1
|
Osborne C, Gilbert-Parkes S, Spiers G, Lamit LJ, Lilleskov EA, Basiliko N, Watmough S. Global Patterns of Metal and Other Element Enrichment in Bog and Fen Peatlands. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:125-139. [PMID: 38340164 DOI: 10.1007/s00244-024-01051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Peatlands are found on all continents, covering 3% of the global land area. However, the spatial extent and causes of metal enrichment in peatlands is understudied and no attempt has been made to evaluate global patterns of metal enrichment in bog and fen peatlands, despite that certain metals and rare earth elements (REE) arise from anthropogenic sources. We analyzed 368 peat cores sampled in 16 countries across five continents and measured metal and other element concentrations at three depths down to 70 cm as well as estimated cumulative atmospheric S deposition (1850-2009) for each site. Sites were assigned to one of three distinct broadly recognized peatland categories (bog, poor fen, and intermediate-to-moderately rich fen) that varied primarily along a pH gradient. Metal concentrations differed among peatland types, with intermediate-to-moderately rich fens demonstrating the highest concentrations of most metals. Median enrichment factors (EFs; a metric comparing natural and anthropogenic metal deposition) for individual metals were similar among bogs and fens (all groups), with metals likely to be influenced by anthropogenic sources (As, Cd, Co, Cu, Hg, Pb, and Sb) demonstrating median enrichment factors (EFs) > 1.5. Additionally, mean EFs were substantially higher than median values, and the positive correlation (< 0.40) with estimated cumulative atmospheric S deposition, confirmed some level of anthropogenic influence of all pollutant metals except for Hg that was unrelated to S deposition. Contrary to expectations, high EFs were not restricted to pollutant metals, with Mn, K and Rb all exhibiting elevated median EFs that were in the same range as pollutant metals likely due to peatland biogeochemical processes leading to enrichment of these nutrients in surface soil horizons. The global patterns of metal enrichment in bogs and fens identified in this study underscore the importance of these peatlands as environmental archives of metal deposition, but also illustrates that biogeochemical processes can enrich metals in surface peat and EFs alone do not necessarily indicate atmospheric contamination.
Collapse
Affiliation(s)
- Chetwynd Osborne
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Spencer Gilbert-Parkes
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada
| | | | | | - Erik A Lilleskov
- USDA Forest Service, Northern Research Station, Houghton, MI, USA
| | - Nathan Basiliko
- Natural Resources Management, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Shaun Watmough
- School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
2
|
Seward J, Bräuer S, Beckett P, Roy-Léveillée P, Emilson E, Watmough S, Basiliko N. Recovery of Smelter-Impacted Peat and Sphagnum Moss: a Microbial Perspective. MICROBIAL ECOLOGY 2023; 86:2894-2903. [PMID: 37632540 DOI: 10.1007/s00248-023-02289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.
Collapse
Affiliation(s)
- James Seward
- Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC, 28608, USA
| | - Peter Beckett
- Vale Living with Lakes Centre and the School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Pascale Roy-Léveillée
- Department of Geography, Université Laval, Pavillon Abitibi-Price, Quebec, G1V 0A6, Canada
| | - Erik Emilson
- Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Shaun Watmough
- School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Nathan Basiliko
- Department of Natural Resources Management, Lakehead University, 955 Oliver Rd., Thunder Bay, ON, P7B 5E1, Canada
| |
Collapse
|
3
|
Newman JE, Levasseur PA, Beckett P, Watmough SA. The impact of severe pollution from smelter emissions on carbon and metal accumulation in peatlands in Ontario, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121102. [PMID: 36669721 DOI: 10.1016/j.envpol.2023.121102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Peatlands are unique habitats that function as a carbon (C) sink and an archive of atmospheric metal deposition. Sphagnum mosses are key components of peatlands but can be adversely impacted by air pollution potentially affecting rates of C and metal accumulation in peat. In this study we evaluate how the loss of Sphagnum in peatlands close to a copper (Cu) and nickel (Ni) smelter in Sudbury, Ontario affected C accumulation and metal profiles. The depth of accumulated peat formed during the 100+ year period of smelter activities also increased with distance from the smelter. Concurrently, peat bulk density decreased with distance from the smelter, which resulted in relatively similar average rates of apparent C accumulation (32-46 g/m2/yr). These rates are within the range of published values despite the historically high pollution loadings. Surface peat close to the smelters was greatly enriched in Cu and Ni, and Cu profiles in dated peat cores generally coincide with known pollution histories much better than Ni that increased well before the beginning of smelter activities likely a result of post-deposition mobility in peat cores.
Collapse
Affiliation(s)
- Jodi E Newman
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada.
| | - Patrick A Levasseur
- Environmental and Life Sciences, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Peter Beckett
- School of Natural Sciences and the Vale Living with Lakes Centre, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Shaun A Watmough
- School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
4
|
Rudnicka-Kępa P, Zaborska A. Sources, fate and distribution of inorganic contaminants in the Svalbard area, representative of a typical Arctic critical environment-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:724. [PMID: 34648070 PMCID: PMC8516776 DOI: 10.1007/s10661-021-09305-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Global environmental changes not only contribute to the modification of global pollution transport pathways but can also alter contaminant fate within the Arctic. Recent reports underline the importance of secondary sources of pollution, e.g. melting glaciers, thawing permafrost or increased riverine run-off. This article reviews reports on the European Arctic-we concentrate on the Svalbard region-and environmental contamination by inorganic pollutants (heavy metals and artificial radionuclides), including their transport pathways, their fate in the Arctic environment and the concentrations of individual elements in the ecosystem. This review presents in detail the secondary contaminant sources and tries to identify knowledge gaps, as well as indicate needs for further research. Concentrations of heavy metals and radionuclides in Svalbard have been studied, in various environmental elements since the beginning of the twentieth century. In the last 5 years, the highest concentrations of Cd (13 mg kg-1) and As (28 mg kg-1) were recorded for organic-rich soils, while levels of Pb (99 mg kg-1), Hg (1 mg kg-1), Zn (496 mg kg-1) and Cu (688 mg kg-1) were recorded for marine sediments. Increased heavy metal concentrations were also recorded in some flora and fauna species. For radionuclides in the last 5 years, the highest concentrations of 137Cs (4500 Bq kg-1), 238Pu (2 Bq kg-1) and 239 + 240Pu (43 Bq kg-1) were recorded for cryoconites, and the highest concentration of 241Am (570 Bq kg-1) was recorded in surface sediments. However, no contamination of flora and fauna with radionuclides was observed.
Collapse
Affiliation(s)
| | - Agata Zaborska
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
5
|
Miszczak E, Stefaniak S, Michczyński A, Steinnes E, Twardowska I. A novel approach to peatlands as archives of total cumulative spatial pollution loads from atmospheric deposition of airborne elements complementary to EMEP data: priority pollutants (Pb, Cd, Hg). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135776. [PMID: 31972936 DOI: 10.1016/j.scitotenv.2019.135776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/13/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
A novel approach to using peatlands for assessment of cumulative contributions from long-range transport of pollutants (LRTP) - airborne trace elements - to spatial pollution was exemplified in evaluating retrospective atmospheric deposition of priority pollutants (Pb, Cd, Hg) in peat bogs in Norway in areas minor affected by local sources of pollution and in NW Poland located on the way of possible LRTP from Poland to Norway. Peat from the corresponding 14C-dated layers of five ombrotrophic bogs in each country, was analysed for trace element contents. Pollutant concentrations/load distribution along the peat profiles related to bulk density has given a clear evidence of uneven density-dependent temporal vertical migration of all studied elements that distorts the chronology of their deposition. Much higher loads of Pb, Cd and Hg in southern Norwegian bogs than in bogs located in NW Poland proved transboundary transport from neighbouring highly industrialized European countries to be much more significant contributor to high deposition of the priority pollutants in this area and rather excludes LRTP from Poland as a major source of total land pollution in southernmost Norway. The study showed excellent applicability of peat bogs for the exact assessment of retrospective cumulative pollutant loads from LRTP, but not for the identification of deposition chronology. Combining the use of ombrotrophic peat bogs as tools for retrospective monitoring of cumulative land pollution with airborne elements with current LRTP data within the Cooperative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP) may provide a complete reliable picture of the effect of anthropogenic emissions on soil quality and create a foundation of optimum environmental policy and activities in this field.
Collapse
Affiliation(s)
- Ewa Miszczak
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie st. 34, 41-819 Zabrze, Poland
| | - Sebastian Stefaniak
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie st. 34, 41-819 Zabrze, Poland
| | - Adam Michczyński
- Silesian University of Technology, Institute of Physics, Department of Radioisotopes, GADAM Centre of Excellence, Konarskiego st. 22b, 44-100 Gliwice, Poland
| | - Eiliv Steinnes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Irena Twardowska
- Institute of Environmental Engineering of the Polish Academy of Sciences, M. Skłodowskiej-Curie st. 34, 41-819 Zabrze, Poland.
| |
Collapse
|
6
|
Watmough SA. Historical and contemporary metal budgets for a boreal shield lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:49-57. [PMID: 28437770 DOI: 10.1016/j.scitotenv.2017.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Metal concentrations in sediment cores are widely used to reconstruct metal deposition histories, but rarely have metal budgets based on measured inputs (atmospheric deposition and inflows) and lake outflows been compared with metal fluxes estimated from lake sediment cores. In this study, budgets for six metals (As, Cd, Co, Cu, Ni and Pb) were estimated by measuring inputs in bulk deposition, inputs in the major inflow and export in the lake outflow for one hydrologic year (2002-2003) at Plastic Lake, Ontario, Canada. Inputs in bulk deposition were between 0.03mgm-2y-1 (Co) and 0.69mgm-2y-1 (Cu), which represented between 2.5 and 80.7% of total metal inputs to the lake. The estimated budgets for Co, Cd and Ni, which exhibit similar geochemical behavior in the major inflow, were comparable to budgets estimated from the upper section of a sediment core taken in 2002, taking into account previously published correction factors for sediment focusing. For example, mass budgets for Co, Cd and Ni were 1.24, 0.28 and 1.89mgm-2y-1, compared with sediment budgets estimated to be 0.90, 0.19 and 4.72mgm-2y-1, respectively. In contrast, measured budgets for As, Cu and Pb, which also behave similarly in inflows (and different to Co, Cd and Ni), were between 3 (As) and 40 times lower than estimates from the upper sediment core. A possible explanation for the discrepancy is that sediment focusing transfers sediment from shallow to deep areas, which for metals like Pb, which have strong affinities for organic matter and where atmospheric deposition has decreased 15 fold since 1978 (4.31mgm-2y-1 in 1978 to 0.28mgm-2y-1 in 2013), leads to the transfer and accumulation of pollution metals to deeper parts of the lake long after a decrease in atmospheric deposition.
Collapse
Affiliation(s)
- Shaun A Watmough
- Trent School of the Environment, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
7
|
Shotyk W, Rausch N, Nieminen TM, Ukonmaanaho L, Krachler M. Isotopic Composition of Pb in Peat and Porewaters from Three Contrasting Ombrotrophic Bogs in Finland: Evidence of Chemical Diagenesis in Response to Acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9943-9951. [PMID: 27536961 DOI: 10.1021/acs.est.6b01076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The isotopic composition of Pb was determined in Finnish peat bogs and their porewaters from Harjavalta (HAR, near a Cu-Ni smelter), Outokumpu (OUT, near a Cu-Ni mine), and Hietajärvi (HIJ, a background site). At HIJ and OUT, the porewaters yielded similar concentrations (0.1-0.7 μg/L) and isotopic composition ((206)Pb/(207)Pb = 1.154-1.164). In contrast, the peat profile from HAR yielded greater concentrations of Pb in the porewaters (average 2.4 μg/L), and the Pb is less radiogenic ((206)Pb/(207)Pb = 1.121-1.149). Acidification of the bog surface waters to pH 3.5 by SO2 emitted from smelting (compared to pH 4.0 at the control site) apparently promotes the dissolution of Pb-bearing aerosols, as well as desorption of metals from the surfaces of these particles and from the peat matrix. Despite this, the chronology of anthropogenic, atmospheric deposition for the past millenium recorded by the isotopic composition of Pb in all three peat bogs is remarkably similar. While the immobility of Pb in the peat cores may appear inconsistent with the elevated porewater Pb concentrations, Pb concentrations in the aqueous phase never amount to more than 0.01% of the total Pb at any given depth so that the potential for migration remains small. The low rates of vertical water movement in bogs generally combined with the size of the metal-containing particles in solution may be additional factors limiting Pb mobilization.
Collapse
Affiliation(s)
- William Shotyk
- Department of Renewable Resources, University of Alberta , Edmonton, Alberta T6G 2H1 Canada
| | - Nicole Rausch
- University of Heidelberg , Institute of Environmental Geochemistry, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany
| | - Tiina M Nieminen
- Natural Resources Institute Finland (Luke) , Box 18, FI-01301 Vantaa, Finland
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke) , Box 18, FI-01301 Vantaa, Finland
| | - Michael Krachler
- European Commission , Joint Research Centre, Directorate Nuclear Safety and Security, P.O. Box 2340, 76125 Karlsruhe, Germany
| |
Collapse
|