1
|
Li Y, Ding R, Wu D, Ruan X, Li Z, Chen Z. Quantitative Source Apportionment and Transfer Mechanism of Pb in Different Compartments of Soil-Wheat System: A Fresh Insight from Pb Isotopic Composition, Fractionation and Inverse Distance Weightings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:80. [PMID: 40372479 DOI: 10.1007/s00128-025-04056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Lead (Pb) pollution has always been a persistent and unresolved environmental issue of great concern. This study innovatively applied Pb isotopic compositions and inverse distance weighting (IDW) to quantitatively identify Pb source contributions in the soil-wheat system in Kaifeng, China. Results showed Pb concentrations followed as soil > root > stem > shell > grain, with 18.2% of grains exceeding the National food safety standard (0.2 mg kg⁻¹). Quantitative source identification displayed atmospheric deposition contributed 66.82%, 66.32% and 63.00% to grains, leaves and shells, respectively, while sewage irrigation accounted for 67.74%, 58.61% and 57.56% in roots, stems and soils. Lighter Pb isotopes from atmospheric deposition were more readily absorbed by leaves and enriched in grains, whereas roots and stems retained heavier isotopes from sewage irrigation, effectively blocking their migration to grains and reducing health risks. This study provides valuable insights into Pb uptake, migration, and mechanisms in the soil-wheat system. It is commended reasonable regulation of rhizosphere soil and atmospheric environment or physiological interference on wheat growth might be an effective way to reduce the risk of Pb enrichment in wheat grains.
Collapse
Affiliation(s)
- Yipeng Li
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Renqi Ding
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Di Wu
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Xinling Ruan
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Zhihong Li
- MLR Key Laboratory of Isotope Geology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
| | - Zhifan Chen
- College of Geographical Sciences, Faculty of Geographical Science and Engineering, Henan University, Zhengzhou, 450046, China.
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Kong J, Guo Q, Wei R, Sha O, Mao M, Yang S. Study on the migration pathway and isotopic composition of Zn in soil, plant and water in mining area. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138394. [PMID: 40315710 DOI: 10.1016/j.jhazmat.2025.138394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
Isotopic tracing has been widely used to identify the sources and migration processes of Zn in diverse environments. However, Zn isotope fractionation during the migration process within the mining area poses challenges to the accuracy of isotopic tracing. To address this issue, a representative Pb-Zn mining area in the karst region of southwestern China was selected as the study area, given its long-term tailings' pollution history and the extensive spatial distribution of Zn migration. End-member samples and environmental media (soil, plants, river water and groundwater) were systematically collected, and heavy metal concentrations and isotopic signatures were analyzed. The migration pathways of Zn and associated isotopic fractionation from end members to surrounding environments were comprehensively investigated. Results indicated that tailings constitute the dominant source of Zn, with ZnS weathering being the primary driver of Zn isotopic variability in soils. Eluviation process, characterized by selective transport of soluble Zn2+ enriched in heavy isotopes, was identified as the key mechanism governing Zn migration across the soil-plant-river continuum. Retention processes (adsorption by organic matter, plant uptake, and mineral interactions) exhibited minimal influence on soil Zn isotopic composition. These findings advance the understanding of Zn and Zn isotope cycling in karst ecosystems and provide a scientific basis for formulating pollution control strategies in mining areas.
Collapse
Affiliation(s)
- Jing Kong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu Province, Lianyungang 222000, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ou Sha
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu Province, Lianyungang 222000, China
| | - Mingyan Mao
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu Province, Lianyungang 222000, China
| | - Suchang Yang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Jiangsu Province, Lianyungang 222000, China
| |
Collapse
|
3
|
He B, Zhang W, Diao Y, Sun S, Zhang Y, Zhao W, Wen F, Yang G. Mechanistic study of the adsorption capabilities of heavy metals on the surface of ferrihydrite: batch sorption, modeling, and density functional theory. RSC Adv 2025; 15:1072-1080. [PMID: 39807194 PMCID: PMC11727883 DOI: 10.1039/d4ra07426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb2+ > Cu2+ > Zn2+ > Cd2+ > Ni2+ > Co2+ > Mn2+, with Pb2+ showed the highest adsorption. Competitive adsorption was observed in multi-metal systems, and adsorption isotherms confirmed that Pb2+ and Cu2+ exhibited significantly higher equilibrium adsorption capacities than the other ions. Diffuse Layer Model (DLM) analysis indicated that for most heavy metals (HMs), [triple bond, length as m-dash]FesOM and [triple bond, length as m-dash]FewOM were the predominant adsorption species, while for Pb2+, [triple bond, length as m-dash]FesOPb dominated. Density Functional Theory (DFT) calculations were employed further to investigate the molecular interactions between HMs and Fh. The DFT results revealed that the distribution of surface iron sites on Fh strongly influences the adsorption process. Larger metal ions, such as Pb2+, form stronger coordination bonds with hydroxyl groups on the Fh surface, leading to distinct adsorption mechanisms compared to smaller ions. These findings, combining experimental and computational data, emphasize the critical role of surface iron site distribution and ion size in governing the adsorption behavior of HMs on Fh.
Collapse
Affiliation(s)
- Bihong He
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University Lanzhou 730000 China
| | - Wentao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences Lanzhou 730000 China
| | - Yanan Diao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Shangchen Sun
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University Lanzhou 730000 China
| | - Yonghe Zhang
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University Lanzhou 730000 China
| | - Wenqing Zhao
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University Lanzhou 730000 China
| | - Fei Wen
- Yellow River Basin Ecotope Integration of Industry and Education Research Institute, Lanzhou Resources & Environment Voc-Tech University Lanzhou 730000 China
| | - Guangrui Yang
- Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China
| |
Collapse
|
4
|
Feng JJ, Liao JX, Jiang QW, Mo L. Heavy metal contamination of vegetables in China: status, causes, and impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:864-873. [PMID: 39704972 DOI: 10.1007/s11356-024-35816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Exposure to heavy metals from vegetable consumption poses a serious health risk to the Chinese population. The lack of knowledge on the overall status of vegetable contamination at the national level hinders the development of national regulations on preventing heavy metal exposure. To address this issue, the study presents an overview of heavy metal contamination in vegetables across China based on 96 peer-reviewed studies published over the past 20 years. The average concentrations of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the edible parts of vegetables are 3.7 ± 12.9, 1.6 ± 4.0, 4.3 ± 10.3, 18.6 ± 27.6, 164 ± 281, 4.5 ± 5.5, 7.7 ± 23.7, and 105 ± 283 mg kg-1 (dry weight), respectively. The associated daily exposures are 0.1-5.7, 0.1-1.7, 0.6-4.2, 4.1-20.5, 26-107, 0.7-3.0, 0.4-16.0, and 13-93 μg kg-1 d-1, respectively. General linear models explained 80%, 44%, 83%, 79%, 64%, 81%, 65%, and 55% of the total variance in As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn concentrations in vegetables, respectively, based on vegetable type and selected geological, meteorological, economic, and environmental factors. Agroforestry is the main source of heavy metal contamination, accounting for 3%-30% of the total variance in heavy metal concentrations in vegetables. Mining, smelting, refining, metalworking, and electrical equipment manufacturing are important source of As, Cr, Cu, Mn, Ni, and Pb, accounting for 7%-17% of the total variance.
Collapse
Affiliation(s)
- Jing-Jing Feng
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China.
- Center for Ecological & Environmental Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guangxi, 541006, China.
| | - Jian-Xiong Liao
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Qian-Wen Jiang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Ling Mo
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
5
|
Wu J, Ye J, Liu X, Han Z, Bi X. Significant lead isotope 'fractionation' in maize records plant lead uptake, transfer, and detoxification mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176417. [PMID: 39306117 DOI: 10.1016/j.scitotenv.2024.176417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Lead isotope analysis is the main method to trace the sources and cycling of Pb in the biosphere system. The linchpin of such application hinges on the assumption that there is negligible or no biologically mediated isotopic fractionation of Pb occurs in the environment. However, recent measurements by high-precision multi-collector mass spectrometry revealed that biological isotope fractionation of heavy mass elements is a prevalent phenomenon. This study shows that compared with the Pb sources, the maize plant (Zea mays L.) organs exhibit a wider range of Pb isotope compositions and a depletion of radioactive Pb isotopes (206Pb, 207Pb, and 208Pb). Moreover, three independent studies consistently indicate that the 206Pb/207Pb ratio of maize organs varies as root/leaf > stem/grain, reflecting a continuous loss of light Pb isotopes during transportation. The conventional wisdom fails to account for these phenomena, suggesting that maize may undergo Pb isotope fractionation during the absorption and transportation of Pb. However, compared with other non-traditional metal isotopes, Pb isotope exhibits a more significant fractionation magnitude. We tentatively attribute this fractionation to the Pb tolerance mechanism of maize and its selective absorption of various forms of Pb, which requires further research to validate. Findings from this study mandate caution in future Pb source tracing in plants using Pb isotope methods and open up applications in using Pb isotopic fractionation to track Pb uptake and transfer pathways and decipher the associated detoxification mechanisms in plants.
Collapse
Affiliation(s)
- Jin Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhixuan Han
- Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
6
|
Kong J, Huang F, Wei R, Zhang X, Zhu G, Guo Q. Study on the variation mechanism of Zn isotope in polluted farmland soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135561. [PMID: 39244987 DOI: 10.1016/j.jhazmat.2024.135561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Zn isotope can help to clarify the migration, transformation and source contribution of Zn in farmland soil. However, the research on Zn isotope value of different end members in farmland soil is incomprehensive, and the variation of Zn isotope in farmland soil caused by different factors in different polluted areas is unclear, which hinders the usage of Zn isotope tracing method in farmland soil. Thus, a Pb-Zn mine polluted farmland in southwest China was selected as the research object and the end elements and farmland soil samples with different Zn contamination were systematically collected to analyse Zn content, fraction and isotopic composition. The effects of different end members and processes of eluviation, organic adsorption and inorganic adsorption on Zn isotopic composition in soil were analysed, and the relationship between these three processes and environmental variables was analysed to clarify the change mechanism. The results can enrich the fractionation mechanism of Zn isotopes, expand the application of Zn isotope in tracing the sources, and provide geochemical evidence for remediation of Zn pollution in farmland soil.
Collapse
Affiliation(s)
- Jing Kong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchao Zhang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Ray I, Misra S, Chen M, Wang X, Das R. Entrapment of atmospheric particle bound heavy metals by ferns as evidenced by lead (Pb) isotope and MixSIAR: Implications for improving air quality. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134014. [PMID: 38503208 DOI: 10.1016/j.jhazmat.2024.134014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Plant metal uptake can occur through both soil-root and atmospheric transfer from leaves. The latter holds potential implications for development of biofiltration systems. To explore this potential, it is crucial to understand entrapment capacity and metal sources within plants. As ferns absorb materials from atmosphere, this study focuses on two abundant fern species growing in densely populated and highly polluted regions of Eastern India. Gravimetric quantification, elemental concentration and Pb isotopic analyses were performed by segregating the ferns into distinct components: foliage dusts (loose dust (LD) and wax-bound dust (WD)) and plant tissue (leaves and roots). To understand metal sources, the study analyzes soil, and atmospheric particulates (PM10 and dust fall (DF)). Results indicate that, while LDs have soil dust influence, wax entraps atmospheric particulates and translocates them inside the leaves. Furthermore, roots demonstrate dissimilar isotopic ratios from soil, while displaying close association with atmospheric particulates. Isotopic composition and subsequent mixing model reveal dominant contribution from DF in leaves (53-73%) and roots (33-86%). Apart from DF, leaf Pb is sourced from PM10 (21-38%) with minimal contribution from soil (6-10%). Conversely, in addition to dominance from DF, roots source Pb primarily from soil (12-62%) with a meagre 2-8% contribution from PM10.
Collapse
Affiliation(s)
- Iravati Ray
- School of Environmental Studies, Jadavpur University, Kolkata, India.
| | - Sambuddha Misra
- Centre for Earth Sciences, Indian Institute of Sciences, Bangalore, India
| | - Mengli Chen
- Tropical Marine Science Institute, National University of Singapore, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore
| | - Xianfeng Wang
- Earth Observatory of Singapore, Nanyang Technological University, Singapore; Asian School of Environment, Nanyang Technological University, Singapore
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata, India; Earth Observatory of Singapore, Nanyang Technological University, Singapore.
| |
Collapse
|
8
|
Ren J, Zheng C, Yong Y, Lin Z, Zhu A, He C, Pan H. Effect and mechanism of kaolinite loading amorphous zero-valent iron to stabilize cadmium in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166319. [PMID: 37586509 DOI: 10.1016/j.scitotenv.2023.166319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Amorphousness effectively improves the electron transfer rate of zero-valent iron. In this study, a novel kaolinite loading amorphous zero-valent iron composite (K-AZVI) was prepared and applied to the remediation of soils with cadmium (Cd) pollution concentrations of 20, 50, and 100 mg/kg respectively. The results showed that the application of K-AZVI increased the pH and cation exchange capacity (CEC) of soil, and decreased the dissolved organic carbon (DOC) and organic matter (OM) of soil, thus indirectly promoting the adsorption of Cd in the soil. After 28 days of stabilization, the stabilizing efficiency of K-AZVI on the water-soluble Cd content in soil reached 98.72 %. Under the amendment of 0.25 %-1.0 % (w/w), the available Cd content in 20-100 mg/kg contaminated soil decreased by 46.47 %-62.23 %, 24.10 %-41.52 %, and 16.09 %-30.51 % respectively compared with CK. More importantly, the addition of K-AZVI promoted the transformation of 33.18 %-48.42 % exchangeable fraction (EXC) to 10.09 %-20.14 % residual fraction (RES), which increased the abundance and diversity of soil bacterial communities. Comprehensive risk assessment showed that adding 1.0 % K-AZVI provided the best remediation on contaminated soil. In addition, the results of scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) of K-AZVI before and after the reaction showed that the stabilization mechanism of K-AZVI to Cd in soil is mainly the stable metal species (Cd(OH)2, CdO and CdFe2O4) formed by the direct complexation and coprecipitation of a large number of iron oxides formed by the rapid corrosion of amorphous zero-valent iron (AZVI). Overall, this work provides a promising approach to the remediation of Cd-contaminated soil using K-AZVI composites.
Collapse
Affiliation(s)
- Jieling Ren
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd., Xi'an 710049, PR China.
| | - Yingying Yong
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
9
|
Tao Z, Hu J, Guo Q, Wei R, Jiao L, Li Y, Chen F, Fan B, Lan W, Pan K. Coupling isotopic signatures and partial extraction method to examine lead pollution in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132252. [PMID: 37604039 DOI: 10.1016/j.jhazmat.2023.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Elevated lead (Pb) has been widely observed in mangrove sediments due to human activities, yet understanding the sources of Pb in these sediments and the factors influencing Pb accumulation is challenging. Here, we combined Pb isotopes with partial extraction methods to study Pb contamination levels in mangrove sediments from the eastern and western parts of the Maowei Sea, China. Our results showed that the Pb in the leachate and residual fraction was mainly from anthropogenic and natural sources, respectively. The use of 204Pb isotope analysis can reveal some overlooked differences between anthropogenic and natural sources. Calculation by Bayesian mixing model showed no significant difference in the total anthropogenic contribution between the two sites, but the relative contribution of each end member differed. The contribution of Pb/Zn ores was much higher in the eastern sites (30.9 ± 5.1%) than in the west (18.4 ± 5.5%), while that of agricultural activities was much lower in the east (5.2 ± 3.1%) than in the west (13.5 ± 4.6%). The elevated anthropogenic Pb accumulation in mangrove sediments was ascribed to organic matter. This study provides more data on Pb isotopic composition and new insights into Pb biogeochemistry in the mangrove environment.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bailing Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Li Y, Bai H, Li Y, Zhang X, Zhang L, Zhang D, Xu M, Zhang H, Lu P. An integrated approach to identify the source apportionment of potentially toxic metals in shale gas exploitation area soil, and the associated ecological and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132006. [PMID: 37453347 DOI: 10.1016/j.jhazmat.2023.132006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Public awareness of the potential environmental risks of shale gas extraction has increased in recent years. However, the status and environmental risks of potentially toxic metals (PTMs) in shale gas field soil remain unclear. A total of 96 topsoil samples were collected from the first shale gas exploitation area in China. The sources of nine PTMs in the soils were identified using positive matrix factorization and correlation analysis, and the ecological and human health risks of toxic metals from different sources under the two land use types were calculated. The results showed that mean pollution load index (PLI) values for farmland (1.18) and woodland (1.40) indicated moderate pollution, As, Cd and Ni were the most serious contaminants among all nine PTMs. The following four sources were identified: shale gas extraction activities (43.90%), nature sources (31.90%), agricultural and traffic activities (17.55%) and industrial activities (6.55%). For ecological risk, the mean ecological risk index (RI) values for farmlands (161.95) and woodlands (185.27) reaching considerable risk. The contribution ratio of shale gas extraction activities for farmlands and woodlands were 5.70% and 8.90%, respectively. Regarding human health risk, noncarcinogenic risks for adults in farmlands and woodlands were negligible. Industrial activities, agricultural and traffic activities were estimated to be the important sources of health risks. Overall, shale gas extraction activities had little impact on the ecological and human health risk. This study provides scientific evidence regarding the soil contamination potential of shale gas development activities.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Hongcheng Bai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yutong Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Chongqing Academy of Eco-environmental Science, Chongqing 401147, China
| | - Xin Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Min Xu
- Department of Environmental Science, College of Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Zhang
- The Key Laboratory of GIS Application and Research, Chongqing Normal University, Chongqing 401331, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
11
|
Lin C, Wang Y, Hu G, Yu R, Huang H. Source apportionment and transfer characteristics of Pb in a soil-rice-human system, Jiulong River Basin, southeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121489. [PMID: 36958662 DOI: 10.1016/j.envpol.2023.121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The source apportionment and transfer of Pb in a paddy soil-rice-human system within the Jiulong River Basin in southeast China was investigated by analyzing (1) the chemical fractionation of Pb in paddy soils using a modified BCR four-step sequential extraction procedure, and (2) the bioaccessibility of Pb in both paddy soils and rice grains using a Simple Bioaccessibility Extraction Test method. In addition, a qualitative Pb isotopic model was used in combination with IsoSource software to quantify the contribution of potential Pb sources. The results show the enrichment of Pb in agro-ecosystems in the Jiulong River Basin. Contaminant Pb in paddy soils was mainly present in the reducible (42.9%) and the residual fractions (27.1%). The average bioaccessibility of Pb in rice grains was significantly higher than that in paddy soil, with values of 77.85% and 37.44%, respectively. Lead in paddy soils was primarily derived from agricultural (35.3%), natural (25.5%), industrial (24.5%) and coal combustion sources (14.7%), while Pb in rice grains was primarily derived from coal combustion (54.1%), agricultural (35.1%), industrial (6.0%) and natural sources (4.8%). The bioaccessible Pb was mainly derived from anthropogenic sources [agricultural (42.3% for soil and 25.3% for grain) and coal combustion sources (25.3% for soil and 59.3% for grain)]. Lead isotopic ratios are an effective tracer of Pb transfer from potential sources to rice plants and within the rice plants. Rice plants absorb Pb from the soil and the atmosphere through the roots and leaves, respectively. Most of the Pb was accumulated in roots. The integrated use of chemical fractionation, bioaccessibility and Pb isotopic data provides an effective method to study the source apportionment and transfer characteristics of Pb in paddy soil-rice-human systems.
Collapse
Affiliation(s)
- Chengqi Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China; Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China
| | - Yanyun Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huabin Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xianen, 361024, China; Key Laboratory of Fujian Universities for Environmental Monitoring, Xiamen, 361024, China.
| |
Collapse
|
12
|
Li F, Jin H, Wu X, Liu Y, Chen X, Wang J. Remediation for trace metals in polluted soils by turfgrass assisted with chemical reagents. CHEMOSPHERE 2022; 295:133790. [PMID: 35104547 DOI: 10.1016/j.chemosphere.2022.133790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Trace metal pollution in soils is one of the universal environmental problems in the world. Phytoremediation is a green, safe, ecological, and economic method to achieve continuous reduction of soil pollutants. Turfgrass is a plant with great landscape value and has considerable biomass when used for remediation of trace metal contaminated soil. However, its remediation ability needs to be improved in future application. The combined application of turfgrass, citric acid (CA) and auxin (gibberellin, GA3) were applied in the phytoremediation of an artificial nutritive soil derived from sludge, and a field scale orthogonal experiment (L9) was conducted to understand the interaction effect and obtain the optimum phytoremediation. Experimental results showed that the types and cultural patterns of turfgrass mainly determined plant height, root length and trace metal concentration in turfgrass, however CA treatment was prone to increase the aboveground biomass and the concentrations of most trace metals in turfgrasses, especially the concentration of Ni in turfgrass. GA3 spraying significantly increased the concentration of Cd in turfgrass. The culture patterns of turfgrass played 42.4% influence on acid-extractable Cd, while CA applying had 53.8% influence on the acid-extractable Ni. The annual phytoextraction amount of trace metals based on five mowing a year were proposed to assess the remediation ability of treatments, which of the combination treatment (T3, intercropping Zoysia matrella and Lolium perenne, and applying 400 mg kg-1 CA and 30 mg kg-1 GA3) were 1.6-2.1 times higher CK group. This research provides technical reference for intercropping turfgrass for remediation of trace metals in sludge-derived nutritive soil.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Hui Jin
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Xingfei Wu
- Zhejiang Zhengjie Environmental Science & Technology Co.,Ltd. Hangzhou, 311222, Zhejiang, PR China
| | - Yannian Liu
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Xiaoling Chen
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China.
| |
Collapse
|
13
|
da Silva RJAB, da Silva YJAB, van Straaten P, do Nascimento CWA, Biondi CM, da Silva YJAB, de Araújo Filho JC. Influence of parent material on soil chemical characteristics in a semi-arid tropical region of Northeast Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:331. [PMID: 35386016 DOI: 10.1007/s10661-022-09914-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Soil parental material is one of the main factors that influence pedogenesis. Several studies evaluated the relationship between the parent material and soil chemistry, but few studies have assessed such a relationship in semi-arid tropical regions. This investigation was carried out to assess the effect of different parent materials on the chemical composition and available concentrations of macronutrients and micronutrients, including potentially toxic elements (Cd, Cr, Ni, and Pb) in soils in a semi-arid tropical setting. The chemical composition of the soils inherited the geochemical signature of their parent materials. Quartz sandstones, augen gneisses, and peraluminous granites exhibited the lowest reservoirs of plant nutrients and formed sandy, acid, and infertile soils. On the other hand, alkaline soils and soils with high concentrations of nutrients formed on ultramafic rocks (harzburgite), marble, and anorthosite. The pH, clay content, and CEC were the main attributes of the soils governing the availability of macro and micronutrients. The low soil organic carbon contents did not influence the availability of the nutrients. The parent material also influenced the soil texture. Parent materials that are richer in silica formed more sandy soils. The availability of Cd, Cr, and Pb in soils was low; however, the elevated Ni concentrations of soils derived from ultramafic rocks may pose risks to the environment and human health. Cluster and discriminant analyses were used to discriminate the natural fertility of soils. These results are useful for the agro-pedological zoning of the Brazilian semi-arid tropical region and for land use planning.
Collapse
Affiliation(s)
- Rayanna Jacques Agra Bezerra da Silva
- Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros street, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Ygor Jacques Agra Bezerra da Silva
- Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros street, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - Peter van Straaten
- Professor Emeritus, School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Caroline Miranda Biondi
- Agronomy Department, Federal Rural University of Pernambuco (UFRPE), Dom Manuel de Medeiros street, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| | | | - José Coelho de Araújo Filho
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa Solos), Unidade de Execução de Pesquisa (UEP), Recife, PE, 51020-240, Brazil
| |
Collapse
|
14
|
Chen Z, Ding Y, Jiang X, Duan H, Ruan X, Li Z, Li Y. Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113369. [PMID: 35278993 DOI: 10.1016/j.ecoenv.2022.113369] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 05/15/2023]
Abstract
Quantitative identification of heavy metals (HM) sources in soils is key to prevention and control of heavy metal pollution. In this study, UNMIX, PMF (Positive matrix factorization) model and Pb-Zn-Cu isotopic compositions were combined to quantitatively identify heavy metal sources in a suburban agricultural area of Kaifeng, China. Using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) and ICP-MS, we measured Pb, Zn and Cu stable isotopic compositions, HM concentrations and HM chemical fractions in studied soils, as well as potential sources around the highly polluted site, including total suspended particle, compound fertilizer, irrigated river water and sediments. The results showed that total contents and chemical fractions of heavy metals, as well as Pb-Zn-Cu isotopic compositions presented great variation in different sites, which implied that heavy metal accumulation was obviously affected by local anthropogenic pollution source. UNMIX and PMF presented good agreement on source apportionment that industrial and agricultural activities (61.74% and 60.75% for UNMIX and PMF, respectively) were the major contributors to heavy metal accumulation in the study area. Especially, sewage irrigation and atmosphere deposition accounted for a large proportion (28.14% and 41.03% for UNMIX and PMF, respectively). Moreover, isotopic compositions of Pb, Zn and Cu in highly polluted soils and environment media gave further confirmation that sewage irrigation and atmosphere deposition were primary anthropogenic source. Therefore, combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions showed good coordination in quantitative and specific source identification of heavy metals in agricultural soils.
Collapse
Affiliation(s)
- Zhifan Chen
- College of Geography and Environmental Science, Henan University, Ministry of Education, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China.
| | - Yongfeng Ding
- College of Geography and Environmental Science, Henan University, Ministry of Education, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Xingyuan Jiang
- College of Geography and Environmental Science, Henan University, Ministry of Education, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Haijing Duan
- College of Geography and Environmental Science, Henan University, Ministry of Education, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Xinling Ruan
- College of Geography and Environmental Science, Henan University, Ministry of Education, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Zhihong Li
- MLR Key Laboratory of Isotope Geology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.
| | - Yipeng Li
- College of Geography and Environmental Science, Henan University, Ministry of Education, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| |
Collapse
|
15
|
Zerizghi T, Guo Q, Tian L, Wei R, Zhao C. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152653. [PMID: 34954188 DOI: 10.1016/j.scitotenv.2021.152653] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
Soil heavy metals harm ecological biodiversity and human health, and quantifying the risks more accurately is still obscure. In this study, a network environ analysis was applied to quantify risks between ecological communities based on control allocation and human health risk models to calculate human health exposure risks from soil heavy metals around Greenside coal mining in South Africa. Ecological and human health risks were apportioned using PMF model. Results showed assessed heavy metals (mean) exceeded local background content with a cumulative of moderately polluted using pollution load index (PLI). Total initial risk (Ri), the risk to biological organisms from direct soil exposure, was 0.656 to vegetation and 1.093 to soil microorganisms. Risk enters the food web via vegetation and harms the whole system. Integrated risks (initial, direct, and indirect) to vegetation, herbivores, soil microorganisms, and carnivores were 0.656, 0.125, 1.750, and 0.081, respectively, revealing that soil microorganisms are the most risk receptors. Total Hazard Index (HIT) was <1 for adults (0.574) whereas >1 for children (4.690), signifying severe non-cancer effects to children. Total cancer risk (TCR) to children and adults surpassed the unacceptable limit (1.00E-04). Comparatively, Cr is a high-risk metal accounted for 63.24% (adults) and 65.88% (children) of the HIT and 92.98% (adults) and 91.31% (children) of the TCR. Four sources were apportioned. Contributions to Ri (soil microorganisms and vegetation) from F3 (industrial), F4 (atmospheric), F2 (coal mining), and F1 (natural) were 42.20%, 24.56%, 23.55%, and 9.68%, respectively. The non-cancer risk from F3 (37.67% to adults and 38.40% to children) was dominant, and TCR to children from the sources except F1 surpassed the unacceptable limit. An integrated approach of risk quantification is helpful in managing risks and reducing high-risk pollution sources to better protect the environment and human health.
Collapse
Affiliation(s)
- Teklit Zerizghi
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hamelmalo Agricultural College, National Commission for Higher Education, Keren, P.O. Box 397, Eritrea
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Changqiu Zhao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Ma C, Xie P, Zhang K, Yang J, Li X, Liu F, Lin L, Zhang H. Contribution of the flag leaf to lead absorption in wheat grain at the grain-filling stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112722. [PMID: 34478986 DOI: 10.1016/j.ecoenv.2021.112722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat flag leaf (FL) is one of the primary sources of carbohydrates in grains; however, its role in grain lead (Pb) absorption remains unclear. A field experiment was conducted to assess the relative contribution of the FL to Pb accumulation in wheat grain by two contrasting treatments: without (CK) and with FL removal (FLR) at the grain-filling stage. The Pb concentration in leaves was closely related to leaf strata and decreased from FL to the third leaf. FLR treatment significantly reduced the yield and grain Pb concentration by 2.79% and 11.47%, respectively. The contribution of FL to grain Pb accumulation decreased gradually with the filling process, from 35.08% (at early stage) to 13.94% (at maturity stage). After FLR, the contribution proportion of atmospheric fallout to grain Pb decreased from 69.01% (CK) to 62.43% (FLR). Combined isotope analysis with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS) revealed that the main contribution of FLs to grain Pb originated from Pb fallout in fine atmospheric particles. Therefore, taking measures to reduce the influence of fine atmospheric particles on wheat may be an effective way to control wheat grain Pb contamination.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
17
|
Maurice L, Barraza F, Blondet I, Ho-A-Chuck M, Tablon J, Brousse P, Demar M, Schreck E. Childhood lead exposure of Amerindian communities in French Guiana: an isotopic approach to tracing sources. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4741-4757. [PMID: 33974199 DOI: 10.1007/s10653-021-00944-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In French Guiana were detected high lead (Pb) levels in blood of Amerindian people. Lead exposure is a serious hazard that can affect the cognitive and behavior development. People can be exposed to Pb through occupational and environmental sources. Fingerprinting based on stable Pb isotopes in environmental media is often used to trace natural and anthropogenic sources but is rarely paired with blood data. The objective of this study was to determine the main factors associated with high Blood Lead Levels (BLL). Soil, manioc tubers, food bowls, beverages, wild games, lead pellets and children blood were sampled in small villages along the Oyapock River. children BLL ranged between 5.7 and 35 µg dL-1, all exceeding 5 µg dL-1, the reference value proposed in epidemiologic studies for lead poisoning. Among the different dietary sources, manioc tubers and large game contained elevated Pb concentrations while manioc-based dishes were diluted. The isotopes ratios (207Pb/206Pb and 208Pb/206Pb) of children blood overlapped these of lead shots and meals. These first results confirm for the first time, the diary consumption of manioc-based food as the main contributor to Amerindian children's BLL in French Guiana, but don't exclude the occasional exposure to lead bullets by hunting activities. This is a specific health concern, since previous studies have shown that these same villagers present high levels of mercury (Hg). These communities are indeed subject to a double exposure to neurotoxic metals, Hg and Pb, both through their diet. The farming activity is based on manioc growing, and explaining that this ancestral practice can induce serious health risks for the child's development may seriously affect their food balance and cultural cohesion.
Collapse
Affiliation(s)
- Laurence Maurice
- Geosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université de Toulouse, CNRS, 31400, Toulouse, IRD, France.
- Universidad Andina Simón Bolívar, Área de Salud, P.O. Box 17-12-569, N22-80, Quito, Ecuador.
| | - Fiorella Barraza
- Geosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université de Toulouse, CNRS, 31400, Toulouse, IRD, France
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2H1, Canada
- Instituto de Cultivos Tropicales (ICT), Tarapoto, Peru
| | - Isalyne Blondet
- Geosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université de Toulouse, CNRS, 31400, Toulouse, IRD, France
| | | | - Jessy Tablon
- Agence Régionale de Santé (ARS), 97336, Cayenne, French Guiana
| | - Paul Brousse
- Centre Hospitalier Andrée Rosemon (CHAR), Av. des Flamboyants, 97306, Cayenne, French Guiana
| | - Magalie Demar
- Centre Hospitalier Andrée Rosemon (CHAR), Av. des Flamboyants, 97306, Cayenne, French Guiana
| | - Eva Schreck
- Geosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université de Toulouse, CNRS, 31400, Toulouse, IRD, France
| |
Collapse
|
18
|
Ma C, Liu F, Xie P, Zhang K, Yang J, Zhao J, Zhang H. Mechanism of Pb absorption in wheat grains. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125618. [PMID: 33735766 DOI: 10.1016/j.jhazmat.2021.125618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric deposition is the primary source of external environmental media for lead (Pb) influx in wheat grains. However, the mechanisms of Pb grain absorption remains unclear. We explored this mechanism through comparative experiments, involving defoliating leaf blades (TG) and a control group (CK) of field wheat after the anthesis stage. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis displayed that leaves and ears can directly absorb atmospheric deposition Pb through stomata. Compared with CK, the yield, grain Pb content, and grain Pb accumulation of TG wheat were significantly decreased by 13.25%, 22.10%, and 32.58%, respectively. Combined with the Pb isotope analysis, the ear had the highest contribution to grain Pb followed by leaf and root. Simultaneously, the absorption rate of grain Pb demonstrated a dynamic trend of "N" shape. Dominant contribution periods of the root, leaf, and ear organs to grain Pb accumulation were different. Unlike the root system, the contribution of the aboveground to grain Pb increased gradually, and the contribution of leaf and ear to grain Pb were mainly concentrated in the early and late filling stage, respectively. Our findings can provide a theoretical basis for the control of Pb pollution in grains.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China.
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, Camerino (MC) 62032, Italy
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
19
|
Kim DM, Choi MS, Yun ST, Yoon S, Lee JS. Spatial patterns of Zn, Cd, and Pb isotopic compositions of ground and surface water in mine areas of South Korea reflecting isotopic fractionation during metal attenuation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146453. [PMID: 34030246 DOI: 10.1016/j.scitotenv.2021.146453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
As application of multiple metal isotopes can effectively constrain geochemical behavior of contaminants and assess contamination sources and pathways, field-scale studies on the geochemically interlinked fractionation of Zn and Cd isotopes in groundwater are needed. In this study, we collected groundwater samples from multi-level samplers downstream of tailings dumps as well as surface water, ore mineral, precipitate, and tailings samples at the Sambo and Buddeun metallic ore mines in South Korea, and analyzed their Zn, Cd, Pb, and sulfur isotopic compositions. Furthermore, isotopic ratios of ore mineral samples from additional four mines in South Korea (Dangdu, Dongbo, Gomyeong, Samgwang) were compared. A dual isotopic approach using Zn and Cd isotopes was used to assess fractionation processes, and Pb isotopic signatures reflecting their sources were assessed. Increasing trends of δ66Zn and δ114Cd with decreasing Zn and Cd concentrations were observed in groundwater, which was saturated with respect to ZnS (amorphous and sphalerite) and CdS (greenockite). Moreover, for some groundwater samples, δ66Zn showed a positive relationship with δ34SSO4. These results suggest that Zn and Cd are precipitated as sulfide following sulfate reduction. In the plot of δ66Zn against δ114Cd, relatively high and/or increasing δ66Zn in groundwater suggested the effect of fractionation due to sulfide precipitation, while variable and high δ114Cd values suggested the fractionation by adsorption and/or sulfide precipitation, which were based on positive fractionation factors for δ66Zn and δ114Cd during sulfide precipitation and mostly negative and positive fractionation factors for δ66Zn and δ114Cd, respectively, during adsorption. This study shows that the combined use of Zn and Cd isotopes in groundwater can effectively differentiate between adsorption and sulfide precipitation following sulfate reduction in groundwater. Additionally, the 208Pb/206Pb ratios of most water samples reflected those of ore and tailings samples, which verified usefulness of Pb isotopes in water in investigating Pb contamination sources.
Collapse
Affiliation(s)
- Duk-Min Kim
- Department of New Energy and Mining Engineering, Sangji University, Wonju, Gangwon-do 26339, South Korea; Institute of Mine Reclamation Technology, Korea Mine Reclamation Corporation (MIRECO), Wonju, Gangwon-do 26464, South Korea.
| | - Man-Sik Choi
- Department of Oceanography and Ocean Environmental Sciences, Chungnam National University, Yuseong-gu, Daejeon 34134, South Korea.
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| | - Sungmoon Yoon
- Institute of Mine Reclamation Technology, Korea Mine Reclamation Corporation (MIRECO), Wonju, Gangwon-do 26464, South Korea; Department of Earth and Environmental Sciences, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| | - Jin-Soo Lee
- Institute of Mine Reclamation Technology, Korea Mine Reclamation Corporation (MIRECO), Wonju, Gangwon-do 26464, South Korea.
| |
Collapse
|
20
|
Liu HL, Zhou J, Li M, Obrist D, Wang XZ, Zhou J. Chemical speciation of trace metals in atmospheric deposition and impacts on soil geochemistry and vegetable bioaccumulation near a large copper smelter in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125346. [PMID: 33621776 DOI: 10.1016/j.jhazmat.2021.125346] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric deposition is an important source of trace metals to surface environments, but knowledge about plant bioavailability of recently deposited metals and their fate in the soil-plant system is limited. We performed a fully factorial soil and atmosphere exposure experiment with three vegetables (radish, lettuce, and soybean). Treatments included soil profiles collected from three sites located along a strong gradient of atmospheric deposition with each soil type deployed across the three sites for one year, which allowed to effectively distinguish impacts of recently deposited metals (<1 year) from longer-term trace metal exposures in soils. Results showed that recently deposited copper (Cu), cadmium (Cd), and lead (Pb) accounted for 0.5-15.2% of total soil Cu, Cd, and Pb pools at the site most heavily impacted by atmospheric deposition, while recent deposition contributed 15-76% of Cu, Cd, and Pb concentrations in edible parts of vegetables. In addition, soil geochemical extractions showed that bioavailable fractions of trace metals from recent deposition (52-73%) were higher compared to metals previously present in soils (7-42%). These findings highlight a preferential uptake and high rates of bioaccumulation of deposited metals in vegetables and suggest a high potential of environmental risks of food pollution under high atmospheric metal deposition.
Collapse
Affiliation(s)
- Hai-Long Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, PR China.
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Daniel Obrist
- Department of Environmental, Earth and Atmospheric Sciences, University of Massachusetts, Lowell, MA 01854, USA
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, PR China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan 335211, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
21
|
Giri S, Mahato MK, Singh AK. Multivariate linear regression models for predicting metal content and sources in leafy vegetables and human health risk assessment in metal mining areas of Southern Jharkhand, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27250-27260. [PMID: 33511531 DOI: 10.1007/s11356-021-12494-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The present study was intended to investigate the metal concentrations in the leafy vegetables, irrigation water, soil, and atmospheric dust deposition in the iron and copper mining areas of Southern Jharkhand, India. The study aimed to develop a multivariate linear regression (MVLR) model to predict the concentration of metals in leafy vegetables from the metals in associated environmental factors and assessment of the risk to the local population through the consumption of leafy vegetables and other allied pathways. The developed species-specific MVLR models were well fitted to predict the concentration of metals in the leafy vegetables. The coefficient of determination values (R2) was greater than 0.8 for all the species-specific models. Risk assessment was carried out considering multiple pathways of ingestion, inhalation, and dermal contact of vegetables, soil, water, and free-fall dust. Consumption of leafy vegetables was the major route of metal exposure to the local population in both the metal mining areas. The average hazard index (HI) value considering all the metals and pathways was calculated to be 5.13 and 12.1, respectively for iron and copper mining areas suggesting considerable risk to the local residents. Fe, As, and Cu were the major contributors to non-carcinogenic risk in the Iron mining areas while in the case of copper mining areas, the main contributors were Co, As, and Cu.
Collapse
Affiliation(s)
- Soma Giri
- Natural Resources and Environmental Management Group, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, 826015, India.
| | - Mukesh Kumar Mahato
- Natural Resources and Environmental Management Group, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, 826015, India
| | - Abhay Kumar Singh
- Natural Resources and Environmental Management Group, CSIR-Central Institute of Mining and Fuel Research, Barwa Road, Dhanbad, 826015, India
| |
Collapse
|
22
|
He B, Wang W, Geng R, Ding Z, Luo D, Qiu J, Zheng G, Fan Q. Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111234. [PMID: 32916529 DOI: 10.1016/j.ecoenv.2020.111234] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The activity and fate of heavy metals (HMs) from mining and smelting activities in farmland soil is of great significance to effectively prevent the excessive enrichment of HMs in crops. This study focuses on Baiyin area, a typical mining city in northwest China. In this example, the sources, speciation, and fate of HMs in the farmland soil, and the migration and enrichment characteristics of HMs in the different parts of crops planted in different areas were studied in detail combining the chemical sequential extraction and Pb isotope approaches. Results showed that the mean anthropogenic contributions of HMs in farmland soils were approximately 85%, 88%, 76%, and 41% for the ore district (OD), Xidagou sewage irrigation area (XSIA), Dongdagou sewage irrigation area, and the Yellow River irrigation area, respectively, and the risk that HMs were excessively accumulated in crops in OD and XSIA was high. Compared with soil residual fractions, the isotope ratios 206Pb/207Pb in non-residual fractions (1.1304-1.1669) were closer to the values of local ores, suggesting that anthropogenic HMs from mining and smelting activities were mainly enriched in the non-residual fractions. The isotope ratios 206Pb/207Pb in crops (1.1398-1.1686) further confirmed that those anthropogenic HMs were more easily absorbed and concentrated by crops. HMs contents in leaves from OD and XSIA were generally higher than that in roots, suggesting that atmospheric deposition in OD and XSIA had a greater impact on the HMs concentration of crop leaves,while the excess rate of HMs in grain/fruit was the lowest in all parts of crops. The division and classification of crop planting in mining area can effectively help minimize the risk that HMs from anthropogenic source enter the human body through the food chain.
Collapse
Affiliation(s)
- Bihong He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongyue Geng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Ding
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongxia Luo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Junli Qiu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Guodong Zheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Wei X, Zhou Y, Jiang Y, Tsang DCW, Zhang C, Liu J, Zhou Y, Yin M, Wang J, Shen N, Xiao T, Chen Y. Health risks of metal(loid)s in maize (Zea mays L.) in an artisanal zinc smelting zone and source fingerprinting by lead isotope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140321. [PMID: 32721712 DOI: 10.1016/j.scitotenv.2020.140321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Metal(loid) contamination caused by industrial activities in agricultural soils has become a universal environmental and food safety concern. This study revealed the contamination, pathway, and source contribution of metal(loid)s such as lead (Pb), zinc (Zn) and cadmium (Cd) in maize and soils in different residential areas impacted by long-term historical artisanal zinc smelting activities from Southwest China. Results revealed that the soils were contaminated heavily by metals like Pb, Zn and Cd, with contents of 40-14,280, 150-47,020 and 1.28-61.7 mg/kg, respectively. Hazard quotients of food uptake for Pb, Cd and Cr in maize grains were extremely high for residents, in particular for the children. To trace the sources of metal health risk, lead isotope fingerprinting and binary mixing modeling were applied. It indicated that the anthropogenic activities contributed over 80% to the Pb contamination in maize grains. The findings highlighted warning levels of health risks to the residents in consuming maize grains in the historical artisanal PbZn smelting area. Therefore, an effective strategy including pollution source control and remediation measures must be taken to improve the soil quality and guarantee food safety around the historical smelting areas likewise.
Collapse
Affiliation(s)
- Xudong Wei
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Yuting Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Yanjun Jiang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology & Ryan Institute, National University of Ireland, Galway, Ireland
| | - Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yuchen Zhou
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Meiling Yin
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Jin Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Nengping Shen
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tangfu Xiao
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Yongheng Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, and School of Environmental Science and Engineering, Guangzhou University, 510006 Guangzhou, China
| |
Collapse
|
24
|
Lyu G, Li D, Li S, Ning C, Qin R. Genotoxic effects and proteomic analysis on Allium cepa var. agrogarum L. root cells under Pb stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:959-972. [PMID: 32507983 DOI: 10.1007/s10646-020-02236-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2020] [Indexed: 05/28/2023]
Abstract
Ionic lead (Pb) in the environment has accumulated due to anthropogenic activities, causing a potential threat to plants and plant consumers. We conducted this study to reveal the molecular mechanism of Pb stress response in plants. The effects of Pb (5.0 and 15.0 μM) on mitosis, DNA replication, gene expression and proteins in root-tip cells of Allium cepa var. agrogarum L. were addressed. The results indicated that root growth was inhibited dramatically in Pb treatment groups. Chromosomal aberrations were observed and the mitotic index decreased during Pb treatments at different concentrations. The accumulation of reactive oxygen species (ROS) in onion roots was induced by Pb stress. Pb increased DNA damage and suppressed cell cycle progression. The above toxic effects got more serious with increasing Pb concentration and prolonging exposure time. A total of 17 proteins were expressed differentially between control and Pb exposure groups. Under Pb treatment, the decreased expression of Anx D1 indicated decreased defensive response; the decreased expression of SHMT1 indicated decreased respiration; the decreased expression of COMT2 indicated decreased response of other funtions; the increased expression of NDPK indicated increased transcription and protein synthesis; the increased expression of PR1 and CHI1 indicated increased pathogen invasion; the increased expression of ORC5 and MPK5 indicated the reduced DNA replicating activity; the decreased expression of POLD1 indicated the reduced DNA repair activity. Our results provide new insights at the proteomic level into the Pb-induced responses, defensive responses and toxic effects, and provide new molecular markers of the early events of plant responses to Pb toxicity.
Collapse
Affiliation(s)
- Guizhen Lyu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Dongbing Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Chanjuan Ning
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Rong Qin
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
25
|
Egendorf SP, Groffman P, Moore G, Cheng Z. The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:916-930. [PMID: 32677841 DOI: 10.1080/15226514.2020.1774501] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This review article focuses on lead (Pb), one of the most ubiquitous and harmful toxicants found in soil. Our objective is to address misconceptions regarding the ability of plants to uptake Pb through their roots and translocate it to above-ground tissues, and their ability to act as hyperaccumulators and thereby phytoextract Pb. In accordance with a number of cited definitions, we suggest that species capable of Pb phytoextraction can be rated with the following three criteria: (1) root uptake above a nominal threshold of 1,000 mg Pb/kg, (2) bioconcentration factor (BCF or shoot/soil concentration) >1, and (3) translocation factor (TF or shoot/root concentration) > 1. We review the literature in the updated USDA Phytoremediation Database and conclude that without amendments: no plant has met all three criteria; no plant has been confirmed as a Pb hyperaccumulator. Our analysis suggests that Pb phytoextraction is not a viable remediation option. Pb phytostabilization, however, may be an effective remediation tool in a variety of settings. Planting some of the many species capable of tolerating soil Pb exposure and sequestering it in or around the root zone will limit Pb movement into other ecosystems, prevent resuspended dusts, and mitigate Pb exposure.
Collapse
Affiliation(s)
- Sara Perl Egendorf
- Earth and Enivornmental Sciences, CUNY Graduate Center, New York, NY, USA
- Environmental Sciences Initiative, CUNY Advanced Science Research Center at the Graduate Center, New York, NY, USA
- Earth and Environmental Sciences, Brooklyn College, Brooklyn, NY, USA
| | - Peter Groffman
- Environmental Sciences Initiative, CUNY Advanced Science Research Center at the Graduate Center, New York, NY, USA
- Earth and Environmental Sciences, Brooklyn College, Brooklyn, NY, USA
| | - Gerry Moore
- Natural Resources Conservation Service, USDA, Greensboro, NC, USA
| | - Zhongqi Cheng
- Earth and Enivornmental Sciences, CUNY Graduate Center, New York, NY, USA
- Earth and Environmental Sciences, Brooklyn College, Brooklyn, NY, USA
| |
Collapse
|
26
|
Sun J, Yu R, Yan Y, Hu G, Qiu Q, Jiang S, Cui J, Wang X, Ma C. Isotope tracers for lead and strontium sources in the Tieguanyin tea garden soils and tea leaves. CHEMOSPHERE 2020; 246:125638. [PMID: 31891843 DOI: 10.1016/j.chemosphere.2019.125638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The concentrations of Pb & Sr in Tieguanyin tea leaves and soils from 15 tea gardens of Anxi, China, were determined and the sources of Pb & Sr in soil and leaf samples were analysed using isotope tracing technology. The results showed pH in soils had significant correlations to both acid-extractable Pb & Sr in soils and new leaves. The Pb concentration in leaves was significantly lower than that in soils, especially the acid-extractable Pb in soils. The low Bio-concentration Factor (BCF) indicated the bioavailable Pb in soils could not easily be transferred to leaves. The contribution rates of parent material were 61%-100% and 45%-100% for total Pb isotope and acid-extractable Pb isotope in soils, respectively, indicating a low impact of human activity. A sizeable influence of parent material for leaves was also observed, suggesting that Pb may be present in the dust-fall. Although Sr concentrations in leaves were not high, they exceeded that in soils. The high BCF also indicated that tea has a high capacity to accumulate Sr, with the coincidence that Sr87/Sr86 in the acid-extractable isotope in soils were similar to new leaves. A Pb-Sr joint tracer indicated that Sr in old and new leaves may be influenced by parent material and anthropogenic sources, respectively.
Collapse
Affiliation(s)
- Jingwei Sun
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China; School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ruilian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Gongren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Qijun Qiu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Songhe Jiang
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jianyong Cui
- Analytical Laboratory of Beijing Research Institute of Uranium Geology, Beijing, 100029, China
| | - Xiaoming Wang
- Analytical Laboratory of Beijing Research Institute of Uranium Geology, Beijing, 100029, China
| | - Chao Ma
- Licheng District Information Center of Environment, Putian, 351100, China
| |
Collapse
|
27
|
Zhu Z, Li Z, Wang S, Bi X. Magnetic mineral constraint on lead isotope variations of coal fly ash and its implications for source discrimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136320. [PMID: 31958719 DOI: 10.1016/j.scitotenv.2019.136320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Coal fly ash in the atmosphere affects air quality and potentially influences the global climate by promoting oceanic productivity. Although accurately tracing the sources of fly ashes is vital for emission control, it remains a challenging task. Stable lead (Pb) isotope analysis is a useful tool for tracing atmospheric pollution but it fails to accurately address coal combustion emissions due to the broad range of Pb isotopic composition of coal. Environmental magnetic parameters can be used as a rapid and economical proxy for tracing atmospheric pollutants (including coal fly ashes) and have the potential for discriminating emission sources. In this study, we combined magnetic parameters with Pb isotopic signatures in order to better discriminate the sources of coal fly ash. Both magnetic particles and Pb are highly concentrated in the fly ashes compared with the feed coals. Most of the fly ashes exhibit higher 206Pb/207Pb and lower 208Pb/206Pb ratios than those of the feed coals. Furthermore, the Pb isotopic compositions of the fly ashes are highly correlated (p < 0.01) with the concentrations of magnetic particles (especially hematite), suggesting that the variation of Pb isotopes in the fly ashes is controlled by the adsorption of Pb on magnetic minerals. Based on the established relationship between magnetic minerals and Pb isotopes within coal fly ashes, we re-analyzed previously reported magnetic and Pb isotopic data from atmospheric dust and demonstrated the effectiveness of the combined method in discriminating coal fly ash in the atmosphere.
Collapse
Affiliation(s)
- Zongmin Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Zhonggen Li
- College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiangyang Bi
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
28
|
Wen Y, Li W, Yang Z, Zhang Q, Ji J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. CHEMOSPHERE 2020; 245:125620. [PMID: 31869671 DOI: 10.1016/j.chemosphere.2019.125620] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The geographical distributions of Cd and several other metals (Cu, Ni, Pb, Zn, and Cr) were characterized in 308 terra rossa samples across the Guangxi karst region. We found significant enrichments of heavy metals in the saprolites and terra rossa developed in 30 profiles, which is mainly caused by the weathering of Cd-enriched carbonate rocks, while the subsequent pedogenic processes were the dominant factor of the enrichments for Cu, Ni, Pb, Zn, and Cr. Sequential extraction analysis indicated that geogenic Cd and Pb in terra rossa mostly distributed in the residual fractions and exhibited low mobility, whereas the amorphous Fe/Mn oxide fraction was the principal Cd-bearing phase in Cambisols. The good correlation of Fe, Al, and Ti in related bedrocks, saprolites, and terra rossa suggested that in-situ pedogenetic processes provided most of the parent materials for terra rossa. The residual accumulation during the special pedogenesis in the karst region, caused elevated Cd and Pb concentrations with increasing weathering intensity, which was indicated by chemical index of alternation (CIA). In addition, results of Pb isotopic fingerprinting confirmed that terra rossa mainly derived from insoluble residues of underlying carbonate rocks. The allochthonous input of Pb also occurred during pedogenesis, whereas the transport and deposition of non-carbonate materials (clasolite/granite derived soils) was only a minor source to Pb input in terra rossa and the anthropogenic impact seemed to be negligible.
Collapse
Affiliation(s)
- Yubo Wen
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Qizuan Zhang
- Guangxi Bureau of Geology & Mineral Prospecting & Exploitation, Nanning, 530023, China
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Fan J, Dai W, Wang Y, Zhang B, Fang J, Lou L, Lin Q. Seasonal disparities in airborne lead (Pb) and associated foliar uptake by ryegrass (Lolium perenne L.): A Pb isotopic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134734. [PMID: 31780143 DOI: 10.1016/j.scitotenv.2019.134734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Foliar uptake of airborne lead (Pb) may be particularly important for Pb accumulation in plant organs. However, the aerosol bioconcentration factor (BCF) in different seasons has seldom been reported. In the present study, we collected ryegrass (Lolium perenne L.) and size-segregated aerosols (SSA) during the corresponding growing seasons, and analyzed these for both Pb concentrations and isotopic ratios. Airborne Pb showed a seasonally varying concentration that was approximately 20% higher in winter than in spring. The bioavailability index, however, was higher in spring. Coupling the stable isotope technique with the bioavailable Pb of aerosol was more reliable in identifying airborne Pb accumulation in leaves than the total determination, suggesting that the hydrophilic absorption pathway was probably dominant for the foliar uptake of Pb in ryegrass. Contributions of airborne Pb accumulation were 88%-92% for washed ryegrass growing outdoors, indicating that the foliar uptake of Pb in the field was mainly from atmospheric deposition. The aerosol BCF of Pb for ryegrass was 6.4-11.4 m3/g in winter and 22.9-31.5 m3/g in spring. The increased aerosol BCF in spring was due to the suitable temperature, abundant rainfall, and increased Pb solubility of the aerosol. Therefore, our results indicate that, for the foliar uptake of Pb, both the aerosol Pb concentration, composition, and seasonal influence should be considered.
Collapse
Affiliation(s)
- Jiaming Fan
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wei Dai
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yiyi Wang
- Hangzhou Environmental Monitoring Central Station, Hangzhou 310007, China
| | - Baofeng Zhang
- Hangzhou Environmental Monitoring Central Station, Hangzhou 310007, China
| | - Jing Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, China
| | - Qi Lin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, China.
| |
Collapse
|
30
|
Yang S, Li P, Liu J, Bi X, Ning Y, Wang S, Wang P. Profiles, source identification and health risks of potentially toxic metals in pyrotechnic-related road dust during Chinese New Year. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109604. [PMID: 31473563 DOI: 10.1016/j.ecoenv.2019.109604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/03/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Potentially toxic metal (PTM) pollution in road dust is of great concern, however, our understanding of PTMs released by pyrotechnic displays and their adverse impacts on human health in road dust is limited. Here, we studied PTM pollution levels and Pb isotope signatures in pyrotechnic ash and road dust (aged dust and pyrotechnic-influenced dust) samples from eight cities in China during Chinese New Year and carried out a human health risk assessment. Pyrotechnic ash had higher values of Cr, Co, Ni, Cu, Zn, As, Sr and Pb but lower values of Mn and Cd than Chinese background soil. Pyrotechnic-influenced dust had significantly higher Cu and Cr values than aged dust, with enrichment of Sr, Cu, Pb, Cr and Ni in road dust after pyrotechnic displays. Both 208Pb/206Pb and Sr values were used to confirm the presence of pyrotechnic ash in road dust. A positive matrix factorization demonstrated that pyrotechnic events contributed 70.1%, 50.4%, 36.6% and 35.5% of the Sr, Cu, Cr and Pb values to these road dust, respectively. We found that non-carcinogenic and carcinogenic risks related to PTMs in road dust were at safe levels during the Chinese New Year, although both risks were elevated following pyrotechnic events. Typically, PTM pollutants related to pyrotechnic events contributed 33.99% to non-carcinogenic and 21.83% to carcinogenic risks, suggesting that more attention needs to be paid to this source of PTM pollution in China. Current results improve our understanding of PTM pollution in pyrotechnic-influenced road dust and health risks related to pyrotechnic displays in China.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Sheng Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
31
|
Wu S, Zheng Y, Li X, Han Y, Qu M, Ni Z, Tang F, Liu Y. Risk assessment and prediction for toxic heavy metals in chestnut and growth soil from China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4114-4122. [PMID: 30761542 DOI: 10.1002/jsfa.9641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Toxic heavy metals (THMs) cause severe environmental hazards and threaten human health through various consumption of food stuff. However, little is known of THMs in chestnuts. In this study, the risk assessment and prediction of THMs [lead (Pb), arsenic (As), chromium (Cr), cadmium (Cd) and mercury (Hg)] in chestnuts and growth soils from China were investigated. RESULTS The main detected THMs in chestnuts and growth soils were As and Cd. The total pollution levels of the five THMs (Nemerow pollution indexes, NPIs) were 0.062 and 1.06, respectively. The dietary risks for children were higher than those of adults, especially short-term non-carcinogenic risk. The main combined risks from the relationships between THMs were Pb-Cr (r = 0.85, P < 0.01) in chestnuts and Pb-As (r = 0.59, P < 0.01) in growth soils. The risk source was found to be the uptake effect of THMs from soil to chestnut, with the highest bioaccumulation factors (BCFs) of Cd (0.254). Several comprehensive risk models were established with the highest coefficient of determination (R2 ) of 0.79. In addition, the main contribution rates of different soil parameters to comprehensive risk of THMs uptake were 49.8% (Cd), 23.4% (pH), 13.8% (Cr) and 13.0% (organic carbon). CONCLUSION The total pollution levels of THMs fell outside of the safety domain in growth soils. Furthermore, more attention needs to be paid to Cd pollution owing to its low environment background value and high accumulation ability. Three main soil parameters (Cr content, pH, organic carbon) played important roles in the formations and accumulations of THMs in chestnuts. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shutian Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Yuewen Zheng
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Xianbin Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongxiang Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Minghua Qu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Zhanglin Ni
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| |
Collapse
|
32
|
He B, Zhao X, Li P, Liang J, Fan Q, Ma X, Zheng G, Qiu J. Lead isotopic fingerprinting as a tracer to identify the pollution sources of heavy metals in the southeastern zone of Baiyin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:348-357. [PMID: 30640103 DOI: 10.1016/j.scitotenv.2018.11.339] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Baiyin (Gansu Province, China) is a heavily industrialized city with non-ferrous metal mining, ore dressing, and chemical production. The surrounding district has suffered from serious heavy metals (HMs) contamination over half a century. In this study, a Pb isotopic approach was adopted to trace the sources of HMs and explore the environmental behaviors of HMs in the area surrounding Baiyin. HMs concentrations in topsoil showed a clear decrease as the distance from the ore district increased, which suggested that atmospheric transportation is one of the main pathways of HMs dispersal. The Dongdagou irrigation area was an exception where contaminated water from Dongdagou had been used for a long time. The plots of 206Pb/207Pb vs. 208Pb/206Pb and 1/Pb vs. 206Pb/207Pb from the topsoil samples could be described in terms of a binary mixing model with the two average 206Pb/207Pb end-members being (1) the mining and smelting activities (1.1494) and (2) the soil background (1.1992). The relative anthropogenic contribution quickly decreased from 88.3% in the ore district to 30.6% in the Yellow River irrigation area. These results suggested that HMs in the Baiyin District were mainly contributed by anthropogenic mining and smelting activities. The isotope ratios of 206Pb/207Pb in the sediments maintained a consistent low level from the ore district to the Yellow River irrigation area, thereby suggesting that HMs from anthropogenic sources could also be transported over a long distance in the river systems. Moreover, the positive correlation between S content and HMs concentrations in topsoil and sediment confirmed that the HMs mainly originated from the sulfide deposits and smelters.
Collapse
Affiliation(s)
- Bihong He
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Zhao
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianjun Liang
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiaohui Fan
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiangxian Ma
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guodong Zheng
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junli Qiu
- Key Laboratory of Petroleum Resources, Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
33
|
Song Y, Li H, Li J, Mao C, Ji J, Yuan X, Li T, Ayoko GA, Frost RL, Feng Y. Multivariate linear regression model for source apportionment and health risk assessment of heavy metals from different environmental media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:555-563. [PMID: 30236917 DOI: 10.1016/j.ecoenv.2018.09.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
The study evaluated source apportionment of heavy metals in vegetable samples from the potential sources of fertilizer, water and soil samples collected along the Changjiang River delta in China. The results showed that 25.72% of vegetable samples (Brassica chinensis L.) containing Pb, and Cd, Cu, Hg and Zn at relatively serious levels were from soil. Combined with principle component analysis (PCA) and cluster analysis (CA), the results of the spatial distribution of heavy metals in different environmental media indicated that fertilizer, water and soil were the main sources of heavy metals in vegetables. The results of multivariate linear regression (MLR) using partition indexes (P) showed that fertilizer contributed to 38.5%, 40.56%, 46.01%, 53.34% and 65.25% of As, Cd, Cu, Pb and Zn contents in vegetables, respectively. In contrast, 44.58% of As, 32.57% of Hg and 32.83% of Pb in vegetables came from soil and 42.78% of Cd and 66.97% of Hg contents in vegetables came from the irrigation water. The results of PCA and CA verified that MLR using P was suitable for determining source apportionment in a vegetable. A health risk assessment was performed; As, Cd and Pb contributed to more than 75% of the total hazard quotient (THQ) values and total carcinogenic risk values (Risktotal) for adults and children through oral ingestion. More than 70% of the estimated THQ and Risktotal is contributed by water and fertilizer. Therefore, it is necessary to increase efforts in screening limits/levels of heavy metals in fertilizer and irrigation water and prioritize appropriate pollution management strategies.
Collapse
Affiliation(s)
- Yinxian Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Huimin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Changping Mao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Tianyuan Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Godwin A Ayoko
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, GPO Box 2324, Brisbane, QLD 4001, Australia
| | - Ray L Frost
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, GPO Box 2324, Brisbane, QLD 4001, Australia
| | - Yuexing Feng
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
34
|
Li F, Jinxu Y, Shao L, Zhang G, Wang J, Jin Z. Delineating the origin of Pb and Cd in the urban dust through elemental and stable isotopic ratio: A study from Hangzhou City, China. CHEMOSPHERE 2018; 211:674-683. [PMID: 30098563 DOI: 10.1016/j.chemosphere.2018.07.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Urban dust (UD) is one of the main sinks of heavy metals in urban environments; however, the sources of these heavy metals are quite difficult to identify. A total of 78 UD samples were collected bi-monthly from October 2012 to August 2013, including 13 sites from three functional areas (residential areas, city parks, and main roads) and the Botanic Garden as a control district. The metal ratios and lead isotopic ratios combined with correlation analysis were used to identify the sources of Pb and Cd in the UD samples. In the scatter plot of Cd/Mn vs Pb/Mn, the dust samples could be classified into four groups showing their different sources and characteristics. Lead isotopic composition analysis indicated that coal combustion was the main source of Pb for residential dusts, while automobile exhaust emission for road dusts. Correlation analysis revealed that the abraded paints was a main contribution of Cd in UD, especially those in city parks. The research provides a useful method of combining multiple approaches to identify sources of metal elements in UD.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yifei Jinxu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Luze Shao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gaoxiang Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiamin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zanfang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
35
|
Kong J, Guo Q, Wei R, Strauss H, Zhu G, Li S, Song Z, Chen T, Song B, Zhou T, Zheng G. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1035-1045. [PMID: 29801199 DOI: 10.1016/j.scitotenv.2018.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 05/16/2023]
Abstract
Farmland top soils and soil profiles situated in the karst area of Guilin, Guangxi Zhuang Autonomous Region, southern China, reveal different degrees of heavy metal pollution, both in respect to the lateral as well as the vertical dimension. Pb isotope ratios clearly identify that heavy metal contributions to the soil represent the legacy of former Pb-Zn mining and smelting in the area. Depending upon soil properties, differences in the intensity of the vertical penetration of heavy metal pollution are discernible. Top soil coverage by local farmers provides little remediation. Consequently, hazardous conditions for the regional ecology, for agricultural usage and ultimately for human health remain in place. Based on chemical and isotopic results obtained, more effective remediation strategies need to be developed.
Collapse
Affiliation(s)
- Jing Kong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Harald Strauss
- Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Siliang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Ting Zhou
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Bing H, Zhou J, Wu Y, Luo X, Xiang Z, Sun H, Wang J, Zhu H. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:687-696. [PMID: 29454208 DOI: 10.1016/j.scitotenv.2018.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic metals adsorbed on suspended fine particles can be deposited on remote and inaccessible high mountains by long-range atmospheric transport. In this study, we investigated the cadmium (Cd) and lead (Pb) in the soils, mosses and rainfall of three transects on the Gongga Mountain, eastern Tibetan Plateau, to understand the mountain interception effects on their atmospheric transport. The concentrations of Cd and Pb in the soils and mosses displayed a pattern of eastern transect>northern transect>western transect. The distribution of Cd and Pb on the eastern transect increased from 2000 to 2900m a.s.l. (above sea level), decreased toward the timberline, and increased again with altitude; on the northern transect, it generally decreased with altitude whereas a distribution trend was not clearly observed on the western transect. The Cd and Pb concentrations in the rainfall of the eastern transect generally decreased with altitude, and they were higher inside forests than outside forests and temporally higher in the winter than the summer. The Pb isotopic ratios coupled with moss bio-monitoring distinguished anthropogenic sources of Cd and Pb on the eastern and northern transects, whereas bedrock weathering was the main source of Cd and Pb on the western transect. We proposed a conceptual model to delineate the effects of terrain, local climate and vegetation on the transport of atmospheric metals. Our results highlighted the high mountains in the eastern Tibetan Plateau as an effective natural barrier limiting atmospheric metal transport.
Collapse
Affiliation(s)
- Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jun Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhongxiang Xiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongyang Sun
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jipeng Wang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Bing H, Xiang Z, Zhu H, Wu Y. Spatiotemporal variation and exposure risk to human health of potential toxic elements in suburban vegetable soils of a megacity, SW China, 2012-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4223-4237. [PMID: 29178015 DOI: 10.1007/s11356-017-0769-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Trace element contamination in soils of vegetable fields can threat public health. Seven potential toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) in suburban vegetable soils of Chengdu city, Southwest China, in 2012 and 2016, were analyzed to identify their sources with the spatiotemporal variation and assess their contamination and health risk for residents. The results showed that the concentrations of soil elements did not increase significantly in 2016 compared with that in 2012, whereas their spatial distributions altered markedly. The hot spots of soil As, Cd, and Pb as well as Cu and Zn in 2016 revealed the anthropogenic sources including agricultural activities, industrial emissions, road dust with heavy traffic, and open burning of solid waste. The apparent spatial difference of anthropogenic elements was related to the layout of land use surrounding the vegetable field. The contamination of soil elements decreased in the order of Cd > As ≈ Zn > Cu ≈ Pb > Cr ≈ Ni in 2012 and Cd > Zn > As ≈ Cu ≈ Pb > Cr ≈ Ni in 2016, and the vegetable soils were slightly to moderately contaminated by these elements through integrated contamination index. The sites affected by the trace elements did not increase in 2016 than in 2012, whereas the sites with relatively high contamination increased markedly. The non-carcinogenic risk of trace elements was generally acceptable, and children showed higher health risk than adults. The As carcinogenic risk for children varied between 5.48 × 10-5 and 1.59 × 10-4 in 2012 and between 4.40 × 10-5 and 1.82 × 10-4 in 2016, and the sites above acceptable levels (> 10-4) reached 60.6% and 48.5% in 2012 and 2016, respectively. The health risk of As in the vegetable soils should be paid more attention due to its high toxicity.
Collapse
Affiliation(s)
- Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhongxiang Xiang
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhu
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Wu
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
38
|
Li R, Bing H, Wu Y, Zhou J, Xiang Z. Altitudinal patterns and controls of trace metal distribution in soils of a remote high mountain, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:505-519. [PMID: 28303453 DOI: 10.1007/s10653-017-9937-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
The aim of this study is to reveal the effects of regional human activity on trace metal accumulation in remote alpine ecosystems under long-distance atmospheric transport. Trace metals (Cd, Pb, and Zn) in soils of the Mt. Luoji, Southwest China, were investigated along a large altitudinal gradient [2200-3850 m above sea level (a.s.l.)] to elaborate the key factors controlling their distribution by Pb isotopic composition and statistical models. The concentrations of Cd, Pb, and Zn in the surface soils (O and A horizons) were relatively low at the altitudes of 3500-3700 m a.s.l. The enrichment factors of trace metals in the surface soils increased with altitude. After normalization for soil organic matter, the concentrations of Cd still increased with altitude, whereas those of Pb and Zn did not show a clear altitudinal trend. The effects of vegetation and cold trapping (CTE) (pollutant enrichment by decreasing temperature with increasing altitude) mainly determined the distribution of Cd and Pb in the O horizon, whereas CTE and bedrock weathering (BW) controlled that of Zn. In the A horizon, the distribution of Cd and Pb depended on the vegetation regulation, whereas that of Zn was mainly related to BW. Human activity, including ores mining and fossil fuels combustion, increased the trace metal deposition in the surface soils. The anthropogenic percentage of Cd, Pb, and Zn quantified 92.4, 67.8, and 42.9% in the O horizon, and 74.5, 33.9, and 24.9% in the A horizon, respectively. The anthropogenic metals deposited at the high altitudes of Mt. Luoji reflected the impact of long-range atmospheric transport on this remote alpine ecosystem from southern and southwestern regions.
Collapse
Affiliation(s)
- Rui Li
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanhong Wu
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jun Zhou
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhongxiang Xiang
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Zhang Y, Zhang S, Zhu F, Wang A, Dai H, Cheng S, Wang J, Tang L. Atmospheric heavy metal deposition in agro-ecosystems in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5822-5831. [PMID: 29235022 DOI: 10.1007/s11356-017-0892-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric deposition has become one of the main sources of heavy metals in crops in developed and industrial zones in China for the past several years. However, lack of data of the agro-ecosystems on the vast areas of China makes it difficult to assess the impacts of air pollution on the heavy metal accumulation in crops. In this study, with deposit samples from 67 sites located at different agro-ecosystems (typical, factory nearby, town nearby, roadside, and remote) of four natural regions [Huanghuai (HH), Southeast (SE), Southwest (SW) and upper-mid Yangzi River (Up-mid YR)], atmospheric heavy metal deposition in agro-ecosystems on a large scale in China was studied. The results showed that during the growing season, the deposition fluxes of Cr, Ni, As, Cd, and Pb in typical agro-ecosystems were 0.60-36.86, 0.65-25.37, 0.05-8.88, 0.12-5.81, and 0.43-35.63 μg m-2 day-1, respectively, which varied greatly between the four different regions. The average deposition fluxes of Cr, Ni, Cd, and Pb in the HH region, as well as the fluxes of As in the SW region, were significantly higher than those in the SE region. Heavy metal deposition rates among agro-ecosystems were very similar, except for the sites around cement factory in flat HH region. In mountainous SW region, however, deposition rates varied widely with sites nearby towns relatively higher and remote regions much lower. Higher correlation coefficients were observed between Cr, As, Pb, and Ni deposition rates, suggesting that they had similar sources. Samples from the SW and SE regions exhibited higher 207Pb/206Pb and 208Pb/206Pb ratios than those from the HH and Up-mid YR regions. Airborne Pb in SW agro-ecosystems were mainly derived from vehicle exhaust and local smelting, whereas that in the HH region from burning of northern Chinese coal.
Collapse
Affiliation(s)
- Yanling Zhang
- Key Laboratory of Eco-environment & Tobacco Leaf Quality, CNTC, Zhengzhou, People's Republic of China.
| | - Shixiang Zhang
- Key Laboratory of Eco-environment & Tobacco Leaf Quality, CNTC, Zhengzhou, People's Republic of China
| | - Fengpeng Zhu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, People's Republic of China
| | - Aiguo Wang
- Key Laboratory of Eco-environment & Tobacco Leaf Quality, CNTC, Zhengzhou, People's Republic of China
| | - Huaxin Dai
- Key Laboratory of Eco-environment & Tobacco Leaf Quality, CNTC, Zhengzhou, People's Republic of China
| | - Sen Cheng
- Shanghai Tobacco Group Co., Ltd., Shanghai, People's Republic of China
| | - Jianwei Wang
- Key Laboratory of Eco-environment & Tobacco Leaf Quality, CNTC, Zhengzhou, People's Republic of China
| | - Lina Tang
- Fujian Tobacco Research Institute, Fuzhou, People's Republic of China
| |
Collapse
|
40
|
Spatial Distribution and Contamination Assessment of Heavy Metals in Surface Sediments of the Caofeidian Adjacent Sea after the Land Reclamation, Bohai Bay. J CHEM-NY 2018. [DOI: 10.1155/2018/2049353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Land reclamation can significantly influence spatial distribution of heavy metals in inshore sediments. In this study, the distribution and contamination of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in inshore sediments of Bohai Bay were investigated after the land reclamation of Caofeidian. The results showed that the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the sediments were 0.20–0.65, 27.16–115.70, 11.14–39.00, 17.37–65.90, 15.08–24.06, and 41.64–139.56 mg/kg, respectively. These metal concentrations were generally higher in the area of Caofeidian than in other Chinese bays and estuaries. Spatially, the concentrations of Cd, Cr, Cu, Ni, and Zn were markedly lower in the sediments close to Caofeidian compared with other regions, whereas the concentrations of Pb showed an opposite case. Hydrodynamic conditions after the land reclamation were the major factor influencing the distribution of heavy metals in the sediments. Grain sizes dominated the distribution of Cu and Zn, and organic matters and Fe/Mn oxides/hydroxides also determined the distribution of the heavy metals. Multiple contamination indices showed that the inshore sediments were moderately to highly contaminated by Cd and slightly contaminated by other heavy metals. Similarly, Cd showed a high potential ecorisk in the sediments, and other metals were in the low level. Chromium contributed to higher exposure toxicity than other metals by the toxicity unit and toxic risk index. The results of this study indicate that after the land reclamation of Caofeidian the contamination and ecorisk of heavy metals in the sediments markedly decreased in the stronger hydrodynamic areas.
Collapse
|
41
|
Zhu G, Guo Q, Xiao H, Chen T, Yang J. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14877-14888. [PMID: 28478597 DOI: 10.1007/s11356-017-9055-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/18/2017] [Indexed: 05/27/2023]
Abstract
Heavy metals are considered toxic to humans and ecosystems. In the present study, heavy metal concentration in soil was investigated using the single pollution index (PIi), the integrated Nemerow pollution index (PIN), and the geoaccumulation index (Igeo) to determine metal accumulation and its pollution status at the abandoned site of the Capital Iron and Steel Factory in Beijing and its surrounding area. Multivariate statistical (principal component analysis and correlation analysis), geostatistical analysis (ArcGIS tool), combined with stable Pb isotopic ratios, were applied to explore the characteristics of heavy metal pollution and the possible sources of pollutants. The results indicated that heavy metal elements show different degrees of accumulation in the study area, the observed trend of the enrichment factors, and the geoaccumulation index was Hg > Cd > Zn > Cr > Pb > Cu ≈ As > Ni. Hg, Cd, Zn, and Cr were the dominant elements that influenced soil quality in the study area. The Nemerow index method indicated that all of the heavy metals caused serious pollution except Ni. Multivariate statistical analysis indicated that Cd, Zn, Cu, and Pb show obvious correlation and have higher loads on the same principal component, suggesting that they had the same sources, which are related to industrial activities and vehicle emissions. The spatial distribution maps based on ordinary kriging showed that high concentrations of heavy metals were located in the local factory area and in the southeast-northwest part of the study region, corresponding with the predominant wind directions. Analyses of lead isotopes confirmed that Pb in the study soils is predominantly derived from three Pb sources: dust generated during steel production, coal combustion, and the natural background. Moreover, the ternary mixture model based on lead isotope analysis indicates that lead in the study soils originates mainly from anthropogenic sources, which contribute much more than the natural sources. Our study could not only reveal the overall situation of heavy metal contamination, but also identify the specific pollution sources.
Collapse
Affiliation(s)
- Guangxu Zhu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huayun Xiao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
42
|
Li Y, Zhang H, Shao LM, He PJ. Tracing source and migration of Pb during waste incineration using stable Pb isotopes. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:28-34. [PMID: 28033495 DOI: 10.1016/j.jhazmat.2016.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Emission of Pb is a significant environmental concern during solid waste incineration. To target Pb emission control strategies effectively, the major sources of Pb in the waste incineration byproducts must be traced and quantified. However, identifying the migration of Pb in each waste component is difficult because of the heterogeneity of the waste. This study used a laboratory-scale incinerator to simulate the incineration of municipal solid waste (MSW). The Pb isotope ratios of the major waste components (207Pb/206Pb=0.8550-0.8627 and 208Pb/206Pb=2.0957-2.1131) and their incineration byproducts were measured to trace sources and quantify the Pb contribution of each component to incineration byproducts. As the proportions of food waste (FW), newspaper (NP), and polyethylene bag (PE) in the artificial MSW changed, the contribution ratios of FW and PE to Pb in fly ash changed accordingly, ranging from 31.2% to 50.6% and from 35.0% to 41.8%, respectively. The replacement of PE by PVC significantly increased the partitioning and migration ratio of Pb. The use of Pb isotope ratios as a quantitative tool for tracing Pb from raw waste to incineration byproducts is a feasible means for improving Pb pollution control.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Li-Ming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092, PR China
| | - Pin-Jing He
- Institute of Waste Treatment and Reclamation, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Research and Training Center on Rural Waste Management, Ministry of Housing and Urban-Rural Development of P.R. China, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
43
|
Vázquez Bahéna AB, Talavera Mendoza O, Moreno Godínez ME, Salgado Souto SA, Ruiz J, Huerta Beristain G. Source apportionment of lead in the blood of women of reproductive age living near tailings in Taxco, Guerrero, Mexico: An isotopic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:104-114. [PMID: 28108093 DOI: 10.1016/j.scitotenv.2017.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
The concentration and isotopic composition of lead in the blood of forty seven women of reproductive age (15-45y) exposed to multiple sources in two rural communities of the mining region of Taxco, Guerrero in southern Mexico were determined in order to identify specific contributing sources and their apportionment and to trace probable ingestion pathways. Our data indicate that >36% of the studied women have blood lead concentrations above 10μgdL-1 and up to 87% above 5μgdL-1. Tailings contain between 2128 and 5988mgkg-1 of lead and represent the most conspicuous source in the area. Lead contents in indoor dust are largely variable (21.7-987mgkg-1) but only 15% of samples are above the Mexican Regulatory Guideline for urban soils (400mgkg-1). By contrast, 85% of glazed containers (range: 0.026-68.6mgkg-1) used for cooking and food storage are above the maximum 2mgL-1 of soluble lead established in the Mexican Guideline. The isotopic composition indicates that lead in the blood of 95% of the studied women can be modeled in terms of a mixing system between local ores (and derivatives), glazed pottery and Morelos bedrock, end-members, with the two former being largely the most important contributors. Only one sample shows influence of indoor paints. Indoor dust is dominated by ores and derivatives but some samples show evidence of contribution from a less radiogenic source very likely represented by interior paints. This study supports the application of lead isotopic ratios to identify potential sources and their apportionment in humans exposed to multiple sources of lead from both, natural and anthropogenic origin.
Collapse
Affiliation(s)
- Analine Berenice Vázquez Bahéna
- UA Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n. Ciudad Universitaria, Chilpancingo, Guerrero C.P. 39090, Mexico
| | - Oscar Talavera Mendoza
- UA Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n. Ciudad Universitaria, Chilpancingo, Guerrero C.P. 39090, Mexico; UA de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Exhacienda S. Juan Bautista, Taxco el Viejo, Guerrero C.P. 40323, Mexico.
| | - Ma Elena Moreno Godínez
- UA Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n. Ciudad Universitaria, Chilpancingo, Guerrero C.P. 39090, Mexico
| | - Sergio Adrián Salgado Souto
- UA de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Exhacienda S. Juan Bautista, Taxco el Viejo, Guerrero C.P. 40323, Mexico
| | - Joaquín Ruiz
- Department of Geosciences, The University of Arizona, 1040 E. 4th St. Gould-Simpson Building #77, Tucson, AZ 85721, United States
| | - Gerardo Huerta Beristain
- UA Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n. Ciudad Universitaria, Chilpancingo, Guerrero C.P. 39090, Mexico
| |
Collapse
|
44
|
Li W, Wang D, Wang Q, Liu S, Zhu Y, Wu W. Impacts from Land Use Pattern on Spatial Distribution of Cultivated Soil Heavy Metal Pollution in Typical Rural-Urban Fringe of Northeast China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030336. [PMID: 28327541 PMCID: PMC5369171 DOI: 10.3390/ijerph14030336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/05/2017] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
Abstract
Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study's aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution.
Collapse
Affiliation(s)
- Wenbo Li
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| | - Dongyan Wang
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| | - Qing Wang
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| | - Shuhan Liu
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| | - Yuanli Zhu
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| | - Wenjun Wu
- College of Earth Sciences, Jilin University, Changchun 130061, China.
| |
Collapse
|
45
|
Bing H, Wu Y, Zhou J, Sun H. Biomonitoring trace metal contamination by seven sympatric alpine species in Eastern Tibetan Plateau. CHEMOSPHERE 2016; 165:388-398. [PMID: 27668716 DOI: 10.1016/j.chemosphere.2016.09.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Biomonitoring permits determinations of trace metal contamination in remote areas like the high mountain ecosystems. In this study, six trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) in seven sympatric alpine species (five tree species: Salix rehderiana, Populus purdomii, Betula albosinensis, Abies fabri, Picea brachytyla, and two dominant mosses: Pleurozium schreberi, Papillaria crocea) at the Hailuogou Glacier foreland, Eastern Tibetan Plateau, were investigated to monitor their contamination. The concentrations of trace metals and Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) in leaves/needles, twigs, bark, roots, and mosses were determined, and the biological factors and enrichment factors were calculated. The concentrations of Cd, Cr, Pb, and Zn in mosses were significantly higher than those in tree tissues and normal plants indicating the exogenous sources. The accumulation of trace metals (except Cd and Zn) was relatively higher in the tree roots, whereas their enrichments were significant in the leaves/needles and bark. According to biological factors, enrichment factors, and factor analysis, Cd, Pb, and Zn in trees and mosses were markedly impacted by anthropogenic emissions, whereas Cr, Cu, and Ni in trees were mainly from root adsorption from soils. The Pb isotopic compositions identified the anthropogenic Pb mainly from mining and smelting, coal combustion, and vehicle exhausts. The results indicated that mosses were still priority indicator of trace metal contamination from atmospheric deposition, and the leaves and bark of S. rehderiana, P. purdomii, and B. albosinensis were the better alternatives to monitor the atmospheric contamination of trace metals in the alpine ecosystem.
Collapse
Affiliation(s)
- Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yanhong Wu
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun Zhou
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongyang Sun
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
46
|
Das A, Krishna K, Kumar R, Das A, Sengupta S, Ghosh JG. Tracing lead contamination in foods in the city of Kolkata, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22454-22466. [PMID: 27549235 DOI: 10.1007/s11356-016-7409-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Lead isotopic ratios (LIR) of eight common food items, street dust, coal, diesel, sediments, lead ore and rainwater from India have been reported for the first time in this paper. This study characterized the source and extent of lead pollution in the different foodstuff consumed in Kolkata, a major metropolis of eastern India. The atmospheric lead input to the food items, sold openly in busy roadside markets of the city, has been quantified. The mean 207/206 and 208/206 LIRs of the eight food items ranged from 0.8847 to 0.8924 and 2.145 to 2.167, respectively. Diesel had the highest mean 207/206 and 208/206 values of 0.9015 and 2.1869, respectively, apart from the lead ore. The food items had a mean lead concentration between 3.78 and 43.35 mg kg-1. The two ratio scatter plots of all the different environmental matrices were spread linearly between the uncontaminated Ichapur sediment and diesel. The 207/206 LIRs of the coal with a mean of 0.8777 did not fall in the linear trend, while the street dust and food samples overlapped strongly. The rainwater sample had a 207/206 LIR of 0.9007. Contaminated sediments in Dhapa, the repository of the city's municipal garbage, had a mean 207/206 LIR of 0.8658. The corresponding value obtained from the sewage-fed vegetable grown there was 0.8058. The present study indicated that diesel was one of the main contributor to Pb pollution. The atmospheric lead contribution to the food items was in the range of 68.48-86.66 %.
Collapse
Affiliation(s)
- Avijit Das
- Laser Ablation Multicollector ICPMS (LAMCI) Laboratory, Geochronology& Isotope Geology Division, Geological Survey of India, Dharitri, Salt Lake, Kolkata, 700091, India.
| | - Kvss Krishna
- Laser Ablation Multicollector ICPMS (LAMCI) Laboratory, Geochronology& Isotope Geology Division, Geological Survey of India, Dharitri, Salt Lake, Kolkata, 700091, India
| | - Rajeev Kumar
- Laser Ablation Multicollector ICPMS (LAMCI) Laboratory, Geochronology& Isotope Geology Division, Geological Survey of India, Dharitri, Salt Lake, Kolkata, 700091, India
| | - Anindya Das
- Central Chemical Laboratory, Geological Survey of India, 15A&B Kyd Street, Kolkata, 700016,, India
| | - Siladitya Sengupta
- Laser Ablation Multicollector ICPMS (LAMCI) Laboratory, Geochronology& Isotope Geology Division, Geological Survey of India, Dharitri, Salt Lake, Kolkata, 700091, India
| | - Joy Gopal Ghosh
- Laser Ablation Multicollector ICPMS (LAMCI) Laboratory, Geochronology& Isotope Geology Division, Geological Survey of India, Dharitri, Salt Lake, Kolkata, 700091, India
| |
Collapse
|
47
|
Bing H, Zhou J, Wu Y, Wang X, Sun H, Li R. Current state, sources, and potential risk of heavy metals in sediments of Three Gorges Reservoir, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:485-496. [PMID: 27131806 DOI: 10.1016/j.envpol.2016.04.062] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 05/14/2023]
Abstract
Heavy metal (HM) contamination in sediments of Three Gorges Reservoir (TGR) is a particularly important issue for the safety of water quality due to the potential threats of metal toxicity to local and downstream human health. Surface sediments from riparian and submerged areas in the entire TGR mainstream were collected in 2014 to investigate the spatial distribution of HMs (Cd, Cu, Pb, and Zn), identify their possible sources, and assess their potential risk by multiple indices and metal fraction. Results showed that the concentrations of HMs in the sediments increased after the TGR operation, but were lower than those in other Chinese rivers of developed areas. The acid-soluble Cd accounted for more than 50% of total Cd in the sediments, whereas that of other HMs was very low. The Cd concentrations in the riparian sediments increased towards the dam; however, other metals in the riparian sediments and all HMs in the submerged sediments did not show any regular variation trend spatially. The stocks of HMs were significantly higher in the submerged sediments than in the riparian sediments. The high accumulation of HMs in the riparian sediments emerged between Fuling and Fengjie, and those in the submerged sediments existed in the near dam areas. Grain size and Fe/Mn oxides controlled the mobility and transfer of HMs in the sediments. Human activity in the catchment including industrial and agricultural production, shipping industry, mining, etc., increased inputs of HMs in the sediments, and altered their spatial distribution patterns. The sediments were moderately to highly contaminated by Cd, and slightly contaminated by other HMs. The results indicate the current priority of Cd contamination in the TGR, and will conduce to ecological protection in the TGR region.
Collapse
Affiliation(s)
- Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun Zhou
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanhong Wu
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xiaoxiao Wang
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyang Sun
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Rui Li
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Bing H, Wu Y, Zhou J, Li R, Luo J, Yu D. Vegetation and Cold Trapping Modulating Elevation-dependent Distribution of Trace Metals in Soils of a High Mountain in Eastern Tibetan Plateau. Sci Rep 2016; 6:24081. [PMID: 27052807 PMCID: PMC4823730 DOI: 10.1038/srep24081] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.
Collapse
Affiliation(s)
- Haijian Bing
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanhong Wu
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jun Zhou
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Rui Li
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ji Luo
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Yu
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
49
|
Bing H, Wu Y, Zhou J, Li R, Wang J. Historical trends of anthropogenic metals in Eastern Tibetan Plateau as reconstructed from alpine lake sediments over the last century. CHEMOSPHERE 2016; 148:211-219. [PMID: 26807941 DOI: 10.1016/j.chemosphere.2016.01.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Reconstructing trace metal historical trends are essential for better understanding anthropogenic impact on remote alpine ecosystems. We present results from an alpine lake sediment from the Eastern Tibetan Plateau to decipher the accumulation history of cadmium (Cd), lead (Pb) and zinc (Zn) over last century, from the preindustrial to the modern period. Cd, Pb and Zn in the sediment of Caohaizi Lake clearly suffered from atmospheric deposition, and the mining and smelting were regarded as the main anthropogenic sources. Since the mid-1990s, over 80% of trace metals were quantified from anthropogenic emissions. The temporal trends of anthropogenic metal fluxes showed that the contamination history of Pb was earlier than that of Cd and Zn, which was in agreement with the regional Pb emission history, but lagged behind the Pb decline in Europe and North America. The fluxes of anthropogenic Cd and Zn were relatively constant until the 1980s, increased sharply between the 1980s and the mid-1990s, and then kept the high values. The anthropogenic fluxes of Pb showed a marked rise around 1950, and increased sharply in the 1980s. In the mid-1990s, this flux reached the peak, and then decreased gradually. The Pb deposition flux at present in comparison with other lake records in the areas of Tibetan Plateau further demonstrated that trace metals in the Caohaizi Lake region were probably from Southwest China and South Asia. Economic development in these regions still puts pressure on the remote alpine ecosystems, and thus the impact of trace metals merits more attention.
Collapse
Affiliation(s)
- Haijian Bing
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanhong Wu
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jun Zhou
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Rui Li
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jipeng Wang
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Ding C, Ma Y, Li X, Zhang T, Wang X. Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:21-27. [PMID: 26513560 DOI: 10.1016/j.jhazmat.2015.10.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/26/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The combination of food quality standard and soil-plant transfer models can be used to derive critical limits of heavy metals for agricultural soils. In this paper, a robust methodology is presented, taking the variations of plant species and cultivars and soil properties into account to derive soil thresholds for lead (Pb) applying species sensitivity distribution (SSD). Three species of root vegetables (four cultivars each for radish, carrot, and potato) were selected to investigate their sensitivity differences for accumulating Pb through greenhouse experiment. Empirical soil-plant transfer model was developed from carrot New Kuroda grown in twenty-one soils covering a wide variation in physicochemical properties and was used to normalize the bioaccumulation data of non-model cultivars. The relationship was then validated to be reliable and would not cause over-protection using data from field experimental sites and published independent studies. The added hazardous concentration for protecting 95% of the cultivars not exceeding the food quality standard (HC5add) were then calculated from the Burr Type III function fitted SSD curves. The derived soil Pb thresholds based on the added risk approach (total soil concentration subtracting the natural background part) were presented as continuous or scenario criteria depending on the combination of soil pH and CEC.
Collapse
Affiliation(s)
- Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaogang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangxi Key Laboratory of Ecological Research of Red Soil, Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|