1
|
Wu R, Qiu J, Tang X, Li A, Yang Y, Zhu X, Zheng X, Yang W, Wu G, Wang G. Effects of okadaic acid on Pyropia yezoensis: Evidence from growth, photosynthesis, oxidative stress and transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137902. [PMID: 40088667 DOI: 10.1016/j.jhazmat.2025.137902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
The frequent occurrences of harmful algal blooms potentially threaten marine organisms. The phycotoxin okadaic acid (OA) has been globally detected in seawater, however, the knowledge of effects of OA on macroalgae is limited. This study investigated the effects of OA (0.01, 0.1 μM) on the growth, physiological and biochemical properties, and transcriptional expression of Pyropia yezoensis. Exposure to 0.1 μM OA for 48 h led to decreased growth, oxidative stress, and lipid peroxidation in P. yezoensis. Levels of reactive oxygen species, glutathione and malondialdehyde, and activity of catalase enzyme were increased, but activity of superoxide dismutase was decreased in P. yezoensis exposed to OA. Even at the low concentration of 0.01 μM, OA influenced the photosynthetic efficiency and stimulated the pigment levels, including phycoerythrin, phycocyanin, allophycocyanin and chlorophyll a. Analytical results of amino acids indicated that OA reduced the nutritional quality of P. yezoensis. The expression of genes involved in nitrogen metabolism was up-regulated, but the genes associated with ABC transporters and photosynthesis was down-regulated by the OA exposure, suggesting that OA may affect photosynthesis and enhance nitrogen uptake and assimilation processes. This study provides a new perspective on the chemical ecology risk of phycotoxins to marine macroalgae.
Collapse
Affiliation(s)
- Ruolin Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinyu Zhu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenke Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Antonopoulou M, Spyrou A, Giova L, Varela-Athanasatou M, Mouaimi M, Christodoulou N, Dailianis S, Vlastos D. Flame-retardant Tris(2-chloroethyl) phosphate: Assessing the effects on microalgae, mussel hemocytes and human peripheral blood cells. ENVIRONMENTAL RESEARCH 2025; 276:121512. [PMID: 40174747 DOI: 10.1016/j.envres.2025.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is a widely used flame retardant in numerous commercial and industrial products. Due to its widespread release and detection in various environmental matrices, TCEP has raised great concerns about its risk to aquatic biota and human health. To this end, the present study investigates the TCEP environmental and human health mediated effects on aquatic biological species/models belonging to different trophic levels, as well as on human peripheral blood lymphocytes. Specifically, TCEP ability to promote (a) growth inhibition in algae, like the freshwater species Chlorococcum sp. and the saltwater species Tisochrysis lutea, (b) cytotoxic and oxidative stress-like events, such as Reactive Oxygen Species (ROS) formation and lipid peroxidation, in challenged mussel hemocytes, as well as (c) cytogenotoxicity in human lymphocytes, was investigated. Based on the results, environmentally relevant concentrations of TCEP could differentially affect the growth of both algal species, with the freshwater one (Chlorococcum sp.) to be more vulnerable compared to saltwater species Tisochrysis lutea. Accordingly, TCEP-treated mussel hemocytes showed increased levels of cell death and a concomitant enhancement of ROS generation and lipid peroxidation at most concentrations tested. Lastly, TCEP at concentrations tested showed significant cytogenotoxic effects on human lymphocytes, as revealed by the low Cytokinesis Block Proliferation Index (CBPI) values and the high micronuclei (MN) frequencies in challenged cells. These findings are of great interest, thus highlighting the risk posed by the TCEP environmental release and the need for further protection of aquatic basins, in favor of aquatic biota and human health.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, School of Agricultural Sciences, University of Patras, Agrinio, GR-30131, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, School of Agricultural Sciences, University of Patras, Agrinio, GR-30131, Greece
| | - Lambrini Giova
- Department of Biology, School of Natural Sciences, University of Patras, Rio, GR-26504, Patras, Greece
| | - Maria Varela-Athanasatou
- Department of Sustainable Agriculture, School of Agricultural Sciences, University of Patras, Agrinio, GR-30131, Greece
| | - Maria Mouaimi
- Department of Biology, School of Natural Sciences, University of Patras, Rio, GR-26504, Patras, Greece
| | - Nikolina Christodoulou
- Department of Biology, School of Natural Sciences, University of Patras, Rio, GR-26504, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, Rio, GR-26504, Patras, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, Rio, GR-26504, Patras, Greece
| |
Collapse
|
3
|
Alfaro-Ahumada V, Jara-Toro S, Alves-de-Souza C, Rivera-Latorre A, Mardones JI, Gallardo-Rodriguez JJ, Astuya-Villalón A. Allelopathic Effect of a Chilean Strain of Karenia selliformis (Gymnodiniales, Dinoflagellata) on Phytoplankton Species. Microorganisms 2024; 12:1834. [PMID: 39338508 PMCID: PMC11433799 DOI: 10.3390/microorganisms12091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Blooms of the dinoflagellate Karenia selliformis in Chile, often associated with massive fish kills, have been noted alongside other species from the Kareniaceae family, such as Karenia spp. and Karlodinium spp. However, the potential allelopathy impact of Chilean K. selliformis on other phytoplankton species remains unexplored. Here, we assessed the allelopathic effects of cell-free exudates from a Chilean K. selliformis strain on six phytoplankton strains representing diverse microalgal groups. The findings of these experiments offer valuable insights into the varied responses of both non-toxic and toxic microalgae to allelochemicals produced by a toxic microalga, showcasing the intricate and multifaceted nature of allelopathic interactions in microalgal communities. The study revealed species-dependent effects, with variable response in cell growth, photosynthetic efficiency (i.e., Fv/Fm), and intracellular reactive oxygen species (ROS) production. While certain strains exhibited significant growth inhibition in response to the allelochemicals, others demonstrated no apparent effect on cell proliferation, indicating varying sensitivity to specific allelochemicals or potentially distinct detoxification mechanisms. Similarly, the diverse effects on Fv/Fm highlight the complexity of allelopathic interactions, with some species showing reduced efficiency without alterations in intracellular ROS production, while others displayed increased ROS production alongside impaired photosynthesis.
Collapse
Affiliation(s)
- Victoria Alfaro-Ahumada
- Laboratorio de Biotoxinas Marinas (LBTx-UdeC), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción 4030000, Chile
| | - Sandra Jara-Toro
- Laboratorio de Biotoxinas Marinas (LBTx-UdeC), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - Catharina Alves-de-Souza
- Laboratorio de Biotoxinas Marinas (LBTx-UdeC), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandra Rivera-Latorre
- Laboratorio de Biotoxinas Marinas (LBTx-UdeC), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción 4030000, Chile
| | - Jorge I Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt 5501679, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago 8370993, Chile
| | | | - Allisson Astuya-Villalón
- Laboratorio de Biotoxinas Marinas (LBTx-UdeC), Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
4
|
Li D, Qiu J, Wang X, Li A, Wu G, Yin C, Yang Y. Spatial distribution of lipophilic shellfish toxins in seawater and sediment in the Bohai Sea and the Yellow Sea, China. CHEMOSPHERE 2024; 362:142780. [PMID: 38971437 DOI: 10.1016/j.chemosphere.2024.142780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.
Collapse
Affiliation(s)
- Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chao Yin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Máthé C, Bóka K, Kónya Z, Erdődi F, Vasas G, Freytag C, Garda T. Microcystin-LR, a cyanotoxin, modulates division of higher plant chloroplasts through protein phosphatase inhibition and affects cyanobacterial division. CHEMOSPHERE 2024; 358:142125. [PMID: 38670509 DOI: 10.1016/j.chemosphere.2024.142125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 μm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.
Collapse
Affiliation(s)
- Csaba Máthé
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary.
| | - Károly Bóka
- Department of Plant Anatomy, Institute of Biology, Faculty of Science, ELTE Eötvös Loránd University, Pázmány P. s. 1/c, Budapest, H-1117, Hungary
| | - Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| | - Gábor Vasas
- Plant and Algal Natural Product Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; Balaton Limnological Research Institute- HUN-REN, Klebelsberg str. 3, H-8237, Tihany, Hungary
| | - Csongor Freytag
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary; One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032, Debrecen, Hungary
| | - Tamás Garda
- Plant Cell and Developmental Biology Research Group, Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem ter 1, H-4032, Debrecen, Hungary
| |
Collapse
|
6
|
Han L, Qiu J, Li A, Li D, Yang Y, Wang G, Li P. Effects of marine phycotoxin dinophysistoxin-1 on the growth and cell cycle of Isochrysis galbana. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109732. [PMID: 37611885 DOI: 10.1016/j.cbpc.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The phycotoxin dinophysistoxins are widely distributed in the global marine environments and potentially threaten marine organisms and human health. The mechanism of the dinophysistoxin toxicity in inhibiting the growth of microalgae is less well understood. In this study, effects of the dissolved dinophysistoxin-1 (DTX1) on the growth, pigment contents, PSII photosynthetic efficiency, oxidative stress response and cell cycle of the marine microalga Isochrysis galbana were investigated. Growth of I. galbana was significantly inhibited by DTX1 with 0.6-1.5 μmol L-1 in a 96-h batch culture, corresponding the 96 h-EC50 of DTX1 at 0.835 μmol L-1. The maximum quantum yield of PSII (Fv/Fm), and light utilization efficiency (α) were obviously reduced by DTX1 at 1.5 μmol L-1 during 96-h exposure. Contents of most of pigments were generally reduced by DTX1 with a dose-depend pattern in microalgal cells except for diatoxanthin. The ROS levels were increased by DTX1 with 0.6-1.5 μmol L-1 after 72-h exposure, while the contents or activities of MDA, GSH, SOD and CAT were significantly increased by DTX1 at 1.5 μmol L-1 at 96 h. The inhibitory effect of DTX1 on the growth of I. galbana was mainly caused by the production of ROS in the cells. Cell cycle analysis showed that the I. galbana cell cycle was arrested by DTX1 at G2/M phase. This study enhances the understanding of the chemical ecology effects of DTX1 on marine microalgae and also provides fundamental data for deriving water quality criteria of DSTs for marine organisms.
Collapse
Affiliation(s)
- Lilin Han
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyao Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
da Silva CA, Mafra LL, Rossi GR, da Silva Trindade E, Matias WG. A simple method to evaluate the toxic effects of Prorocentrum lima extracts to fish (sea bass) kidney cells. Toxicol In Vitro 2022; 85:105476. [PMID: 36126776 DOI: 10.1016/j.tiv.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
The diarrhetic shellfish toxins (DSTs) okadaic acid (OA) and its analogues - the dinophysistoxins (DTXs) - are produced by dinoflagellates such as Prorocentrum lima and can bioaccumulate in filter-feeding organisms as they are transferred through the food web. Although there is no assessment of the harmful effects of these toxins on the fish's immune system, this study developed a primary culture protocol for kidney cells from marine fish Centropomus parallelus and evaluated the immunotoxic effects to P. lima extracts containing DSTs. The cells were obtained by mechanical dissociation, segregated with Percoll gradient, and incubated for 24 h at 28 °C in a Leibovitz culture medium supplemented with 2% fetal bovine serum and antibiotics. The exposed cells were evaluated in flow cytometry using the CD54 PE antibody. We obtained >5.0 × 106 viable cells per 1.0 g of tissue that exhibited no cell differentiation. Exposure to 1.2 or 12 ng DST mL-1 stimulated the immune system activation and increased the proportion of activated macrophages and monocytes in 48 to 52% and in 127 to 146%, respectively. The protocol proved to be an alternative tool to assess the immunotoxic effects of DST exposure on fish's anterior kidney cells.
Collapse
Affiliation(s)
- Cesar Aparecido da Silva
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR 83255-976, Brazil.
| | - Luiz Laureno Mafra
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, P.O. Box: 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Gustavo Rodrigues Rossi
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Federal University of Paraná, Av. Cel Francisco H dos Santos, Curitiba, PR 81530-980, Brazil
| | - Edvaldo da Silva Trindade
- Laboratory of Inflammatory and Neoplastic Cells/Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Federal University of Paraná, Av. Cel Francisco H dos Santos, Curitiba, PR 81530-980, Brazil
| | - William Gerson Matias
- Laboratory of Environmental Toxicology, Departament of Sanitary and Environmental Engineering, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC 88010-970, Brazil
| |
Collapse
|
8
|
Liu Y, Lu Y, Jiao YH, Li DW, Li HY, Yang WD. Multi-omics analysis reveals metabolism of okadaic acid in gut lumen of rat. Arch Toxicol 2022; 96:831-843. [PMID: 35037095 DOI: 10.1007/s00204-021-03219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Okadaic acid (OA) is an important marine lipophilic phycotoxin with various pathological properties, responsible for diarrheal shellfish poisoning events in human beings over the world. However, to date no mechanism can well explain the toxicity and symptom of OA, even diarrhea. Here, to reveal the toxic mechanism of OA to mammals, we analyzed the metabolism of OA in rat and the effects of OA exposure on the composition and function of gut bacteria using a multi-omics strategy and rRNA high-throughput technology. We found that OA exerted great effects on gut bacteria, mainly featured in heavy fluctuation of dominant genera and significant changes in the mapped bacterial function genes, including not only virulence genes of pathogenic bacteria, but also bacterial metabolism genes. In the feces of the OA-exposed group, we detected dinophysistoxin-2 (DTX-2), lespedezaflavanone F and tolytoxin, suggesting that OA could be transformed into other metabolites like DTX-2. Other metabolic biomarkers such as N-Acetyl-a-neuraminic acid, N,N-dihydroxy-L-tyrosine, nalbuphine, and coproporphyrin I and III were also highly correlated with OA content, which made the toxicity of OA more complicated and confusing. Spearman correlation test demonstrated that Bacteroides and Romboutsia were the genera most related to OA transformation, suggesting that Bacteroides and Romboutsia might play a key role in the complicated and confusing toxicity of OA. In this study, we found for the first time that OA may be converted into other metabolites in gut, especially DTX-2. This finding could not only help to reveal the complex toxicity of OA, but also have important significance for clarifying the transportation, metabolism, and environmental fate of OA in the food chain.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang Lu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Wang XX, Zhang TY, Dao GH, Xu ZB, Wu YH, Hu HY. Assessment and mechanisms of microalgae growth inhibition by phosphonates: Effects of intrinsic toxicity and complexation. WATER RESEARCH 2020; 186:116333. [PMID: 32858242 DOI: 10.1016/j.watres.2020.116333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/15/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The effects of phosphonates, the heavily-used antiscalants in reverse osmosis systems, on microalgae are controversial, although they are harmless to most aquatic organisms. Herein, we assessed the inhibitory effects of etidronic acid (HEDP) and diethylenetriamine penta(methylene phosphonic acid) (DTPMP) on algal growth and revealed the mechanisms involved in both intrinsic toxicity and complexation. The phosphonates showed weak influences on Scenedesmus sp. LX1 in the first 4 d of cultivation. In contrast, a significant growth inhibition was observed subsequently with half maximal effective concentrations of 57.6 and 35.7 mg/L for HEDP and DTPMP, respectively, at 10 d. The phosphonates had little effect on cellular energy transfer and oxidative stress, quantified by adenosine triphosphate level and superoxide dismutase activity, respectively, demonstrating weak intrinsic toxicities to algal cells. Phosphonates blocked the algal assimilation of iron ions through complexation. Severe iron deficiency limited photosynthetic activity and caused chlorophyll decline, resulting in a functional loss of the photosystem followed by complete algal growth inhibition at the late cultivation stage. Our findings point to a potential ecological impact wherein harmful algal blooms are induced by the natural degradation of phosphonates due to the release of both iron and phosphate ions that stimulate algal regrowth after disinhibition.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Tian-Yuan Zhang
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zi-Bin Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| |
Collapse
|
10
|
Wang XX, Wang WL, Dao GH, Xu ZB, Zhang TY, Wu YH, Hu HY. Mechanism and kinetics of methylisothiazolinone removal by cultivation of Scenedesmus sp. LX1. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121959. [PMID: 31884360 DOI: 10.1016/j.jhazmat.2019.121959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Methylisothiazolinone (MIT) is a widely used non-oxidizing biocide for membrane biofouling control in reverse osmosis (RO) systems usually with high dosages. However, few investigations have focused on MIT removal through bio-processes, since it is highly bio-toxic. This study proposed a novel biotreatment approach for efficient MIT degradation by Scenedesmus sp. LX1, a microalga with strong resistance capability against extreme MIT toxicity. Results showed that MIT (3 mg/L) could be completely removed within 4 days' cultivation with a half-life of only 0.79 d. Biodegradation was the primary removal mechanism and this metabolic process did not rely on bacterial consortia, soluble algal products secretion or algal growth. The main pathway was proposed as ring cleavage followed by methylation and carboxylation through the identification of MIT transformation products. MIT biodegradation followed the pseudo-first-order kinetics under growth control. A new kinetic model was presented to depict the MIT removal considering algal growth, and this model could be used for generally describing non-nutritive contaminants biodegradation. The algal biodegradation capability was independent of the initial biocide concentration, and MIT removal could be enhanced by increasing the initial algal density. Our results highlight the potential application of algal cultivation for MIT-containing wastewater biotreatment, such as RO concentrate.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Wen-Long Wang
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China
| | - Guo-Hua Dao
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China
| | - Zi-Bin Xu
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China
| | - Tian-Yuan Zhang
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China
| | - Yin-Hu Wu
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China
| | - Hong-Ying Hu
- Research Institute for Environmental Innovation, Tsinghua University, Suzhou 215163, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Charalampous N, Grammatikopoulos G, Kourmentza C, Kornaros M, Dailianis S. Effects of Burkholderia thailandensis rhamnolipids on the unicellular algae Dunaliella tertiolecta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109413. [PMID: 31284121 DOI: 10.1016/j.ecoenv.2019.109413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 06/09/2023]
Abstract
The effects of rhamnolipids (RLs) produced and further purified from Burkholderia thailandensis, on the unicellular microalgae Dunaliella tertiolecta were investigated, in terms of RLs ability to affect algal growth, photosynthetic apparatus structure and energy flux, round and through photosystems II and I. Specifically, 24-48 h RLs-treated algae (RLs at concentrations ranged from 5 to 50 mg L-1) showed significantly decreased levels of growth rate, while increased levels of Chl a and b were obtained only in 72-96 h RLs-treated algae. Similarly, although no changes were obtained in the Chl a/b ratio and almost all chlorophyll fluorescence parameters over time, yields of electron transport (ϕR0, ϕE0) and respective performance index (PItotal) were negatively affected at 72 and 96 h. Based on those findings, it seems that the inhibitory effect of RLs on the algae growth rate after 24 and 48 h and the gradual attenuation of the phenomenon (after 72 h of exposure), may indicate the initial response of the organism, as well as algae ability to overcome, since RLs showed no effects on algae photosynthetic ability. Those findings reveal for the first time that RLs from Burkholderia thailandensis are not harmful for Dunaliella tertiolecta. However, further studies with the use of more aquatic species could be essential for assessing the RLs-mediated effects on aquatic biota.
Collapse
Affiliation(s)
- Nikolina Charalampous
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Giorgos Grammatikopoulos
- Laboratory of Plant Physiology, Section of Plant Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Constantina Kourmentza
- Department of Food & Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, RG6 6AP, Reading, UK
| | - Michael Kornaros
- Laboratory of Biochemical Engineering and Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Karatheodori 1 Str., GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece.
| |
Collapse
|
12
|
Wang XX, Zhang QQ, Wu YH, Dao GH, Zhang TY, Tao Y, Hu HY. The light-dependent lethal effects of 1,2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:563-571. [PMID: 30970286 DOI: 10.1016/j.scitotenv.2019.03.468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
As 1,2-benzisothiazol-3(2H)-one (BIT) has been widely used in high concentrations for microbial growth control in many domestic and industrial processes, its potential eco-risk should be assessed. This study investigated the interaction between BIT and microalgae in aquatic environment as the mechanism of BIT lethal effect on microalgae was unclear and whether microalgae could efficiently remove BIT was unknown. It was found that Chlorella vulgaris could be killed by high concentrations of BIT, and this lethal effect was strongly enhanced when exposed to light. Inhibition of photosystem II electron transport followed by a decrease in cellular chlorophyll led to serious damage to algal photosynthesis. The excess accumulation of reactive oxygen species caused by the photosynthetic damage under light further increased the oxidative damage and promoted cell death. Under dark condition, however, the algae could tolerate higher BIT concentrations. BIT could be efficiently removed when the growth of Scenedesmus sp. LX1 was not completely inhibited. With an initial concentration of 4.5 mg/L, over 99% of BIT was removed during 168 hour cultivation. Microalgal biodegradation was the primary reason for this removal, and the contributions of BIT hydrolytic/photolytic degradation, microalgal growth, photosynthesis and sorption were negligibly small. These results pointed to the potential application of microalgae for efficient BIT removal from wastewater.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Qi-Qi Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen (SMARC), Tsinghua University, Shenzhen 518055, China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tian-Yuan Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen (SMARC), Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| |
Collapse
|
13
|
ABC Transporters in Prorocentrum lima and Their Expression Under Different Environmental Conditions Including Okadaic Acid Production. Mar Drugs 2019; 17:md17050259. [PMID: 31052268 PMCID: PMC6563122 DOI: 10.3390/md17050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/19/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Prorocentrum lima is a typical benthic toxic dinoflagellate, which can produce phycotoxins such as okadaic acid (OA). In this study, we identified three ABC transporter genes (ABCB1, ABCC1 and ABCG2) and characterized their expression patterns, as well as OA production under different environmental conditions in P. lima. We found that the three ABC transporters all showed high identity with related ABC proteins from other species, and contained classical features of ABC transport proteins. Among them, ABCG2 was a half size transporter. The three ABC transporter genes displayed various expression profiles under different conditions. The high concentration of Cu2+ could up-regulate ABCB1, ABCC1 and ABCG2 transcripts in P. lima, suggesting the potential defensive role of ABC transporters against metal ions in surrounding waters. Cu2+, in some concentration, could induce OA production; meanwhile, tributyltin inhibited OA accumulation. The grazer Artemia salina could induce OA production, and P. lima displayed some toxicity to the grazer, indicating the possibility of OA as an anti-grazing chemical. Collectively, our results revealed intriguing data about OA production and the expression patterns of three ABC transporter genes. However, we could not find any significant correlation between OA production and expression pattern of the three ABC transporters in P. lima. Our results might provide new molecular insights on the defensive responses of P. lima to the surrounding environment.
Collapse
|
14
|
Ariani A, Barozzi F, Sebastiani L, di Toppi LS, di Sansebastiano GP, Andreucci A. AQUA1 is a mercury sensitive poplar aquaporin regulated at transcriptional and post-translational levels by Zn stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:588-600. [PMID: 30424909 DOI: 10.1016/j.plaphy.2018.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 05/19/2023]
Abstract
Aquaporins are water channel proteins that regulate plant development, growth, and response to environmental stresses. Populus trichocarpa is one of the plants with the highest number of aquaporins in its genome, but only few of them have been characterized at the whole plant functional level. Here we analyzed a putative aquaporin gene, aqua1, a gene that encodes for a protein of 257 amino acid with the typical NPA (Asp-Pro-Ala) signature motif of the aquaporin gene family. aqua1 was down-regulated of ∼10 fold under excess Zn in both leaves and roots, and conferred Zn tolerance when expressed in yeast Zn hypersensitive strain. In vivo localization of AQUA1-GFP in Arabidopsis protoplast showed a heterogeneous distribution of this protein on different membranes destined to form aggregates related to autophagic multivesicular bodies. Zn-dependent AQUA1-GFP re-localization was perturbed by phosphatases' and kinases' inhibitors that could affect both intracellular trafficking and aquaporins' activity. Exposed to high concentration of Zn, AQUA1 also co-localized with AtTIP1;1, a well-known Arabidopsis vacuolar marker, probably in pro-vacuolar multivesicular bodies. These findings suggest that high concentration of Zn down-regulates aqua1 and causes its re-localization in new forming pro-vacuoles. This Zn-dependent re-localization appears to be mediated by mechanisms regulating intracellular trafficking and aquaporins' post-translational modifications. This functional characterization of a poplar aquaporin in response to excess Zn will be a useful reference for understanding aquaporins' roles and regulation in response to high concentration of Zn in poplar.
Collapse
Affiliation(s)
- Andrea Ariani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabrizio Barozzi
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce - Monteroni, 73100, Lecce, Italy
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Gian Pietro di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce - Monteroni, 73100, Lecce, Italy
| | - Andrea Andreucci
- Department of Biology, Università degli Studi di Pisa, I-56126, Pisa, Italy.
| |
Collapse
|
15
|
Nam SH, An YJ. Cell size and the blockage of electron transfer in photosynthesis: proposed endpoints for algal assays and its application to soil alga Chlorococcum infusionum. CHEMOSPHERE 2015; 128:85-95. [PMID: 25666176 DOI: 10.1016/j.chemosphere.2015.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/23/2014] [Accepted: 01/06/2015] [Indexed: 05/28/2023]
Abstract
This study evaluated multiple endpoints of algal assays to identify sensitive and easy to use endpoints that could be applied to evaluate algal toxicity in metal-polluted soil extracts. Soil algae play an important role in trophic levels; thus, Chlorococcum infusionum was selected as the test species. Soil extracts were used because they might help identify potential soil retention and ecological hazards caused by pollutants that are present in the soil aqueous phase. The multi-endpoints measured were growth yield, photosynthetic activities, and cell viabilities. Nine parameters were measured to evaluate photosynthetic activity; namely, specific energy fluxes per quinone A-reducing photosystem II reaction center (absorption flux, trapped energy flux, electron transport flux, and dissipated energy flux per reaction center), quantum yields (maximum quantum yield of primary photochemistry, quantum yield of electron transport, quantum yield of energy dissipation, and average quantum yield of primary photochemistry), and the blockage of electron transfer from the reaction center to the quinone pool. Cell viability was evaluated by measuring cell size, cell granularity, and the autofluorescence of chlorophyll using flow cytometry. The results showed that heavy metals reduced growth yield, cell viability, and the photosynthetic activity of C. infusionum in soil extracts. Out of the 13 tested endpoints, the blockage of electron transfer from the reaction center to the quinone pool and cell size represented the most sensitive endpoints. We propose that both endpoints should be measured, along with conventional growth yield, to determine the effect of soil pollutants and to lower pollutant concentrations in soils.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
16
|
Prego-Faraldo MV, Valdiglesias V, Méndez J, Eirín-López JM. Okadaic acid meet and greet: an insight into detection methods, response strategies and genotoxic effects in marine invertebrates. Mar Drugs 2013; 11:2829-45. [PMID: 23939476 PMCID: PMC3766868 DOI: 10.3390/md11082829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
Harmful Algal Blooms (HABs) constitute one of the most important sources of contamination in the oceans, producing high concentrations of potentially harmful biotoxins that are accumulated across the food chains. One such biotoxin, Okadaic Acid (OA), is produced by marine dinoflagellates and subsequently accumulated within the tissues of filtering marine organisms feeding on HABs, rapidly spreading to their predators in the food chain and eventually reaching human consumers causing Diarrhetic Shellfish Poisoning (DSP) syndrome. While numerous studies have thoroughly evaluated the effects of OA in mammals, the attention drawn to marine organisms in this regard has been scarce, even though they constitute primary targets for this biotoxin. With this in mind, the present work aimed to provide a timely and comprehensive insight into the current literature on the effect of OA in marine invertebrates, along with the strategies developed by these organisms to respond to its toxic effect together with the most important methods and techniques used for OA detection and evaluation.
Collapse
Affiliation(s)
- María Verónica Prego-Faraldo
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruña, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, E15071 A Coruña, Spain; E-Mail:
| | - Josefina Méndez
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruña, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - José M. Eirín-López
- XENOMAR Group, Department of Cellular and Molecular Biology, University of A Coruna, E15071 A Coruña, Spain; E-Mails: (M.V.P.-F.); (J.M.)
- Chromatin Structure and Evolution (CHROMEVOL) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981-167-000; Fax: +34-981-167-065
| |
Collapse
|