhua Du
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
41
|
Selvi A, Aruliah R. A statistical approach of zinc remediation using acidophilic bacterium via an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology. CHEMOSPHERE 2018; 207:753-763. [PMID: 29859487 DOI: 10.1016/j.chemosphere.2018.05.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to isolate an indigenous acidophilic bacterium from tannery effluent contaminated sludge (TECS) sample and evaluate its potentiality towards the removal of zinc using an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology in zinc spiked soil at an initial concentration of 1000 mg/kg. The isolated acidophilic bacterium was characterized by biochemical and 16S rRNA molecular identification and was named as Serratia marcescens SMAR1 bearing an accession no. MG742410 in NCBI database. The effect of pH and inoculum dosage of SMAR 1 strain showed an optimal growth at pH 5.0 and 4% (v/v) respectively. Based on these experimental data, a statistical analysis was done using Design Expert computer software, v11 to study the interaction between the process parameters with respect to zinc reduction as an output response. Electrokinetic experiments were conducted in a customised EK cell under optimised process conditions, employing titanium electrodes. Experiments for zinc removal were demonstrated for bioleaching, electrokinetic (EK) and BEER technology. On comparing, the integrated process was found to evidence as an excellent metal remediation option with a maximum zinc removal of 93.08% in 72 h than plain bioleaching (72.86%) and EK (56.67%) in 96 h. This is the first report of zinc removal in a short period of time using Serratia marcescens. It is therefore concluded that the BEER approach can be regarded as an effective technology in cleaning up the metal contaminated environment with an easy recovery and reuse option within short period of time.
Collapse
Affiliation(s)
- Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| | - Rajasekar Aruliah
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| |
Collapse
|
42
|
Ramadan BS, Sari GL, Rosmalina RT, Effendi AJ. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:309-321. [PMID: 29689534 DOI: 10.1016/j.jenvman.2018.04.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit.
Collapse
Affiliation(s)
- Bimastyaji Surya Ramadan
- Faculty of Environmental Engineering, Institut Teknologi Yogyakarta, Yogyakarta, 55171, Indonesia.
| | - Gina Lova Sari
- Faculty of Engineering, Universitas Singaperbangsa, Karawang, 41361, Indonesia.
| | | | - Agus Jatnika Effendi
- Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| |
Collapse
|
43
|
Tahmasbian I, Safari Sinegani AA, Nguyen TTN, Che R, Phan TD, Hosseini Bai S. Application of manures to mitigate the harmful effects of electrokinetic remediation of heavy metals on soil microbial properties in polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26485-26496. [PMID: 28948525 DOI: 10.1007/s11356-017-0281-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) used with electrokinetic (EK) to remediate heavy metal-polluted soils is a toxic chelate for soil microorganisms. Therefore, this study aimed to evaluate the effects of alternative organic chelates to EDTA on improving the microbial properties of a heavy metal-polluted soil subjected to EK. Cow manure extract (CME), poultry manure extract (PME) and EDTA were applied to a lead (Pb) and zinc (Zn)-polluted calcareous soil which were subjected to two electric intensities (1.1 and 3.3 v/cm). Soil carbon pools, microbial activity, microbial abundance (e.g., fungal, actinomycetes and bacterial abundances) and diethylenetriaminepentaacetic acid (DTPA)-extractable Pb and Zn (available forms) were assessed in both cathodic and anodic soils. Applying the EK to soil decreased all the microbial variables in the cathodic and anodic soils in the absence or presence of chelates. Both CME and PME applied with two electric intensities decreased the negative effect of EK on soil microbial variables. The lowest values of soil microbial variables were observed when EK was combined with EDTA. The following order was observed in values of soil microbial variables after treating with EK and chelates: EK + CME or EK + PME > EK > EK + EDTA. The CME and PME could increase the concentrations of available Pb and Zn, although the increase was less than that of EDTA. Overall, despite increasing soil available Pb and Zn, the combination of EK with manures (CME or PME) mitigated the negative effects of using EK on soil microbial properties. This study suggested that the synthetic chelates such as EDTA could be replaced with manures to alleviate the environmental risks of EK application.
Collapse
Affiliation(s)
- Iman Tahmasbian
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia.
| | | | - Thi Thu Nhan Nguyen
- Genecology, School of Science, Health, Education and Engineering, University of the Sunshine Coast, QLD, Maroochydore DC, 4558, Australia
| | - Rongxiao Che
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia
| | - Thuc D Phan
- Australian River Institute, Griffith School of Environment, Griffith University, QLD, Nathan, 4111, Australia
| | - Shahla Hosseini Bai
- Environmental Future Research Institute, School of Biomolecular and Physical Science, Griffith University, Nathan, QLD, Australia
- Genecology, School of Science, Health, Education and Engineering, University of the Sunshine Coast, QLD, Maroochydore DC, 4558, Australia
| |
Collapse
|
44
|
Zhang M, Guo S, Li F, Wu B. Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1141-1149. [PMID: 28738174 DOI: 10.1080/10934529.2017.1342499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated the distribution of ion contents and microorganisms during the electro-bioremediation (EK-Bio) of petroleum-contaminated saline soil. The results showed that soil ions tend to accumulate around the electrodes, and the concentration was correlated with the distance from the electrodes. The average soil ion content was 7.92 g/kg around the electrodes (site A) and 0.55 g/kg at the furthest distance from the electrodes (site B) after 112 days of treatment, while the initial average content was 3.92 g/kg. Smooth linear (R2 = 0.98) loss of soil ions was observed at site C, which was closer to the electrodes than site B, and had a final average soil ion content of 1.96 g/kg. The dehydrogenase activity was much higher in EK-Bio test soil than in the Bio test soil after 28 days of treatment, and followed the order: site C > site B > site A. However, the soil dehydrogenase activity dropped continuously when the soil ion reached very high and low concentrations at sites A and B. The soil microbial community varied in sample sites that had different ion contents, and the soil microbial diversity followed the order: site C > site B > site A. The applied electric field clearly enhanced the biodegradation efficiency for soil petroleum contaminants. However, the biodegradation promotion effects were weakening in soils where the ion contents were extremely high and low (sites A and B). These results can provide useful information for EK-Bioremediation of organic-contaminated saline soil.
Collapse
Affiliation(s)
- Meng Zhang
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- b Institute of Applied Ecology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , Beijing , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| | - Shuhai Guo
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| | - Fengmei Li
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| | - Bo Wu
- a Institute of Applied Ecology , Chinese Academy of Sciences , Shenyang , P. R. China
- c National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process , Shenyang , P. R. China
| |
Collapse
|
45
|
Yuan Y, Guo S, Li F, Wu B, Yang X, Li X. Coupling electrokinetics with microbial biodegradation enhances the removal of cycloparaffinic hydrocarbons in soils. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:591-601. [PMID: 27501882 DOI: 10.1016/j.jhazmat.2016.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/21/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
An innovative approach that couples electrokinetics with microbial degradation to breakdown cycloparaffinic hydrocarbons in soils is described. Soils were spiked with cyclododecane, used as a model pollutant, at approximately 1000mgkg-1. A mixture of petroleum-utilizing bacteria was added to achieve about 106-107 CFUg-1. Then, three treatments were applied for 25 days: (1) no electric field, control; (2) a constant voltage gradient of 1.3Vcm-1 in one direction; and (3) the same electric field, but with periodical switching of polarity. The degradation pathway of cyclododecane was not changed by the electric field, but the dynamic processes were remarkably enhanced, especially when the electric field was periodically switched. After 25 days, 79.9% and 87.0% of the cyclododecane was degraded in tests 2 and 3, respectively; both much higher than the 61.5% degraded in test 1. Analysis of the intermediate products strongly indicated that the competitive advantage of the electric field was the increase in ring-breaking of cyclododecane, resulting in greater concentrations of linear substances that were more susceptible to microbial attack, that is, β-oxidation. The conditions near the cathode were more favorable for the growth and metabolism of microorganisms, which also enhanced β-oxidation of the linear alkanoic acids. Therefore, when the electric field polarity was periodically switched, the functions of both the anode and cathode electrodes were applied across the whole soil cell, further increasing the degradation efficiency.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Safety Evaluation Center, Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xuelian Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, China
| | - Xuan Li
- Pesticide Testing Laboratory, Shenyang Research Institute of Chemical Industry, Shenyang, China
| |
Collapse
|
46
|
Lim MW, Lau EV, Poh PE. A comprehensive guide of remediation technologies for oil contaminated soil - Present works and future directions. MARINE POLLUTION BULLETIN 2016; 109:14-45. [PMID: 27267117 DOI: 10.1016/j.marpolbul.2016.04.023] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Oil spills result in negative impacts on the environment, economy and society. Due to tidal and waves actions, the oil spillage affects the shorelines by adhering to the soil, making it difficult for immediate cleaning of the soil. As shoreline clean-up is the most costly component of a response operation, there is a need for effective oil remediation technologies. This paper provides a review on the remediation technologies for soil contaminated with various types of oil, including diesel, crude oil, petroleum, lubricating oil, bitumen and bunker oil. The methods discussed include solvent extraction, bioremediation, phytoremediation, chemical oxidation, electrokinetic remediation, thermal technologies, ultrasonication, flotation and integrated remediation technologies. Each of these technologies was discussed, and associated with their advantages, disadvantages, advancements and future work in detail. Nonetheless, it is important to note that no single remediation technology is considered the best solution for the remediation of oil contaminated soil. CAPSULE This review provides a comprehensive literature on the various remediation technologies studied in the removal of different oil types from soil.
Collapse
Affiliation(s)
- Mee Wei Lim
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Ee Von Lau
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Phaik Eong Poh
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
47
|
Yang GCC, Huang SC, Jen YS, Tsai PS. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process. CHEMOSPHERE 2016; 150:576-585. [PMID: 26733014 DOI: 10.1016/j.chemosphere.2015.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate the feasibility of enhanced bioremediation coupling with electrokinetic process for promoting the growth of intrinsic microorganisms and removing phthalate esters (PAEs) from river sediment by adding an oxygen releasing compound (ORC). Test results are given as follows: Enhanced removal of PAEs was obtained by electrokinetics, through which the electroosmotic flow would render desorption of organic pollutants from sediment particles yielding an increased bioavailability. It was also found that the ORC injected into the sediment compartment not only would alleviate the pH value variation due to acid front and base front, but would be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants. However, injection of the ORC into the anode compartment could yield a lower degree of microbial growth due to the loss of ORC during the transport by EK. Through the analysis of molecular biotechnology it was found that both addition of an ORC and application of an external electric field can be beneficial to the growth of intrinsic microbial and abundance of microflora. In addition, the sequencing result showed that PAEs could be degraded by the following four strains: Flavobacterium sp., Bacillus sp., Pseudomonas sp., and Rhodococcus sp. The above findings confirm that coupling of enhanced bioremediation and electrokinetic process could be a viable remediation technology to treat PAEs-contaminated river sediment.
Collapse
Affiliation(s)
- Gordon C C Yang
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| | - Sheng-Chih Huang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC.
| | - Yu-Sheng Jen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Shin Tsai
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| |
Collapse
|
48
|
Pedersen KB, Lejon T, Jensen PE, Ottosen LM. Degradation of oil products in a soil from a Russian Barents hot-spot during electrodialytic remediation. SPRINGERPLUS 2016; 5:168. [PMID: 27026865 PMCID: PMC4766144 DOI: 10.1186/s40064-016-1882-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Abstract
A highly oil-polluted soil from Krasnoe in North-West Russia was used to investigate the degradation of organic pollutants during electrodialytic remediation. Removal efficiencies were up to 70 % for total hydrocarbons (THC) and up to 65 % for polyaromatic hydrocarbons (PAH). Relatively more of the lighter PAH compounds and THC fractions were degraded. A principal component analysis (PCA) revealed a difference in the distribution of PAH compounds after the remediation. The observed clustering of experiments in the PCA scores plot was assessed to be related to the stirring rate. Multivariate analysis of the experimental settings and final concentrations in the 12 experiments revealed that the stirring rate of the soil suspension was by far the most important parameter for the remediation for both THC and PAH. Light was the second most important variable for PAH and seems to influence degradation. The experimental variables current density and remediation time did not significantly influence the degradation of the organic pollutants. Despite current density not influencing the remediation, there is potential for degrading organic pollutants during electrodialytic removal of heavy metals, as long as a stirred set-up is applied. Depending on remediation objectives, further optimisation may be needed in order to develop efficient remediation strategies.
Collapse
Affiliation(s)
- Kristine B Pedersen
- Department of Chemistry, University of Tromsø, The Arctic University of Norway, Postbox 6050, 9037 Langnes, Tromsø, Norway
| | - Tore Lejon
- Department of Chemistry, University of Tromsø, The Arctic University of Norway, Postbox 6050, 9037 Langnes, Tromsø, Norway
| | - Pernille E Jensen
- Department of Civil Engineering, Arctic Technology Centre, Technical University of Denmark, Brovej Building 118, 2800 Lyngby, Denmark
| | - Lisbeth M Ottosen
- Department of Civil Engineering, Arctic Technology Centre, Technical University of Denmark, Brovej Building 118, 2800 Lyngby, Denmark
| |
Collapse
|
49
|
Hassan I, Mohamedelhassan E, Yanful EK, Yuan ZC. A Review Article: Electrokinetic Bioremediation Current Knowledge and New Prospects. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.61006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:1-115. [PMID: 26423073 DOI: 10.1007/978-3-319-20013-2_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|