1
|
Yin R, Wu J, Nagai K, Mori T, Ono A, Wang J, Kawagishi H, Hirai H. Biodegradation of non-steroidal anti-inflammatory drug loxoprofen by a hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic conditions. CHEMOSPHERE 2024; 364:143265. [PMID: 39236927 DOI: 10.1016/j.chemosphere.2024.143265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Loxoprofen has been widely used as a non-steroidal anti-inflammatory drug globally and it can also persist in the environment. Although it is known to be a non-toxic drug, its presence may still pose a potential risk to organisms in the environment. Here, the hyper lignin-degrading fungus Phanerochaete sordida YK-624 was used to study the degradation of loxoprofen. This fungus showed excellent loxoprofen biodegradation ability with 90.4% and 93.4% after one day of incubation at lower concentrations of 0.01 and 0.005 mM, respectively. And at a higher concentration of 0.1 mM, a significant removal of 94.2% was also observed after 10 days of incubation. In this study, four metabolites were isolated and determined by HR-ESI-MS and NMR. Furthermore, LC/MS analysis suggested the presence of intermediate hydroxy loxoprofen. In addition, loxoprofen-OH was also identified as a metabolite of loxoprofen through comparison with the synthesized compounds. In this metabolism of loxoprofen, cytochrome P450 may play a significant role. Interestingly, P. sordida YK-624 showed enantioselectivity in the degradation process of loxoprofen. By these results, three degradation pathways of loxoprofen by P. sordida YK-624 were hypothesized. To the best of our knowledge, this is the first report describing the potential degradation mechanisms of loxoprofen by a white-rot fungus.
Collapse
Affiliation(s)
- Ru Yin
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kaoru Nagai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Toshi Mori
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Akiko Ono
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Faculty of Global Interdisciplinary Science and Innovation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Guo J, Ren J, Chang C, Duan Q, Li J, Kanerva M, Yang F, Mo J. Freshwater crustacean exposed to active pharmaceutical ingredients: ecotoxicological effects and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48868-48902. [PMID: 36884171 DOI: 10.1007/s11356-023-26169-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/23/2023] [Indexed: 04/16/2023]
Abstract
Concerns over the ecotoxicological effects of active pharmaceutical ingredients (APIs) on aquatic invertebrates have been raised in the last decade. While numerous studies have reported the toxicity of APIs in invertebrates, no attempt has been made to synthesize and interpret this dataset in terms of different exposure scenarios (acute, chronic, multigenerational), multiple crustacean species, and the toxic mechanisms. In this study, a thorough literature review was performed to summarize the ecotoxicological data of APIs tested on a range of invertebrates. Therapeutic classes including antidepressants, anti-infectives, antineoplastic agents, hormonal contraceptives, immunosuppressants, and neuro-active drugs exhibited higher toxicity to crustaceans than other API groups. The species sensitivity towards APIs exposure is compared in D. magna and other crustacean species. In the case of acute and chronic bioassays, ecotoxicological studies mainly focus on the apical endpoints including growth and reproduction, whereas sex ratio and molting frequency are commonly used for evaluating the substances with endocrine-disrupting properties. The multigenerational and "Omics" studies, primarily transcriptomics and metabolomics, were confined to a few API groups including beta-blocking agents, blood lipid-lowing agents, neuroactive agents, anticancer drugs, and synthetic hormones. We emphasize that in-depth studies on the multigenerational effects and the toxic mechanisms of APIs on the endocrine systems of freshwater crustacean are warranted.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chao Chang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jun Li
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 7908577, Japan
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Damasceno ÉP, Ribeiro F, Costa-Lotufo LV, Soares AMVM, Pavlaki MD, Loureiro S. Assessing the impact of antineoplastic drugs in the aquatic environment: State of the art and future perspective for freshwater organisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104109. [PMID: 36921700 DOI: 10.1016/j.etap.2023.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Since the late 70s, the continuous pharmaceuticals` input into the environment has raised concerns regarding the eventual risk posed by such compounds to human and environmental health. A major group of pharmaceuticals in terms of environmental impact are the antineoplastic agents (AAs). Herein, we followed a systematic review method to retrieve antineoplastic agents (AAs') ecotoxicological information regarding freshwater species. In this analysis, data from diverse taxonomic groups, from microorganisms to vertebrate species, looked at different levels of biological organization, including cell lines. Furthermore, this review gathers ecotoxicological parameters (EC50 and LC50) for imatinib (IM), cisplatin (CisPt), and 5-fluorouracil (5-FU) in species sensitivity distribution (SSD) curves and estimates the hazard concentration (HC5) considering the protection of 95% of the ecological community. Lastly, we suggest how we can improve AAs' Environmental Risk Assessment (ERA), considering potential adoptable toxicity endpoints, test duration, AAs metabolites testing, and AAs mixture exposure.
Collapse
Affiliation(s)
- Évila Pinheiro Damasceno
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Fabianne Ribeiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leticia V Costa-Lotufo
- Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria D Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Nkoom M, Lu G, Liu J. Chronic toxicity of diclofenac, carbamazepine and their mixture to Daphnia magna: a comparative two-generational study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58963-58979. [PMID: 35378650 DOI: 10.1007/s11356-022-19463-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The chronic toxicity of diclofenac (DCF) and carbamazepine (CBZ) as separate substances and in conjunction with their mixture on Daphnia magna was assessed in the parental (F0) and first filial (F1) generations. The second (F1-B2) and fifth (F1-B5) broods of F1 offspring were investigated and compared. Both drugs and their mixture were exposed to each generation of Daphnia magna for 21 days with life history, behavioural and gene expressions as measured endpoints. After the parental exposure, offspring from these two broods were transferred to a clean medium for a 21-day recovery. Exposure to diclofenac, carbamazepine and their mixture significantly inhibited growth, reproduction, swimming activities, heart rate, thoracic limb activities, reproductive and antioxidant-related genes in the parental as well as the first filial generations. These effects were relatively greater in the F1 generation. This indicates that Daphnia magna's sensitivity improved while its fitness declined over the two generations, which is an indicator of greater energy requirements for maintenance. Besides, the significant inhibition in the antioxidant-related genes implies that oxidative stress occurred in Daphnia magna under the exposure to these drugs. The significant reduction in the reproductive output, moulting frequency and cyp314 gene expression as a result of exposure to CBZ simultaneously obtained herein may indicate that this drug could act as an endocrine disruptor. Most of these significant effects were not recoverable after the 21-day recovery period. The findings reported herein highlight the necessity to include maternal effects in environmental risk assessment processes, considering that pollutant effects are underestimated during single-generational exposure.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
- Department of Environment and Sustainability Sciences, Faculty of Natural Resources and Environment, University for Development Studies, Tamale, Ghana
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources, Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
5
|
Zare EN, Fallah Z, Le VT, Doan VD, Mudhoo A, Joo SW, Vasseghian Y, Tajbakhsh M, Moradi O, Sillanpää M, Varma RS. Remediation of pharmaceuticals from contaminated water by molecularly imprinted polymers: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2629-2664. [PMID: 35431714 PMCID: PMC8999999 DOI: 10.1007/s10311-022-01439-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 05/03/2023]
Abstract
The release of pharmaceuticals into the environment induces adverse effects on the metabolism of humans and other living species, calling for advanced remediation methods. Conventional removal methods are often non-selective and cause secondary contamination. These issues may be partly solved by the use of recently-developped adsorbents such as molecularly imprinted polymers. Here we review the synthesis and application of molecularly imprinted polymers for removing pharmaceuticals in water. Molecularly imprinted polymers are synthesized via several multiple-step polymerization methods. Molecularly imprinted polymers are potent adsorbents at the laboratory scale, yet their efficiency is limited by template leakage and polymer quality. Adsorption performance of multi-templated molecularly imprinted polymers depends on the design of wastewater treatment plants, pharmaceutical consumption patterns and the population serviced by these wastewater treatment plants.
Collapse
Affiliation(s)
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
- The Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 55000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh, 70000 Vietnam
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837 Mauritius
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 South Korea
| | - Mahmood Tajbakhsh
- Faculty of Chemistry, University of Mazandaran, 47416-95447 Babolsar, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028 South Africa
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
6
|
Maculewicz J, Kowalska D, Świacka K, Toński M, Stepnowski P, Białk-Bielińska A, Dołżonek J. Transformation products of pharmaceuticals in the environment: Their fate, (eco)toxicity and bioaccumulation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149916. [PMID: 34525754 DOI: 10.1016/j.scitotenv.2021.149916] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/07/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, a huge scientific attention is being paid to the chemicals of emerging concern, which may pose a significant risk to the human and whole ecosystems. Among them, residues of pharmaceuticals are a widely investigated group of chemicals. In recent years it has been repeatedly demonstrated that pharmaceuticals are present in the environment and that some of them can be toxic to organisms as well as accumulate in their tissues. However, even though the knowledge of the presence, fate and possible threats posed by the parent forms of pharmaceuticals is quite extensive, their transformation products (TPs) have been disregarded for long time. Since last few years, this aspect has gained more scientific attention and recently published papers proved their common presence in the environment. Also the interest in terms of their toxicity, bioconcentration and stability in the environment has increased. Therefore, the aim of our paper was to revise and assess the current state of knowledge on the fate and effects resulting from the presence of the pharmaceuticals' transformation drugs in the environment. This review discusses the metabolites of compounds belonging to six major pharmaceutical groups: SSRIs, anticancer drugs, antibiotics, antihistamines, NSAIDs and opioids, additionally discussing other individual compounds for which literature data exist. The data presented in this paper prove that some TPs may be as harmful as their native forms, however for many groups of drugs this data is still insufficient to assess the risk posed by their presence in the environment.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Michał Toński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Nassour C, Nabhani-Gebara S, Barton SJ, Barker J. Aquatic ecotoxicology of anticancer drugs: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149598. [PMID: 34426323 DOI: 10.1016/j.scitotenv.2021.149598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Anticancer drugs in the aquatic environment have drawn a lot of attention in the last decade. Since wastewater treatment plants are inefficient at fully eliminating trace concentrations of anticancer drugs, these compounds are continuously discharged into the aquatic environment. Subsequently, non-target organisms such as the aquatic biota are directly exposed to a variety of anticancer drugs. To understand the potential impact on the aquatic organisms, a systematic review was conducted in compliance with the PRISMA guidelines. The results acquired from the 152 included studies were analysed and sorted into four categories: the impact of each included anticancer drug, the effect of metabolites, the effect of a mixture of drugs, and risk assessment. Findings showed that risk to the aquatic biota was unlikely to occur as the concentrations needed to induce effects were much higher than those detected in the environment. However, these data were based on acute toxicity and included only basic toxicity endpoints. The concentrations that produced significant effects were much lower when tested in the long-term or in multi-generational studies. Heterogeneity in results was also observed; this depended on the organism tested, the assessment adopted, and the endpoints selected. In this systematic review, an overall view of the research studies was generated by which all the variability factors to be considered were reported and recommendations to guide future studies were proposed.
Collapse
Affiliation(s)
- Carla Nassour
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK.
| | - Shereen Nabhani-Gebara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - Stephen J Barton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| | - James Barker
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames KT1 2EE, UK
| |
Collapse
|
8
|
Martin MA, Sivaguru J, McEvoy J, Sonthiphand P, Khan E. Photolytic fate of (E)- and (Z)-endoxifen in water and treated wastewater exposed to sunlight. ENVIRONMENTAL RESEARCH 2021; 197:111121. [PMID: 33823193 DOI: 10.1016/j.envres.2021.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Endoxifen is the main active metabolite of a common cytostatic drug, tamoxifen. Endoxifen has been recently detected in the final effluent of municipal wastewater treatment plants. The antiestrogenic activity of endoxifen could bring negative effects to aquatic life if released to the water environment. This study elucidated the fate and susceptibility of (E)- and (Z)-endoxifen (2 μg mL-1, 1:1 wt ratio between the two easily interchangeable isomers) in wastewater and receiving surface water to sunlight. Phototransformation by-products (PBPs) and their toxicity were determined. Sunlight reduced at least 83% of endoxifen concentration in wastewater samples, whereas in surface water samples, 60% of endoxifen was photodegraded after 180 min of the irradiation. In ultrapure water samples spiked with endoxifen, PBPs were mainly generated via con-rotatory 6π-photocyclization, followed by oxidative aromatization. These PBPs underwent secondary reactions leading to a series of PBPs with different molecular weights. Eight PBPs were identified and the toxicity analysis via the Toxicity Estimation Software Tool revealed that seven of these PBPs are more toxic than endoxifen itself. This is likely due to the formation of poly-aromatic core in the PBPs due to exposure to sunlight. Therefore, highly toxic PBPs may be generated if endoxifen is present in water and wastewater exposed to sunlight. The presence, fates and activities of these PBPs in surface water especially at locations close to treated wastewater discharge points should be investigated.
Collapse
Affiliation(s)
- Marina Ariño Martin
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, 58108, USA; International Postgraduate Programs in Environmental Management, Graduate School Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | | | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
9
|
Tkaczyk A, Bownik A, Dudka J, Kowal K, Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143038. [PMID: 33127157 DOI: 10.1016/j.scitotenv.2020.143038] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Daphnia magna is one of the most commonly used model organism to assess toxicity of wide range of pharmaceuticals such as antibiotics, anticancer drugs, antidepressants, anti-inflammatory drugs, beta-blockers and lipid-regulating agents. Currently, daphnia toxicity tests based on immobilisation and lethality standardised by OECD, acute immobilisation test and reproduction test, are mainly used in toxicological studies. Detailed analysis of Daphnia biology allows distinguishing the swimming behaviour and physiological endpoints such as swimming speed, distance travelled, hopping frequency, heart rate, ingestion rate, feeding rate, oxygen consumption, thoracic limb activity which could be also useful in assessment of toxic effects. The advantage of behavioural and physiological parameters is the possibility to observe sublethal effects induced by lower concentrations of pharmaceuticals which would not be possible to notice by using OECD tests. Additionally, toxic effects of tested drugs could be assessed using enzymatic and non-enzymatic biomarkers of daphnia toxicity. This review presents scientific data considering characteristics of D. magna, analysis of immobilisation, lethality, reproductive, behavioural, physiological and biochemical parameters used in the toxicity assessment of pharmaceuticals. The aim of this paper is also to emphasize usefulness, advantages and disadvantages of these invertebrate model organisms to assess toxicity of different therapeutic classes of pharmaceuticals. Also, various examples of application of D. magna in studies on pharmaceutical toxicity are presented.
Collapse
Affiliation(s)
- Angelika Tkaczyk
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-62 Lublin, Poland.
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland.
| | - Krzysztof Kowal
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
10
|
Evgenidou E, Ofrydopoulou A, Malesic-Eleftheriadou N, Nannou C, Ainali NM, Christodoulou E, Bikiaris DN, Kyzas GZ, Lambropoulou DA. New insights into transformation pathways of a mixture of cytostatic drugs using Polyester-TiO 2 films: Identification of intermediates and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140394. [PMID: 32886989 DOI: 10.1016/j.scitotenv.2020.140394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The photocatalytic activity of two bio-based polymer photocatalysts [poly(ethylene terephthalate)-TiO2 (PET-TiO2) and poly(L-lactic acid)-graphene oxide-TiO2 (PLLA-GO-TiO2)] towards Tamoxifen (TAM), Cyclophosphamide (CP), Cytarabine (CYT) and 5-Fluorouracil (5-FLU) removal was explored and compared. The highest photocatalytic activity for the degradation of the cytostatic drugs was accomplished by PET-TiO2. Among the contaminants, TAM was the most easily removed, requiring 90 min for complete elimination, while CP showed the highest resistance to photocatalysis, not being completely removed after 6 h. Liquid chromatography coupled with high-resolution mass spectrometry analysis was employed for the identification of several transformation products (TPs) and potential pathways were proposed. A total of seventy (70) TPs including thirty-four (34) novel ones detected in AOPs were identified. The ecotoxicity of the mixture of the cytostatic drugs and TPs formed during the photocatalytic treatment was evaluated using Daphnia magna assay and was associated with the occurrence of specific TPs during the treatment process. The follow-up ECOSAR (Ecological Structure Activity Relationship) analysis further elucidated that only minor chemical transformations, such as the hydroxylation or the oxidative opening of an aromatic ring system, could hamper the adverse effects of cytostatic drugs in aquatic species. Such a comparative study on the mixture toxicity of cytostatics and their TPs is presented for the first time.
Collapse
Affiliation(s)
- Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Anna Ofrydopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Neda Malesic-Eleftheriadou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Christina Nannou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-654 04 Kavala, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece.
| |
Collapse
|
11
|
Santana-Viera S, Tuček J, Torres-Padrón ME, Sosa-Ferrera Z, Santana-Rodríguez JJ, Halko R. Cytostatic compounds in sludge and sediment: extraction and determination by a combination of microwave-assisted extraction and UHPLC-MS/MS. Anal Bioanal Chem 2020; 412:3639-3651. [PMID: 32291518 DOI: 10.1007/s00216-020-02600-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/27/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Cytostatic compounds are an important group of micro-pollutants since they are used to kill cells or stop cell division. For this reason, they are also considered mutagenic. Several cytostatic compounds have been detected in hospital effluents, in the influents and effluents of wastewater treatment plants and even in river water. However, their detection in solid matrices is very scarce. In this work, we have developed a new procedure based on microwave-assisted extraction (MAE) for the extraction of cytostatic compounds from sludge and sediment before determination by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). To develop this procedure, we have chosen a group of eight widely used cytostatic compounds and carried out a systematic experimental design to optimize the extraction conditions. Under these optimal conditions, the studied cytostatic compounds are extracted with good sensitivity, with recoveries ranging from 65 to 122% in sludge and recoveries varying between 49 and 109% in sediment, with the exception of etoposide, which has a lower recovery from these types of samples. The limits of detection were from 0.42 to 79.8 ng g-1 in sludge and from 0.10 to 87.5 ng g-1 in sediment. Intraday and interday relative standard deviations (RSDs) were below 15% and 18%, respectively, in both matrices at the tested concentrations. The total procedure was applied to samples of sludge taken from the main wastewater treatment plant (WWTP) of the island of Gran Canaria (Spain) and for sediment samples obtained close to the marine outfalls of different wastewater treatment plants for the same island. Graphical abstract.
Collapse
Affiliation(s)
- Sergio Santana-Viera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jozef Tuček
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| | - María Esther Torres-Padrón
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain.
| | - Radoslav Halko
- Faculty of Natural Sciences, Department of Analytical Chemistry, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic
| |
Collapse
|
12
|
Martin MA, Sivaguru J, McEvoy J, Sonthiphand P, Delorme A, Khan E. Photodegradation of (E)- and (Z)-Endoxifen in water by ultraviolet light: Efficiency, kinetics, by-products, and toxicity assessment. WATER RESEARCH 2020; 171:115451. [PMID: 31901682 DOI: 10.1016/j.watres.2019.115451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Endoxifen is an effective metabolite of a common chemotherapy agent, tamoxifen. Endoxifen, which is toxic to aquatic animals, has been detected in wastewater treatment plant (WWTP) effluent. This research investigates ultraviolet (UV) radiation (253.7 nm) application to degrade (E)- and (Z)-endoxifen in water and wastewater and phototransformation by-products (PBPs) and their toxicity. The effects of light intensity, pH and initial concentrations of (E)- and (Z)-endoxifen on the photodegradation rate were examined. Endoxifen in water was eliminated ≥99.1% after 35 s of irradiation (light dose of 598.5 mJ cm-2). Light intensity and initial concentrations of (E)- and (Z)-endoxifen exhibited positive trends with the photodegradation rates while pH had no effect. Photodegradation of (E)- and (Z)-endoxifen in water resulted in three PBPs. Toxicity assessments through modeling of the identified PBPs suggest higher toxicity than the parent compounds. Photodegradation of (E)- and (Z)-endoxifen in wastewater at light doses used for disinfection in WWTPs (16, 30 and 97 mJ cm-2) resulted in reductions of (E)- and (Z)-endoxifen from 30 to 71%. Two of the three PBPs observed in the experiments with water were detected in the wastewater experiments. Therefore, toxic compounds are potentially generated at WWTPs by UV disinfection if (E)- and (Z)-endoxifen are present in treated wastewater.
Collapse
Affiliation(s)
- Marina Ariño Martin
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND, 58108, USA; International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | | | - Andre Delorme
- Department of Science, Valley City State University, Valley City, ND, 58072, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
13
|
Fonseca TG, Carriço T, Fernandes E, Abessa DMS, Tavares A, Bebianno MJ. Impacts of in vivo and in vitro exposures to tamoxifen: Comparative effects on human cells and marine organisms. ENVIRONMENT INTERNATIONAL 2019; 129:256-272. [PMID: 31146160 DOI: 10.1016/j.envint.2019.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Tamoxifen (TAM) is a first generation-SERM administered for hormone receptor-positive (HER+) breast cancer in both pre- and post-menopausal patients and may undergo metabolic activation in organisms that share similar receptors and thus face comparable mechanisms of response. The present study aimed to assess whether environmental trace concentrations of TAM are bioavailable to the filter feeder M. galloprovincialis (100 ng L-1) and to the deposit feeder N. diversicolor (0.5, 10, 25 and 100 ng L-1) after 14 days of exposure. Behavioural impairment (burrowing kinetic), neurotoxicity (AChE activity), endocrine disruption by alkali-labile phosphate (ALP) content, oxidative stress (SOD, CAT, GPXs activities), biotransformation (GST activity), oxidative damage (LPO) and genotoxicity (DNA damage) were assessed. Moreover, this study also pertained to compare TAM cytotoxicity effects to mussels and targeted human (i.e. immortalized retinal pigment epithelium - RPE; and human transformed endothelial cells - HeLa) cell lines, in a range of concentrations from 0.5 ng L-1 to 50 μg L-1. In polychaetes N. diversicolor, TAM exerted remarkable oxidative stress and damage at the lowest concentration (0.5 ng L-1), whereas significant genotoxicity was reported at the highest exposure level (100 ng L-1). In mussels M. galloprovincialis, 100 ng L-1 TAM caused endocrine disruption in males, neurotoxicity, and an induction in GST activity and LPO byproducts in gills, corroborating in genotoxicity over the exposure days. Although cytotoxicity assays conducted with mussel haemocytes following in vivo exposure was not effective, in vitro exposure showed to be a feasible alternative, with comparable sensitivity to human cell line (HeLa).
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - T Carriço
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - E Fernandes
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia, Aquática, Universidade Estadual Paulista (UNESP), Campus do Litoral Paulista, São Vicente, SP 11330-900, Brazil
| | - A Tavares
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - M J Bebianno
- CIMA, Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
14
|
Fonseca TG, Auguste M, Ribeiro F, Cardoso C, Mestre NC, Abessa DMS, Bebianno MJ. Environmental relevant levels of the cytotoxic drug cyclophosphamide produce harmful effects in the polychaete Nereis diversicolor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:798-809. [PMID: 29727846 DOI: 10.1016/j.scitotenv.2018.04.318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Cytotoxic drugs applied in chemotherapy enter the aquatic environment after patient's metabolism and excretion, in both main compounds and their respective metabolites. The increased consumption and discharge of these drugs raise concern on the genotoxic burden to non-target aquatic species, due to their unselective action on DNA. Settlement and adsorption of cytotoxic drugs to aquatic sediments pose risks to benthic species through chronic exposure. The aim of the present study was to assess the effects induced by the anticancer drug cyclophosphamide (CP) on the polychaete Nereis diversicolor, after 14 days of exposure to environmental relevant concentrations (10, 100, 500 and 1000 ng L-1). Burrowing impairment, neurotoxicity (Acetylcholinesterase - AChE activity), oxidative stress (superoxide dismutase - SOD; catalase - CAT; glutathione peroxidases - GPXs activities), biotransformation (glutathione-S-transferases - GST), oxidative damage (lipid peroxidation - LPO) and genotoxicity (DNA damage) were assessed. Burrowing impairments were higher at the lowest CP concentrations tested. The higher CP levels tested (500 and 1000 ng L-1) induced a significant inhibition on the enzymatic antioxidant system (SOD, GPx) and on GST activity. DNA damage was also significant at these concentrations as an outcome of CP metabolism, and high levels of oxidative damage occurred. The results showed that the prodrug CP was metabolically activated in the benthic biological model N. diversicolor. In addition to the potential cytotoxic impact likely to be caused in aquatic species with similar metabolism, N. diversicolor proved to be reliable and vulnerable to the cytotoxic mode of action of CP, even at the lower doses.
Collapse
Affiliation(s)
- T G Fonseca
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal; NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - M Auguste
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - F Ribeiro
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - C Cardoso
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - N C Mestre
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal
| | - D M S Abessa
- NEPEA, Núcleo de Estudos em Poluição e Ecotoxicologia. Aquática, Universidade Estadual Paulista - UNESP, Campus Experimental do Litoral Paulista, Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil
| | - M J Bebianno
- CIMA, Centre for Marine and Environmental Research, University of Algarve, Campus Gambelas, 8005-135 Faro, Portugal.
| |
Collapse
|
15
|
Kanakaraju D, Glass BD, Oelgemöller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 219:189-207. [PMID: 29747102 DOI: 10.1016/j.jenvman.2018.04.103] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals, which are frequently detected in natural and wastewater bodies as well as drinking water have attracted considerable attention, because they do not readily biodegrade and may persist and remain toxic. As a result, pharmaceutical residues pose on-going and potential health and environmental risks. To tackle these emerging contaminants, advanced oxidation processes (AOPs) such as photo-Fenton, sonolysis, electrochemical oxidation, radiation and ozonation etc. have been applied to remove pharmaceuticals. These processes utilize the high reactivity of hydroxyl radicals to progressively oxidize organic compounds to innocuous products. This review provides an overview of the findings from recent studies, which have applied AOPs to degrade pharmaceutical compounds. Included is a discussion that links various factors of TiO2-mediated photocatalytic treatment to its effectiveness in degrading pharmaceutical residues. This review furthermore highlights the success of AOPs in the removal of pharmaceuticals from different water matrices and recommendations for future studies are outlined.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld 4811, Australia
| | - Michael Oelgemöller
- Discipline of Chemistry, College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia
| |
Collapse
|
16
|
Liu Y, Han W, Xu Z, Fan W, Peng W, Luo S. Comparative toxicity of pristine graphene oxide and its carboxyl, imidazole or polyethylene glycol functionalized products to Daphnia magna: A two generation study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:218-227. [PMID: 29486455 DOI: 10.1016/j.envpol.2018.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/05/2018] [Accepted: 02/06/2018] [Indexed: 05/25/2023]
Abstract
To investigate the chronic toxicity of graphene oxide (GO) and its functionalized products (GO-carboxyl, GO-imidazole and GO-polyethylene glycol), a two-generation study was conducted using the aquatic model species Daphnia magna. Each generation of daphnids were exposed for 21 days to 1.0 mg L-1 graphene material, with body length, neonate number, time of first brood and the intrinsic rate of natural increase (r) assessed as endpoints. Chronic exposure to GO, GO-carboxyl, and GO-imidazole had no adverse effect on body length or offspring number in the daphnid F0 generation, however, this exposure paradigm led to significant growth or reproduction inhibition in the following generation. Meanwhile, GO was found to show the strongest inhibitory effect, sequentially followed by GO-carboxyl and GO-imidazole. With exposure to GO-polyethylene glycol, no significant effects on growth or reproduction were observed for both F0 and F1 generation daphnids. These results reveal that carboxyl, imidazole and polyethylene glycol functional attachments alleviate the bio-toxicity of GO, especially polyethylene glycol. The increased C/O atomic ratio present in GO-carboxyl, GO-imidazole and GO-polyethylene glycol due to functionalization may mainly explain the reduced toxicity.
Collapse
Affiliation(s)
- Yingying Liu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenli Han
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Zhizhen Xu
- Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labor Protection, Beijing 100054, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China.
| | - Weihua Peng
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Shenglian Luo
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, No. 696, FengHe Road, Nanchang, Jiangxi 330063, PR China
| |
Collapse
|
17
|
Białk-Bielińska A, Mulkiewicz E, Stokowski M, Stolte S, Stepnowski P. Acute aquatic toxicity assessment of six anti-cancer drugs and one metabolite using biotest battery - Biological effects and stability under test conditions. CHEMOSPHERE 2017; 189:689-698. [PMID: 28968575 DOI: 10.1016/j.chemosphere.2017.08.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Available ecotoxicological data for anti-cancer drugs and their metabolites are incomplete, and only some studies have been accompanied by chemical analysis. Therefore, the main aim of this study was to evaluate the acute toxicity of the six most commonly used cytostatics, namely cyclophosphamide (CF), ifosfamide (IF), 5-fluorouracil (5-FU), imatinib (IMT), tamoxifen (TAM) and methotrexate (MET) and its metabolite - 7-hydroxymethotrexate (7-OH-MET), towards selected aquatic organisms, namely bacteria Vibrio fischeri, algae Raphidocelis subcapitata, crustaceans Daphnia magna and duckweed Lemna minor. All ecotoxicological tests were accompanied by chemical analysis to determine the differences between nominal and actual concentrations of investigated compounds and their stability under test conditions. For unstable compounds, tests were performed in static and semi-static conditions. It was observed that L. minor was the most sensitive organism. The compounds that were most toxic to aquatic organisms were 5-FU (highly toxic to algae, EC50 = 0.075 mg L-1), MET and TAM (very toxic to highly toxic to duckweed depending on the test conditions; EC50MET 0.08-0.16 mg L-1, EC50TAM 0.18-0.23 mg L-1). It is suspected that MET and 5-FU mainly affected algae and plants most probably because the exposure time was long enough for them to cause a specific effect (they inhibit DNA replication and act predominantly on actively dividing cells). Furthermore, the obtained results also suggest that the toxicity of the metabolites/potentially produced degradation products of MET towards duckweed is lower than that of the parent form, whereas the toxicity of TAM degradation products is in the same range as that of TAM.
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Marcin Stokowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Stefan Stolte
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; UFT - Center for Environmental Research and Sustainable Technology, Faculty 4, University of Bremen, Leobener Straße, D-28359 Bremen, Germany
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
18
|
Isidori M, Lavorgna M, Russo C, Kundi M, Žegura B, Novak M, Filipič M, Mišík M, Knasmueller S, de Alda ML, Barceló D, Žonja B, Česen M, Ščančar J, Kosjek T, Heath E. Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:275-287. [PMID: 27814544 DOI: 10.1016/j.envpol.2016.10.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Anticancer drugs are continuously released into hospital and urban wastewaters, where they, most commonly, undergo conventional treatment in wastewater treatment plants (WWTPs). Wastewaters contain complex mixtures of substances including parent compounds, their metabolites and transformation products (TPs). In this study, samples of hospital effluents and WWTP influents and effluents from Slovenia and Spain were analyzed for twenty-two selected anticancer drugs, their metabolites and transformation products. Acute and chronic toxicity tests were performed on the crustacean Ceriodaphnia dubia, genotoxicity was determined with Tradescantia and Allium cepa micronucleus (MN) assays and in vitro comet assay in zebrafish (Danio rerio) liver cell line (ZFL cells). Sixty of the two hundred-twenty determinations revealed detectable levels of anticancer drug residues. Among the targeted compounds, platinum based were most frequently detected (90%). Furthermore, erlotinib was detected in 80%, cyclophosphamide and tamoxifen in 70% and methotrexate in 60% of the samples. Seven of ten samples were toxic to C. dubia after acute exposure, whereas after chronic exposure all samples reduced reproduction of C. dubia at high sample dilutions. Allium cepa proved insensitive to the potential genotoxicity of the tested samples, while in Tradescantia increased MN frequencies were induced by a hospital effluent and WWTP influents. In ZFL comet assay all but one sample induced a significant increase of DNA strand breaks. Correlations of chemotherapeutics or their TPs were detected for all bioassays except for Allium cepa genotoxicity test, however for each test the highest correlations were found for different substances indicating differential sensitivities of the test organisms.
Collapse
Affiliation(s)
- Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | - Michael Kundi
- Institute of Environmental Health, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria.
| | - Bojana Žegura
- National Institute of Biology, Department for Genetic Toxicology and Biology of Cancer, Ljubljana, Slovenia
| | - Matjaž Novak
- National Institute of Biology, Department for Genetic Toxicology and Biology of Cancer, Ljubljana, Slovenia; Ecological Engineering Institute, Maribor, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department for Genetic Toxicology and Biology of Cancer, Ljubljana, Slovenia
| | - Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Siegfried Knasmueller
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Catalan Institute of Water Research, c/Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, E-17003 Girona, Spain
| | - Božo Žonja
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Marjeta Česen
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Janez Ščančar
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tina Kosjek
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ester Heath
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| |
Collapse
|
19
|
Dalla Bona M, Lizzi F, Borgato A, De Liguoro M. Increasing toxicity of enrofloxacin over four generations of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:397-402. [PMID: 27379980 DOI: 10.1016/j.ecoenv.2016.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 05/07/2023]
Abstract
The effects of both continuous and alternate exposure to 2mgL(-1) of enrofloxacin (EFX) on survival, growth and reproduction were evaluated over four generations of Daphnia magna. Mortality increased, reaching 100% in most groups by the end of the third generation. Growth inhibition was detected in only one group of the fourth generation. Reproduction inhibition was >50% in all groups and, in second and third generations, groups transferred to pure medium showed a greater inhibition of reproduction than those exposed to EFX. To verify whether the effects observed in these groups could be explained by the perinatal exposure to the antibacterial, a reproduction test with daphnids obtained from in vitro exposed D. magna embryos was also carried out. Perinatal exposure to EFX seemed to act as an 'all-or-nothing' toxicity effect as 31.4% of embryos died, but the surviving daphnids did not show any inhibition of reproduction activity. However, the embryonic mortality may at least partially justify the inhibition of reproduction observed in exposed groups along the multigenerational test. Concluding, the multigenerational test with D. magna did show disruption to a population that cannot be evidenced by the official tests. The increasing deterioration across generations might be inferred as the consequence of heritable alterations. Whilst the concentration tested was higher than those usually detected in the natural environment, the increasing toxicity of EFX across generations and the possible additive toxicity of fluoroquinolone mixtures, prevent harm to crustacean populations by effects in the real context from being completely ruled out.
Collapse
Affiliation(s)
- Mirco Dalla Bona
- Dept. of Agronomy, Food, Natural Resources, Animals and Environment - DAFNAE, University of Padua, Italy.
| | - Francesca Lizzi
- Dept. of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy
| | - Arianna Borgato
- Dept. of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy
| | - Marco De Liguoro
- Dept. of Comparative Biomedicine and Food Science - BCA, University of Padua, Italy
| |
Collapse
|
20
|
Azuma T, Arima N, Tsukada A, Hirami S, Matsuoka R, Moriwake R, Ishiuchi H, Inoyama T, Teranishi Y, Yamaoka M, Mino Y, Hayashi T, Fujita Y, Masada M. Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 548-549:189-197. [PMID: 26802347 DOI: 10.1016/j.scitotenv.2015.12.157] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 05/25/2023]
Abstract
The occurrence of 41 pharmaceuticals and phytochemicals (PPs) including their metabolites was surveyed in hospital effluent in an urban area of Japan. A detailed survey of sewage treatment plant (STP) influent and effluent, and river water was also conducted. Finally, mass balances with mass fluxes of the target PPs through the water flow were evaluated and the degree of contribution of hospital effluent to the environmental discharge was estimated. The results indicate that 38 compounds were detectable in hospital effluent over a wide concentration range from ng/L to μg/L, with a maximum of 92μg/L. The contributions of PPs in the hospital effluent to STP influent varied widely from <0.1% to 14.8%. Although almost all of the remaining components could be removed below 1.0ng/L at STPs by the addition of ozone treatment, a number of PPs still remained above 10ng/L in STP effluent. These findings suggest the importance of applying highly developed treatments to hospital effluents and at STPs in the future to reduce the environmental risks posed by PPs. To our knowledge, this is the first demonstration of the presence of two conjugated metabolites of acetaminophen, acetaminophen glucuronide and acetaminophen sulfate, as well as of loxoprofen and loxoprofen alcohol, in hospital effluent, STP, and river waters.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Natsumi Arima
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ai Tsukada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Satoru Hirami
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Rie Matsuoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ryogo Moriwake
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hirotaka Ishiuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tomomi Inoyama
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yusuke Teranishi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Misato Yamaoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshiki Mino
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yoshikazu Fujita
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mikio Masada
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
21
|
Borgatta M, Waridel P, Decosterd LA, Buclin T, Chèvre N. Multigenerational effects of the anticancer drug tamoxifen and its metabolite 4-hydroxy-tamoxifen on Daphnia pulex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:21-29. [PMID: 26745289 DOI: 10.1016/j.scitotenv.2015.11.155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Tamoxifen and its metabolite 4-hydroxy-tamoxifen (4OHTam) are two potent molecules that have anticancer properties on breast cancers. Their medical use is expected to increase with the increasing global cancer rate. After consumption, patients excrete tamoxifen and the 4OHTam metabolite into wastewaters, and tamoxifen has been already detected in wastewaters and natural waters. The concentrations of 4OHTam in waters have never been reported. A single study reported 4OHTam effects on the microcrustacean Daphnia pulex. The effects of tamoxifen and 4OHTam over more than two generations are unknown in aquatic invertebrates. The main goal of this study was to assess the long-term sensitivity of the microcrustacean D. pulex over four generations, based on size, reproduction, viability and the intrinsic rate of natural increase (r). Additional experiments were carried out to observe whether the effects of tamoxifen and 4OHTam were reversible in the next generation after descendants were withdrawn from chemical stress (i.e., recovery experiment), and whether the lowest test concentration of each chemical induced toxic effects when both concentrations were combined (i.e., mixture experiments). Our results showed that tamoxifen and 4OHTam induced the adverse effects at environmentally relevant concentrations. Tamoxifen and 4OHTam impaired size, viability, reproduction and the r in four generations of treated D. pulex, but these effects were not clearly magnified over generations. Tamoxifen was more potent than 4OHTam on D. pulex. When used in a mixture, the combination of tamoxifen and 4OHTam induced effects in offspring, whereas no effects were observed when these chemicals were tested individually. In the recovery experiment, the reproduction and size were reduced in offspring withdrawn from chemical exposures. Our results suggested that tamoxifen and its metabolite may be a relevant pharmaceutical to consider in risk assessment.
Collapse
Affiliation(s)
- Myriam Borgatta
- Institute of Earth Surface Dynamics, University of Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Laurent-Arthur Decosterd
- Division of Clinical Pharmacology and Toxicology, University Hospital Centre of the Canton of Vaud (CHUV), Switzerland
| | - Thierry Buclin
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Nathalie Chèvre
- Institute of Earth Surface Dynamics, University of Lausanne, Switzerland.
| |
Collapse
|