1
|
Johnston TA, Lescord GL, Quesnel M, Savage PL, Gunn JM, Kidd KA. Age, body size, growth and dietary habits: What are the key factors driving individual variability in mercury of lacustrine fishes in northern temperate lakes? ENVIRONMENTAL RESEARCH 2022; 213:113740. [PMID: 35750129 DOI: 10.1016/j.envres.2022.113740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Fish total mercury concentration ([THg]) has been linked to various fish attributes, but the relative importance of these attributes in accounting for among-individual variation in [THg] has not been thoroughly assessed. We compared the contributions of ontogeny (age, length), growth (growth rate, body condition), and food web position (δ13C, δ15N) to among-individual variability in [THg] within populations of seven common fishes from 141 north temperate lakes. Ontogenetic factors accounted for most variation in [THg]; age was a stronger and less variable predictor than length for most species. Adding both indices of growth and food web position to these models increased explained variation (R2) in [THg] by 6-25% among species. Fish [THg] at age increased with growth rate, while fish [THg] at length decreased with growth rate, and the effect of body condition was consistently negative. Trophic elevation (inferred from δ15N) was a stronger predictor than primary production source (inferred from δ13C) for piscivores but not benthivores. Fish [THg] increased with δ15N in all species but showed a more variable relationship with δ13C. Among-individual variation in [THg] is primarily related to age or size in most temperate freshwater fishes, and effects of growth rate and food web position need to be considered in the context of these ontogenetic drivers.
Collapse
Affiliation(s)
- Thomas A Johnston
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Sudbury, ON, Canada.
| | - Gretchen L Lescord
- Biology Department, Laurentian University, Sudbury, ON, Canada; Wildlife Conservation Society Canada, Toronto, ON, Canada
| | | | | | - John M Gunn
- Biology Department, Laurentian University, Sudbury, ON, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, Hamilton, ON, Canada; School of Earth, Environment and Society, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Martyniuk MAC, Couture P, Tran L, Beaupré L, Urien N, Power M. A seasonal comparison of trace metal concentrations in the tissues of Arctic charr (Salvelinus alpinus) in Northern Québec, Canada. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1327-1346. [PMID: 32794028 DOI: 10.1007/s10646-020-02248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological research detailing trace metal contamination and seasonal variation in the tissues of northern fishes such as Arctic charr (Salvelinus alpinus) has been poorly represented in the literature beyond examination of mercury. In an effort to address this, anadromous Arctic charr were collected from the Deception River watershed in the late summer and post-winter season, before quantifying seasonal and organotropic variations in dorsal muscle and liver concentrations of arsenic, cadmium, chromium, copper, nickel, lead, and zinc. Potential linkages with biological variables (fork length, age, and somatic condition) and indicators of feeding behavior (δ13C and δ15N) were also assessed. Trace metal organotropism favouring elevation in liver tissue concentrations was exhibited by cadmium, copper, nickel and zinc, while arsenic, chromium and lead exhibited no significant organotropic variation. Seasonal differences in concentrations were metal and tissue dependent, but generally increased in tissues collected from post-winter sampled Arctic charr. Significant correlations with biological and trophic descriptors were also determined to be element and tissue dependent. These parameters, in addition to season, were incorporated into multi-predictor variable models, where variations in trace metal concentration data were often best explained when season, somatic condition, and trophic descriptors were included. These variables were also of greatest relative importance across all considered trace metals and tissue types. These findings suggest that seasonally linked processes have the greatest influence on trace metal concentrations in anadromous Arctic charr. Future metal-related research on Arctic charr and other northern fish species should further consider these variables when evaluating elemental accumulation.
Collapse
Affiliation(s)
- Mackenzie Anne Clifford Martyniuk
- Institut National de la Recherche Scientifique-Centre Eau, Terre, Environnement, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Patrice Couture
- Institut National de la Recherche Scientifique-Centre Eau, Terre, Environnement, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Lilian Tran
- Nunavik Research Centre, P.O. Box 179, Kuujjuaq, Québec, QC, J0M 1C0, Canada
| | - Laurie Beaupré
- Makivk Corporation, 1111 Boulevard Dr. Frederik-Philips, Saint-Laurent, Québec, QC, H4M 2x6, Canada
| | - Nastassia Urien
- Institut National de la Recherche Scientifique-Centre Eau, Terre, Environnement, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Michael Power
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
3
|
Martyniuk MAC, Couture P, Tran L, Beaupré L, Power M. Seasonal variation of total mercury and condition indices of Arctic charr (Salvelinus alpinus) in Northern Québec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139450. [PMID: 32534279 DOI: 10.1016/j.scitotenv.2020.139450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The winter ecology of anadromous Arctic charr, an important fish species for Indigenous populations, has remained poorly detailed in the literature beyond descriptions of seasonal fasting and resulting declines in condition. However, prolonged periods of reduced feeding can have significant consequences for other variables, such as tissue contaminant levels. To more thoroughly detail seasonal changes, biological information (fork length, total weight, age, sex, somatic condition), stable isotopes (δ13C, % carbon, δ15N, % nitrogen), dorsal muscle % lipid, caloric densities, and total mercury (THg) concentrations were assessed in anadromous Arctic charr collected from Deception Bay, Canada, during the summer and over-wintering periods. Significant reductions in somatic condition, total weight, and % nitrogen, consistent with prolonged periods of fasting, were found for post-winter captured Arctic charr, but % lipid and caloric densities were significantly higher in these fish. THg also varied seasonally and was significantly higher in summer collected tissue. When tested individually via linear regression, significant relationships were seasonally dependent, but limited in number. All previously mentioned parameters were then incorporated into multi-variable models which better explained variations in the data. While there was no clear best model for explaining the % lipid values, caloric densities, and THg, season, condition, and stable isotope values (% carbon and % nitrogen) were the best indicators of % lipid content and caloric densities. THg concentrations were best explained by total weight, somatic condition, and δ13C. Seasonal variation in fish condition measures and THg may be indicative of condition selective mortality that yields apparent improvement through the disproportionate removal of poorer conditioned fish from the population during the over-wintering period. This hypothesis was further supported by mortality estimates and the results of the multi-predictor variable models. Collectively, this research highlights the importance of understanding seasonal dynamics for anadromous Arctic charr populations.
Collapse
Affiliation(s)
| | - Patrice Couture
- Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, 490 Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Lilian Tran
- Nunavik Research Centre - Makivik Corporation, P.O. Box 179, Kuujjuaq, Québec, Canada, J0M 1C0
| | - Laurie Beaupré
- Makivik Corporation, 1111 Boulevard Dr. Frederik-Philips, Saint-Laurent, Québec, Canada, H4M 2X6
| | - Michael Power
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
| |
Collapse
|
4
|
Hudelson KE, Muir DCG, Drevnick PE, Köck G, Iqaluk D, Wang X, Kirk JL, Barst BD, Grgicak-Mannion A, Shearon R, Fisk AT. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:801-812. [PMID: 31085496 DOI: 10.1016/j.scitotenv.2019.04.453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Climate warming and mercury (Hg) are concurrently influencing Arctic ecosystems, altering their functioning and threatening food security. Non-anadromous Arctic char (Salvelinus alpinus) in small lakes were used to biomonitor these two anthropogenic stressors, because this iconic Arctic species is a long-lived top predator in relatively simple food webs, and yet population characteristics vary greatly, reflecting differences between lake systems. Mercury concentrations in six landlocked Arctic char populations on Cornwallis Island, Nunavut have been monitored as early as 1989, providing a novel dataset to examine differences in muscle [Hg] among char populations, temporal trends, and the relationship between climate patterns and Arctic char [Hg]. We found significant lake-to-lake differences in length-adjusted Arctic char muscle [Hg], which varied by up to 9-fold. Arctic char muscle [Hg] was significantly correlated to dissolved and particulate organic carbon concentrations in water; neither watershed area or vegetation cover explained differences. Three lakes exhibited significant temporal declines in length-adjusted [Hg] in Arctic char; the other three lakes had no significant trends. Though precipitation, temperature, wind speed, and sea ice duration were tested, no single climate variable was significantly correlated to length-adjusted [Hg] across populations. However, Arctic char Hg in Resolute Lake exhibited a significant correlation with sea ice duration, which is likely closely linked to lake ice duration, and which may impact Hg processing in lakes. Additionally, Arctic char [Hg] in Amituk Lake was significantly correlated to snow fall, which may be linked to Hg deposition. The lack of consistent temporal trends in neighboring char populations indicates that currently, within lake processes are the strongest drivers of [Hg] in char in the study lakes and potentially in other Arctic lakes, and that the influence of climate change will likely vary from lake to lake.
Collapse
Affiliation(s)
- Karista E Hudelson
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC G1K 9A9, Canada.
| | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada.
| | - Paul E Drevnick
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC G1K 9A9, Canada; Alberta Environment and Parks, Environmental Monitoring and Science Division, Calgary, AB T2E 7L7, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research, 6020 Innsbruck, Austria
| | - Deborah Iqaluk
- Hamlet of Resolute Bay, Resolute Bay, NU X0A 0V0, Canada
| | - Xiaowa Wang
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Jane L Kirk
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Benjamin D Barst
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, QC G1K 9A9, Canada; Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Alice Grgicak-Mannion
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Rebecca Shearon
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
5
|
Comparing total mercury concentrations of northern Dolly Varden, Salvelinus malma malma, in two Canadian Arctic rivers 1986–1988 and 2011–2013. Polar Biol 2019. [DOI: 10.1007/s00300-019-02476-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Barst BD, Drevnick PE, Muir DCG, Gantner N, Power M, Köck G, Chéhab N, Swanson H, Rigét F, Basu N. Screening-level risk assessment of methylmercury for non-anadromous Arctic char (Salvelinus alpinus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:489-502. [PMID: 30561040 DOI: 10.1002/etc.4341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Non-anadromous forms of Arctic char (Salvelinus alpinus), those that are restricted to lakes and rivers, typically have higher mercury (Hg) concentrations than anadromous forms, which migrate to and from the sea. Using tissue burden data from the literature and our own analyses, we performed a screening-level risk assessment of methylmercury (MeHg) for non-anadromous Arctic char. Our assessment included 1569 fish distributed across 83 sites. Site-specific mean total Hg concentrations in non-anadromous Arctic char muscle varied considerably from 0.01 to 1.13 µg/g wet weight, with 21% (17 of 83 sites) meeting or exceeding a threshold-effect level in fish of 0.33 µg/g wet weight, and 13% (11 of 83 sites) meeting or exceeding a threshold-effect level in fish of 0.5 µg/g wet weight. Of the sites in exceedance of the 0.33-µg/g threshold, 7 were located in Greenland and 10 in Canada (Labrador, Nunavut, and Yukon). All but one of these sites were located in interfrost or permafrost biomes. Maximum total Hg concentrations exceeded 0.33 µg/g wet weight at 53% of sites (40 of the 75 sites with available maximum Hg values), and exceeded 0.5 µg/g wet weight at 27% (20 of 75 sites). Collectively, these results indicate that certain populations of non-anadromous Arctic char located mainly in interfrost and permafrost regions may be at risk for MeHg toxicity. This approach provides a simple statistical assessment of MeHg risk to non-anadromous Arctic char, and does not indicate actual effects. We highlight the need for studies that evaluate the potential toxic effects of MeHg in non-anadromous Arctic char, as well as those that aid in the development of a MeHg toxic-effect threshold specific to this species of fish. Environ Toxicol Chem 2019;38:489-502. © 2018 SETAC.
Collapse
Affiliation(s)
- Benjamin D Barst
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, Québec, Canada
- Water and Environmental Research Center, Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Paul E Drevnick
- Centre Eau Terre et Environnement, Institut National de la Recherche Scientifique, Québec, Québec, Canada
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Calgary, Alberta, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada
| | - Nikolaus Gantner
- Environmental Science Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research, Innsbruck, Austria
| | - Nathalie Chéhab
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, Québec, Canada
| | - Heidi Swanson
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Frank Rigét
- Arctic Research Centre, Department of Bioscience, Faculty of Science and Technology, Aarhus University, Roskilde, Denmark
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Kahilainen KK, Thomas SM, Nystedt EKM, Keva O, Malinen T, Hayden B. Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1768-1778. [PMID: 28545204 DOI: 10.1016/j.scitotenv.2017.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Resource polymorphism, whereby ancestral trophic generalists undergo divergence into multiple specialist morphs, is common in salmonid fish populations inhabiting subarctic lakes. However, the extent to which such resource specialization into the three principal lake habitats (littoral, profundal, and pelagic) affects patterns of contaminant bioaccumulation remains largely unexplored. We assessed total mercury concentrations (THg) of European whitefish (Coregonus lavaretus (L.)) and their invertebrate prey in relation to potential explanatory variables across 6 subarctic lakes, of which three are inhabited by polymorphic (comprised of four morphs) and three by monomorphic populations. Among invertebrate prey, the highest THg concentrations were observed in profundal benthic macroinvertebrates, followed by pelagic zooplankton, with concentrations lowest in littoral benthic macroinvertebrates in both lake types. Broadly similar patterns were apparent in whitefish in polymorphic systems, where average age-corrected THg concentrations and bioaccumulation rates were the highest in pelagic morphs, intermediate in the profundal morph, and the lowest in the littoral morph. In monomorphic systems, age-corrected THg concentrations were generally lower, and showed pronounced lake-specific variation. In the polymorphic systems, we found significant relationships between whitefish muscle tissue THg concentration and gill raker count, resource use, lipid content and maximum length, whilst no such relationships were apparent in the monomorphic systems. Across all polymorphic lakes, the major variables explaining THg in whitefish were gill raker count and age, whereas in monomorphic systems, the factors were lake-specific. Whitefish resource polymorphism across the three main lake habitats therefore appears to have profound impacts on THg concentration and bioaccumulation rate. This highlights the importance of recognizing such intraspecific diversity in both future scientific studies and mercury monitoring programs.
Collapse
Affiliation(s)
- Kimmo K Kahilainen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland; Kilpisjärvi Biological Station, Käsivarrentie 14622, FIN-99490 Kilpisjärvi, Finland.
| | - Stephen M Thomas
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Elina K M Nystedt
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Ossi Keva
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Tommi Malinen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
8
|
Evans MS, Muir DCG, Keating J, Wang X. Anadromous char as an alternate food choice to marine animals: a synthesis of Hg concentrations, population features and other influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:175-194. [PMID: 25467220 DOI: 10.1016/j.scitotenv.2014.10.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990 s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004-2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically <0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ(15)N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ(13)C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990 s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and marine vertebrates in traditional diets. The known information on anadromous char is reviewed including population features, habitat, and harvests. Future Hg trend monitoring should focus on specific locations and harvest areas within these areas to better assess trends and influencing factors.
Collapse
Affiliation(s)
- Marlene S Evans
- Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada.
| | - Derek C G Muir
- Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6, Canada
| | - Jonathan Keating
- Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada
| | - Xiaowa Wang
- Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6, Canada
| |
Collapse
|
9
|
Chételat J, Amyot M, Arp P, Blais JM, Depew D, Emmerton CA, Evans M, Gamberg M, Gantner N, Girard C, Graydon J, Kirk J, Lean D, Lehnherr I, Muir D, Nasr M, Poulain AJ, Power M, Roach P, Stern G, Swanson H, van der Velden S. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:41-66. [PMID: 24993511 DOI: 10.1016/j.scitotenv.2014.05.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/01/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
The Canadian Arctic has vast freshwater resources, and fish are important in the diet of many Northerners. Mercury is a contaminant of concern because of its potential toxicity and elevated bioaccumulation in some fish populations. Over the last decade, significant advances have been made in characterizing the cycling and fate of mercury in these freshwater environments. Large amounts of new data on concentrations, speciation and fluxes of Hg are provided and summarized for water and sediment, which were virtually absent for the Canadian Arctic a decade ago. The biogeochemical processes that control the speciation of mercury remain poorly resolved, including the sites and controls of methylmercury production. Food web studies have examined the roles of Hg uptake, trophic transfer, and diet for Hg bioaccumulation in fish, and, in particular, advances have been made in identifying determinants of mercury levels in lake-dwelling and sea-run forms of Arctic char. In a comparison of common freshwater fish species that were sampled across the Canadian Arctic between 2002 and 2009, no geographic patterns or regional hotspots were evident. Over the last two to four decades, Hg concentrations have increased in some monitored populations of fish in the Mackenzie River Basin while other populations from the Yukon and Nunavut showed no change or a slight decline. The different Hg trends indicate that the drivers of temporal change may be regional or habitat-specific. The Canadian Arctic is undergoing profound environmental change, and preliminary evidence suggests that it may be impacting the cycling and bioaccumulation of mercury. Further research is needed to investigate climate change impacts on the Hg cycle as well as biogeochemical controls of methylmercury production and the processes leading to increasing Hg levels in some fish populations in the Canadian Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada.
| | - Marc Amyot
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Paul Arp
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - David Depew
- Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
| | - Craig A Emmerton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Marlene Evans
- Environment Canada, Aquatic Contaminants Research Division, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Mary Gamberg
- Gamberg Consulting, Whitehorse, Yukon Y1A 5M2, Canada
| | - Nikolaus Gantner
- Department of Geography, University of Victoria, Victoria, BC V8W 3R4, Canada
| | - Catherine Girard
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jennifer Graydon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jane Kirk
- Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
| | - David Lean
- Lean Environmental, Apsley, Ontario K0L 1A0, Canada
| | - Igor Lehnherr
- Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Derek Muir
- Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
| | - Mina Nasr
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Alexandre J Poulain
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pat Roach
- Aboriginal Affairs and Northern Development Canada, Whitehorse, Yukon Y1A 2B5, Canada
| | - Gary Stern
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Heidi Swanson
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
10
|
Braune B, Chételat J, Amyot M, Brown T, Clayden M, Evans M, Fisk A, Gaden A, Girard C, Hare A, Kirk J, Lehnherr I, Letcher R, Loseto L, Macdonald R, Mann E, McMeans B, Muir D, O'Driscoll N, Poulain A, Reimer K, Stern G. Mercury in the marine environment of the Canadian Arctic: review of recent findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:67-90. [PMID: 24953756 DOI: 10.1016/j.scitotenv.2014.05.133] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay. Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change.
Collapse
Affiliation(s)
- Birgit Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3.
| | - John Chételat
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3
| | - Marc Amyot
- Département de sciences biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville Pavillon Marie-Victorin, Montreal, Quebec, Canada H3C 3 J7
| | - Tanya Brown
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, PO Box 6000, Sidney, British Columbia, Canada V8L 4B2; Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | - Meredith Clayden
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Marlene Evans
- Environment Canada, National Water Research Institute, 11 Innovation Blvd., Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Aaron Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada N9B 3P4
| | - Ashley Gaden
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Catherine Girard
- Département de sciences biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville Pavillon Marie-Victorin, Montreal, Quebec, Canada H3C 3 J7
| | - Alex Hare
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Jane Kirk
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Igor Lehnherr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Robert Letcher
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3
| | - Lisa Loseto
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| | - Robie Macdonald
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, PO Box 6000, Sidney, British Columbia, Canada V8L 4B2
| | - Erin Mann
- Department of Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
| | - Bailey McMeans
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada N9B 3P4
| | - Derek Muir
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Nelson O'Driscoll
- Department of Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Ken Reimer
- Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | - Gary Stern
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2; Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| |
Collapse
|