1
|
Liu S, Lioe TS, Sun L, Adriaenssens EM, McCarthy AJ, Sekar R. Validation of crAssphage microbial source tracking markers and comparison with Bacteroidales markers for detection and quantification of faecal contaminations in surface water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125403. [PMID: 39608743 DOI: 10.1016/j.envpol.2024.125403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Human-specific faecal contamination has been affecting surface water and is a threat to both the environment and public health due to its potential co-occurrence with pathogens. Extended studies were conducted to detect and quantify faecal contamination using microbial source tracking (MST) markers targeting bacteria and viruses. The prototypical crAssphage, a presumed Bacteroides-infecting phage discovered in 2014, showed superior specificity to human faeces and high abundance in untreated sewage water. This study evaluated the applicability of crAssphage markers, CPQ_056 and CPQ_064, as MST tools for detecting domestic sewage contamination in surface water in China. Validation tests based on domestic sewage and animal faecal samples demonstrated high sensitivity/specificity of 100%/96.7% for CPQ_056 and 100%/100% for CPQ_064 within the scope of this study, surpassing the performance of traditional Bacteroidales markers such as HF183 (100%/80.4% against sewage). MST markers targeting different hosts and validated in the Taihu watershed (CPQ_056, CPQ_064, BacUni, HF183 TaqMan, Pig-2-Bac, and GFD) were quantified in water samples collected from the inflow rivers of Taihu Lake in summer and winter 2020. The results showed the dominance of sewage/wastewater as the source of contamination in all faecal pollution. Spatial analysis revealed higher contamination levels in northwest rivers, which were those most impacted by human activities. There was also a diluting pattern downstream of some rivers. Correlations with water quality parameters indicated the co-occurrence of nutrient-related pollution and faecal contamination, particularly in areas with industrial, low-density residential, green space, and municipal service land uses. The findings established the efficacy of crAssphage markers in enhancing precision and accuracy in monitoring faecal contamination, offering valuable tools for policymakers and environmental managers.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Trillion Surya Lioe
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, 2333, CC Leiden, the Netherlands
| | - Li Sun
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | | | - Alan J McCarthy
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Raju Sekar
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZX, UK.
| |
Collapse
|
2
|
Li J, Bai M, He Y, Wang S, Wang G. Decay kinetics of human-associated pathogens in the marine microcosms reveals their new dynamics and potential indicators in the coastal waters of northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124936. [PMID: 39265768 DOI: 10.1016/j.envpol.2024.124936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Pathogens in coastal waters cause infectious diseases and endanger public sanitation safety in humans and animals worldwide. To avoid these risks, timely detection of human-associated pathogens in waters is crucial. In this study, the decay kinetics of the molecular markers for human-associated pathogens, including enteric bacteria (Escherichia coli, Enterococcus, and Bacteroides), non-enteric bacteria (Staphylococcus aureus), crAssphage, and polyomavirus, were monitored over time at different temperatures and background microbes in seawater microcosms. The results indicated that temperature and native marine microbes were the main influential factors in attenuating bacterial pathogens. Remarkably, the effect of native microorganisms was more evidentially striking. Furthermore, Enterococcus was a more reliable and suitable fecal indicator bacterium than E. coli for the marine environment. The decay of crAssphage was like that of polyomavirus, indicating that it may be a good indicator of enterovirus in seawater. More importantly, the 16S amplicon sequencing data highlighted the decay kinetics of multiple bacterial pathogens in parallel with the dynamic changes of the whole bacterial communities. This study provides valuable information for public health risk management and a new approach to understanding the fate of bacteria in the coastal environment.
Collapse
Affiliation(s)
- Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yaodong He
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Suisui Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Mogane B, Kachienga LO, Kamika I, Ngobeni-Nyambi R, Momba MNB. Distribution of host-specific Bacteriodales marker genes in water sources of selected rural areas of Vhembe District, South Africa. Sci Rep 2024; 14:19758. [PMID: 39187527 PMCID: PMC11347707 DOI: 10.1038/s41598-024-68771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Access to safe drinking water sources and appropriate sanitation facilities remains a dream in low and middle-income countries including South Africa. This study identified the origin of faecal pollution by using quantitative polymerase chain reaction (qPCR) targeting host-specific Bacteroidales genetic markers to track the distribution of human-specific (BacHum) and animal-specific (cattle-BacCow, chicken-Cytb, pig-Pig-2-Bac, dog-BacCan) markers in water sources used by rural communities of the Vhembe District Municipality (VDM). Results revealed the prevalence of BacHum, BacCow, and BacCan in all surface water sources in Thulamela Local Municipality (TLM) and Collins Chabane Local Municipality (CLM) during wet (100%) and dry seasons (50-75%). Cytb was not detected in untreated spring water in TLM and CLM, and Pig-2-Bac was not detected in untreated hand-dug well water in TLM during both seasons. Household-level analysis detected Cytb (28.8% wet, 17.5% dry), BacHum (34.4% wet, 25% dry for Pig-2-Bac) in stored untreated spring water in CLM, and Cytb (42.9% wet, 28.5% dry) in untreated hand-dug well water in TLM. Despite differences in detection frequencies of host-specific Bacteroidales, the study highlights the public health concern of faecal pollution in rural VDM households.
Collapse
Affiliation(s)
- Barbara Mogane
- Department of Environmental, Water and Earth Sciences, Arcadia Campus, Tshwane University of Technology, 175 Nelson Mandela Avenue, Arcadia, Pretoria, 0001, South Africa
| | - Leonard Owino Kachienga
- Department of Environmental, Water and Earth Sciences, Arcadia Campus, Tshwane University of Technology, 175 Nelson Mandela Avenue, Arcadia, Pretoria, 0001, South Africa
| | - Ilunga Kamika
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, Florida Campus, University of South Africa, Florida, Roodepoort, 1710, South Africa
| | - Renay Ngobeni-Nyambi
- Department of Microbiology, Stellenbosch University, Private Bag, X1, Mitieland, 7602, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Arcadia Campus, Tshwane University of Technology, 175 Nelson Mandela Avenue, Arcadia, Pretoria, 0001, South Africa.
| |
Collapse
|
4
|
Raya S, Malla B, Thakali O, Angga MS, Segawa T, Sherchand JB, Haramoto E. Validation and application of high-throughput quantitative PCR for the simultaneous detection of microbial source tracking markers in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173604. [PMID: 38821279 DOI: 10.1016/j.scitotenv.2024.173604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
No single microbial source tracking (MST) marker can be applied to determine the sources of fecal pollution in all water types. This study aimed to validate a high-throughput quantitative polymerase chain reaction (HT-qPCR) method for the simultaneous detection of multiple MST markers. A total of 26 fecal-source samples that had been previously collected from human sewage (n = 6) and ruminant (n = 3), dog (n = 6), pig (n = 6), chicken (n = 3), and duck (n = 2) feces in the Kathmandu Valley, Nepal, were used to validate 10 host-specific MST markers, i.e., Bacteroidales (BacHum, gyrB, BacR, and Pig2Bac), mitochondrial DNA (mtDNA) (swine, bovine, and Dog-mtDNA), and viral (human adenovirus, porcine adenovirus, and chicken/turkey parvovirus) markers, via HT-qPCR. Only Dog-mtDNA showed 100 % accuracy. All the tested bacterial markers showed a sensitivity of 100 %. Nine of the 10 markers were further used to identify fecal contamination in groundwater sources (n = 54), tanker filling stations (n = 14), drinking water treatment plants (n = 5), and river water samples (n = 6). The human-specific Bacteroidales marker BacHum and ruminant-specific Bacteroidales marker BacR was detected at a high ratio in river water samples (83 % and 100 %, respectively). The results of HT-qPCR were in agreement with the standard qPCR. The comparable performances of HT-qPCR and standard qPCR as well as the successful detection of MST markers in the fecal-source and water samples demonstrated the potential applicability of these markers for detecting fecal contamination sources via HT-qPCR.
Collapse
Affiliation(s)
- Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takahiro Segawa
- Center for Life Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
5
|
Liu Z, Lin Y, Ge Y, Zhu Z, Yuan J, Yin Q, Liu B, He K, Hu M. Meta-analysis of microbial source tracking for the identification of fecal contamination in aquatic environments based on data-mining. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118800. [PMID: 37591102 DOI: 10.1016/j.jenvman.2023.118800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Microbial source tracking (MST) technology represents an innovative approach employed to trace fecal contamination in environmental water systems. The performance of primers may be affected by amplification techniques, target primer categories, and regional differences. To investigate the influence of these factors on primer recognition performance, a meta-analysis was conducted on the application of MST in water environments using three databases: Web of Science, Scopus, and PubMed (n = 2291). After data screening, 46 studies were included in the final analysis. The investigation encompassed Polymerase Chain Reaction (PCR)/quantitative PCR (qPCR) methodologies, dye-based (SYBR)/probe-based (TaqMan) techniques, and geographical differences of a human host-specific (HF183) primer and other 21 additional primers. The results indicated that the primers analyzed were capable of differentiating host specificity to a certain degree. Nonetheless, by comparing sensitivity and specificity outcomes, it was observed that virus-based primers exhibited superior specificity and recognition capacity, as well as a stronger correlation with human pathogenicity in water environments compared to bacteria-based primers. This finding highlights an important direction for future advancements. Moreover, within the same category, qPCR did not demonstrate significant benefits over conventional PCR amplification methods. In comparing dye-based and probe-based techniques, it was revealed that the probe-based method's advantage lay primarily in specificity, which may be associated with the increased propensity of dye-based methods to produce false positives. Furthermore, the heterogeneity of the HF183 primer was not detected in China, Canada, and Singapore respectively, indicating a low likelihood of regional differences. The variation among the 21 other primers may be attributable to regional differences, sample sources, detection techniques, or alternative factors. Finally, we identified that economic factors, climatic conditions, and geographical distribution significantly influence primer performance.
Collapse
Affiliation(s)
- Zejun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingying Lin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yanhong Ge
- Guangdong Infore Technology Co., Ltd, Foshan, 528322, China
| | - Ziyue Zhu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Qidong Yin
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Bingjun Liu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Maochuan Hu
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai, 519082, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
6
|
Digaletos M, Ptacek CJ, Thomas J, Liu Y. Chemical and biological tracers to identify source and transport pathways of septic system contamination to streams in areas with low permeability soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161866. [PMID: 36709906 DOI: 10.1016/j.scitotenv.2023.161866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Septic systems are widely used in rural areas that lack centralized sewage treatment systems. Incomplete removal of domestic wastewater contaminants in septic systems can lead to leaching of nutrients (P and N), bacteria/viruses, and trace contaminants to surrounding groundwater and surface water. This study focuses on delineating the fate of wastewater contaminants in localities where septic systems are installed in moderate to fine-grained overburden materials to assess potential impacts on groundwater and surface water quality in these settings. Nutrients and a suite of anthropogenic tracers, including host-specific fecal indicator bacteria (bovine- and human-specific Bacteroides), pharmaceutical compounds (caffeine, carbamazepine, gemfibrozil, ibuprofen, naproxen, and sulfamethoxazole), and an artificial sweetener (acesulfame-K), were selected to evaluate differences in transport properties. Surface water samples (n = 103) were collected from streams upstream (US) and downstream (DS) of three rural hamlets up to two times monthly over one year. Results indicate the presence of wastewater indicators in the streams, with DS locations showing significantly elevated concentrations of both chemical and biological anthropogenic tracers. Human-specific Bacteroides, caffeine, and acesulfame-K were consistently observed at elevated concentrations at all DS sites. Nutrients exhibited varied concentrations between US and DS locations at three study sites. The occurrence of human-specific Bacteroides in the surface water samples suggests the presence of preferential flow pathways within the silt/clay overburden. These results demonstrate the advantages of using a combined tracer approach, involving a conservative tracer such as acesulfame-K coupled with the human-specific biological indicator Bacteroides (BacHum), to understand not only impacting sources but also potential transport pathways of septic system contamination to nearby streams. Septic systems may be an underappreciated contaminant source in rural hamlets located in fine-grained overburden materials; although, a distinction of specific nutrient sources (septic systems vs. agriculture) remains challenging.
Collapse
Affiliation(s)
- Maria Digaletos
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Carol J Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Janis Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd., Toronto, Ontario M9P 3V6, Canada; Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
7
|
González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Mora Alvarado D, Cantor A, Breitbart M, Cairns MR, Harwood VJ. Risk of Gastroenteritis from Swimming at a Wastewater-Impacted Tropical Beach Varies across Localized Scales. Appl Environ Microbiol 2023; 89:e0103322. [PMID: 36847564 PMCID: PMC10057883 DOI: 10.1128/aem.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Population growth and changing climate are expected to increase human exposure to pathogens in tropical coastal waters. We examined microbiological water quality in three rivers within 2.3 km of each other that impact a Costa Rican beach and in the ocean outside their plumes during the rainy and dry seasons. We performed quantitative microbial risk assessment (QMRA) to predict the risk of gastroenteritis associated with swimming and the amount of pathogen reduction needed to achieve safe conditions. Recreational water quality criteria based on enterococci were exceeded in >90% of river samples but in only 13% of ocean samples. Multivariate analysis grouped microbial observations by subwatershed and season in river samples but only by subwatershed in the ocean. The modeled median risk from all pathogens in river samples was between 0.345 and 0.577, 10-fold above the U.S. Environmental Protection Agency (U.S. EPA) benchmark of 0.036 (36 illnesses/1,000 swimmers). Norovirus genogroup I (NoVGI) contributed most to risk, but adenoviruses raised risk above the threshold in the two most urban subwatersheds. The risk was greater in the dry compared to the rainy season, due largely to the greater frequency of NoVGI detection (100% versus 41%). Viral log10 reduction needed to ensure safe swimming conditions varied by subwatershed and season and was greatest in the dry season (3.8 to 4.1 dry; 2.7 to 3.2 rainy). QMRA that accounts for seasonal and local variability of water quality contributes to understanding the complex influences of hydrology, land use, and environment on human health risk in tropical coastal areas and can contribute to improved beach management. IMPORTANCE This holistic investigation of sanitary water quality at a Costa Rican beach assessed microbial source tracking (MST) marker genes, pathogens, and indicators of sewage. Such studies are still rare in tropical climates. Quantitative microbial risk assessment (QMRA) found that rivers impacting the beach consistently exceeded the U.S. EPA risk threshold for gastroenteritis of 36/1,000 swimmers. The study improves upon many QMRA studies by measuring specific pathogens, rather than relying on surrogates (indicator organisms or MST markers) or estimating pathogen concentrations from the literature. By analyzing microbial levels and estimating the risk of gastrointestinal illness in each river, we were able to discern differences in pathogen levels and human health risks even though all rivers were highly polluted by wastewater and were located less than 2.5 km from one another. This variability on a localized scale has not, to our knowledge, previously been demonstrated.
Collapse
Affiliation(s)
| | - Erin M. Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | | | - Bonnie Mull
- BCS Laboratories, Inc., Gainesville, Florida, USA
| | | | - Pablo Rivera Navarro
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Andrei Badilla Aguilar
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Darner Mora Alvarado
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Allison Cantor
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Maryann R. Cairns
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
8
|
Li X, Ahmed W, Wu Z, Xia Y. Developing a novel Bifidobacterium phage quantitative polymerase chain reaction-based assay for tracking untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155815. [PMID: 35550888 DOI: 10.1016/j.scitotenv.2022.155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Microbial source tracking (MST) tools provide insights on fecal pollution levels in aquatic environments using predominantly quantitative PCR (qPCR) assays that target host-associated molecular marker genes. Existing wastewater-associated marker genes have shown limited or significant cross-reactions with non-human fecal samples. In this study, we mined the current Gut Phage Database (GPD) and designed a novel untreated wastewater-specific Bifidobacterium phage qPCR assay (i.e., Bifi assay). The sensitivity and specificity of the Bifi marker genes were assessed by collectively analyzing untreated (n = 33) and treated (n = 15) wastewater and non-human fecal samples (i.e., Rabbit, mouse, cow, horse, pig, chicken, sheep, dog, deer, kangaroos; n = 113) in Shenzhen, Guangdong Province, China and Brisbane, Australia. Bifi assay revealed 100% host-specificity against non-human fecal samples collected from Shenzhen and Brisbane. Furthermore, this marker gene was also detected in all untreated and treated wastewater samples, whose concentrations ranged from 5.54 to 6.83 log10 GC/L. In Shenzhen, the concentrations of Bifi marker gene were approximately two orders of magnitude lower than Bacteroides (HF183/BacR287 assay) and CrAssphage (CPQ_56 assay). The concentration of Bifi marker gene in untreated wastewater from Brisbane was 1.35 log10 greater than those in Shenzhen. Our results suggest that Bifi marker gene has the potential to detect and quantify the levels of human fecal pollution in Shenzhen and Brisbane. If additional detection sensitivity is required for environmental studies, Bifi marker gene should be paired with either CrAssphage or HF183/BacR287 marker genes.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
9
|
Zhu K, Suttner B, Knee J, Capone D, Moe CL, Stauber CE, Konstantinidis KT, Wallach TE, Pickering AJ, Brown J. Elevated Fecal Mitochondrial DNA from Symptomatic Norovirus Infections Suggests Potential Health Relevance of Human Mitochondrial DNA in Fecal Source Tracking. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:543-550. [PMID: 35719858 PMCID: PMC9202355 DOI: 10.1021/acs.estlett.2c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
An end goal of fecal source tracking (FST) is to provide information on risk of transmission of waterborne illnesses associated with fecal contamination. Ideally, concentrations of FST markers in ambient waters would reflect exposure risk. Human mtDNA is an FST marker that is exclusively human in origin and may be elevated in feces of individuals experiencing gastrointestinal inflammation. In this study, we examined whether human mtDNA is elevated in fecal samples from individuals with symptomatic norovirus infections using samples from the United States (US), Mozambique, and Bangladesh. We quantified hCYTB484 (human mtDNA) and HF183/BacR287 (human-associated Bacteroides) FST markers using droplet digital polymerase chain reaction. We observed the greatest difference in concentrations of hCYTB484 when comparing samples from individuals with symptomatic norovirus infections versus individuals without norovirus infections or diarrhea symptoms: log10 increase of 1.42 in US samples (3,820% increase, p-value = 0.062), 0.49 in Mozambique (308% increase, p-value = 0.061), and 0.86 in Bangladesh (648% increase, p-value = 0.035). We did not observe any trends in concentrations of HF183/BacR287 in the same samples. These results suggest concentrations of fecal mtDNA may increase during symptomatic norovirus infection and that mtDNA in environmental samples may represent an unambiguously human source-tracking marker that correlates with enteric pathogen exposure risk.
Collapse
Affiliation(s)
- Kevin
J. Zhu
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Brittany Suttner
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jackie Knee
- Department
of Disease Control, London School of Hygiene
and Tropical Medicine, London WC1E 7HT,United Kingdom
| | - Drew Capone
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Christine L. Moe
- Center
for Global Safe Water, Sanitation, and Hygiene, Rollins School of
Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Christine E. Stauber
- Department
of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia 30302, United States
| | - Kostas T. Konstantinidis
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas E. Wallach
- Division
of Pediatric Gastroenterology, SUNY Downstate
Health Sciences University, Brooklyn, New York 11203, United States
| | - Amy J. Pickering
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Joe Brown
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Gulumbe BH, Bazata AY, Bagwai MA. Campylobacter Species, Microbiological Source Tracking and Risk Assessment of Bacterial pathogens. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i2.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Campylobacter species continue to remain critical pathogens of public health interest. They are responsible for approximately 500 million cases of gastroenteritis per year worldwide. Infection occurs through the consumption of contaminated food and water. Microbial risk assessment and source tracking are crucial epidemiological strategies to monitor the outbreak of campylobacteriosis effectively. Various methods have been proposed for microbial source tracking and risk assessment, most of which rely on conventional microbiological techniques such as detecting fecal indicator organisms and other novel microbial source tracking methods, including library-dependent microbial source tracking and library-independent source tracking approaches. However, both the traditional and novel methods have their setbacks. For example, while the conventional techniques are associated with a poor correlation between indicator organism and pathogen presence, on the other hand, it is impractical to interpret qPCR-generated markers to establish the exact human health risks even though it can give information regarding the potential source and relative human risk. Therefore, this article provides up-to-date information on campylobacteriosis, various approaches for source attribution, and risk assessment of bacterial pathogens, including next-generation sequencing approaches such as shotgun metagenomics, which effectively answer the questions of potential pathogens are there and in what quantities.
Collapse
|
11
|
Zhi S, Banting G, Neumann NF. Development of a qPCR assay for the detection of naturalized wastewater E. coli strains. JOURNAL OF WATER AND HEALTH 2022; 20:727-736. [PMID: 35482388 DOI: 10.2166/wh.2022.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We recently demonstrated the presence of naturalized populations of Escherichia coli in municipal sewage. We wanted to develop a quantitative polymerase chain reaction (qPCR) assay targeting the uspC-IS30-flhDC marker of naturalized wastewater E. coli and assess the prevalence of these naturalized strains in wastewater. The limit of detection for the qPCR assay was 3.0 × 10-8 ng of plasmid DNA template with 100% specificity. This strain was detected throughout the wastewater treatment process, including treated effluents. We evaluated the potential of this marker for detecting municipal sewage/wastewater contamination in water by comparing it to other human and animal markers of fecal pollution. Strong correlations were observed between the uspC-IS30-flhDC marker and the human fecal markers Bacteroides HF183 and HumM2, but not animal fecal markers, in surface and stormwater samples. The uspC-IS30-flhDC marker appears to be a potential E. coli-based marker for human wastewater contamination.
Collapse
Affiliation(s)
- Shuai Zhi
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315200, China E-mail: ; School of Medicine, Ningbo University, Ningbo 315211, China
| | - Graham Banting
- School of Public Health, University of Alberta, Room 3-57, South Academic Building, Edmonton, Alberta T6G 2G7, Canada
| | - Norman F Neumann
- School of Public Health, University of Alberta, Room 3-57, South Academic Building, Edmonton, Alberta T6G 2G7, Canada
| |
Collapse
|
12
|
Tsai K, Hoffmann V, Simiyu S, Cumming O, Borsay G, Baker KK. Bacteroides Microbial Source Tracking Markers Perform Poorly in Predicting Enterobacteriaceae and Enteric Pathogen Contamination of Cow Milk Products and Milk-Containing Infant Food. Front Microbiol 2022; 12:778921. [PMID: 35058897 PMCID: PMC8764403 DOI: 10.3389/fmicb.2021.778921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/23/2021] [Indexed: 02/03/2023] Open
Abstract
Consumption of microbiologically contaminated food is one of the leading causes of diarrheal diseases. Understanding the source of enteric pathogens in food is important to guide effective interventions. Enterobacteriaceae bacterial assays typically used to assess food safety do not shed light on the source. Source-specific Bacteroides microbial source tracking (MST) markers have been proposed as alternative indicators for water fecal contamination assessment but have not been evaluated as an alternative fecal indicator in animal-derived foods. This study tested various milk products collected from vendors in urban Kenyan communities and infant foods made with the milk (n = 394 pairs) using conventional culture methods and TaqMan qPCR for enteric pathogens and human and bovine-sourced MST markers. Detection profiles of various enteric pathogens and Bacteroides MST markers in milk products differed from that of milk-containing infant foods. MST markers were more frequently detected in infant food prepared by caregivers, indicating recent contamination events were more likely to occur during food preparation at home. However, Bacteroides MST markers had lower sensitivity in detecting enteric pathogens in food than traditional Enterobacteriaceae indicators. Bacteroides MST markers tested in this study were not associated with the detection of culturable Salmonella enterica and Shigella sonnei in milk products or milk-containing infant food. The findings show that while Bacteroides MST markers could provide valuable information about how foods become contaminated, they may not be suitable for predicting the origin of the enteric pathogen contamination sources.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Vivian Hoffmann
- International Food Policy Research Institute, Washington, DC, United States
| | - Sheillah Simiyu
- African Population and Health Research Center, Nairobi, Kenya
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Glorie Borsay
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Kelly K. Baker
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Goh SG, Liang L, Gin KYH. Assessment of Human Health Risks in Tropical Environmental Waters with Microbial Source Tracking Markers. WATER RESEARCH 2021; 207:117748. [PMID: 34837748 DOI: 10.1016/j.watres.2021.117748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Human specific microbial source tracking (MST) markers which are highly specific to human waste contamination offer the advantage of better association with human pathogens than traditional microbial indicators. However, the performance of these MST markers may vary across different geographical regions. The magnitude of MST markers also plays an important role in interpreting the health risks. This study aims to (i) validate the specificity and sensitivity of human markers for tropical urban catchments; (ii) identify the threshold concentrations of MST markers, i.e. human polyomaviruses (HPyVs), Bacteroides thetaiotaomicron (B. theta) and Methanobrevibacter smithii (M. smithii), that correspond to the acceptable gastrointestinal (GI) illness risks associated with swimming using the QMRA approach; and (iii) validate the threshold concentrations of MST markers using the surveillance data obtained from the tropical urban environment. Among the three MST markers, HPyVs showed the highest specificity (100%) to sewage samples, followed by M. smithii (97%) and B. theta (90%). All MST markers showed 100% sensitivity towards sewage contamination, with B. theta present in highest abundance in sewage, followed by HPyVs and M. smithii. This study demonstrates a risk-based framework to identify the threshold concentrations of MST markers associated with GI illness risks in environmental waters by considering two main influencing factors (i.e. decay and dilution factors). This study successfully validated the B. theta threshold concentration range (581 to 8073 GC/100 mL) with field data (370 to 6500 GC/100 mL) in estimating GI illness risks with an Enterococcus model. Field data showed that the MST markers at threshold concentrations were able to classify the safe level in more than 83% of the samples, according to GI illness risks from Enterococcus and adenovirus. The study also highlighted the lack of associations between MST markers and GI illness risks from norovirus. With comprehensive information on specificity, sensitivity and threshold concentrations of MST markers, increasing confidence can be placed on identifying human source contamination and evaluating the health risks posed in environmental waters in Singapore.
Collapse
Affiliation(s)
- S G Goh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore
| | - L Liang
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore
| | - K Y H Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore.
| |
Collapse
|
14
|
Linke RB, Zeki S, Mayer R, Keiblinger K, Savio D, Kirschner AKT, Reischer GH, Mach RL, Sommer R, Farnleitner AH. Identifying Inorganic Turbidity in Water Samples as Potential Loss Factor During Nucleic Acid Extraction: Implications for Molecular Fecal Pollution Diagnostics and Source Tracking. Front Microbiol 2021; 12:660566. [PMID: 34745021 PMCID: PMC8565874 DOI: 10.3389/fmicb.2021.660566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g., adhesion of DNA to the sample matrix, inefficient precipitation of DNA, pipetting errors and (partial) loss of the DNA pellet during DNA isolation), quality control is essential at all processing levels. In soil microbiology, particular attention has been paid to the inorganic component of the sample matrix affecting DNA extractability. In water quality testing, however, this aspect has mostly been neglected so far, although it is conceivable that these mechanisms have a similar impact. The present study was therefore dedicated to investigate possible matrix effects on results of water quality analysis. Field testing in an aquatic environment with pronounced chemo-physical gradients [total suspended solids (TSS), inorganic turbidity, total organic carbon (TOC), and conductivity] indicated a negative association between DNA extractability (using a standard phenol/chloroform extraction procedure) and turbidity (spearman ρ = −0.72, p < 0.001, n = 21). Further detailed laboratory experiments on sediment suspensions confirmed the hypothesis of inorganic turbidity being the main driver for reduced DNA extractability. The observed effects, as known from soil samples, were also indicated to result from competitive effects for free charges on clay minerals, leading to adsorption of DNA to these inorganic particles. A protocol modification by supplementing the extraction buffer with salmon sperm DNA, to coat charged surfaces prior to cell lysis, was then applied on environmental water samples and compared to the standard protocol. At sites characterized by high inorganic turbidity, DNA extractability was significantly improved or made possible in the first place by applying the adapted protocol. This became apparent from intestinal enterococci and microbial source tracking (MST)-marker levels measured by quantitative polymerase chain reaction (qPCR) (100 to 10,000-fold median increase in target concentrations). The present study emphasizes the need to consider inorganic turbidity as a potential loss factor in DNA extraction from water-matrices. Negligence of these effects can lead to a massive bias, by up to several orders of magnitude, in the results of molecular MST and fecal pollution diagnostics.
Collapse
Affiliation(s)
- Rita B Linke
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Sibel Zeki
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - René Mayer
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Katharina Keiblinger
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Domenico Savio
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria.,Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Georg H Reischer
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Research Area Molecular Diagnostics, Department IFA-Tulln, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Tulln, Austria
| | - Robert L Mach
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Regina Sommer
- Unit of Water Microbiology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas H Farnleitner
- Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
15
|
Is It Human or Animal? The Origin of Pathogenic E. coli in the Drinking Water of a Low-Income Urban Community in Bangladesh. Trop Med Infect Dis 2021; 6:tropicalmed6040181. [PMID: 34698298 PMCID: PMC8544722 DOI: 10.3390/tropicalmed6040181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023] Open
Abstract
This study aimed to investigate the origin of diverse pathotypes of E. coli, isolated from communal water sources and from the actual drinking water vessel at the point-of-drinking inside households in a low-income urban community in Arichpur, Dhaka, Bangladesh, using a polymerase chain reaction (PCR). Forty-six percent (57/125, CI 95%: 41−58) of the isolates in the point-of-drinking water and 53% (55/103, CI 95%: 45−64) of the isolates in the source water were diarrheagenic E. coli. Among the pathotypes, enterotoxigenic E. coli (ETEC) was the most common, 81% (46/57) of ETEC was found in the point-of-drinking water and 87% (48/55) was found in the communal source water. Phylogenetic group B1, which is predominant in animals, was the most frequently found isolate in both the point-of-drinking water (50%, 91/181) and in the source (50%, 89/180) water. The phylogenetic subgroup B23, usually of human origin, was more common in the point-of-drinking water (65%, 13/20) than in the source water (35%, 7/20). Our findings suggest that non-human mammals and birds played a vital role in fecal contamination for both the source and point-of-drinking water. Addressing human sanitation without a consideration of fecal contamination from livestock sources will not be enough to prevent drinking-water contamination and thus will persist as a greater contributor to diarrheal pathogens.
Collapse
|
16
|
Holcomb DA, Knee J, Capone D, Sumner T, Adriano Z, Nalá R, Cumming O, Brown J, Stewart JR. Impacts of an Urban Sanitation Intervention on Fecal Indicators and the Prevalence of Human Fecal Contamination in Mozambique. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11667-11679. [PMID: 34382777 PMCID: PMC8429117 DOI: 10.1021/acs.est.1c01538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fecal source tracking (FST) may be useful to assess pathways of fecal contamination in domestic environments and to estimate the impacts of water, sanitation, and hygiene (WASH) interventions in low-income settings. We measured two nonspecific and two human-associated fecal indicators in water, soil, and surfaces before and after a shared latrine intervention from low-income households in Maputo, Mozambique, participating in the Maputo Sanitation (MapSan) trial. Up to a quarter of households were impacted by human fecal contamination, but trends were unaffected by improvements to shared sanitation facilities. The intervention reduced Escherichia coli gene concentrations in soil but did not impact culturable E. coli or the prevalence of human FST markers in a difference-in-differences analysis. Using a novel Bayesian hierarchical modeling approach to account for human marker diagnostic sensitivity and specificity, we revealed a high amount of uncertainty associated with human FST measurements and intervention effect estimates. The field of microbial source tracking would benefit from adding measures of diagnostic accuracy to better interpret findings, particularly when FST analyses convey insufficient information for robust inference. With improved measures, FST could help identify dominant pathways of human and animal fecal contamination in communities and guide the implementation of effective interventions to safeguard health.
Collapse
Affiliation(s)
- David A. Holcomb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Jackie Knee
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Drew Capone
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | - Trent Sumner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States of America
| | | | - Rassul Nalá
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| | - Jill R. Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States of America
| |
Collapse
|
17
|
Liang H, Yu Z, Wang B, Ndayisenga F, Liu R, Zhang H, Wu G. Synergistic Application of Molecular Markers and Community-Based Microbial Source Tracking Methods for Identification of Fecal Pollution in River Water During Dry and Wet Seasons. Front Microbiol 2021; 12:660368. [PMID: 34194406 PMCID: PMC8236858 DOI: 10.3389/fmicb.2021.660368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
It is important to track fecal sources from humans and animals that negatively influence the water quality of rural rivers and human health. In this study, microbial source tracking (MST) methods using molecular markers and the community-based FEAST (fast expectation–maximization microbial source tracking) program were synergistically applied to distinguish the fecal contributions of multiple sources in a rural river located in Beijing, China. The performance of eight markers were evaluated using 133 fecal samples based on real-time quantitative (qPCR) technique. Among them, six markers, including universal (BacUni), human-associated (HF183-1 and BacH), swine-associated (Pig-2-Bac), ruminant-associated (Rum-2-Bac), and avian-associated (AV4143) markers, performed well in the study. A total of 96 water samples from the river and outfalls showed a coordinated composition of fecal pollution, which revealed that outfall water might be a potential input of the Fsq River. In the FEAST program, bacterial 16S rRNA genes of 58 fecal and 12 water samples were sequenced to build the “source” library and “sink,” respectively. The relative contribution (<4.01% of sequence reads) of each source (i.e., human, swine, bovine, or sheep) was calculated based on simultaneous screening of the operational taxonomic units (OTUs) of sources and sinks, which indicated that community-based MST methods could be promising tools for identifying fecal sources from a more comprehensive perspective. Results of the qPCR assays indicated that fecal contamination from human was dominant during dry weather and that fecal sources from swine and ruminant were more prevalent in samples during the wet season than in those during the dry season, which were consistent with the findings predicted by the FEAST program using a very small sample size. Information from the study could be valuable for the development of improved regulation policies to reduce the levels of fecal contamination in rural rivers.
Collapse
Affiliation(s)
- Hongxia Liang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, China
| | - Bobo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Rytkönen A, Tiwari A, Hokajärvi AM, Uusheimo S, Vepsäläinen A, Tulonen T, Pitkänen T. The Use of Ribosomal RNA as a Microbial Source Tracking Target Highlights the Assay Host-Specificity Requirement in Water Quality Assessments. Front Microbiol 2021; 12:673306. [PMID: 34149662 PMCID: PMC8206488 DOI: 10.3389/fmicb.2021.673306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
For microbial source tracking (MST), the 16S ribosomal RNA genes (rDNA) of host-specific bacteria and mitochondrial DNA (mtDNA) of animal species, known to cause fecal contamination of water, have been commonly used as molecular targets. However, low levels of contamination might remain undetected by using these DNA-based qPCR assays. The high copy numbers of ribosomal RNA (rRNA) could offer a solution for such applications of MST. This study compared the performance of eight MST assays: GenBac3 (general Bacteroidales), HF183 (human), BacCan (dog), Rum-2-Bac (ruminant), Pig-2-Bac (swine), Gull4 (gull), GFD, and Av4143 (birds) between rRNA-based and rDNA-based approaches. Three mtDNA-based approaches were tested: DogND5, SheepCytB, and HorseCytB. A total of 151 animal fecal samples and eight municipal sewage samples from four regions of Finland were collected for the marker evaluation. The usability of these markers was tested by using a total of 95 surface water samples with an unknown pollution load. Overall, the performance (specificity, sensitivity, and accuracy) of mtDNA-based assays was excellent (95–100%), but these markers were very seldom detected from the tested surface water samples. The rRNA template increased the sensitivity of assays in comparison to the rDNA template. All rRNA-based assays (except Av4143) had more than 80% sensitivity. In contrast, only half (HF183, Rum-2-Bac, Pig-2-Bac, and Gull4) of rDNA-based assays reached this value. For markers targeted to bird feces, the use of the rRNA-based assay increased or at least did not change the performance. Regarding specificity, all the assays had >95% specificity with a DNA template, except the BacCan assay (71%). While using the RNA template for the assays, HF183 and BacCan exhibited only a low level of specificity (54 and 55%, respectively). Further, the HF183 assay amplified from multiple non-targeted animal fecal samples with the RNA template and the marker showed cross-amplification with the DNA template as well. This study recommends using the rRNA-based approach for MST assays targeting bird fecal contamination. In the case of mammal-specific MST assays, the use of the rRNA template increases the sensitivity but may reduce the specificity and accuracy of the assay. The finding of increased sensitivity calls for a further need to develop better rRNA-based approaches to reach the required assay performance.
Collapse
Affiliation(s)
- Annastiina Rytkönen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sari Uusheimo
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Asko Vepsäläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tiina Tulonen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland.,Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Kapoor R, Ebdon J, Wadhwa A, Chowdhury G, Wang Y, Raj SJ, Siesel C, Durry SE, Mairinger W, Mukhopadhyay AK, Kanungo S, Dutta S, Moe CL. Evaluation of Low-Cost Phage-Based Microbial Source Tracking Tools for Elucidating Human Fecal Contamination Pathways in Kolkata, India. Front Microbiol 2021; 12:673604. [PMID: 34093494 PMCID: PMC8173070 DOI: 10.3389/fmicb.2021.673604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Phages, such as those infecting Bacteroides spp., have been proven to be reliable indicators of human fecal contamination in microbial source tracking (MST) studies, and the efficacy of these MST markers found to vary geographically. This study reports the application and evaluation of candidate MST methods (phages infecting previously isolated B. fragilis strain GB-124, newly isolated Bacteroides strains (K10, K29, and K33) and recently isolated Kluyvera intermedia strain ASH-08), along with non-source specific somatic coliphages (SOMCPH infecting strain WG-5) and indicator bacteria (Escherichia coli) for identifying fecal contamination pathways in Kolkata, India. Source specificity of the phage-based methods was first tested using 60 known non-human fecal samples from common animals, before being evaluated with 56 known human samples (municipal sewage) collected during both the rainy and dry season. SOMCPH were present in 40-90% of samples from different animal species and in 100% of sewage samples. Phages infecting Bacteroides strain GB-124 were not detected from the majority (95%) of animal samples (except in three porcine samples) and were present in 93 and 71% of the sewage samples in the rainy and dry season (Mean = 1.42 and 1.83 log10PFU/100mL, respectively), though at lower levels than SOMCPH (Mean = 3.27 and 3.02 log10PFU/100mL, respectively). Phages infecting strain ASH-08 were detected in 89 and 96% of the sewage samples in the rainy and dry season, respectively, but were also present in all animal samples tested (except goats). Strains K10, K29, and K30 were not found to be useful MST markers due to low levels of phages and/or co-presence in non-human sources. GB-124 and SOMCPH were subsequently deployed within two low-income neighborhoods to determine the levels and origin of fecal contamination in 110 environmental samples. E. coli, SOMCPH, and phages of GB-124 were detected in 68, 42, and 28% of the samples, respectively. Analyses of 166 wastewater samples from shared community toilets and 21 samples from sewage pumping stations from the same districts showed that SOMCPH were present in 100% and GB-124 phages in 31% of shared toilet samples (Median = 5.59 and <1 log10 PFU/100 mL, respectively), and both SOMCPH and GB-124 phages were detected in 95% of pumping station samples (Median = 5.82 and 4.04 log10 PFU/100 mL, respectively). Our findings suggest that GB-124 and SOMCPH have utility as low-cost fecal indicator tools which can facilitate environmental surveillance of enteric organisms, elucidate human and non-human fecal exposure pathways, and inform interventions to mitigate exposure to fecal contamination in the residential environment of Kolkata, India.
Collapse
Affiliation(s)
- Renuka Kapoor
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - James Ebdon
- Environment and Public Health Research and Enterprise Group (EPHREG), University of Brighton, Brighton, United Kingdom
| | - Ashutosh Wadhwa
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Goutam Chowdhury
- ICMR – National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Yuke Wang
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Suraja J. Raj
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Casey Siesel
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Sarah E. Durry
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Wolfgang Mairinger
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | | | - Suman Kanungo
- ICMR – National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Shanta Dutta
- ICMR – National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Christine L. Moe
- Center for Global Safe Water, Sanitation and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
20
|
Schiaffino F, Rengifo Trigoso D, Colston JM, Paredes Olortegui M, Shapiama Lopez WV, Garcia Bardales PF, Pisanic N, Davis MF, Penataro Yori P, Kosek MN. Associations among Household Animal Ownership, Infrastructure, and Hygiene Characteristics with Source Attribution of Household Fecal Contamination in Peri-Urban Communities of Iquitos, Peru. Am J Trop Med Hyg 2021; 104:372-381. [PMID: 33146117 PMCID: PMC7790101 DOI: 10.4269/ajtmh.20-0810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Using previously validated microbial source tracking markers, we detected and quantified fecal contamination from avian species and avian exposure, dogs, and humans on household cooking tables and floors. The association among contamination, infrastructure, and socioeconomic covariates was assessed using simple and multiple ordinal logistic regressions. The presence of Campylobacter spp. in surface samples was linked to avian markers. Using molecular methods, animal feces were detected in 75.0% and human feces in 20.2% of 104 households. Floors were more contaminated than tables as detected by the avian marker Av4143, dog marker Bactcan, and human marker Bachum. Wood tables were consistently more contaminated than non-wood surfaces, specifically with the mitochondrial avian markers ND5 and CytB, fecal marker Av4143, and canine marker Bactcan. Final multivariable models with socioeconomic and infrastructure characteristics included as covariates indicate that detection of avian feces and avian exposure was associated with the presence of chickens, maternal age, and length of tenancy, whereas detection of human markers was associated with unimproved water source. Detection of Campylobacter in surface samples was associated with the avian fecal marker Av4143. We highlight the critical need to detect and measure the burden of animal fecal waste when evaluating household water, hygiene, and sanitation interventions, and the possibility of decreasing risk of exposure through the modification of surfaces to permit more effective household disinfection practices. Animals may be a more important source of household fecal contamination than humans in many low-resource settings, although interventions have historically focused almost exclusively on managing human waste.
Collapse
Affiliation(s)
- Francesca Schiaffino
- 1Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,2Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Josh M Colston
- 4Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | | - Nora Pisanic
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Meghan F Davis
- 5Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,6Department of Molecular and Comparative Pathobiology, Johns Hopkins Bloomberg School of Medicine, Baltimore Maryland
| | - Pablo Penataro Yori
- 3Asociacion Benefica Prisma, Iquitos, Peru.,4Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Margaret N Kosek
- 3Asociacion Benefica Prisma, Iquitos, Peru.,4Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
21
|
Sinigalliano C, Kim K, Gidley M, Yuknavage K, Knee K, Palacios D, Bautista C, Bonacolta A, Lee HW, Maurin L. Microbial Source Tracking of Fecal Indicating Bacteria in Coral Reef Waters, Recreational Waters, and Groundwater of Saipan by Real-Time Quantitative PCR. Front Microbiol 2021; 11:596650. [PMID: 33537011 PMCID: PMC7848096 DOI: 10.3389/fmicb.2020.596650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The Commonwealth of the Northern Mariana Islands (CNMI) recently identified the need to improve its capacity for detecting and tracking land-based sources of pollution (LBSP) in coastal waters, particularly microbial contaminants like fecal indicator bacteria (FIB). Reported here is a baseline study of a suite of host-specific FIB microbial source tracking (MST) markers in the coastal shoreline and reef waters around the island of Saipan. Three sampling campaigns were conducted in September 2017, March 2018, and August 2018. Samples were collected from the nearshore surface waters of Saipan, the reef waters of Saipan Lagoon, and groundwater from beaches along the Saipan Lagoon shoreline. Measurements of submarine groundwater discharge (SGD) into nearshore waters and isotopic source tracking of nitrogen inputs were conducted concurrently with MST. Environmental DNA was extracted from the samples and analyzed by quantitative polymerase chain reaction (qPCR) for MST gene markers of fecal Bacteroidales specifically associated with humans, dogs, cows, and pigs, and for an MST gene marker of Catellicoccus associated with seabirds. MST assessments were combined with local knowledge, assessments of sanitary infrastructure, and routine watershed surveys. This study identified hotspots of human FIB along the western Saipan Lagoon shoreline in both surface waters and groundwater, plus another hotspot of human FIB at a popular tourist bathing area known as the Grotto. FIB hotspots on the Lagoon shoreline coincided with areas of high SGD and nitrogen isotopic data indicating sewage-derived N inputs. It appears that faulty sanitary infrastructure may be contributing to inputs to Saipan Lagoon, while bather shedding is likely a primary input for the Grotto area. Moderate levels of dog fecal contamination were common and widespread across the island. High levels of seabird fecal contamination were more random, both spatially and temporally, and mostly concentrated along the less developed northeast region of Saipan. No significant levels of cow or pig fecal marker were detected in coastal water samples. This study provides demonstration and establishment of analytical capacity to resource management in CNMI for MST technology to aid in trouble-shooting water quality issues involving land-based sources of microbial contaminants to CNMI coastal waters.
Collapse
Affiliation(s)
- Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Kiho Kim
- Department of Environmental Science, American University, Washington, DC, United States
| | - Maribeth Gidley
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States.,Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
| | - Kathy Yuknavage
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| | - Karen Knee
- Department of Environmental Science, American University, Washington, DC, United States
| | - Dean Palacios
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| | - Charito Bautista
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| | - Anthony Bonacolta
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States.,Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
| | - Hyo Won Lee
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States.,Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
| | - Larry Maurin
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| |
Collapse
|
22
|
Linke RB, Kebede G, Mushi D, Lakew A, Hayes DS, Graf W, Farnleitner AH. Assessing the faecal source sensitivity and specificity of ruminant and human genetic microbial source tracking markers in the central Ethiopian highlands. Lett Appl Microbiol 2020; 72:458-466. [PMID: 33300161 PMCID: PMC7986238 DOI: 10.1111/lam.13436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
This study tested genetic microbial source tracking (MST) methods for identifying ruminant‐ (BacR) and human‐associated (HF183/BacR287, BacHum) bacterial faecal contaminants in Ethiopia in a newly created regional faecal sample bank (n = 173). BacR performed well, and its marker abundance was high (100% sensitivity (Sens), 95% specificity (Spec), median log10 8·1 marker equivalents (ME) g−1 ruminant faeces). Human‐associated markers tested were less abundant in individual human samples (median: log10 5·4 and 4·2 (ME + 1) g−1) and were not continuously detected (81% Sens, 91% Spec for BacHum; 77% Sens, 91% Spec for HF183/BacR287). Furthermore, the pig‐associated Pig2Bac assay was included and performed excellent (100% Sens, 100% Spec). To evaluate the presence of MST targets in the soil microbiome, representative soil samples were tested during a whole seasonal cycle (n = 60). Only BacR could be detected, but was limited to the dry season and to sites of higher anthropogenic influence (log10 3·0 to 4·9 (ME + 1) g−1 soil). In conclusion, the large differences in marker abundances between target and non‐target faecal samples (median distances between distributions ≥log10 3 to ≥log10 7) and their absence in pristine soil indicate that all tested assays are suitable candidates for diverse MST applications in the Ethiopian area.
Collapse
Affiliation(s)
- R B Linke
- Research Group of Environmental Microbiology and Molecular Diagnostics, Institute for Chemical, Biological and Environmental Engineering, Technical University Vienna, Vienna, Austria
| | - G Kebede
- Department of Biological Sciences, Ambo University, Ambo, Ethiopia.,Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria
| | - D Mushi
- Department of Biosciences, Solomon Mahlangu College of Science and Education, Sokoine University of Agriculture, Morogoro, Tanzania
| | - A Lakew
- National Fishery and Aquatic Life Research Centre, Ethiopian Institute of Agricultural Research (EIAR), Sebeta, Ethiopia
| | - D S Hayes
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria.,Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - W Graf
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria
| | - A H Farnleitner
- Research Group of Environmental Microbiology and Molecular Diagnostics, Institute for Chemical, Biological and Environmental Engineering, Technical University Vienna, Vienna, Austria.,Research Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Krems, Austria
| |
Collapse
|
23
|
Nopprapun P, Boontanon SK, Harada H, Surinkul N, Fujii S. Evaluation of a human-associated genetic marker for Escherichia coli (H8) for fecal source tracking in Thailand. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2929-2936. [PMID: 33341782 DOI: 10.2166/wst.2020.525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High levels of microbial fecal pollution are a major concern in many countries. A human-associated genetic marker for Escherichia coli (H8) has recently been developed for fecal source tracking. The assessment of the H8 marker performance is crucial before it can be applied as a suitable method for fecal source tracking in each country. The performance (specificity and sensitivity) of the H8 marker was evaluated by using non-target host groups (cattle, buffalo, chicken, duck, and pig feces) and target host groups (influent and effluent from a wastewater treatment plant and septages). SYBR based real-time PCR (polymerase chain reaction) was done on 400 E. coli isolates from non-target and target host groups after E. coli isolation. It was found that the specificity from animal feces samples collected in Thailand was 96%. Moreover, influent, effluent, and septage samples showed the values of the sensitivity at 18, 12, and 36%, respectively. All of the non-target host groups were found to be significantly different with positive proportions from the target host group (septage samples) (p ≤ 0.01). Based on the results, this marker is recommended for use as a human-associated E. coli marker for identifying sources of fecal pollution in Thailand.
Collapse
Affiliation(s)
- Pimchanok Nopprapun
- Civil and Environmental Engineering Department, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand E-mail:
| | - Suwanna Kitpati Boontanon
- Civil and Environmental Engineering Department, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand E-mail: ; Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hidenori Harada
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Asian and African Area Studies, Kyoto University, 46 Yoshida-Shimoadachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Nawatch Surinkul
- Civil and Environmental Engineering Department, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand E-mail:
| | - Shigeo Fujii
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
24
|
Schiaffino F, Pisanic N, Colston JM, Rengifo D, Paredes Olortegui M, Shapiama V, Peñataro Yori P, Heaney CD, Davis MF, Kosek MN. Validation of microbial source tracking markers for the attribution of fecal contamination in indoor-household environments of the Peruvian Amazon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140531. [PMID: 32758812 PMCID: PMC7511695 DOI: 10.1016/j.scitotenv.2020.140531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The performance of eight microbial source tracking (MST) markers was evaluated in a low-resource, tropical community located in Iquitos, Peru. Fecal samples from humans, dogs, cats, rats, goats, buffalos, guinea-pigs, chickens, ducks, pigeons, and parrots were collected (n = 117). All samples were tested with human (BacHum, HF183-Taqman), dog (BactCan), pig (Pig-2-Bac), and avian (LA35, Av4143, ND5, cytB) markers using quantitative PCR (qPCR). Internal validity metrics were calculated using all animal fecal samples, as well as animal fecal samples contextually relevant for the Peruvian Amazon. Overall, Pig-2-Bac performed best, with 100% sensitivity and 88.5% specificity to detect the correct fecal source. Human-associated markers showed a sensitivity of 80.0% and 76.7%, and specificity of 66.2% and 67.6%. When limiting the analysis to contextually relevant animal fecal samples for the Peruvian Amazon, Av143 surpassed cytB with 95.7% sensitivity and 81.8% specificity. BactCan demonstrated 100% sensitivity and 47.4% specificity. The gene copy number detected by BacHum and HF183-Taqman were positively correlated (Pearson's correlation coefficient: 0.785), as well as avian markers cytB with Av4143 (Pearson's correlation coefficient: 0.508) and nd5 (Pearson's correlation coefficient: 0.949). These findings suggest that markers such as Av4143, Pig2Bac, cytb and BacHum have acceptable performance to be impactful in source attribution studies for zoonotic enteric disease transmission in this and similar low-resource communities.
Collapse
Affiliation(s)
- Francesca Schiaffino
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru
| | - Nora Pisanic
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Josh M Colston
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA, USA
| | - Dixner Rengifo
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA, USA
| | | | | | - Pablo Peñataro Yori
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA, USA; Asociacion Benefica Prisma, Iquitos, Peru
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Meghan F Davis
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Molecular and Comparative Pathobiology, Johns Hopkins Bloomberg School of Medicine, Baltimore, MD, USA
| | - Margaret N Kosek
- Division of Infectious Diseases, University of Virginia, Charlottesville, VA, USA; Asociacion Benefica Prisma, Iquitos, Peru.
| |
Collapse
|
25
|
Hinojosa J, Green J, Estrada F, Herrera J, Mata T, Phan D, Pasha ABMT, Matta A, Johnson D, Kapoor V. Determining the primary sources of fecal pollution using microbial source tracking assays combined with land-use information in the Edwards Aquifer. WATER RESEARCH 2020; 184:116211. [PMID: 32721766 DOI: 10.1016/j.watres.2020.116211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The Edwards Aquifer serves as a primary source of drinking water to more than 2 million people in south-central Texas, and as a karst aquifer, is vulnerable to human and animal fecal contamination which poses a serious risk to human and environmental health. A one-year study (Jan 2018 - Feb 2019) was conducted to determine the primary sources of fecal pollution along the Balcones and Leon Creek within the Edwards Aquifer recharge and contributing zones using general (E. coli, enterococci, and universal Bacteriodales) and host-associated (human-, dog-, cow- and chicken/duck-associated Bacteriodales) microbial source tracking (MST) assays. Additionally, sites were classified based on surrounding land use as a potential source predictor and marker levels were correlated with rain events and water quality parameters. Levels for the three general indicators were highest and exhibited similar trends across the sampling sites, suggesting that the sole use of these markers is not sufficient for specific fecal source identification. Among the host-associated markers, highest concentrations were observed for the dog marker (BacCan) in the Leon Creek area and the cow marker (BacCow) in the Balcones Creek area. Additionally, Chicken/Duck-Bac, BacCan and BacCow all exhibited higher concentrations during the spring season and the end of fall/early winter. Relatively lower concentrations were observed for the human-associated markers (HF183 and BacHum), however, levels were higher in the Leon Creek area and highest following rainfall events. Additionally, relatively higher levels in HF183 and BacHum were observed at sites having greater human population and septic tank density and may be attributed to leaks or breaks in these infrastructures. This study is the first to examine and compare fecal contamination at rural and urban areas in the recharge and contributing zones of the Edwards Aquifer using a molecular MST approach targeting Bacteroidales 16S rRNA gene-based assays. The Bacteroidales marker assays, when combined with land use and weather information, can allow for a better understanding of the sources and fluxes of fecal contamination, which can help devise effective mitigation measures to protect water quality.
Collapse
Affiliation(s)
- Jessica Hinojosa
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jemima Green
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Fabiola Estrada
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jonathan Herrera
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Troy Mata
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Duc Phan
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - A B M Tanvir Pasha
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Akanksha Matta
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Drew Johnson
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Vikram Kapoor
- Department of Civil and Environmental Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
26
|
Zhu K, Suttner B, Pickering A, Konstantinidis KT, Brown J. A novel droplet digital PCR human mtDNA assay for fecal source tracking. WATER RESEARCH 2020; 183:116085. [PMID: 32750535 PMCID: PMC7495096 DOI: 10.1016/j.watres.2020.116085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 05/22/2023]
Abstract
Human mitochondrial DNA provides a promising target for fecal source tracking because it is unique and intrinsic to humans. We developed a TaqMan chemistry assay, hCYTB484, targeting the cytochrome b gene of the human mitochondrial genome on a droplet digital PCR (ddPCR) platform and compared the performance of hCYTB484 with the HF183/BacR287 assay, a widely used assay targeting human-associated Bacteroides. For both assays, we defined the analytical limit of detection and analytical lower limit of quantification using frequency of detection and imprecision goals, respectively. We then established these analytical limits using empirical ddPCR data, presenting a novel approach to determining the analytical lower limit of quantification. We evaluated assay sensitivity using individual human feces from US, Bangladesh, and Mozambique and evaluated assay specificity using cow, pig, chicken, and goat samples collected from the US. To compare assay performance across a range of thresholds, we utilized receiver operating characteristic curves. The hCYTB484 marker was detected and quantifiable in 100% of the human feces from the 3 geographical distant regions whereas the HF183/BacR287 marker was detectable and quantifiable in 51% and 31% (respectively) of human feces samples. The hCYTB484 marker also was more specific (97%), having fewer detections in pig, chicken, and goat samples than the HF183/BacR287 marker (80%). The higher performance of the hCYTB484 marker in individual feces from geographically distant regions is desirable in the detection of fecal pollution from sources to which fewer individuals contribute, such as the non-sewered forms of sanitation (e.g. pit latrines and septic tanks) that serve most of Earth's population and carry the highest risk of exposure to fecal-oral pathogens.
Collapse
Affiliation(s)
- Kevin Zhu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brittany Suttner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Amy Pickering
- Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | | | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
27
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
28
|
Gray J, Masters N, Wiegand A, Katouli M. Field assessment of horse-associated genetic markers HoF597 and mtCytb for detecting the source of contamination in surface waters. Can J Microbiol 2020; 66:623-630. [PMID: 32692953 DOI: 10.1139/cjm-2019-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the specificity and sensitivity of two horse-associated markers, HoF597 and Horse mtCytb, and 12 mitochondrial and bacterial markers of six animal species (human, cow, pig, bird, dog, chicken) in the faecal samples of 50 individual horses. Both horse markers were detected in 48 (96%) faecal samples. Cross-reactivity with dog (BacCan545) and pig (P23-2) occurred in 88% and 72% of horse faecal samples, respectively. Several other bacterial and mitochondrial markers of non-target hosts were also detected; however, their specificities were >80%. Analyses of samples from surface waters (n = 11) on or adjacent to properties from which horse faecal samples had been collected showed only the presence of HoF597 but not horse mitochondrial marker. Our data suggest that while bacterial and (or) mitochondrial markers of other animal species may be present in horse faeces, dog and pig markers may predominantly be present in horse faecal samples, which points to their nonspecificity as markers for microbial source tracking. Although HoF597 and Horse mtCytb are highly sensitive and specific for the detection of horse faecal pollution, because of their low numbers, mitochondrial (mtDNA) markers may not be robust for screening surface waters.
Collapse
Affiliation(s)
- Jessica Gray
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Nicole Masters
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Aaron Wiegand
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Mohammad Katouli
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| |
Collapse
|
29
|
Kongprajug A, Chyerochana N, Mongkolsuk S, Sirikanchana K. Effect of Quantitative Polymerase Chain Reaction Data Analysis Using Sample Amplification Efficiency on Microbial Source Tracking Assay Performance and Source Attribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8232-8244. [PMID: 32484662 DOI: 10.1021/acs.est.0c01559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The widely used microbial source tracking (MST) technique, quantitative polymerase chain reaction (qPCR), quantifies host-specific gene abundance in polluted water to identify and prioritize contamination sources. This study characterized the effects of a qPCR data analysis using the sample PCR efficiencies (the LinRegPCR model) on gene abundance and compared them with the standard curve-based method (the mixed model). Five qPCR assays were evaluated: the universal GenBac3, human-specific HF183/BFDrev and CPQ_056, swine-specific Pig-2-Bac, and cattle-specific Bac3qPCR assays. The LinRegPCR model increased the low-copy amplification, especially in the HF183/BFDrev assay, thus lowering the specificity to 0.34. Up to 1.41 log10 copies/g and 0.41 log10 copies/100 mL differences were observed for composite fecal and sewage samples (n = 147) by the LinRegPCR approach, corresponding to an 18.2% increase and 6.4% decrease, respectively. Freshwater samples (n = 48) demonstrated a maximum of 1.95 log10 copies/100 mL difference between the two models. Identical attributing sources by both models were shown in 54.55% of environmental samples; meanwhile, the LinRegPCR approach improved the inability to identify sources by the mixed model in 29.55% of the samples. This study emphasizes the need for a standardized data analysis protocol for qPCR MST assays for interlaboratory consistency and comparability.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok 10400, Thailand
| |
Collapse
|
30
|
Zhang Y, Wu R, Lin K, Wang Y, Lu J. Performance of host-associated genetic markers for microbial source tracking in China. WATER RESEARCH 2020; 175:115670. [PMID: 32171096 DOI: 10.1016/j.watres.2020.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Numerous genetic markers have been developed to establish microbial source tracking (MST) assays in the last decade. However, the selection of suitable markers is challenging due to a lack of understanding of fundamental factors such as sensitivity, specificity, and concentration in target/nontarget hosts, especially in East Asia. In this study, a total of 506 faecal samples comprised of human and 12 nonhuman hosts were collected from 28 cities across China and tested for marker performance characteristics. We firstly tested 40 host-associated markers based on a binary (presence/absence) criterion. Here, 15 markers (7 human-associated, 4 pig-associated, 3 ruminant-associated, and 1 poultry-associated) showed potential applicability in our study area. The selected 15 markers were then tested using qualitative and quantitative methods to characterise their performance. Overall, Bacteroidales markers presented higher sensitivity and concentrations in target samples compared to other bacterial or viral markers, but their specificity was low. Among nontarget samples, pets accounted for 43.7% and 35.7% of cross-reactivity with human-associated and poultry-associated markers, respectively. Noncommon animals, including horse and donkey, contributed 61.3% of cross-reactivity with ruminant-associated markers. When considering the quantitative distribution of markers, their concentration in nontarget samples were 1-3 orders of magnitude lower than in target samples. Moreover, a novel classification method was proposed to classify the nontarget hosts into four groups spanning "no cross-reactivity", "weak cross-reactivity", "moderate cross-reactivity", and "strong cross-reactivity" animal hosts. There were 77.9% nontarget samples identified as no cross-reactivity and weak cross-reactivity hosts, suggesting that these nontarget hosts produce little interference for corresponding markers. Our findings elucidate the performance of host-associated markers around China in a qualitative and quantitative manner, and reveal the interference degree of cross-reactivity from nontarget animals to genetic markers, which will facilitate tracking of multiple faecal pollution sources and planning timely remedial strategies in China.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Renren Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China.
| | - Kairong Lin
- Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Yishu Wang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| | - Junqing Lu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| |
Collapse
|
31
|
Holcomb DA, Knee J, Sumner T, Adriano Z, de Bruijn E, Nalá R, Cumming O, Brown J, Stewart JR. Human fecal contamination of water, soil, and surfaces in households sharing poor-quality sanitation facilities in Maputo, Mozambique. Int J Hyg Environ Health 2020; 226:113496. [PMID: 32135507 PMCID: PMC7174141 DOI: 10.1016/j.ijheh.2020.113496] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Identifying the origin of fecal contamination can support more effective interventions to interrupt enteric pathogen transmission. Microbial source tracking (MST) assays may help to identify environmental routes of pathogen transmission although these assays have performed poorly in highly contaminated domestic settings, highlighting the importance of both diagnostic validation and understanding the context-specific ecological, physical, and sociodemographic factors driving the spread of fecal contamination. We assessed fecal contamination of compounds (clusters of 2-10 households that share sanitation facilities) in low-income neighborhoods of urban Maputo, Mozambique, using a set of MST assays that were validated with animal stool and latrine sludge from study compounds. We sampled five environmental compartments involved in fecal microbe transmission and exposure: compound water source, household stored water and food preparation surfaces, and soil from the entrance to the compound latrine and the entrances to each household. Each sample was analyzed by culture for the general fecal indicator Escherichia coli (cEC) and by real-time PCR for the E. coli molecular marker EC23S857, human-associated markers HF183/BacR287 and Mnif, and GFD, an avian-associated marker. We collected 366 samples from 94 households in 58 compounds. At least one microbial target (indicator organism or marker gene) was detected in 96% of samples (353/366), with both E. coli targets present in the majority of samples (78%). Human targets were frequently detected in soils (59%) and occasionally in stored water (17%) but seldom in source water or on food surfaces. The avian target GFD was rarely detected in any sample type but was most common in soils (4%). To identify risk factors of fecal contamination, we estimated associations with sociodemographic, meteorological, and physical sample characteristics for each microbial target and sample type combination using Bayesian censored regression for target concentration responses and Bayesian logistic regression for target detection status. Associations with risk factors were generally weak and often differed in direction between different targets and sample types, though relationships were somewhat more consistent for physical sample characteristics. Wet soils were associated with elevated concentrations of cEC and EC23S857 and odds of detecting HF183. Water storage container characteristics that expose the contents to potential contact with hands and other objects were weakly associated with human target detection. Our results describe a setting impacted by pervasive domestic fecal contamination, including from human sources, that was largely disconnected from the observed variation in socioeconomic and sanitary conditions. This pattern suggests that in such highly contaminated settings, transformational changes to the community environment may be required before meaningful impacts on fecal contamination can be realized.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jackie Knee
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Trent Sumner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Zaida Adriano
- We Consult, Maputo, Mozambique; Departamento de Geografia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Rassul Nalá
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
32
|
Fuhrmeister E, Ercumen A, Pickering AJ, Jeanis KM, Crider Y, Ahmed M, Brown S, Alam M, Sen D, Islam S, Kabir MH, Islam M, Rahman M, Kwong LH, Arnold BF, Luby SP, Colford JM, Nelson KL. Effect of Sanitation Improvements on Pathogens and Microbial Source Tracking Markers in the Rural Bangladeshi Household Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4316-4326. [PMID: 32167305 PMCID: PMC7144219 DOI: 10.1021/acs.est.9b04835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/19/2023]
Abstract
Diarrheal illnesses from enteric pathogens are a leading cause of death in children under five in low- and middle-income countries (LMICs). Sanitation is one way to reduce the spread of enteric pathogens in the environment; however, few studies have investigated the effectiveness of sanitation in rural LMICs in reducing pathogens in the environment. In this study, we measured the impact of a sanitation intervention (dual-pit latrines, sani-scoops, child potties delivered as part of a randomized control trial, WASH Benefits) in rural Bangladeshi household compounds by assessing prevalence ratios, differences, and changes in the concentration of pathogen genes and host-specific fecal markers. We found no difference in the prevalence of pathogenic Escherichia coli, norovirus, or Giardia genes in the domestic environment in the sanitation and control arms. The prevalence of the human fecal marker was lower on child hands and the concentration of animal fecal marker was lower on mother hands in the sanitation arm in adjusted models, but these associations were not significant after correcting for multiple comparisons. In the subset of households with ≥10 individuals per compound, the prevalence of enterotoxigenic E. coli genes on child hands was lower in the sanitation arm. Incomplete removal of child and animal feces or the compound (versus community-wide) scale of intervention could explain the limited impacts of improved sanitation.
Collapse
Affiliation(s)
- Erica
R. Fuhrmeister
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Ayse Ercumen
- School
of Public Health, University of California, Berkeley, California 94720, United States
- Department
of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy J. Pickering
- Civil
and Environmental Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Kaitlyn M. Jeanis
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Yoshika Crider
- Energy
and Resources Group, University of California, Berkeley, California 94720, United States
| | - Mahaa Ahmed
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Sara Brown
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Mahfuja Alam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Debashis Sen
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Sharmin Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mir Himayet Kabir
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mahfuza Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mahbubur Rahman
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Laura H. Kwong
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Benjamin F. Arnold
- School
of Public Health, University of California, Berkeley, California 94720, United States
| | - Stephen P. Luby
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| | - John M. Colford
- School
of Public Health, University of California, Berkeley, California 94720, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Fan L, Zhang X, Zeng R, Wang S, Jin C, He Y, Shuai J. Verification of Bacteroidales 16S rRNA markers as a complementary tool for detecting swine fecal pollution in the Yangtze Delta. J Environ Sci (China) 2020; 90:59-66. [PMID: 32081341 DOI: 10.1016/j.jes.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
To correctly assess and properly manage the public health risks associated with exposure to contaminated water, it is necessary to identify the source of fecal pollution in a watershed. In this study, we evaluated the efficacy of our two previously developed real time-quantitative PCR (qPCR) assays for the detection of swine-associated Bacteroidales genetic markers (gene 1-38, gene 3-53) in the Yangtze Delta watershed of southeastern China. The results indicated that the gene 1-38 and 3-53 markers exhibited high accuracy (92.5%, 91.7% conditional probability, respectively) in detecting Bacteroidales spp. in water samples. According to binary logistic regression (BLR), these two swine-associated markers were well correlated (P < 0.05) with fecal indicators (Escherichia coli and Enterococci spp.) and zoonotic pathogens (E. coli O157: H7, Salmonella spp. and Campylobacter spp.) in water samples. In contrast, concentrations of conventional fecal indicator bacteria (FIB) were not correlated with zoonotic pathogens, suggesting that they are noneffective at detecting fecal pollution events. Collectively, the results obtained in this study demonstrated that a swine-targeted qPCR assay based on two Bacteroidales genes markers (gene 1-38, gene 3-53) could be a useful tool in determining the swine-associated impacts of fecal contamination in a watershed.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Chenchen Jin
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China.
| |
Collapse
|
34
|
Ecological and Technical Mechanisms for Cross-Reaction of Human Fecal Indicators with Animal Hosts. Appl Environ Microbiol 2020; 86:AEM.02319-19. [PMID: 31862726 DOI: 10.1128/aem.02319-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Quantitative PCR (qPCR) assays for human/sewage marker genes have demonstrated sporadic positive results in animal feces despite their high specificities to sewage and human feces. It is unclear whether these positive reactions are caused by true occurrences of microorganisms containing the marker gene (i.e., indicator organisms) or nonspecific amplification (false positive). The distribution patterns of human/sewage indicator organisms in animals have not been explored in depth, which is crucial for evaluating a marker gene's true- or false-positive reactions. Here, we analyzed V6 region 16S rRNA gene sequences from 257 animal fecal samples and tested a subset of 184 using qPCR for human/sewage marker genes. Overall, specificities of human/sewage marker genes within sequencing data were 99.6% (BacV6-21), 96.9% (Lachno3), and 96.1% (HF183, indexed by its inferred V6 sequence). Occurrence of some true cross-reactions was associated with atypical compositions of organisms within the genera Blautia or Bacteroides For human/sewage marker qPCR assays, specificities were 96.7% (HF183/Bac287R), 96.2% (BacV6-21), 95.6% (human Bacteroides [HB]), and 94.0% (Lachno3). Select assays duplexed with either Escherichia coli or Enterococcus spp. were also validated. Most of the positive qPCR results in animals were low level and, on average, 2 orders of magnitude lower than the copy numbers of E. coli and Enterococcus spp. The lower specificity in qPCR assays compared to sequencing data was mainly caused by amplification of sequences highly similar to the marker gene and not the occurrence of the exact marker sequence in animal fecal samples.IMPORTANCE Identifying human sources of fecal pollution is critical to remediate sanitation concerns. Large financial investments are required to address these concerns; therefore, a high level of confidence in testing results is needed. Human fecal marker genes validated in this study showed high specificity in both sequencing data and qPCR results. Human marker sequences were rarely found in individual animals, and in most cases, the animals had atypical microbial communities. Sequencing also revealed the presence of closely related organisms that could account for nonspecific amplification in certain assays. Both the true cross-reactions and the nonspecific amplification had low signals well below E. coli or Enterococcus levels and likely would not impact the assay's ability to reliably detect human fecal pollution. No animal source had multiple human/sewage marker genes present; therefore, using a combination of marker genes would increase the confidence of human fecal pollution detection.
Collapse
|
35
|
Chen L, Zhang X, Zhi X, Dai Y, Zhang P, Xiao Y, Shen Z. Tracking faecal microorganisms using the qPCR method in a typical urban catchment in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:158. [PMID: 32016573 DOI: 10.1007/s10661-020-8130-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Faecal microorganisms represent a key threat to human health. Potential origins of faecal microbial contamination in a typical urban-representative micro-scale were evaluated. The quantitative polymerase chain reaction (qPCR) method was used in this study. The Bacteroidetes is selected as the indicative microorganism in runoff samples that are collected during four representative stormwater events in north China. The principal component analysis (PCA) method indicated the distribution feature of the environmental factors. The largest contributor is dog, followed by bird and human to the faecal pollution in stormwater runoff. The output of human and dog faecal pollutants in response to the first flush effect of nonpoint source pollution while the transmit time of bird faecal pollutant is relatively longer. In addition, the number of antecedent drying days represents the key factor for dog faecal pollution, while human faecal pollution is impacted by more factors. The results of this study will provide sound evidence for the tracking and management of nonpoint source faecal pollution in urban catchment areas.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiaoyue Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiaosha Zhi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
- Satellite Environment Centre, Ministry of Environmental Protection, Beijing, 100094, People's Republic of China
| | - Ying Dai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Pu Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yuechen Xiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
36
|
Hamzah L, Boehm AB, Davis J, Pickering AJ, Wolfe M, Mureithi M, Harris A. Ruminant Fecal Contamination of Drinking Water Introduced Post-Collection in Rural Kenyan Households. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E608. [PMID: 31963600 PMCID: PMC7027003 DOI: 10.3390/ijerph17020608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
In sub-Saharan Africa, many families travel to collect water and store it in their homes for daily use, presenting an opportunity for the introduction of fecal contamination. One stored and one source water sample were each collected from 45 households in rural Kenya. All 90 samples were analyzed for fecal indicator bacteria (E. coli and enterococci) and species-specific contamination using molecular microbial source tracking assays. Human (HF183), avian (GFD), and ruminant (BacR) contamination were detected in 52, two, and four samples, respectively. Stored water samples had elevated enterococci concentrations (p < 0.01, Wilcoxon matched pairs test) and more frequent BacR detection (89% versus 27%, p < 0.01, McNemar's exact test) relative to source water samples. fsQCA (fuzzy set qualitative comparative analysis) was conducted on the subset of households with no source water BacR contamination to highlight combinations of factors associated with the introduction of BacR contamination to stored water supplies. Three combinations were identified: (i) ruminants in the compound, safe water extraction methods, and long storage time, (ii) ruminants, unsafe water extraction methods, and no soap at the household handwashing station, and (iii) long storage time and no soap. This suggests that multiple pathways contribute to the transmission of ruminant fecal contamination in this context, which would have been missed if data were analyzed using standard regression techniques.
Collapse
Affiliation(s)
- Latifah Hamzah
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Davis
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Amy J. Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 01255, USA;
| | - Marlene Wolfe
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Innovations for Poverty Action, Nairobi, Kenya;
| | | | - Angela Harris
- Department of Civil, Construction, and Environmental Engineering, NC State University, Raleigh, NC 27695, USA
| |
Collapse
|
37
|
Xue J, Feng Y. Comparison of microbial source tracking efficacy for detection of cattle fecal contamination by quantitative PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1104-1112. [PMID: 31412506 DOI: 10.1016/j.scitotenv.2019.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Identification of fecal contamination sources in surface water has become heavily dependent on quantitative PCR (qPCR) because this technique allows for the rapid enumeration of fecal indicator bacteria as well as the detection and quantification of fecal source-associated genetic markers in the environment. Identification of contamination sources in impaired waters is a prerequisite for developing best management practices to reduce future pollution. Proper management decisions rely on the quality and interpretation of qPCR data. In this study, we developed a method to determine analytical and process lower limits of detection (LLOD) and quantification (LLOQ) using two cattle-associated genetic markers targeting Bacteroidales. Analytical LLOD (ALLOD) for both CowM2 and CowM3 genetic markers in the qPCR assay were five gene copies per reaction. Using composite fecal DNA, the analytical LLOQ (ALLOQ) determined for CowM2 and CowM3 were 78 and 195 gene copies/reaction, respectively. When plasmid DNA was used, the ALLOQ for CowM2 and CowM3 were 46 and 20 gene copies/reaction, respectively. The process LLOD (PLLOD) for CowM2 and CowM3 were 0.4 and 0.02 mg feces/filter (wet weight), respectively. Using the standard deviation value of 0.25 as a cut-off point for LLOQ in regression analysis, the process LLOQ (PLLOQ) for CowM2 and CowM3 were 3.2 and 0.3 mg feces/filter, respectively. These results indicate that CowM3 exhibited superior performance characteristics compared with CowM2 for fecal samples collected from our geographical region. Moreover, the method for calculating LLOD and LLOQ developed here can be applied to other microbial source tracking studies.
Collapse
Affiliation(s)
- Jia Xue
- Department of Crop, Soil and Environmental Sciences, Auburn University, AL 36849, USA.
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University, AL 36849, USA.
| |
Collapse
|
38
|
Kundu A, Smith WA, Harvey D, Wuertz S. Drinking Water Safety: Role of Hand Hygiene, Sanitation Facility, and Water System in Semi-Urban Areas of India. Am J Trop Med Hyg 2019; 99:889-898. [PMID: 30062991 DOI: 10.4269/ajtmh.16-0819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Poor drinking water quality is one of the main causes of acute diarrheal disease in developing countries. The study investigated the relationship between fecal contamination of hands, stored drinking water, and source waters in India. We further evaluated the environmental and behavioral factors associated with recontamination of water between collection and consumption. The bacterial contamination, that is, Escherichia coli (log10 most probable number per two hands), found on mothers' hands (mean = 1.11, standard deviation [SD] = 1.2, N = 152) was substantially higher than that on their children younger than 5 years (mean = 0.64, SD = 1.0, and N = 152). We found a low level of E. coli (< 1 per 100 mL) in the source water samples; however, E. coli contamination in stored drinking water was above the recommended guidelines of the World Health Organization. The study also found that E. coli on hands was significantly associated with E. coli in the stored drinking water (P < 0.001). Moreover, E. coli was positively associated with gastrointestinal symptoms (odds ratio 1.42, P < 0.05). In the households with elevated levels (> 100 E. coli/100 mL) of fecal contamination, we found that 43.5% had unimproved sanitation facilities, poor water handling practices, and higher diarrheal incidences. The water quality deterioration from the source to the point of consumption is significant. This necessitates effective interventions in collection, transport, storage, and extraction practices when hand-water contact is likely to occur. These findings support the role of hands in the contamination of stored drinking water and suggest that clean source water does not guarantee safe water at the point of consumption.
Collapse
Affiliation(s)
- Arti Kundu
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California
| | - Woutrina A Smith
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California
| | - Danielle Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, California
| | - Stefan Wuertz
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Department of Civil and Environmental Engineering, University of California, Davis, California
| |
Collapse
|
39
|
Malla B, Ghaju Shrestha R, Tandukar S, Sherchand JB, Haramoto E. Performance Evaluation of Human-Specific Viral Markers and Application of Pepper Mild Mottle Virus and CrAssphage to Environmental Water Samples as Fecal Pollution Markers in the Kathmandu Valley, Nepal. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:274-287. [PMID: 31087275 DOI: 10.1007/s12560-019-09389-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 05/23/2023]
Abstract
Monitoring of environmental water is crucial to protecting humans and animals from possible health risks. Although numerous human-specific viral markers have been designed to track the presence of human fecal contamination in water, they lack adequate sensitivity and specificity in different geographical regions. We evaluated the performances of six human-specific viral markers [Aichi virus 1 (AiV-1), human adenoviruses (HAdVs), BK and JC polyomaviruses (BKPyVs and JCPyVs), pepper mild mottle virus (PMMoV), and crAssphage] using 122 fecal-source samples collected from humans and five animal hosts in the Kathmandu Valley, Nepal. PMMoV and crAssphage showed high sensitivity (90-100%) with concentrations of 4.5-9.1 and 6.2-7.0 log10 copies/g wet feces (n = 10), respectively, whereas BKPyVs, JCPyVs, HAdVs, and AiV-1 showed poor performances with sensitivities of 30-40%. PMMoV and crAssphage were detected in 40-100% and 8-90%, respectively, of all types of animal fecal sources and showed no significantly different concentrations among most of the fecal sources (Kruskal-Wallis test, P > 0.05), suggesting their applicability as general fecal pollution markers. Furthermore, a total of 115 environmental water samples were tested for PMMoV and crAssphage to identify fecal pollution. PMMoV and crAssphage were successfully detected in 62% (71/115) and 73% (84/115) of water samples, respectively. The greater abundance and higher mean concentration of crAssphage (4.1 ± 0.9 log10 copies/L) compared with PMMoV (3.3 ± 1.4 log10 copies/L) indicated greater chance of detection of crAssphage in water samples, suggesting that crAssphage could be preferred to PMMoV as a marker of fecal pollution.
Collapse
Affiliation(s)
- Bikash Malla
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Rajani Ghaju Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Sarmila Tandukar
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| |
Collapse
|
40
|
Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Appl Environ Microbiol 2019; 85:AEM.00641-19. [PMID: 31076423 DOI: 10.1128/aem.00641-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial source tracking (MST) methods measure fecal contamination levels and identify possible sources using quantitative PCR (qPCR) that targets host-associated fecal microorganisms. To date, most established MST assays for human sources, especially bacterial markers, have shown some nonhuman host cross-reactions. Recently developed assays, such as the crAssphage CPQ_056, Lachnospiraceae Lachno3, and Bacteroides BacV6-21, have more limited information on host sensitivity and host specificity for human or sewage sources, particularly in countries other than the United States. In this study, we rigorously evaluated six sewage-associated MST assays (i.e., Bacteroides HF183, human adenovirus [HAdV], human polyomavirus [HPyV], crAssphage CPQ_056, Lachno3, and BacV6-21) to show advantages and disadvantages of their applications for MST. A total of 29 human and 3 sewage samples and 360 nonhuman fecal samples across 14 hosts collected from a subtropical region of Australia were tested for marker host specificity, host sensitivity, and concentrations. All sewage samples were positive for all six marker genes tested in this study. Bacterial markers were more prevalent than viral markers in human feces. Testing against animal hosts showed human feces (or sewage)-associated marker gene specificity was HAdV (1.00) > HPyV (0.99) > crAssphage CPQ_056 (0.98) > HF183 (0.96) > Lachno3 (0.95) > BacV6-21 (0.90), with marker concentrations in some animal fecal samples being 3 to 5 orders of magnitude lower than those in sewage. When considering host specificity, sensitivity, and concentrations in source samples, the HF183, Lachno3, and crAssphage CPQ_056 tests were the most suitable assays in this study for sewage contamination tracking in subtropical waters of Australia.IMPORTANCE Large financial investments are required to remediate fecal contamination sources in waterways, and accurate results from field studies are crucial to build confidence in MST approaches. Host specificity and sensitivity are two main performance characteristics for consideration when choosing MST assays. Ongoing efforts for marker assay validation will improve interpretation of results and could shed light on patterns of occurrence in nontarget hosts that might explain the underlying drivers of cross-reaction of certain markers. For field applications, caution should be taken to choose appropriate MST marker genes and assays based on available host specificity and sensitivity data and background knowledge of the contaminating sources in the study area. Since many waterborne pathogens are viruses, employing both viral and bacterial markers in investigations could provide insight into contamination dynamics and ecological behavior in the environment. Therefore, combined usage of marker assays is recommended for more accurate and informative sewage contamination detection and fecal source resolution.
Collapse
|
41
|
Ordaz G, Merino-Mascorro JÁ, García S, Heredia N. Persistence of Bacteroidales and other fecal indicator bacteria on inanimated materials, melon and tomato at various storage conditions. Int J Food Microbiol 2019; 299:33-38. [PMID: 30952015 DOI: 10.1016/j.ijfoodmicro.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
In order to determine the microbial safety of produce, conventional fecal indicator bacteria (CFIB) such as Escherichia coli and Enterococcus are quantified as a standard practice. Bacteroidales are also fecal indicators mostly used for water samples; however, their use and persistence in foods has been rarely studied. In this study, persistence of both CFIB and genetic markers of host-specific Bacteroidales was determined in artificially contaminated materials and vegetables with different textured surfaces under different storage conditions. Sterile feces were contaminated with E. coli, E. faecalis, Bacteroidesthetaiotaomicron (human origin), and Bacteroidales from porcine and bovine origin. Feces were applied to filters of mixed cellulose esters and tomatoes (smooth surface) and flat cork coupons and melons (rough surface) and stored at 10 °C/95% relative humidity (RH) and 25 °C/65%RH for up to 25 days. Bacteroidales markers were analyzed by real-time polymerase chain reaction (qPCR), whereas CFIB were plated onto selective agars. CFIB detection on filters and cork surfaces declined over time. E. coli decreased 2.9 log CFU and 1.2 log CFU per filter and cork, respectively, at 10 °C/95%RH and 5.8 log CFU and 1.8 log CFU per filter and cork, respectively, at 25 °C/65%RH. E. faecalis decreased 1.9 log CFU on filters and 1.3 log CFU on cork at 10 °C/95%RH and 2.6 log CFU/filter and cork under both storage conditions. Although E. coli levels in tomatoes slightly increased during storage, the levels decreased by the end of the assays. However, CFIB levels in melons stored at 10 °C/95%RH increased after 20 days; when stored at 25 °C/65%RH, these levels increased after five days. Bacteroidales levels (universal and host-specific markers) in inanimated material and produce did not show significant differences (P ≤ 0.01) over time. Stability and persistence of Bacteroidales genetic markers make them superior to CFIB as markers and are alternatives for determining the risk of exposure to feces-contaminated produce.
Collapse
Affiliation(s)
- Gilberto Ordaz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - José Ángel Merino-Mascorro
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Santos García
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico
| | - Norma Heredia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Bioquímica y Genética de Microorganismos, Ciudad Universitaria, San Nicolás de los Garza, NL 66455, Mexico.
| |
Collapse
|
42
|
Vadde KK, McCarthy AJ, Rong R, Sekar R. Quantification of Microbial Source Tracking and Pathogenic Bacterial Markers in Water and Sediments of Tiaoxi River (Taihu Watershed). Front Microbiol 2019; 10:699. [PMID: 31105648 PMCID: PMC6492492 DOI: 10.3389/fmicb.2019.00699] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Taihu Lake is one of the largest freshwater lakes in China, serving as an important source of drinking water; >60% of source water to this lake is provided by the Tiaoxi River. This river faces serious fecal contamination issues, and therefore, a comprehensive investigation to identify the sources of fecal contamination was carried out and is presented here. The performance of existing universal (BacUni and GenBac), human (HF183-Taqman, HF183-SYBR, BacHum, and Hum2), swine (Pig-2-Bac), ruminant (BacCow), and avian (AV4143 and GFD) associated microbial source tracking (MST) markers was evaluated prior to their application in this region. The specificity and sensitivity results indicated that BacUni, HF183-TaqMan, Pig-2-Bac, and GFD assays are the most suitable in identifying human and animal fecal contamination. Therefore, these markers along with marker genes specific to selected bacterial pathogens were quantified in water and sediment samples of the Tiaoxi River, collected from 15 locations over three seasons during 2014 and 2015. Total/universal Bacteroidales markers were detected in all water and sediment samples (mean concentration 6.22 log10 gene copies/100 ml and 6.11 log10 gene copies/gram, respectively), however, the detection of host-associated MST markers varied. Human and avian markers were the most frequently detected in water samples (97 and 89%, respectively), whereas in sediment samples, only human-associated markers were detected more often (86%) than swine (64%) and avian (8.8%) markers. The results indicate that several locations in the Tiaoxi River are heavily polluted by fecal contamination and this correlated well with land use patterns. Among the five bacterial pathogens tested, Shigella spp. and Campylobacter jejuni were the most frequently detected pathogens in water (60% and 62%, respectively) and sediment samples (91% and 53%, respectively). Shiga toxin-producing Escherichia coli (STEC) and pathogenic Leptospira spp. were less frequently detected in water samples (55% and 33%, respectively) and sediment samples (51% and 13%, respectively), whereas E. coli O157:H7 was only detected in sediment samples (11%). Overall, the higher prevalence and concentrations of Campylobacter jejuni, Shigella spp., and STEC, along with the MST marker detection at a number of locations in the Tiaoxi River, indicates poor water quality and a significant human health risk associated with this watercourse. GRAPHICAL ABSTRACTTracking fecal contamination and pathogens in watersheds using molecular methods.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Alan J. McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Rong Rong
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
43
|
Brown CM, Mathai PP, Loesekann T, Staley C, Sadowsky MJ. Influence of Library Composition on SourceTracker Predictions for Community-Based Microbial Source Tracking. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:60-68. [PMID: 30475593 DOI: 10.1021/acs.est.8b04707] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Community-based microbial source tracking (MST) utilizes high-throughput DNA sequencing to profile and compare the microbial communities in different fecal sources and environmental samples. SourceTracker, a program that compares a library of OTUs from fecal sources (i.e., sources) to those in environmental samples (i.e., sinks) in order to determine sources of fecal contamination, is an emerging tool for community-based MST studies. In this study, we investigated the ability of SourceTracker to determine sources of known fecal contamination in spiked, in situ mesocosms containing different source contributors. We also evaluated how SourceTracker results were impacted by accounting for autochthonous taxa present in the sink environment. While SourceTracker was able to predict most sources present in the in situ mesocosms, fecal source library composition substantially influenced the program's ability to predict source contributions. Moreover, prediction results were most reliable when the library contained only known sources, autochthonous taxa were accounted for and when source profiles had low intragroup variability. Although SourceTracker struggled to differentiate between sources with similar bacterial community structures, it was able to consistently identify abundant and expected sources, suggesting that the SourceTracker program can be a useful tool for community-based MST studies.
Collapse
Affiliation(s)
- Clairessa M Brown
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Prince P Mathai
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Tina Loesekann
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
- Department of Microbiology & Immunology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Christopher Staley
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
- Department of Surgery , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Michael J Sadowsky
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
- Department of Soil, Water & Climate, and Department of Microbial and Plant Biology , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
44
|
Assessment and application of host-specific Bacteroidales genetic markers for microbial source tracking of river water in Japan. PLoS One 2018; 13:e0207727. [PMID: 30444920 PMCID: PMC6239337 DOI: 10.1371/journal.pone.0207727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/05/2018] [Indexed: 11/19/2022] Open
Abstract
Microbial source tracking using host-specific microbial genetic markers is considered a promising approach to determine fecal contamination sources of aquatic environments. This study aimed to assess the application of previously developed host-specific Bacteroidales quantitative PCR assays to microbial source tracking of river water samples in Yamanashi Prefecture, Japan. Various types of fecal-source samples, such as raw sewage, secondary-treated sewage of a wastewater treatment plant, and cattle feces, were used for three human-, two ruminant- and two pig-specific Bacteroidales quantitative PCR assays. Our results demonstrated that BacHum, BacR and Pig2Bac assays as suitable human-, ruminant- and pig-specific assays, with an accuracy of 86%, 94% and 77%, respectively. These selected assays were used for microbial source tracking of 63 river water samples collected at nine sites in two river basins. From these sites, there were 48 (76%), 34 (54%) and 9 (14%) positive samples using the BacHum, BacR and Pig2Bac assays, respectively. These assays revealed the effects of humans and animals on fecal contamination of river water.
Collapse
|
45
|
Ahmed W, Payyappat S, Cassidy M, Besley C, Power K. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff. WATER RESEARCH 2018; 145:769-778. [PMID: 30223182 DOI: 10.1016/j.watres.2018.08.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 05/18/2023]
Abstract
Considerable efforts have been made in recent years in developing novel marker genes for fecal pollution tracking in environmental waters. CrAssphage are recently discovered DNA bacteriophage that are highly abundant in human feces and untreated sewage. In this study, we evaluated the host-sensitivity and -specificity of the newly designed crAssphage qPCR assays (Stachler et al., 2017) CPQ_056 and CPQ_064 (i.e., marker genes) in fecal samples collected from various human and several animal host groups in Australia. We also investigated the utility of these marker genes to detect sewage pollution in an urban recreational lake (i.e., Lake Parramatta) in Sydney, NSW. The mean concentrations of CPQ_056 and CPQ_064 marker genes in untreated sewage were 9.43 ± 0.14 log10 GC/L and 8.91 ± 0.17 log10 GC/L, respectively, 2 to 3 orders of magnitude higher than other sewage-associated viruses used in microbial source tracking studies. Among 177 animal fecal samples tested from 11 species, the host-specificity values for CPQ_056 and CPQ_064 marker genes were 0.95 and 0.93, respectively. Limited cross-reactivity was observed with cat fecal and cattle wastewater samples. Abundance of crAssphage markers were monitored in an urban lake that receives stormwater runoff. The concentrations of both markers were higher (CPQ_056 ranging from 3.40 to 6.04 log10 GC/L and CPQ_064 ranging from 2.90 to 5.47 log10 GC/L) in 20 of 20 (for CPQ_056) and 18 of 20 (for CPQ_064) samples collected after storm events with gauged sewer overflows compared to dry weather event (10 of 10 samples were qPCR negative for the CPQ_056 and 8 of 10 were negative for the CPQ_064 marker genes) suggesting sewage pollution was transported by urban stormwater runoff to Lake Parramatta. The results of the study may provide context for management of sewage pollution from gauged overflow points of the sewerage system in the catchment.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Kaye Power
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| |
Collapse
|
46
|
Zhang Y, Wu R, Zhang Y, Wang G, Li K. Impact of nutrient addition on diversity and fate of fecal bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:717-726. [PMID: 29727839 DOI: 10.1016/j.scitotenv.2018.04.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Understanding the variations in the microorganisms associated with human fecal pollution in different types of water is necessary to manage water quality and predict human health risks. Using an Illumina sequencing method, we investigated variations in the fecal bacteria originating from fresh human feces and their decay trends in nutrient-supplemented water and natural river water. Nutrient addition contributed to the growth of heterotrophic bacteria like Comamonadaceae, Cytophagaceae, and Sphingobacteriaceae, but led to lower concentrations for Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae. This result suggests that the utilization of nutrients by high-activity bacteria may suppress other bacteria via depletion of the available nutrient resources. As we did not observe proliferation of Bacteroidales, Lactobacillales, Clostridiales, or Ruminococcaceae in either supplemented or river water, we consider these groups suitable for use as indicators to determine the level of fecal pollution. Moreover, we tested the persistence of Bacteroidales markers, including general-Bacteroidales marker GenBac and human-specific Bacteroidales marker qHS601, by quantitative PCR. We observed similar trends in the decay of the Bacteroidales markers GenBac and qHS601 in the nutrient-supplemented water and natural river water, and the high R2 values of the GenBac (R2nutrient-supplemented = 0.93, R2natural river = 0.81) and qHS601 (R2nutrient-supplemented = 0.93, R2natural river = 0.91) suggests they are a good fit for the first-order decay model. We also found stronger correlations between the markers and potential pathogenic anaerobes in the different types of water, demonstrating the validity of the use of GenBac and qHS601 from Bacteroidales for the identification of human-associated pollution sources.
Collapse
Affiliation(s)
- Yang Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China
| | - Renren Wu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China.
| | - Yimin Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Guang Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| | - Kaiming Li
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| |
Collapse
|
47
|
Malla B, Ghaju Shrestha R, Tandukar S, Bhandari D, Inoue D, Sei K, Tanaka Y, Sherchand JB, Haramoto E. Validation of host-specific Bacteroidales quantitative PCR assays and their application to microbial source tracking of drinking water sources in the Kathmandu Valley, Nepal. J Appl Microbiol 2018; 125:609-619. [PMID: 29679435 DOI: 10.1111/jam.13884] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/15/2018] [Accepted: 04/03/2018] [Indexed: 11/28/2022]
Abstract
AIMS To validate host-specific Bacteroidales assays to identify faecal-source contamination of drinking water sources in the Kathmandu Valley, Nepal. METHODS AND RESULTS A total of 54 composite faecal-source samples were collected from human sewage, ruminants, pigs, dogs, chickens and ducks, which were analysed by quantitative polymerase chain reaction using human-specific (BacHum, HF183 SYBR, gyrB and HF183 TaqMan), ruminant-specific (BacCow and BacR), pig-specific (Pig2Bac and PF163) and dog-specific assays (BacCan SYBR). The BacHum, BacR and Pig2Bac assays were judged the best performing human-specific, ruminant-specific and pig-specific assays respectively. The BacCan SYBR assay highly cross-reacted with other species, resulting in poor performance. Furthermore, these validated assays were applied to microbial source tracking (MST) of 74 drinking water samples. Out of these, 20, 12 and 4% samples were judged contaminated by human, ruminant and pig faeces respectively. Detection ratios of human and ruminant faecal markers were relatively higher in built-up and agricultural areas respectively. CONCLUSION BacHum, BacR and Pig2Bac assays were found suitable for MST and both, human and animal faecal contaminations of drinking water sources were common in the valley. SIGNIFICANCE AND IMPACT OF THE STUDY MST could be an effective tool for preparing the faecal pollution strategies as these are site specific.
Collapse
Affiliation(s)
- B Malla
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, Kofu, Yamanashi, Japan
| | - R Ghaju Shrestha
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, Kofu, Yamanashi, Japan
| | - S Tandukar
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, Kofu, Yamanashi, Japan
| | - D Bhandari
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - D Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, Suita, Osaka, Japan
| | - K Sei
- Department of Health Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Y Tanaka
- Department of Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - J B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - E Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Yamanashi, Japan
| |
Collapse
|
48
|
Somnark P, Chyerochana N, Mongkolsuk S, Sirikanchana K. Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:100-110. [PMID: 29414329 DOI: 10.1016/j.envpol.2018.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Microbial source tracking (MST) DNA-based assays have been used to successfully solve fecal pollution problems in many countries, particularly in developed nations. However, their application in developing countries has been limited but continues to increase. In this study, sixteen endpoint and quantitative PCR (qPCR) assays targeting universal and human-, swine-, and cattle-specific Bacteroidales gene markers were modified for endpoint PCR, evaluated for their performance with sewage and fecal samples from the Tha Chin watershed and subsequently validated with samples from the Chao Phraya watershed, Thailand. Sample sizes of 81 composite samples (from over 1620 individual samples) of farm animals of each type as well as 19 human sewage samples from the Tha Chin watershed were calculated using a stratified random sampling design to achieve a 90% confidence interval and an expected prevalence (i.e., desired assay's sensitivity) of 0.80. The best universal and human-, swine-, and cattle-specific fecal markers were BacUni EP, HF183/BFDrev EP, Pig-2-Bac EP, and Bac3 assays, respectively. The detection limits for these assays ranged from 30 to 3000 plasmid copies per PCR. The positive predictive values were high in universal and swine- and cattle-specific markers (85-100%), while the positive predictive value of the human-specific assay was 52.2%. The negative predictive values in all assays were relatively high (90.8-100%). A suite of PCR assays in Thailand was established for potential MST use in environmental waters, which supports the worldwide applicability of Bacteroidales gene markers. This study also emphasizes the importance of using a proper sample size in assessing the performance of MST markers in a new geographic region.
Collapse
Affiliation(s)
- Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Lak Si, Bangkok, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| |
Collapse
|
49
|
Brown CM, Staley C, Wang P, Dalzell B, Chun CL, Sadowsky MJ. A High-Throughput DNA-Sequencing Approach for Determining Sources of Fecal Bacteria in a Lake Superior Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8263-8271. [PMID: 28640599 DOI: 10.1021/acs.est.7b01353] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Current microbial source-tracking (MST) methods, employed to determine sources of fecal contamination in waterways, use molecular markers targeting host-associated bacteria in animal or human feces. However, there is a lack of knowledge about fecal microbiome composition in several animals and imperfect marker specificity and sensitivity. To overcome these issues, a community-based MST method has been developed. Here, we describe a study done in the Lake Superior-Saint Louis River estuary using SourceTracker, a program that calculates the source contribution to an environment. High-throughput DNA sequencing of microbiota from a diverse collection of fecal samples obtained from 11 types of animals (wild, agricultural, and domesticated) and treated effluent (n = 233) was used to generate a fecal library to perform community-based MST. Analysis of 319 fecal and environmental samples revealed that the community compositions in water and fecal samples were significantly different, allowing for the determination of the presence of fecal inputs and identification of specific sources. SourceTracker results indicated that fecal bacterial inputs into the Lake Superior estuary were primarily attributed to wastewater effluent and, to a lesser extent, geese and gull wastes. These results suggest that a community-based MST method may be another useful tool for determining sources of aquatic fecal bacteria.
Collapse
Affiliation(s)
- Clairessa M Brown
- BioTechnology Institute and ‡Department of Soil, Water, and Climate, University of Minnesota , Saint Paul, Minnesota 55455, United States
- Natural Resources Research Institute and ∥Department of Civil Engineering, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Christopher Staley
- BioTechnology Institute and ‡Department of Soil, Water, and Climate, University of Minnesota , Saint Paul, Minnesota 55455, United States
- Natural Resources Research Institute and ∥Department of Civil Engineering, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Ping Wang
- BioTechnology Institute and ‡Department of Soil, Water, and Climate, University of Minnesota , Saint Paul, Minnesota 55455, United States
- Natural Resources Research Institute and ∥Department of Civil Engineering, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Brent Dalzell
- BioTechnology Institute and ‡Department of Soil, Water, and Climate, University of Minnesota , Saint Paul, Minnesota 55455, United States
- Natural Resources Research Institute and ∥Department of Civil Engineering, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Chan Lan Chun
- BioTechnology Institute and ‡Department of Soil, Water, and Climate, University of Minnesota , Saint Paul, Minnesota 55455, United States
- Natural Resources Research Institute and ∥Department of Civil Engineering, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| | - Michael J Sadowsky
- BioTechnology Institute and ‡Department of Soil, Water, and Climate, University of Minnesota , Saint Paul, Minnesota 55455, United States
- Natural Resources Research Institute and ∥Department of Civil Engineering, University of Minnesota Duluth , Duluth, Minnesota 55812, United States
| |
Collapse
|
50
|
Nshimyimana JP, Cruz MC, Thompson RJ, Wuertz S. Bacteroidales markers for microbial source tracking in Southeast Asia. WATER RESEARCH 2017; 118:239-248. [PMID: 28433694 DOI: 10.1016/j.watres.2017.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
The island city country of Singapore served as a model to validate the use of host-associated Bacteroidales 16S rRNA gene marker assays for identifying sources of fecal pollution in the urban tropical environment of Southeast Asia. A total of 295 samples were collected from sewage, humans, domesticated animals (cats, dogs, rabbits and chicken), and wild animals (birds, monkeys and wild boars). Samples were analyzed by real time PCR using five human-associated assays (HF183-SYBR Green, HF183, BacHum, BacH and B. thetaiotaomicron α-1-6, mannanase (B. theta), one canine-associated assay (BacCan), and a total Bacteroidales assay (BacUni). The best performing human-associated assay was B. theta with a diagnostic sensitivity of 69% and 100% in human stool and sewage, respectively, and a specificity of 98%. BacHum achieved the second highest sensitivity and specificity for human stool at 65% and 91%, respectively. The canine-associated Bacteroidales assay (BacCan) had a sensitivity and specificity above 80% and was validated for tracking fecal pollution from dogs. BacUni demonstrated a sensitivity and specificity of 100% for mammals, thus BacUni was confirmed for total Bacteroidales detection in the region. We showed for the first time that rabbit fecal samples cross-react with human-associated assays (HF183-SYBR Green, HF183, BacHum and BacH) and with BacCan. Our findings regarding the best performing human-associated assays differ from those reported in Bangladesh and India, which are geographically close to Southeast Asia, and where HF183 and BacHum were the preferred assays, respectively.
Collapse
Affiliation(s)
- Jean Pierre Nshimyimana
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602, Singapore
| | - Mercedes C Cruz
- Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore
| | - R Janelle Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602, Singapore
| | - Stefan Wuertz
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore.
| |
Collapse
|