1
|
Córdoba-Tovar L, Vargas-Licona S, Palacios-Torres Y, Marrugo-Negrete J, Díez S. Selenium-to-mercury ratios in popularly consumed Colombian fish: A comprehensive risk-benefit assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138601. [PMID: 40412327 DOI: 10.1016/j.jhazmat.2025.138601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
To understand the benefits and risks associated with the interaction between selenium (Se) and mercury (Hg), it is crucial to gather more information on the factors influencing the variability of their molar ratio. We analyzed Se and Hg concentrations, calculated selenium-to-mercury (Se:Hg) molar ratios, and assessed the health benefit values of selenium (HBV-Se) in commercially important fish (n = 309) from various aquatic environments in northern Colombia. Median Se concentrations were significantly higher (162.4 µg kg-1, U = 355, p = 0.01) compared to Hg concentrations (89.05 µg kg-1). Molar ratios values were greater than 1 for all 28 fish species, indicating a protective effect of Se against Hg. However, considerable variation in Se:Hg values was observed between species and sampling sites. All fish had Se:Hg values greater than 1 except for Astyanax magdalenae, Eugerres plumieri, Trachelyopterus sp. and Oreochromis niloticus. The HBV-Se values were also favorable (>1) for most species. Pelagic species had the lowest Hg concentrations (81.3 µg kg-1) but the highest Se:Hg ratios (6.4), while benthopelagic (908 µg kg-1, 5.2) and demersal species (712 µg kg-1, 3.7) showed higher Hg levels with lower Se:Hg values. There was a strong correlation between Hg levels, size (r2 = 0.94, p = 0.001) and trophic level of the fish (r2 = 0.99, p = 0.001). Similarly, Se levels showed a strong association with size (r2 = 0.96, p = 0.001) and trophic level (r2 = 0.94, p = 0.001). The findings of this study indicate that although the Se:Hg ratios suggest a protective action of Se against Hg toxicity, these values were not consistent. Variations in these ratios could have implications for assessing and managing risks associated with consuming Hg-contaminated fish. Therefore, it is crucial to continue evaluating health benefits and risks, especially in different ecosystems, including tropical ones.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Environmental Toxicology and Natural Resources Group, Universidad Tecnológica del Chocó, Quibdó, Chocó A.A. 292, Colombia
| | | | - Yuber Palacios-Torres
- Environmental Toxicology and Natural Resources Group, Universidad Tecnológica del Chocó, Quibdó, Chocó A.A. 292, Colombia
| | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona E-08034, Spain.
| |
Collapse
|
2
|
Córdoba-Tovar L, Marrugo-Madrid S, Castro LP, Tapia-Contreras EE, Marrugo-Negrete J, Díez S. Exploring the phytoremediation potential of plant species in soils impacted by gold mining in Northern Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3795-3808. [PMID: 39838212 PMCID: PMC11835935 DOI: 10.1007/s11356-024-35853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025]
Abstract
Contamination of soils with toxic metals poses significant threats to human health and ecosystems. Plant-based remediation strategies can play a vital role in mitigating these risks, and the use of plants as a remediation strategy can help reduce these risks. In this study, we investigate the remediation potential of native plants in accumulating and translocating metal(loid)s at a Colombian site impacted by gold mining. The remediation capacity is evaluated using the translocation factor (TF) from roots to shoots and the bioconcentration factor (BCF) from soil to roots. Metal(loid) concentrations in the soil followed the order: Fe > As > Hg > Cd > Pb > Zn > Mn > Cu. In plant tissues, Hg showed higher accumulation in leaves (3.5 mg/kg) compared to roots (2.8 mg/kg). Pb (17.7 mg/kg), As (3.8 mg/kg), Fe (2.5 mg/kg) and Cd (1.2 mg/kg) concentracions were also higher in roots. Metal concentrations in the stems, were generally below 1.0 mg/kg, except for Pb (15.0 mg/kg) and Hg (1.0 mg/kg). The highest BCF values for Hg were observed in Spondias mombin L. (18.7), Cecropia peltata L. (8.3) and Gliricidia sepium (Jacq.) Walp (4.4). On the other hand, Senna alata (L.) Roxb., Psidium guajava L. and Morinda citrifolia L. exhibited notable BFC values for As with 44.7, 6.3 and 5.9, respectively. Musa x paradisiaca L. had the highest BCF for Cd (1.8). M. citrifolia (4.3) and Annona muricata L. (3.2) exhibited the highest TF for Hg, while Tabebuia rosea (Bertol.) Bertero ex A.DC. (4.9) and Paspalum fasciculatum Willd. ex (3.1) demonstrated elevated TF values for Pb. In conclusion, plants such as P. fasciculatum, A. muricata, M. citrifolia, G. sepium and T. rosea exhibit great potential for application in phytoremediation strategies in tropical regions impacted by gold mining activities.
Collapse
Affiliation(s)
- Leonomir Córdoba-Tovar
- Environmental Toxicology and Natural Resources Group, Universidad Tecnológica del Chocó, A.A. 292, Quibdó, Chocó, Colombia
| | | | | | | | | | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Volf M, Vučemilović A, Dobrović Ž. Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence. TOXICS 2024; 12:847. [PMID: 39771062 PMCID: PMC11679720 DOI: 10.3390/toxics12120847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Pollution can be broadly defined as the presence of contaminants or energy sources detrimental to ecosystems and human health. The human organism serves as a valuable indicator of ecosystem contamination. However, understanding physiological disorders and correlating specific contaminants with disease development is a complex and arduous task, necessitating extensive scientific research spanning years or even decades. To facilitate a more rapid and precise understanding of the physiological impairments induced by various contaminants, a comprehensive approach is indispensable. This review proposes a model for such an approach, which involves the systematic collection and analysis of data from ecosystem contamination monitoring, integrated with biomedical data on compromised physiological conditions in humans across different temporal and spatial scales. Given the complexity and sheer volume of data, alongside the imperative for strategic decision-making, this model leverages the capabilities of artificial intelligence (AI) tools. Although this paper exemplifies the model by investigating the effects of contaminants on the human organism, the model is adaptable to all ecosystem components, thereby supporting the conservation of plant and animal species.
Collapse
Affiliation(s)
- Mirela Volf
- The Department of Branch Tactics, Croatian Military Academy “Dr. Franjo Tuđman”, 10000 Zagreb, Croatia;
| | - Ante Vučemilović
- The Department of Branch Tactics, Croatian Military Academy “Dr. Franjo Tuđman”, 10000 Zagreb, Croatia;
| | - Željko Dobrović
- The Dean’s Office, Defense and Security University “Dr. Franjo Tuđman”, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Liu Y, Zhang L, Chen L, Xue B, Wang G, Zhu G, Gou W, Yang D. Potential of artificial soil preparation for vegetation restoration using red mud and phosphogypsum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173553. [PMID: 38823691 DOI: 10.1016/j.scitotenv.2024.173553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Red mud and phosphogypsum have long been a focus and challenge in global industrial waste management, and their low-cost and large-scale utilization technology has always been an urgent need. This study is based on the strong acid-base neutralization reaction between red mud and phosphogypsum, which contain an elemental composition similar to that of natural soil, red mud itself has characteristic of clay minerals, and other auxiliary materials (i.e. rice husk powder, bentonite, fly ash, polyacrylamide flocculant and microbial suspension) were added, so as to explore the potential of synergistically prepared artificial soil for vegetation restoration. The results showed that the artificial soils exhibited physicochemical characteristics (e.g., pH, moisture content, cation exchange capacity) similar to those of natural soil, along with abundant organic matter, nitrogen, phosphorus, and potassium contents, meeting the growth requirements of plants. The artificial soils were able to support favorable growth of suitable plants (e.g., sunflower, wheat, rye grass), accumulating high levels of diverse enzymatic activities, comparable to those in natural soils (e.g., catalase, urease, phosphatase), or even surpassing natural soils (e.g., sucrase), and rich microorganism communities, such as Cyanobacteria, Proteobacteria, Actinobacteria in the bacteria domain, and Ascomycota in the fungi domain, were initially developed. It's suggested that preparing 1 ton of artificial soil entails synergistic consumption of 613.7 kg of red mud and 244.6 kg of phosphogypsum, accounting for mass proportions of 61.4 % and 24.5 %, respectively. In future, more evaluations on the leaching loss of nutrients and alkalinity and the environmental risks of heavy metals should be conducted to more references for the artificial soil application. In summary, the preparation of artificial soil is a very simple, efficient, scalable and low-cost collaborative resource utilization scheme of red mud and phosphogypsum, which has great potential for vegetation restoration in some places such as tailings field and soil-deficient depression.
Collapse
Affiliation(s)
- Yong Liu
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China.
| | - Lishuai Zhang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Li Chen
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Binbin Xue
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Guocheng Wang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Guangxu Zhu
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Wanli Gou
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Dan Yang
- College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
5
|
Veeraswamy D, Subramanian A, Mohan D, Ettiyagounder P, Selvaraj PS, Ramasamy SP, Veeramani V. Exploring the origins and cleanup of mercury contamination: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53943-53972. [PMID: 37964142 DOI: 10.1007/s11356-023-30636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Mercury is a global pollutant that poses significant risks to human health and the environment. Natural sources of mercury include volcanic eruptions, while anthropogenic sources include industrial processes, artisanal and small-scale gold mining, and fossil fuel combustion. Contamination can arise through various pathways, such as atmospheric deposition, water and soil contamination, bioaccumulation, and biomagnification in food chains. Various remediation strategies, including phytoremediation, bioremediation, chemical oxidation/reduction, and adsorption, have been developed to address mercury pollution, including physical, chemical, and biological approaches. The effectiveness of remediation techniques depends on the nature and extent of contamination and site-specific conditions. This review discusses the challenges associated with mercury pollution and remediation, including the need for effective monitoring and management strategies. Overall, this review offers a comprehensive understanding of mercury contamination and the range of remediation techniques available to mitigate its adverse impacts.
Collapse
Affiliation(s)
- Davamani Veeraswamy
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- College of Engineering, Science and Environment, Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Arulmani Subramanian
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, 638 401, Tamil Nadu, India.
| | - Deepasri Mohan
- Division of Environmental Sciences, Sher-E-Kashmir University of Agricultural Sciences and Technology, Shalimar, 190025, Jammu and Kashmir Union Territory, India
| | - Parameswari Ettiyagounder
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Paul Sebastian Selvaraj
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- College of Engineering, Science and Environment, Global Centre for Environmental Remediation (GCER), ATC Building, The University of Newcastle, Callaghan Campus, Callaghan, NSW, 2308, Australia
| | - Sangeetha Piriya Ramasamy
- Department of Environmental Sciences, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
- School of Water, Energy, and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Venkatesan Veeramani
- Department of Civil Engineering, University College of Engineering, Anna University, Ariyalur, 621 731, Tamil Nadu, India
| |
Collapse
|
6
|
Rodriguez-Pascual MJ, Vega CM, Andrade N, Fernández LE, Silman MR, Torrents A. "Hg distribution and accumulation in soil and vegetation in areas impacted by artisanal gold mining in the Southern Amazonian region of Madre de Dios, Peru.". CHEMOSPHERE 2024; 361:142425. [PMID: 38797216 DOI: 10.1016/j.chemosphere.2024.142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions. It has impacted the Amazon rainforest in the Peruvian region of Madre de Dios. However, few studies have investigated Hg's distribution in terrestrial ecosystems in this region. We studied Hg's distribution and its predictors in soil and native plant species from artisanal mining sites. Total Hg concentrations were determined in soil samples collected at different depths (0-5 cm and 5-30 cm) and plant samples (roots, shoots, leaves) from 19 native plant species collected in different land cover categories: naked soil (L1), gravel piles (L2), natural regeneration (L3), reforestation (L4), and primary forest (L5) in the mining sites. Hg levels in air were also studied using passive air samplers. The highest Hg concentrations in soil (average 0.276 and 0.210 mg kg-1 dw.) were found in the intact primary forest (L5) at 0-5 cm depth and in the plant rooting zones at 5-30 cm depth, respectively. Moreover, the highest Hg levels in plants (average 0.64 mg kg-1 dw) were found in foliage of intact primary forest (L5). The results suggest that the forest in these sites receives Hg from the atmosphere through leaf deposition and that Hg accumulates in the soil surrounding the roots. The Hg levels found in the plant leaves of the primary forest are the highest ever recorded in this region, exceeding values found in forests impacted by Hg pollution worldwide and raising concerns about the extent of the ASGM impact in this ecosystem. Correlations between Hg concentrations in soil, bioaccumulation in plant roots, and soil physical-chemical characteristics were determined. Linear regression models showed that the soil organic matter content (SOM), pH, and electrical conductivity (EC) predict the Hg distribution and accumulation in soil and bioaccumulation in root plants.
Collapse
Affiliation(s)
- Maria J Rodriguez-Pascual
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Claudia M Vega
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Natasha Andrade
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Luis E Fernández
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Global Ecology, Carnegie Institute for Science, Stanford, CA, 94305, USA
| | - Miles R Silman
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Alba Torrents
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
7
|
Sánchez-Fortún M, Carrasco JL, Díez S, Amouroux D, Tessier E, López-Carmona S, Sanpera C. Temporal mercury dynamics throughout the rice cultivation season in the Ebro Delta (NE Spain): An integrative approach. ENVIRONMENTAL RESEARCH 2024; 250:118555. [PMID: 38412914 DOI: 10.1016/j.envres.2024.118555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
During the last few decades, inputs of mercury (Hg) to the environment from anthropogenic sources have increased. The Ebro Delta is an important area of rice production in the Iberian Peninsula. Given the industrial activity and its legacy pollution along the Ebro river, residues containing Hg have been transported throughout the Ebro Delta ecosystems. Rice paddies are regarded as propitious environments for Hg methylation and its subsequent incorporation to plants and rice paddies' food webs. We have analyzed how Hg dynamics change throughout the rice cultivation season in different compartments from the paddies' ecosystems: soil, water, rice plants and fauna. Furthermore, we assessed the effect of different agricultural practices (ecological vs. conventional) associated to various flooding patterns (wet vs. mild alternating wet and dry) to the Hg levels in rice fields. Finally, we have estimated the proportion of methylmercury (MeHg) to total mercury in a subset of samples, as MeHg is the most bioaccumulable toxic form for humans and wildlife. Overall, we observed varying degrees of mercury concentration over the rice cultivation season in the different compartments. We found that different agricultural practices and flooding patterns did not influence the THg levels observed in water, soil or plants. However, Hg concentrations in fauna samples seemed to be affected by hydroperiod and we also observed evidence of Hg biomagnification along the rice fields' aquatic food webs.
Collapse
Affiliation(s)
- Moisès Sánchez-Fortún
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| | - Josep Lluís Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Sophie López-Carmona
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; UFR Sciences et Techniques, Université de Nantes, Nantes, France.
| | - Carola Sanpera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Szada-Borzyszkowska A, Krzyżak J, Rusinowski S, Sitko K, Pogrzeba M. Toxic effect of mercury on arbuscular mycorrhizal fungi colonisation and physiological status of three seed-based Miscanthus hybrids. J Trace Elem Med Biol 2024; 83:127391. [PMID: 38219458 DOI: 10.1016/j.jtemb.2024.127391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Currently, mercury pollution is a widespread problem in the world. As mercury is difficult to remove from the environment, it has long-term negative effects on soil health and human life. One of the techniques to stabilise Hg is phytostabilisation, which can be supported by arbuscular mycorrhizal fungi (AMF). METHODS In a 4-month pot experiment, we investigated the suitability of three seed-based Miscanthus hybrids (GNT3, GNT34, GNT43) for growth on soils heavily polluted with mercury (6795.7 mg kg-1). During the experiment, the effects of high soil contamination with mercury on physiological parameters and colonisation of roots of seed-based Miscanthus hybrids by indigenous AMF from Hg-contaminated and uncontaminated soils were investigated. RESULTS A high pseudo-total Hg concentration (6795.75 mg kg-1) in soil was found. The Hg content in the aerial part of GNT34 grown on Hg-contaminated soil was 1.5 times and 3 times higher than GNT3 and GNT43, respectively. The Hg content in the roots of GNT3 on Hg-contaminated soil was 25% and 10% lower than that of GNT34 and GNT43, respectively. The N content in the aboveground part of GNT34 in the Hg variant was 13.5% lower compared to the control soil. The P and K content in the shoots of the Miscanthus hybrids was lower in the plants grown on Hg-contaminated soil. The P content in GNT43 in the Hg variant was 33% and 19% lower than in GNT34 and GNT3, respectively. The K content in GNT34 in the Hg variant was 24.7% and 31.4% higher than in GNT43 and GNT3, respectively. The dry weight of the shoots and roots as well as the shoot height of the Miscanthus hybrids were lower in Hg-contaminated soil. Lower values of AMF root colonisation parameters (F, M) were observed in the plants in the Hg variant. In the Hg variant, a lower photosynthetic rate and a decrease in chlorophyll content were observed in the leaves of the Miscanthus hybrids. In the Hg variant, an increase in the content of flavonols was observed. The strongest toxic effect of mercury on the light phase of photosynthesis was measured in GNT34. CONCLUSION Soils heavily contaminated with mercury negatively affected the physiological parameters of Miscanthus, as evidenced by a decrease in photosynthetic rate and biomass. The ability of indigenous AMF from Hg-contaminated soils to colonise the roots of seed-based Miscanthus hybrids was limited.
Collapse
Affiliation(s)
| | - Jacek Krzyżak
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| | - Szymon Rusinowski
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland
| | - Krzysztof Sitko
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland; Plant Ecophysiology Team, University of Silesia in Katowice, 28 Jagiellońska St., 40-032 Katowice, Poland
| | - Marta Pogrzeba
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland.
| |
Collapse
|
9
|
Alves de Oliveira E, Cavalheiro da Silva L, Antônio de Andrade E, Dênis Battirola L, Lopes Tortorela de Andrade R. Emilia fosbergii Nicolson, a novel and effective accumulator for phytoremediation of mercury-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1076-1086. [PMID: 38059299 DOI: 10.1080/15226514.2023.2288906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Soil contamination by toxic metals threatens global public health, highlighting the need for cost-effective and ecologically sound site remediation. In this study, we assessed phytoremediation of Hg-contaminated soils by Emilia fosbergii Nicolson (Asteraceae). Pot experiment was conducted using a substrate of sand and vermiculite (1:1 volume ratio), treatments consisted of five Hg concentrations (0, 1, 3, 5, and 7 mg kg-1). Metal transfer rates were calculated, including accumulation (BAF), translocation (TF) and bioconcentration (BCF) factors. E. fosbergii roots exhibited greater Hg accumulation than other tissues, but biomass production and plant health were not significantly affected at the concentrations tested, as indicated by elongation factors and tolerance index. The results revealed BAF values between 2.18 and 7.14, TF values ranged between 0.15 and 0.52, and the BCF index varied between 8.97 and 26.58. Treatments with Hg content of 5 mg kg-1 and 7 mg kg-1 recorded the highest total Hg concentrations of 66 mg kg-1 and 65.53 mg kg-1 (roots), and 9.18 mg kg-1 and 33.88 mg kg-1 (aerial), respectively. E. fosbergii demonstrated promise for Hg phytoremediation due to its high accumulation capacity, indicated by regular TF and high BCF and BAF indexes, thus classifying it as a high Hg accumulator.
Collapse
Affiliation(s)
- Evandro Alves de Oliveira
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Larissa Cavalheiro da Silva
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Leandro Dênis Battirola
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Institute of Natural, Human and Social Sciences Graduate Program in Environmental Sciences, Federal University of Mato Grosso, Mato Grosso, Brazil
| |
Collapse
|
10
|
Talukdar P, Baruah A, Bhuyan SJ, Boruah S, Borah P, Bora C, Basumatary B. Costus speciosus (Koen ex. Retz.) Sm.: a suitable plant species for remediation of crude oil and mercury-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31843-31861. [PMID: 38639901 DOI: 10.1007/s11356-024-33376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The aim of this study was to evaluate the efficiency of Costus speciosus (Koen ex. Retz.) Sm. in the degradation of crude oil and reduction of mercury (Hg) from the contaminated soil in pot experiments in the net house for 180 days. C. speciosus was transplanted in soil containing 19150 mg kg-1 crude oil and 3.2 mg kg-1 Hg. The study includes the evaluation of plant biomass, height, root length, total petroleum hydrocarbon (TPH) degradation, and Hg reduction in soil, TPH, and Hg accumulation in plants grown in fertilized and unfertilized pots, chlorophyll production, and rhizospheric most probable number (MPN) at 60-day interval. The average biomass production and heights of C. speciosus in contaminated treatments were significantly (p < 0.05) lower compared to the unvegetated control. Plants grown in contaminated soil showed relatively reduced root surface area compared to the uncontaminated treatments. TPH degradation in planted fertilized, unplanted, and planted unfertilized pot was 63%, 0.8%, and 38%, respectively. However, compared to unvegetated treatments, TPH degradation was significantly higher (p < 0.05) in vegetated treatments. A comparison of fertilized and unfertilized soils showed that TPH accumulation in plant roots and shoots was relatively higher in fertilized soils. Hg degradation in soil was significantly (p < 0.05) more in planted treatment compared to unplanted treatments. The fertilized soil showed relatively more Hg degradation in soil and its accumulation in roots and shoots of plants in comparison to unfertilized soil. MPN in treatments with plants was significantly greater (p < 0.05) than without plants. The plant's ability to produce biomass, chlorophyll, break down crude oil, reduce Hg levels in soil, and accumulate TPH and Hg in roots and shoots of the plant all point to the possibility of using this plant to remove TPH and Hg from soil.
Collapse
Affiliation(s)
- Parismita Talukdar
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Aryan Baruah
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Sameer Jyoti Bhuyan
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Swati Boruah
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Pujashree Borah
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Chittaranjan Bora
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India
| | - Budhadev Basumatary
- Plant Ecology Laboratory, Department of Botany, North Lakhimpur College (Autonomous), Khelmati, 787031, Lakhimpur, Assam, India.
| |
Collapse
|
11
|
Swain AA, Sharma P, Keswani C, Minkina T, Tukkaraja P, Gadhamshetty V, Kumar S, Bauddh K, Kumar N, Shukla SK, Kumar M, Dubey RS, Wong MH. The efficient applications of native flora for phytorestoration of mine tailings: a pan-global survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27653-27678. [PMID: 38598151 DOI: 10.1007/s11356-024-33054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment. Numerous untreated mine tailings have been abandoned globally, necessitating immediate reclamation and restoration efforts. The limited feasibility of conventional reclamation methods, such as cost and acceptability, presents challenges in reclaiming tailings around AMLs. This study focuses on phytorestoration as a sustainable method for treating mine tailings. Phytorestoration utilizes existing native plants on the mine sites while applying advanced principles of environmental biotechnology. These approaches can remediate toxic elements and simultaneously improve soil quality. The current study provides a global overview of phytorestoration methods, emphasizing the specifics of mine tailings and the research on native plant species to enhance restoration ecosystem services.
Collapse
Affiliation(s)
- Ankit Abhilash Swain
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Purushotham Tukkaraja
- Department of Mining Engineering and Management, South Dakota Mines, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering Department, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology Center, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Sanjeev Kumar
- Department of Geology, BB Ambedkar University, Lucknow, 226025, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Institute of Environment and Sustainable Development, RGSC, Banaras Hindu University, Barkachha, Mirzapur, 231001, India.
| | - Narendra Kumar
- Department of Environmental Science, BB Ambedkar University, Lucknow, 226025, India
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar, 382030, Gujarat, India
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
12
|
Dong S, Li L, Chen W, Chen Z, Wang Y, Wang S. Evaluation of heavy metal speciation distribution in soil and the accumulation characteristics in wild plants: A study on naturally aged abandoned farmland adjacent to tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170594. [PMID: 38309366 DOI: 10.1016/j.scitotenv.2024.170594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Heavy metal composite pollution is widespread in the surrounding environment of tailings ponds in arid and semi-arid regions, leading to the abandonment of substantial agricultural land. This study investigates the speciation distribution and plant accumulation characteristics of heavy metals in abandoned farmland with different durations of natural aging. The aim is to comprehend the local heavy metal behavior pattern in the soil-plant system and offer insights for environmental remediation. Our findings reveal that Cd stands out as the primary heavy metal pollutant in this area. The mobility ranking of heavy metals is Cd > Pb > Zn > Cu, with Cd and Pb mobility decreasing along the basin. Notably, active Pb exhibits a higher affinity for soil binding compared to other metals. The predominant plant species in the region are primarily small shrubs, herbaceous plants, and semi-shrubs that demonstrate tolerance to drought and salt. Most plant samples showed elevated levels of Cd, Pb, and Zn, surpassing the maximum tolerance levels for dietary minerals in livestock. This elevated metal content poses potential threats to the health of local livestock and wildlife, yet it is also considered a potential for phytoremediation. Selected dominant plant species from the current study include Kalidium foliatum & gracile which shows potential as a Cd accumulator and indicator. Neotrinia splendens and Reaumuria songarica demonstrate potential as Cd excluders, with the latter exhibiting higher tolerance to Cd (62.9 mg/kg). Additionally, our observations indicate that different plant parts exhibit distinct responses to heavy metals, and Zn synergistically influences the aerial part accumulation of Cd. This study holds significant importance in understanding the complex behavior patterns of multi-metal pollutants in the natural environment. The identification of native plants with remediation potential is valuable for phytoremediation of environment pollution in mining area.
Collapse
Affiliation(s)
- Suhang Dong
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longrui Li
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weijie Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoming Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yufan Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
14
|
Wang D, Li Z, Wang Q. Ecological restoration reduces mercury in corn kernel and the distinction of mercury in corn plants in rural China - A case in Wuchuan mercury mining area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115964. [PMID: 38232525 DOI: 10.1016/j.ecoenv.2024.115964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Corn is a crucial crop in China and is widely cultivated in the mercury (Hg) mining region of Guizhou. This study analyzed the Hg content in soil and corn plant samples from the Wuchuan Hg mining area (WCMA) and the surrounding non-Hg mining regions (SNMR). The findings suggest that ongoing ecological rehabilitation and environmental conservation measures in the WCMA have significantly decreased the Hg content in corn kernels. The Hg concentration in different parts of the corn plant varied, being higher in the roots, tassels, and leaves and lower in kernels and stalks. Hg stored in corn plant growing in the WCMA primarily originates from the soil (55.4%), while in the SNMR, it mainly comes from the atmosphere (74.9%). Despite counted only about 7% of the total plant mass, corn roots play a crucial role in soil Hg pollution remediation when corn is used for remediation. Household corn residues burning release about 58.5% and 66.9% of the stored Hg in corn plants growing in the WCMA and the SNMR, respectively, into the atmosphere. Our findings indicate that corn cultivation acts as a reservoir for both soil and atmospheric Hg in the SNMR, while in the WCMA, it serves as a source of atmospheric Hg.
Collapse
Affiliation(s)
- Dan Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, China
| | - Zhonggen Li
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, China
| | - Qingfeng Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, China.
| |
Collapse
|
15
|
Naz R, Khan MS, Hafeez A, Fazil M, Khan MN, Ali B, Javed MA, Imran M, Shati AA, Alfaifi MY, Elbehairi SEI, Ahmed AE. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. BRAZ J BIOL 2024; 84:e264473. [DOI: 10.1590/1519-6984.264473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract The present study was carried out in Hayat Abad Industrial Estate located in Peshawar to assess the levels of cadmium (Cd) that were present in the soil as well as the plant parts (Roots and shoots). To evaluate the phytoremediation potential of the plants different factors i.e. Bioconcentration Factor (BCF), Translocation Factor (TF), and Bioaccumulation Coefficient were determined. These plants were grown in their native habitats (BAC). We have analysed, cadmium concentration from soil which are collected from 50 different locations ranged from 11.54 mg/Kg (the lowest) to 89.80 mg/Kg (highest). The maximum concentration (89.80 mg/Kg) of cadmium was found in HIE-ST-16L Marble City and HIE-ST-7 Bryon Pharma (88.51 mg/Kg) while its minimum concentration (12.47 mg/Kg) were detected in the soil of Site (HIE-ST-14L Royal PVC Pipe) and (11.54 mg/Kg) at the site (HIE-ST-11 Aries Pharma). Most plant species showed huge potential for plant based approaches like phyto-extraction and phytoremediation. They also showed the potential for phyto-stabilization as well. Based on the concentration of cadmium the most efficient plants for phytoextraction were Cnicus benedictus, Parthenium hysterophorus, Verbesina encelioides, Conyza canadensis, Xanthium strumarium, Chenopodium album, Amaranthus viridis, Chenopodiastrum murale, Prosopis juliflora, Convolvulus arvensis, Stellaria media, Arenaria serpyllifolia, Cerastium dichotomum, Chrozophora tinctoria, Mirabilis jalapa, Medicago polymorpha, Lathyrus aphaca, Dalbergia sissoo, Melilotus indicus and Anagallis arvensis. The cadmium heavy metals in the examined soil were effectively removed by these plant species. Cerastium dichotomum, and Chenopodium murale were reported to be effective in phyto-stabilizing Cd based on concentrations of selected metals in roots and BCFs, TFs, and BACs values.
Collapse
Affiliation(s)
- R. Naz
- Islamia College, Pakistan
| | | | | | | | - M. N. Khan
- Islamia College, Pakistan; The University of Agriculture, Pakistan
| | - B. Ali
- Quaid-i-Azam University, Pakistan
| | | | | | | | | | - S. E. I. Elbehairi
- King Khalid University, Saudi Arabia; Egyptian Organization for Biological Products and Vaccines – VACSERA Holding Company, Egypt
| | - A. E. Ahmed
- King Khalid University, Saudi Arabia; South Valley University, Egypt
| |
Collapse
|
16
|
Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Chelate facilitated phytoextraction of Pb, Cd, and Zn from a lead-zinc mine contaminated soil by three accumulator plants. Sci Rep 2023; 13:21185. [PMID: 38040787 PMCID: PMC10692180 DOI: 10.1038/s41598-023-48666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
This study aims to evaluate the enhancement of phytoextraction of heavy metals (Pb, Cd, and Zn) by species Marrubium cuneatum, Stipa arabica, and Verbascum speciosum, through EDTA amendment. Assisted phytoextraction pot experiments were performed at different EDTA dosages (0, 1, 3, and 5 mmol kg-1 soil). The DTPA-extractable metal content increased in the presence of EDTA, followed by their contents in the tissues of all three studied species. Resulting from oxidative stress, the activity of antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) increased when the chelating agent was added. EDTA in higher doses partially decreased chlorophyll concentration, and 5 mmol kg-1 of that reduced the biomass of the studied species. The bioconcentration factor (BCF) for Cd was notably high in all studied plants and considerably elevated for Zn and Pb with the addition of EDTA in M. cuneatum and S. arabica (BCF > 1), whilst an accumulation factor greater than one (AF > 1) was found for Cd in all species and for Pb in the case of S. arabica. In general, the results demonstrated that EDTA can be an effective amendment for phytoextraction of Cd, Zn, and Pb by M. cuneatum, V. speciosum and S. arabica in contaminated soils.
Collapse
Affiliation(s)
- Sadegh Hosseinniaee
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Mohammad Jafari
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Ali Tavili
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Salman Zare
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Monserrato, Italy
| |
Collapse
|
17
|
Dórea JG, Monteiro LC, Elias Bernardi JV, Fernandes IO, Barbosa Oliveira SF, Rudrigues de Souza JP, Sarmento Rodrigues YO, Galli Vieira LC, Rodrigues de Souza J. Land use impact on mercury in sediments and macrophytes from a natural lake in the Brazilian savanna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122414. [PMID: 37598931 DOI: 10.1016/j.envpol.2023.122414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Freshwater ecosystems are essential to human and wildlife survival. They harbor a wide biodiversity that contributes to ecosystem services. In the ecosystem of the Brazilian Savanna, anthropic activities related to environmental pollution that includes mercury (Hg) is of concern. We studied total mercury concentrations ([THg]) in bottom sediments and macrophytes to assess its short-term (2012 and 2019) impact on a natural lake. Temporal changes in [Hg] were assessed with the geoaccumulation index (Igeo) and the sediment quality guidelines (SQG). The land use index (LUI) was used to assess differences in anthropogenic activities and the Normalized Difference Aquatic Vegetation Index (NDAVI) was used to assess macrophyte biomass density. The bioaccumulation factor (BAF) was used to assess Hg accumulation in macrophytes relative to sediments. The LUI showed an increase in the intensity of agricultural activities in the vicinities of the lake. The NDAVI indicated an increase in the density of macrophytes in the evaluated period. The Igeo indicated that in all sampling sites, pollution levels in sediments increased in 2019 (Igeo > 0), with concentrations exceeding the SQG in 2019. In 2012, [THg] in sediments ranged from 20.7 to 74.6 ng g-1, and in 2019 they ranged from 129.1 to 318.2 ng g-1. In macrophytes, [THg] ranged from 14.0 to 42.1 ng g-1 in 2012, to 53.0 and 175.3 ng g-1 in 2019. [THg] in bottom sediments and macrophytes were significantly higher in the second collection period (p < 0.05). There was no significant difference in BAF values between the periods and no significant bioaccumulation in macrophytes (BAF <1). Our results demonstrated that the macrophytes are not sensitive indicators of Hg pollution in lentic environments of the Brazilian Savanna; however, the increased land use intensity (agriculture, automotive traffic, and urban infrastructure) could increase Hg accumulation in sediments and macrophytes in a short time interval.
Collapse
Affiliation(s)
- José G Dórea
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| | - Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil; Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil.
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil.
| | - Iara Oliveira Fernandes
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil; Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil.
| | - Sandy Flora Barbosa Oliveira
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil.
| | - João Pedro Rudrigues de Souza
- Laboratório de Química Analítica e Ambiental, Instituto de Química, Universidade de Brasília, Brasília, DF, 70919-970, Brazil.
| | - Ygor Oliveira Sarmento Rodrigues
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil; Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, 73345-010, Brazil.
| | - Jurandir Rodrigues de Souza
- Laboratório de Química Analítica e Ambiental, Instituto de Química, Universidade de Brasília, Brasília, DF, 70919-970, Brazil.
| |
Collapse
|
18
|
Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Investigating metal pollution in the food chain surrounding a lead-zinc mine (Northwestern Iran); an evaluation of health risks to humans and animals. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:946. [PMID: 37439883 DOI: 10.1007/s10661-023-11551-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
The current study aims to evaluate the health risk of heavy metals for humans and animals in the Angouran mining complex (northwest of Iran). Twenty-five plant species and their corresponding soils (natural soils) were collected along with mine tailings samples. The carcinogenic and non-carcinogenic risks of heavy metals (Zn, Pb, Cd, Cr, and Co) for humans using the hazard quotient (HQ) and hazard index (HI) were evaluated. Moreover, the health risk caused by forage feeding to grazing ruminants (cow and sheep) and the risk associated with animal products consumption by humans in the soil-plant-animal transfer system were assessed. The value of HI in natural soils (rangeland use) was less than one (HI < 1), while regarding tailings, the HQ via oral ingestion and the HI were greater than one (HI & HQ > 1). The range of total carcinogenesis risk in natural soils exceeded the target risk (Risk < 10-6) and for tailings, it showed the probability of cancer risk, 1 person per 3636 populations, which is much higher than the acceptable or tolerable range (10-4 < Risk < 10-6). Regarding the animal health risk, the content of Pb and Cd in most of the animal organs was higher than the control values. In turn, dietary exposure to Pb and Cd is worrying for residents due to exceeding the provisional tolerable weekly intake (PTWI). This comprehensive study suggests the necessity of risk assessment of mining sites in Iran and immediate control measures to diminish pollutants.
Collapse
Affiliation(s)
- Sadegh Hosseinniaee
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, R232+G78 Mesbah, Karaj, Iran.
| | - Mohammad Jafari
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, R232+G78 Mesbah, Karaj, Iran
| | - Ali Tavili
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, R232+G78 Mesbah, Karaj, Iran
| | - Salman Zare
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, R232+G78 Mesbah, Karaj, Iran
| | - Giovanna Cappai
- Department of Civil- Environmental Engineering and Architecture, University of Cagliar, Piazza d'Armi 1, 09123, Cagliari, Italy
| |
Collapse
|
19
|
Peng D, Chen M, Su X, Liu C, Zhang Z, Middleton BA, Lei T. Mercury accumulation potential of aquatic plant species in West Dongting Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121313. [PMID: 36813101 DOI: 10.1016/j.envpol.2023.121313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
West Dongting Lake is a protected wetland with the potential for high levels of mercury release via wastewater and deposition from industry and agriculture during the last decade. To find out the ability of various plant species to accumulate mercury pollutants from soil and water, nine sites were studied in the downstream direction of the flow of the Yuan and Li Rivers, which are tributaries of the Yellow River flowing into West Dongting Lake, where mercury levels arere high in soil and plant tissues. The total mercury (THg) concentration in wetland soil was 0.078-1.659 mg/kg, which varied along the gradient of water flow along the river. According to canonical correspondence analysis and correlation analysis, there was a positive correlation between the soil THg concentration and the soil moisture in West Dongting Lake. There is high heterogeneity in the spatial distribution of soil THg concentration in West Dongting Lake, which may be related to the spatial heterogeneity of the soil moisture. Some plant species had higher THg concentrations in aboveground tissues (translocation factor >1), but none of these plant species fit the criteria as hyperaccumulators of mercury. And some species of the same ecological type (e.g., emergent, submergent, floating-leaved) exhibited very different strategies for mercury uptake. The concentrations of mercury in these species were lower than in other studies but these had relatively higher translocation factors. To phytoremediate soil mercury in West Dongting Lake, the regular harvest of plants could help remove mercury from soil and plant tissue.
Collapse
Affiliation(s)
- Dong Peng
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China; Nanjing University, School of Geography and Ocean Science, School of Atmospheric Sciences, 163 Xianlin Road, Qixia Distinct, Nanjing, 210023, PR China
| | - Mingzhu Chen
- Shenzhen BLY Landscape and Architecture Planning and Design Institute, Block A, West District of Tanglang Plaza, Fuguang Community, Taoyuan Street, Nanshan District, Shenzhen, PR China
| | - Xinyue Su
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China
| | - Chenchen Liu
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China
| | - Zhehao Zhang
- Forestry Bureau of Jiangshan Municipal, No.115, Fourth District of Jiangbin, Jiangshan, Quzhou City, Zhejiang Province, PR China
| | - Beth A Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Ting Lei
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China; National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem, Hunan, 415904, PR China.
| |
Collapse
|
20
|
Cui L, Tian X, Xie H, Cong X, Cui L, Wu H, Wang J, Li B, Zhao J, Cui Y, Feng X, Li YF. Cardamine violifolia as a potential Hg hyperaccumulator and the cellular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160940. [PMID: 36528102 DOI: 10.1016/j.scitotenv.2022.160940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia belongs to the Brassicaceae family and is a selenium (Se) hyperaccumulator found in Enshi, China. In this study, C. violifolia was found to accumulate mercury (Hg) in its roots and aboveground parts at concentrations up to 6000 μg/g. In the seedling and mature stages, the bioaccumulation factors (BAFS) of Hg reached 1.8-223, while the translocation factor (TF) for Hg reached 1.5. We observed a significant positive correlation between THg concentrations in plant tissues and those in the soil (r2 = 0.71-0.84). Synchrotron radiation X-ray fluorescence with focused X-ray (μ-SRXRF) showed that Hg was translocated from the roots to shoots through the vascular bundle and was transported through the leaf veins in leaves. Transmission electron microscopy showed that root cells were more tolerant to Hg than leaf cells. These findings provide insights into the mechanisms of Hg hyperaccumulation in C. violifolia. Overall, we demonstrated that C. violifolia is a promising Hg hyperaccumulator that may be used for phytoremediating Hg-contaminated farmlands.
Collapse
Affiliation(s)
- Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China; National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lihong Cui
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han Wu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, Beijing 100049, China; Beijing Metallomics Facility, Chinese Academy of Sciences, Beijing 100049, China; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Sharma JK, Kumar N, Singh NP, Santal AR. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1076876. [PMID: 36778693 PMCID: PMC9911669 DOI: 10.3389/fpls.2023.1076876] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/06/2023] [Indexed: 05/14/2023]
Abstract
The contamination of soils with heavy metals and its associated hazardous effects are a thrust area of today's research. Rapid industrialization, emissions from automobiles, agricultural inputs, improper disposal of waste, etc., are the major causes of soil contamination with heavy metals. These contaminants not only contaminate soil but also groundwater, reducing agricultural land and hence food quality. These contaminants enter the food chain and have a severe effect on human health. It is important to remove these contaminants from the soil. Various economic and ecological strategies are required to restore the soils contaminated with heavy metals. Phytoremediation is an emerging technology that is non-invasive, cost-effective, and aesthetically pleasing. Many metal-binding proteins (MBPs) of the plants are significantly involved in the phytoremediation of heavy metals; the MBPs include metallothioneins; phytochelatins; metalloenzymes; metal-activated enzymes; and many metal storage proteins, carrier proteins, and channel proteins. Plants are genetically modified to enhance their phytoremediation capacity. In Arabidopsis, the expression of the mercuric ion-binding protein in Bacillus megaterium improves the metal accumulation capacity. The phytoremediation efficiency of plants is also enhanced when assisted with microorganisms, biochar, and/or chemicals. Removing heavy metals from agricultural land without challenging food security is almost impossible. As a result, crop selections with the ability to sequester heavy metals and provide food security are in high demand. This paper summarizes the role of plant proteins and plant-microbe interaction in remediating soils contaminated with heavy metals. Biotechnological approaches or genetic engineering can also be used to tackle the problem of heavy metal contamination.
Collapse
Affiliation(s)
| | - Nitish Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - N. P. Singh
- Centre for Biotechnology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| | - Anita Rani Santal
- Department of Microbiology, M. D. University, Rohtak, India
- *Correspondence: Anita Rani Santal, ; N. P. Singh,
| |
Collapse
|
22
|
Xu J, Xing Y, Wang J, Yang Y, Ye C, Sun R. Effect of poly-γ-glutamic acid on the phytoremediation of ramie (Boehmeria nivea L.) in the Hg-contaminated soil. CHEMOSPHERE 2023; 312:137280. [PMID: 36403812 DOI: 10.1016/j.chemosphere.2022.137280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Farmlands around the Hg mining areas have suffered from severe Hg contamination issues, triggering a phenomenon of high Hg content in crops, and subsequently threatening human health. In this study, ramie (Boehmeria nivea L.) assisted with poly-γ-glutamic acid (γ-PGA) was employed to remediate the Hg-contaminated soil through incubation experiments. After the soil was amended with γ-PGA, the leaf Hg content increased by 4.4-fold, and the translocation factor value even reached 3.5, indicating that γ-PGA could dramatically enhance the translocation of Hg from root and stem to leaf. γ-PGA could induce the transformation of potentially available Hg to available fractions, resulting in the soil Hg being more bioavailable. Batch trials verified that γ-PGA could mask the adsorption function of Hg ions by soil organic matter, significantly stimulating the desorption of Hg ions from the soil. As a result, the soil Hg would transfer to the aqueous phase and be assimilated by the root of ramie more easily and effectively. The γ-PGA chelated Hg is hydrophilic and has a high affinity with -SH and -S-; thereby, it can easily stride over the Casparian strip, enter the vessel, be translocated upwards, be sequestered in the tissues of leaf, and be incorporated irreversibly. This study can provide a new method for the remediation of Hg-contaminated soil.
Collapse
Affiliation(s)
- Jing Xu
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Ying Xing
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Jun Wang
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Yang Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Cai Ye
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China
| | - Rongguo Sun
- School of Chemistry and Material, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
23
|
Shi J, Qian W, Jin Z, Zhou Z, Wang X, Yang X. Evaluation of soil heavy metals pollution and the phytoremediation potential of copper-nickel mine tailings ponds. PLoS One 2023; 18:e0277159. [PMID: 36867622 PMCID: PMC9983881 DOI: 10.1371/journal.pone.0277159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/30/2022] [Indexed: 03/04/2023] Open
Abstract
Heavy metal pollution in soils caused by mining has led to major environmental problems around the globe and seriously threatens the ecological environment. The assessment of heavy metal pollution and the local phytoremediation potential of contaminated sites is an important prerequisite for phytoremediation. Therefore, the purpose of this study was to understand the characteristics of heavy metal pollution around a copper-nickel mine tailings pond and screen local plant species that could be potentially suitable for phytoremediation. The results showed that Cd, Cu, Ni, and Cr in the soil around the tailings pond were at the heavy pollution level, Mn and Pb pollution was moderate, and Zn and As pollution was light; The positive matrix factorization (PMF) model results showed that the contributions made by industrial pollution to Cu and Ni were 62.5% and 66.5%, respectively, atmospheric sedimentation and agricultural pollution contributions to Cr and Cd were 44.6% and 42.8%, respectively, the traffic pollution contribution to Pb was 41.2%, and the contributions made by natural pollution sources to Mn, Zn, and As were 54.5%, 47.9%, and 40.0% respectively. The maximum accumulation values for Cu, Ni, Cr, Cd, and As in 10 plants were 53.77, 102.67, 91.10, 1.16 and 7.23 mg/kg, respectively, which exceeded the normal content of heavy metals in plants. Ammophila breviligulata Fernald had the highest comprehensive extraction coefficient (CEI) and comprehensive stability coefficient (CSI) at 0.81 and 0.83, respectively. These results indicate that the heavy metal pollution in the soil around the copper nickel mine tailings pond investigated in this study is serious and may affect the normal growth of plants. Ammophila breviligulata Fernald has a strong comprehensive remediation capacity and can be used as a remediation plant species for multiple metal compound pollution sites.
Collapse
Affiliation(s)
- Jianfei Shi
- University of Chinese Academy of Science, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Native-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, China
| | - Wenting Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Native-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, China
- * E-mail: (ZJ); (WQ)
| | - Zhengzhong Jin
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Native-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, China
- * E-mail: (ZJ); (WQ)
| | - Zhibin Zhou
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Science/National Native-Oasis Ecology Construction Engineering Technology Research Center, Urumqi, China
| | - Xin Wang
- University of Chinese Academy of Science, Beijing, China
| | - Xiaoliang Yang
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
24
|
Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G, De Giudici G. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115184. [PMID: 35523070 DOI: 10.1016/j.jenvman.2022.115184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Phytoremediation is a cost-effective, environmentally-friendly and emerging remediation technology that treats polluted areas using plants, having the potential to restore ecosystems and make compromised areas useable again, therefore returning a resource to community use. In the present work a study was conducted on the contamination of soil by heavy metals (Zn, Pb, Cr, Cd, and Co) in the mining area of Angouran (northwestern Iran) and on their uptake by 25 native species present in the mining district, in order to evaluate their potential use in phytoremediation interventions. Plant and soils from three sites around the mine were sampled and characterized, and metals accumulation and translocation were evaluated. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to study the behavior of species in the accumulation and translocation of the elements in their tissues. The contents of Zn, Pb, Cr, Cd, and Co in the studied plants were, respectively, 31.77-723.05, 7.78-233.25, 1.77-21.57, 0.04-7.92, and 0.15-9.97 mg/kg. Among the 25 species, 13 plants showed translocation factor greater than one (TF > 1) for Zn, 14 for Pb, 3 for Cr, 10 for Co, and 6 for Cd. Marrubium cuneatum having an accumulation factor greater than one (AF > 1) for Zn and bioconcentration factor greater than one (BCF >1) for Cd can be considered as an accumulator and stabilizer for Zn and Cd, respectively. Also, the highest value of Pb (233.25 mg/kg) and Cr (21.57 mg/kg) were found in the shoot of this plant. Psathyrostachys fragilis with BCF >1 for Co and maximum Pb accumulation in the root can be used as a stabilizer plant for Pb and Co-contaminated soils. Besides, Stipa arabica and Verbascum speciosum, with TF > 1 and rather high AF, could be considered suitable species for removing Zn and Pb through phytoextraction. This research showed that some native species in the study area have considerable potential for developing phytoremediation strategies.
Collapse
Affiliation(s)
- Sadegh Hosseinniaee
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Mohammad Jafari
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Ali Tavili
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Salman Zare
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Giovanna Cappai
- Department of Civil- Environmental Engineering and Architecture, University of Cagliari, Italy.
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| |
Collapse
|
25
|
Morante-Carballo F, Montalván-Burbano N, Aguilar-Aguilar M, Carrión-Mero P. A Bibliometric Analysis of the Scientific Research on Artisanal and Small-Scale Mining. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138156. [PMID: 35805816 PMCID: PMC9266635 DOI: 10.3390/ijerph19138156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023]
Abstract
Mineral resource exploitation is one of the activities that contribute to economic growth and the development of society. Artisanal and small-scale mining (ASM) is one of these activities. Unfortunately, there is no clear consensus to define ASM. However, its importance is relevant in that it represents, in some cases, the only employment alternative for millions of people, although it also significantly impacts the environment. This work aims to investigate the scientific information related to ASM through a bibliometric analysis and, in addition, to define the new lines that are tending to this field. The study comprises three phases of work: (i) data collection, (ii) data processing and software selection, and (iii) data interpretation. The results reflect that the study on ASM developed intensively from 2010 to the present. In general terms, the research addressed focuses on four interrelated lines: (i) social conditioning factors of ASM, (ii) environmental impacts generated by ASM, (iii) mercury contamination and its implication on health and the environment, and (iv) ASM as a livelihood. The work also defines that geotourism in artisanal mining areas is a significant trend of the last decade, explicitly focusing on the conservation and use of the geological and mining heritage and, in addition, the promotion of sustainable development of ASM.
Collapse
Affiliation(s)
- Fernando Morante-Carballo
- Facultad de Ciencias Naturales y Matemáticas (FCNM), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
- Geo-Recursos y Aplicaciones (GIGA), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
- Correspondence: (F.M.-C.); (M.A.-A.)
| | - Néstor Montalván-Burbano
- Department of Economy and Business, University of Almería, Carr. Sacramento s/n, La Cañada de San Urbano, 04120 Almeria, Spain;
- Centro de Investigaciones y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador;
| | - Maribel Aguilar-Aguilar
- Centro de Investigaciones y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador;
- Correspondence: (F.M.-C.); (M.A.-A.)
| | - Paúl Carrión-Mero
- Centro de Investigaciones y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador;
- Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo, ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
| |
Collapse
|
26
|
Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106290. [PMID: 35627826 PMCID: PMC9142007 DOI: 10.3390/ijerph19106290] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Mercury (Hg) is one of the most harmful metals and has been a public health concern according to the World Health Organization (WHO). Artisanal and small-scale gold mining (ASGM) is the world’s fastest-growing source of Hg and can release Hg into the atmosphere, hydrosphere, and geosphere. Hg has been widely used in ASGM industries throughout Southeast Asia countries, including Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, and Thailand. Here, 16 relevant studies were systematically searched by performing the PRISMA flow, combining the keywords of “Hg”, “ASGM”, and relevant study areas. Mercury concentrations exceeding the WHO and United States Environmental Protection Agency guideline values were reported in environmental (i.e., air, water, and soil) and biomonitoring samples (i.e., plants, fish, and human hair). ASGM-related health risks to miners and nonminers, specifically in Indonesia, the Philippines, and Myanmar, were also assessed. The findings indicated severe Hg contamination around the ASGM process, specifically the gold-amalgamation stage, was significantly high. To one point, Hg atmospheric concentrations from all observed studies was shown to be extremely high in the vicinity of gold operating areas. Attentions should be given regarding the public health concern, specifically for the vulnerable groups such as adults, pregnant women, and children who live near the ASGM activity. This review summarizes the effects of Hg in Myanmar and other Southeast Asian countries. In the future, more research and assessment will be required to investigate the current and evolving situation in ASGM communities.
Collapse
|
27
|
Makarova AS, Nikulina E, Fedotov P. Induced Phytoextraction of Mercury. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2021.1881794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anna S. Makarova
- UNESCO Chair ‘Green Chemistry for Sustainable Development’, Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
| | - Elena Nikulina
- NRC ‘Kurchatov Institute’ – IREA, Moscow, Russian Federation
| | - Petr Fedotov
- Department of Geochemistry, Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, and National University of Science and Technology ‘Misis’, Moscow, Russian Federation
- Laboratory of separation and pre-concentration in the chemical diagnostics of functional materials and environmental objects, National University of Science and Technology ‘MISIS’, Moscow, Russian Federation
| |
Collapse
|
28
|
Chang J, Peng D, Deng S, Chen J, Duan C. Efficient treatment of mercury(Ⅱ)-containing wastewater in aerated constructed wetland microcosms packed with biochar. CHEMOSPHERE 2022; 290:133302. [PMID: 34922958 DOI: 10.1016/j.chemosphere.2021.133302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Effective removal of mercury (Hg) pollutants from contaminated water/wastewater to prevent severe environmental pollution is of great significance due to the extremely high toxicity of Hg. In this study, granular biochar and gravel (control) were packed into intermittently aerated constructed wetland (CW) microcosms to treat Hg(Ⅱ)-containing wastewater over 100 d. The results showed that the biochar-filled CWs exhibited notably better Hg(Ⅱ) removal than the gravel systems by facilitating chemical and microbial Hg(Ⅱ) reduction and volatilization and promoting plant growth and Hg assimilation. More than ten times more Hg was absorbed by the plants (L. salicaria) in biochar CWs than in the gravel systems, with the roots acting as the major sink. In contrast, substrate binding in a predominantly oxidizable fraction was the dominant pathway for Hg removal in the gravel CWs. Biochar substrates also exhibited higher levels of COD, N and P removal, and Hg(Ⅱ) import impacted the removal of these pollutants only slightly. Filling material played a more crucial role than Hg input in shaping the microbial communities in the CWs. The proportions of some dominant genera, including Arenimonas, Lysobacter, Micropruina and Hydrogenophaga, increased in the presence of Hg, implying their tolerance to Hg toxicity and potential roles in Hg detoxification in the CWs. Granular biochar-based CW has high potential for treating Hg(Ⅱ)-contaminated wastewater.
Collapse
Affiliation(s)
- Junjun Chang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China
| | - Dongliang Peng
- School of Architecture and Planning, Yunnan University, Kunming, 650500, China
| | - Shengjiong Deng
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Jinquan Chen
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China.
| | - Changqun Duan
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
29
|
Durante-Yánez EV, Martínez-Macea MA, Enamorado-Montes G, Combatt Caballero E, Marrugo-Negrete J. Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don. PLANTS (BASEL, SWITZERLAND) 2022; 11:597. [PMID: 35270068 PMCID: PMC8912359 DOI: 10.3390/plants11050597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Soils contaminated by potentially toxic elements (PTEs) as a result of anthropogenic activities such as mining are a problem due to the adverse effects on human and environmental health, making it necessary to seek sustainable strategies to remediate contaminated areas. The objective of this study was to evaluate the species Clidemia sericea D. Don for the phytoremediation of soils contaminated with PTEs (Hg, Pb, and Cd) from gold mining activities. The study was conducted for three months, with soils from a gold mining area in northern Colombia, and seeds of C. sericea, under a completely randomized experimental design with one factor (concentration of PTEs in soil) and four levels (control (T0), low (T1), medium (T2), and high (T3)), each treatment in triplicate, for a total of twelve experimental units. Phytotoxic effects on plants, bioconcentration (BCF), and translocation (TF) factors were determined. The results obtained for the tissues differed in order of metal accumulation, with the root showing the highest concentration of metals. The highest values of bioconcentration (BCF > 1) were presented for Hg at T3 and Cd in the four treatments; and of translocation (TF > 1) for Hg and Pb at T0 and T1; however, for Pb, the TF indicates that it is transferable, but it is not considered for phytoextraction. Thus, C. sericea demonstrated its potential as a phytostabilizer of Hg and Cd in mining soils, strengthening as a wild species with results of resistance to the stress of the PTEs evaluated, presenting similar behavior and little phytotoxic affectation on the growth and development of each of the plants in the different treatments.
Collapse
Affiliation(s)
- Elvia Valeria Durante-Yánez
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - María Alejandra Martínez-Macea
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - Germán Enamorado-Montes
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| | - Enrique Combatt Caballero
- Department of Agricultural Engineering and Rural Development, Faculty of Agricultural Sciences, University of Córdoba, Montería 230002, Colombia;
| | - José Marrugo-Negrete
- Water, Applied, and Environmental Chemistry Research Group, Department of Chemistry, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (E.V.D.-Y.); (M.A.M.-M.); (G.E.-M.)
| |
Collapse
|
30
|
Allan-Blitz LT, Goldfine C, Erickson TB. Environmental and health risks posed to children by artisanal gold mining: A systematic review. SAGE Open Med 2022; 10:20503121221076934. [PMID: 35173966 PMCID: PMC8841918 DOI: 10.1177/20503121221076934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
There are an estimated 5 million children working in artisanal and small-scale gold mines worldwide; however, the hazards are poorly characterized and often underreported. We systematically reviewed the literature on reports of hazards among children as a consequence of such activities through PubMed database using pre-defined search terms. We identified 113 articles published between 1984 and 2021 from 31 countries. Toxicological hazards were reported in 91 articles, including mercury, lead, and arsenic. Infectious hazards, noted in 18 articles, included malaria, cholera, and hepatitis. Six articles reported occupational hazards, including malnutrition, heat stroke, and reactive airway disease. Three articles reported traumatic hazards, including cave-ins, burns, animal attacks, falls, and weapon-inflected wounds. Those findings likely indicate a profound underreporting of the prevalence and consequences of such hazards among children. More work is needed both to characterize the burdens of those hazards and to address the underlying drivers of child labor in those settings.
Collapse
Affiliation(s)
- Lao-Tzu Allan-Blitz
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Charlotte Goldfine
- Brigham and Women’s Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
- Division of Medical Toxicology, Department of Emergency Medicine, Mass General Brigham, Boston, MA, USA
| | - Timothy B Erickson
- Brigham and Women’s Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
- Division of Medical Toxicology, Department of Emergency Medicine, Mass General Brigham, Boston, MA, USA
- Harvard Humanitarian Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Sanaei S, Sadeghinia M, Meftahizade H, Ardakani AF, Ghorbanpour M. Cadmium and lead differentially affect growth, physiology, and metal accumulation in guar (Cyamopsis tetragonoloba L.) genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4180-4192. [PMID: 34402017 DOI: 10.1007/s11356-021-15968-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is a strategy to employ plants to recover high quantities of metals in the soil into the harvestable parts such as shoots and roots. High levels of Cd and lead (Pb) in the soil cause several stress symptoms in plants including a decrease in growth, reduced root growth, and carbohydrate metabolism. In this study, Saravan and HGS-867 as local landrace and Indian guar variety were selected to investigate the effect of the application of Pb (0, 40, 150, and 200 mg/l) and the cadmium (0, 25, 50, and 100 mg/l) on phonological, yield parameters, and phytoremediation assessment. The results showed that Pb translocation factor (TF) was significant in Pb×Cd and Pb×Cd×G (genotype) at p<0.01 and in Pb×G at p<0.05. Pb bioconcentration factor (BCF) was significant (p<0.01) in all treatments except Cd and Cd×G treatments. Mean comparison of the data showed that the number of flowers, leaves, and clusters in plant decreased significantly with increasing Pb content. With increasing Cd concentration, the number of branches, height, the number of seeds, clusters, and leaves for each plant decreased significantly at the level of 1%. The maximum TF was observed in Pb at 40 mg/l in the HG-867 variety. Moreover, the Saravan landrace exposed to Cd (100 mg/l) showed the highest value of BCF (Cd). The gum percentage significantly decreased with increasing concentrations of Pb and Cd. Pearson's correlation analysis indicated that plant height, number of pods/plant, root length, biomass, and pod length had a positive correlation with seed yield and a negative correlation with TF (Pb) and BCF (Pb). The results suggest that according to TF, BCF, and BAC, C. tetragonoloba L. can be effectively used as a good accumulator of toxic metals in contaminated soils.
Collapse
Affiliation(s)
- Samane Sanaei
- Department of Nature Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran
| | - Majid Sadeghinia
- Department of Nature Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Heidar Meftahizade
- Department of Horticultural Sciences, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran.
| | - Ahmad Fatahi Ardakani
- Department of Agricultural Economics, Faculty of Agriculture and Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
32
|
Bhatt P, Ganesan S, Santhose I, Durairaj T. Phytoremediation as an effective tool to handle emerging contaminants. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phytoremediation is a process which effectively uses plants as a tool to remove, detoxify or immobilize contaminants. It has been an eco-friendly and cost-effective technique to clean contaminated environments. The contaminants from various sources have caused an irreversible damage to all the biotic factors in the biosphere. Bioremediation has become an indispensable strategy in reclaiming or rehabilitating the environment that was damaged by the contaminants. The process of bioremediation has been extensively used for the past few decades to neutralize toxic contaminants, but the results have not been satisfactory due to the lack of cost-effectiveness, production of byproducts that are toxic and requirement of large landscape. Phytoremediation helps in treating chemical pollutants on two broad categories namely, emerging organic pollutants (EOPs) and emerging inorganic pollutants (EIOPs) under in situ conditions. The EOPs are produced from pharmaceutical, chemical and synthetic polymer industries, which have potential to pollute water and soil environments. Similarly, EIOPs are generated during mining operations, transportations and industries involved in urban development. Among the EIOPs, it has been noticed that there is pollution due to heavy metals, radioactive waste production and electronic waste in urban centers. Moreover, in recent times phytoremediation has been recognized as a feasible method to treat biological contaminants. Since remediation of soil and water is very important to preserve natural habitats and ecosystems, it is necessary to devise new strategies in using plants as a tool for remediation. In this review, we focus on recent advancements in phytoremediation strategies that could be utilized to mitigate the adverse effects of emerging contaminants without affecting the environment.
Collapse
Affiliation(s)
- Prasanth Bhatt
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Swamynathan Ganesan
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Infant Santhose
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| | - Thirumurugan Durairaj
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , SRM Nagar , Kattankulathur – 603203 , Kanchipuram , Chennai , TN , India
| |
Collapse
|
33
|
Bats are an excellent sentinel model for the detection of genotoxic agents. Study in a Colombian Caribbean region. Acta Trop 2021; 224:106141. [PMID: 34562432 DOI: 10.1016/j.actatropica.2021.106141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/23/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022]
Abstract
Wildlife animals have been affected by human activities and the diminution of the areas needed to develop wildlife. In Colombia, artisanal and industrial mining focuses on gold extraction, which uses mercury and causes contamination in water sources. Bats may be susceptible to chemical contamination and primarily to bioaccumulated heavy metal contaminants in the food chain. The primary source of exposure is contaminated food and water ingest, followed by dermic exposition and inhalation. The objective was to evaluategenotoxic damage and mercury concentration in bats. Forty-five samples of blood and organs of bats captured in Ayapel and Majagual were collected. Erythrocytes were searched for micronuclei by peripheral blood smear. Mercury concentration in 45 liver and spleen samples was determined by atomic absorption spectroscopy (DMA80 TRICELL, Milestone Inc, Italy). Bats from four families were studied: Phyllostomidae (6 species), Molossidae (3 species), Vespertilionidae (1 species), and Emballonuridae (1 species). Mercury was found in all bat species from the different dietary guilds. Insectivores had the highest concentration of mercury in the liver (0,23 µg/g) and spleen (0,25 µg/g) and the highest number of micronuclei (260 micronuclei/10,000). The specimens captured in Majagual had the highest frequency of micronuclei (677 micronuclei/10,000), and those captured in Ayapel had the highest mercury concentration (0,833 µg/g). This is the first study in Colombia to report that bats could act as sentinels to the environment's genotoxic chemical agents. Mercury and a high frequency of micronuclei were found in the tissues of captured bats. In addition to mercury contamination, there could also be other contaminants affecting Chiroptera.
Collapse
|
34
|
Qian X, Yang C, Xu X, Ao M, Xu Z, Wu Y, Qiu G. Extremely Elevated Total Mercury and Methylmercury in Forage Plants in a Large-Scale Abandoned Hg Mining Site: A Potential Risk of Exposure to Grazing Animals. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:519-530. [PMID: 33740088 DOI: 10.1007/s00244-021-00826-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Ninety-five wild forage plants (belonging to 22 species of 18 families) and their corresponding rhizosphere soil samples were collected from wastelands of a large-scale abandoned Hg mining region for total Hg (THg) and methylmercury (MeHg) analysis. The forage plant communities on the wastelands were dominated by the Asteraceae, Crassulaceae, and Polygonaceae families. The THg and MeHg concentrations in the forage plants varied widely and were in the range of 0.10 to 13 mg/kg and 0.19 to 23 μg/kg, respectively. Shoots of Aster ageratoides showed the highest average THg concentration of 12 ± 1.1 mg/kg, while those of Aster subulatus had the highest average MeHg concentrations of 7.4 ± 6.1 μg/kg. Both the THg and MeHg concentrations in the aboveground plant parts exhibited positive correlations with the THg (r = 0.70, P < 0.01) and MeHg (r = 0.68, P < 0.01) concentrations in the roots; however, these were not correlated with the THg and MeHg concentrations in their rhizosphere soils. The species A. ageratoides, A. subulatus, and S. brachyotus showed strong accumulation of Hg and are of concern for herbivorous/omnivorous wildlife and feeding livestock. Taking the provisional tolerable weekly intake (PTWI) values for IHg recommended by the Joint FAO/WHO Expert Committee on Food Additives (JECFA in Summary and conclusions of the seventy-second meeting of the joint FAO/WHO expert committee on food additives Rome, Italy, 2010) for human dietary exposure of 4 ng/g into account, the daily intake of IHg by a 65 kg animal grazing on 1.0 kg of forage (dry weight) would be between 190 and 13,200 μg, three to five orders of magnitude higher than the permitted limit, suggesting a potential risk of exposure.
Collapse
Affiliation(s)
- Xiaoli Qian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Chendong Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Ming Ao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China.
| |
Collapse
|
35
|
El Alaoui A, Raklami A, Bechtaoui N, El Gharmali A, Ouhammou A, Imziln B, Achouak W, Pajuelo E, Oufdou K. Use of native plants and their associated bacteria rhizobiomes to remediate-restore Draa Sfar and Kettara mining sites, Morocco. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:232. [PMID: 33772660 DOI: 10.1007/s10661-021-08977-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Soil and mine tailings are unreceptive to plant growth representing an imminent threat to the environment and resource sustainability. Using indigenous plants and their associated rhizobacteria to restore mining sites would be an eco-friendly solution to mitigate soil-metal toxicity. Soil prospection from Draa Sfar and Kettara mining sites in Morocco was carried out during different seasons for native plant sampling and rhizobacteria screening. The sites have been colonized by fifteen tolerant plant species having different capacities to accumulate Cu, Zn, and P in their shoots/root systems. In Draa Sfar mine, Suaeda vera J.F. Gmel., Sarcocornia fruticosa (L.) A.J. Scott., and Frankenia corymbosa Desf. accumulated mainly Cu (more than 90 mg kg-1), Atriplex halimus L. accumulated Zn (mg kg-1), and Frankenia corymbosa Desf. accumulated Pb (14 mg kg-1). As for Kettara mine, Aizoon canariense L. mainly accumulated Zn (270 mg kg-1), whereas Forsskalea tenacissima L. was the best shoot Cu accumulator with up to 50 mg kg-1, whereas Cu accumulation in roots was 21 mg kg-1. The bacterial screening revealed the strains' abilities to tolerate heavy metals up to 50 mg kg-1 Cu, 250 mg kg-1 Pb, and 150 mg kg-1 Zn. Isolated strains belonged mainly to Bacillaceae (73.33%) and Pseudomonadaceae (10%) and expressed different plant growth-promoting traits, alongside their antifungal activity. Results from this study will provide an insight into the ability of native plants and their associated rhizobacteria to serve as a basis for remediation-restoration strategies.
Collapse
Affiliation(s)
- Abdelkhalek El Alaoui
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
- LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Aix-Marseille University, CEA, CNRS, UMR7265, F-13108, Saint Paul Lez Durance, France
| | - Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco.
| | - Noura Bechtaoui
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Abdelhay El Gharmali
- Laboratory of Water, Biodiversity and Global Change, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Ahmed Ouhammou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Boujamaa Imziln
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| | - Wafa Achouak
- LEMiRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, Aix-Marseille University, CEA, CNRS, UMR7265, F-13108, Saint Paul Lez Durance, France
| | - Eloisa Pajuelo
- Department of Microbiology and Parasitology, University of Seville, PO Box 1095, 41080, Seville, Spain
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, Morocco
| |
Collapse
|
36
|
Tiodar ED, Văcar CL, Podar D. Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2435. [PMID: 33801363 PMCID: PMC7967564 DOI: 10.3390/ijerph18052435] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/01/2023]
Abstract
Mercury (Hg) pollution is a global threat to human and environmental health because of its toxicity, mobility and long-term persistence. Although costly engineering-based technologies can be used to treat heavily Hg-contaminated areas, they are not suitable for decontaminating agricultural or extensively-polluted soils. Emerging phyto- and bioremediation strategies for decontaminating Hg-polluted soils generally involve low investment, simple operation, and in situ application, and they are less destructive for the ecosystem. Current understanding of the uptake, translocation and sequestration of Hg in plants is reviewed to highlight new avenues for exploration in phytoremediation research, and different phytoremediation strategies (phytostabilization, phytoextraction and phytovolatilization) are discussed. Research aimed at identifying suitable plant species and associated-microorganisms for use in phytoremediation of Hg-contaminated soils is also surveyed. Investigation into the potential use of transgenic plants in Hg-phytoremediation is described. Recent research on exploiting the beneficial interactions between plants and microorganisms (bacteria and fungi) that are Hg-resistant and secrete plant growth promoting compounds is reviewed. We highlight areas where more research is required into the effective use of phytoremediation on Hg-contaminated sites, and conclude that the approaches it offers provide considerable potential for the future.
Collapse
Affiliation(s)
- Emanuela D. Tiodar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Cristina L. Văcar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| | - Dorina Podar
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; (E.D.T.); (C.L.V.)
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeş-Bolyai University, 3-5 Clinicilor St., 400015 Cluj-Napoca, Romania
| |
Collapse
|
37
|
Zhao W, Cui Y, Sun X, Wang H, Teng X. Corn stover biochar increased edible safety of spinach by reducing the migration of mercury from soil to spinach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143883. [PMID: 33338792 DOI: 10.1016/j.scitotenv.2020.143883] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is toxic and can affect human health through soil entering food chain. Spinach absorb easily heavy metals. Corn stover biochar can improve soil structure and physicochemical property. This study wanted to establish a Hg-corn stover biochar-soil-spinach model including 1 control group (without HgCl2 and corn stover biochar) and 24 treatment groups (with HgCl2 or/and corn stover biochar). Hg concentration was 0, 1, 2, 4, and 6 mg kg-1, respectively. Corn stover biochar contents were 0%, 1%, 3%, 5%, and 7% w/w, respectively. The results showed that residual Hg concentrations was the largest and water soluble and exchangeable Hg as well as carbonate bound Hg concentrations were the lowest among five Hg forms. Hg concentrations in four Hg treatment groups were higher than the control group in dose-dependent manner. The deposition of 6 mg kg-1 Hg was the highest. Corn stover biochar decreased Hg migration from soil to leaching solution and spinach, and passivation effect of 7% concentration of corn stover biochar was the best. Besides, corn stover biochar relieved the increase of methyl Hg caused by Hg in soil. Moreover, Hg concentration in roots was the highest and Hg concentration in stems was the lowest in spinach. Furthermore, Hg absorbed by roots was more than the sum of Hg absorbed by stems and leaves. In addition, we also found that the measured soil Hg concentrations were coincided with the predicted soil Hg concentrations under 1, 2, and 4 mg kg-1 Hg concentrations, except 2 mg kg-1 Hg at 7% C. Under 6 mg kg-1 Hg concentration, measured soil Hg concentrations was lower than that of the predicted soil Hg concentrations. Taken together, our findings indicated that corn stover biochar can increase edible safety of spinach by immobilizing Hg in soil and be used as an organic amendment.
Collapse
Affiliation(s)
- Wei Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Cui
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiping Sun
- No. 6 Middle School of Harbin, Harbin 150030, China
| | - Hongyan Wang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
38
|
Abstract
The geomorphological characteristics of the materials inherent in tropical soils, in addition to the excessive use of fertilizers and pesticides, industrial waste and residues, and novel pollutants derived from emerging new technologies such as nanomaterials, affect the functionality and resilience of the soil-microorganism-plant ecosystem; impacting phytoremediation processes and increasing the risk of heavy metal transfer into the food chain. The aim of this review is to provide a general overview of phytoremediation in tropical soils, placing special emphasis on the factors that affect this process, such as nanoagrochemicals, and highlighting the value of biodiversity among plant species that have the potential to grow and develop in soils impacted by heavy metals, as a useful resource upon which to base further research.
Collapse
|
39
|
Makarova A, Nikulina E, Tsirulnikova N, Avdeenkova T, Pishchaeva KV. Potential of S-containing and P-containing complexones in improving phytoextraction of mercury by Trifolium repens L.. Saudi J Biol Sci 2021; 28:3037-3048. [PMID: 34025180 PMCID: PMC8117166 DOI: 10.1016/j.sjbs.2021.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022] Open
Abstract
Mercury is a global pollutant in the modern world. There is a large number of areas in the world where mercury is present in soils in significant quantities. Remediation methods which have traditionally been proposed may pose a risk of secondary mercury contamination and/or adverse health effects for cleaners. Phytoextraction of heavy metals from the soil environment is currently considered one of the promising non-invasive methods of remediation. But this approach has limited effectiveness. Chemically induced phytoextraction can increase the efficiency of this process both by converting less bioavailable mercury compounds to bioavailable fractions in the soil and by increasing the rate of transfer of metals in plants. This paper presents the results of a screening study of various chemical amendments to enhance the phytoextraction of mercury by Trifolium repens L. The results showed good potential for the induction of phytoextraction of phosphorus(P) and sulfur (S)-containing chelates. With this study, for the first time for the phytoextraction of mercury, the monoethanolamine salt of 2,2′-(ethylenedithio) diacetic acid was used as the S-containing chelate, and the disubstituted potassium salt of 1-hydroxy ethylidene-1,1-diphosphonic acid was used as the P-containing chelate. Further attention is given to study the effect that exogenous application of phytohormones and plant growth regulators has on the efficiency of mercury absorption and physiological status of plants, which performed well in combination with a P-containing chelate.
Collapse
Affiliation(s)
- Anna Makarova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Elena Nikulina
- Institute of Chemical Reagents and Special Purity Chemicals of the National Research Center Kurchatov Institute (IREPC), St. Bogorodsky Val, 3, 107076 Moscow, Russia
| | - Nina Tsirulnikova
- Institute of Chemical Reagents and Special Purity Chemicals of the National Research Center Kurchatov Institute (IREPC), St. Bogorodsky Val, 3, 107076 Moscow, Russia
| | - Tatyana Avdeenkova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| | - Ksenia V Pishchaeva
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya Sq., 9, 125047 Moscow, Russia
| |
Collapse
|
40
|
Photolo MM, Sitole L, Mavumengwana V, Tlou MG. Genomic and Physiological Investigation of Heavy Metal Resistance from Plant Endophytic Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030997. [PMID: 33498657 PMCID: PMC7908345 DOI: 10.3390/ijerph18030997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
Combretum erythrophyllum is an indigenous southern African tree species, a metal hyperaccumulator that has been used as a phytoextraction option for tailing dams in Johannesburg, South Africa. In hyperaccumulators, metal detoxification has also been linked or attributed to the activities of endophytes, and, in this regard, metal detoxification can be considered a form of endophytic behavior. Therefore, we report herein on the identification of proteins that confer heavy metal resistance, the in vitro characterization of heavy metal resistance, and the production of plant growth-promoting (PGP) volatiles by Methylobacterium radiotolerans MAMP 4754. Multigenome comparative analyses of M. radiotolerans MAMP 4754 against eight other endophytic strains led to the identification of zinc, copper, and nickel resistance proteins in the genome of this endophyte. The maximum tolerance concentration (MTC) of this strain towards these metals was also investigated. The metal-exposed cells were analyzed by transmission electron microscopy (TEM). The ethyl acetate and chloroform extracts (1:1 v/v) of heavy metal untreated M. radiotolerans MAMP 4754 were also screened for the production of PGP compounds by Gas Chromatography–Mass Spectroscopy (GC/MS). The MTC was recorded at 15 mM, 4 mM, and 12 mM for zinc, copper, and nickel, respectively. The TEM analysis showed the accumulation of metals in the intracellular environment of M. radiotolerans MAMP 4754, while the GC/MS analysis revealed several plant growth-promoting compounds, including alcohols, phthalate esters, alkenes, ketones, sulfide derivatives, phenols, and thiazoles. Our findings suggest that the genetic makeup of M. radiotolerans MAMP 4754 encodes heavy metal resistant proteins that indicate hyperaccumulator-specific endophytic behavior and the potential for application in bioremediation. The production of plant growth-promoting volatiles in pure culture by M. raditotolerans MAMP 4754 is a characteristic feature for plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Mampolelo M. Photolo
- Department of Biochemistry, Faculty of Science, Auckland Park Campus, University of Johannesburg, Johannesburg 2092, South Africa; (M.M.P.); (L.S.)
| | - Lungile Sitole
- Department of Biochemistry, Faculty of Science, Auckland Park Campus, University of Johannesburg, Johannesburg 2092, South Africa; (M.M.P.); (L.S.)
| | - Vuyo Mavumengwana
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Tygerberg Campus, Stellenbosch University, Cape Town 7505, South Africa;
| | - Matsobane G. Tlou
- Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Mafikeng 2790, South Africa
- Correspondence:
| |
Collapse
|
41
|
Wang Q, Li Z, Feng X, Wang A, Li X, Wang D, Fan L. Mercury accumulation in vegetable Houttuynia cordata Thunb. from two different geological areas in southwest China and implications for human consumption. Sci Rep 2021; 11:52. [PMID: 33420215 PMCID: PMC7794452 DOI: 10.1038/s41598-020-80183-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022] Open
Abstract
Houttuynia cordata Thunb. (HCT) is a common vegetable native to southwest China, and grown for consumption. The results suggested that THg contents in all parts and MeHg in underground parts of HCT in Hg mining areas were much higher than those in non-Hg mining areas. The highest THg and MeHg content of HCT were found in the roots, followed by the other tissues in the sequence: roots > leaves > rhizomes > aboveground stems (THg), and roots > rhizomes > aboveground stems > leaves (MeHg). The average THg bioaccumulation factor (BCF) of HCT root in the Hg mining area and in non-Hg mining areas could reach 1.02 ± 0.71 and 0.99 ± 0.71 respectively, indicating that HCT is a Hg accumulator. And the THg and MeHg contents in all tissues of HCT, including the leaves, were significantly correlated with THg and MeHg content in the soil. Additionally, preferred dietary habits of HCT consumption could directly affect the Hg exposure risk. Consuming the aboveground parts (CAP) of HCT potentially poses a high THg exposure risk and consuming the underground parts (CUP) may lead to a relatively high MeHg exposure risk. Only consuming the rhizomes (OCR) of the underground parts could significantly reduce the exposure risk of THg and to some extent of MeHg. In summary, HCT should not be cultivated near the Hg contaminated sites, such as Hg tailings, as it is associated with a greater risk of Hg exposure and high root Hg levels, and the roots should be removed before consumption to reduce the Hg risk.
Collapse
Affiliation(s)
- Qingfeng Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi, 563006, People's Republic of China. .,State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China.
| | - Zhonggen Li
- Department of Resources and Environment, Zunyi Normal College, Zunyi, 563006, People's Republic of China.,State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China
| | - Ao Wang
- Zunyi Product Quality Inspection and Testing Institution, Zunyi, 563006, People's Republic of China
| | - Xinyu Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dan Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi, 563006, People's Republic of China
| | - Leilei Fan
- Department of Resources and Environment, Zunyi Normal College, Zunyi, 563006, People's Republic of China
| |
Collapse
|
42
|
Zhang Y, Song B, Zhu L, Zhou Z. Evaluation of the metal(loid)s phytoextraction potential of wild plants grown in three antimony mines in southern China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:781-790. [PMID: 33307730 DOI: 10.1080/15226514.2020.1857685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wild plant species from three deserted antimony (Sb) mine areas in southern China were collected to measure eight metal(loid)s. Antimony, As (arsenic), Cd (cadmium), Cr (chromium), Cu (copper), Ni (nickel), Pb (lead), and Zn (zinc) concentrations in plants and soil were analyzed. The soils of the mining area was weakly alkaline and contained toxic levels of Sb, As, Pb, Cd, and Zn. Many plant species in the area (40 species and 19 families) have no clear signs of toxicity. The plants were divided into three categories (high, moderate, and low tendency to accumulate metals) based on their (ratio [RT], bioaccumulation factor [BCF], translocation factor [TF]) values. The plants with a high accumulation tendency exhibited the high potential to absorb Sb from contaminated soil; therefore, they can be used for the remediation or phytoremediation of Sb-contaminated soil.
Collapse
Affiliation(s)
- Yunxia Zhang
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Bo Song
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Liangliang Zhu
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ziyang Zhou
- Colleges of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
43
|
Liu Z, Chen B, Wang LA, Urbanovich O, Nagorskaya L, Li X, Tang L. A review on phytoremediation of mercury contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123138. [PMID: 32947735 DOI: 10.1016/j.jhazmat.2020.123138] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) and its compounds are one of the most dangerous environmental pollutants and Hg pollution exists in soils in different degrees over the world. Phytoremediation of Hg-contaminated soils has attracted increasing attention for the advantages of low investment, in-situ remediation, potential economic benefits and so on. Searching for the hyperaccumulator of Hg and its application in practice become a research hotspot. In this context, we review the current literatures that introduce various experimental plant species for accumulating Hg and aided techniques improving the phytoremediation of Hg-contaminated soils. Experimental plant species for accumulating Hg and accumulation or translocation factor of Hg are listed in detail. The translocation factor (TF) is greater than 1.0 for some plant species, however, the bioaccumulation factor (BAF) is greater than 1.0 for Axonopus compressus only. Plant species, soil properties, weather condition, and the bioavailability and heterogeneity of Hg in soils are the main factors affecting the phytoremediation of Hg-contaminated soils. Chemical accelerator kinds and promoting effect of chemical accelerators for accumulating and transferring Hg by various plant species are also discussed. Potassium iodide, compost, ammonium sulphate, ammonium thiosulfate, sodium sulfite, sodium thiosulfate, hydrochloric acid and sulfur fertilizer may be selected to promote the absorption of Hg by plants. The review introduces transgenic gene kinds and promoting effect of transgenic plants for accumulating and transferring Hg in detail. Some transgenic plants can accumulate more Hg than non-transgenic plants. The composition of rhizosphere microorganisms of remediation plants and the effect of rhizosphere microorganisms on the phytoremediation of Hg-contaminated soils are also introduced. Some rhizosphere microorganisms can increase the mobility of Hg in soils and are beneficial for the phytoremediation.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Boning Chen
- Fuling Environmental Monitoring Center, 3 Taibai Rd, Fuling New District of Chongqing, China
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Oksana Urbanovich
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Liubov Nagorskaya
- Applied Science Center for Bioresources of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Li Tang
- School of Chemistry and Chemical Engineering, Southwest University, 2 Tiansheng Road, Beibei District, Chongqing, China
| |
Collapse
|
44
|
Hasnaoui SE, Fahr M, Keller C, Levard C, Angeletti B, Chaurand P, Triqui ZEA, Guedira A, Rhazi L, Colin F, Smouni A. Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1458. [PMID: 33137928 PMCID: PMC7693513 DOI: 10.3390/plants9111458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Screening of native plant species from mining sites can lead to identify suitable plants for phytoremediation approaches. In this study, we assayed heavy metals tolerance and accumulation in native and dominant plants growing on abandoned Pb/Zn mining site in eastern Morocco. Soil samples and native plants were collected and analyzed for As, Cd, Cu, Ni, Sb, Pb, and Zn concentrations. Bioconcentration factor (BCF), translocation factor (TF), and biological accumulation coefficient (BAC) were determined for each element. Our results showed that soils present low organic matter content combined with high levels of heavy metals especially Pb and Zn due to past extraction activities. Native and dominant plants sampled in these areas were classified into 14 species and eight families. Principal components analysis separated Artemisia herba-alba with high concentrations of As, Cd, Cu, Ni, and Pb in shoots from other species. Four plant species, namely, Reseda alba, Cistus libanotis, Stipa tenacissima, and Artemisia herba-alba showed strong capacity to tolerate and hyperaccumulate heavy metals, especially Pb, in their tissues. According to BCF, TF, and BAC, these plant species could be used as effective plants for Pb phytoextraction. Stipa tenacissima and Artemisia herba-alba are better suited for phytostabilization of Cd/Cu and Cu/Zn, respectively. Our study shows that several spontaneous and native plants growing on Pb/Zn contaminated sites have a good potential for developing heavy metals phytoremediation strategies.
Collapse
Affiliation(s)
- Said El Hasnaoui
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Catherine Keller
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Clément Levard
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Bernard Angeletti
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Perrine Chaurand
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Zine El Abidine Triqui
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Abdelkarim Guedira
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Laila Rhazi
- Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco;
| | - Fabrice Colin
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| |
Collapse
|
45
|
Duan P, Khan S, Ali N, Shereen MA, Siddique R, Ali B, Iqbal HM, Nabi G, Sajjad W, Bilal M. Biotransformation fate and sustainable mitigation of a potentially toxic element of mercury from environmental matrices. ARAB J CHEM 2020; 13:6949-6965. [DOI: 10.1016/j.arabjc.2020.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
46
|
Marrugo-Negrete J, Durango-Hernández J, Díaz-Fernández L, Urango-Cárdenas I, Araméndiz-Tatis H, Vergara-Flórez V, Bravo AG, Díez S. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. CHEMOSPHERE 2020; 250:126142. [PMID: 32105852 DOI: 10.1016/j.chemosphere.2020.126142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
In this study, we evaluated the phytoremediation ability of three different genotypes of cowpea (Vigna unguiculata L. Walp) grown on mercury-contaminated soils from gold mining areas. In particular we compared a native genotype with two commercial lines L-019 and L-042. The plants were cultivated in soils amended at different concentrations of Hg (i.e. 0.2, 1, 2, 5 and 8 mg kg-1). After three months exposure, we determined plant growth, seed production, and Hg accumulation in different plant tissues (root, leaf, seed and stem). Indices of soil-plant metal transfer such as translocation, bioconcentration and bioaccumulation factors were calculated. Results showed that the native variety presented the highest seed production (3.8 g), however the highest plant biomass (7.9 g) was observed in line L-019, both on Hg-contaminated soil of 1 mg kg-1. The different plant tissues differed in terms of Hg concentration (root > leaf > stem). In the highest treated soil, the line L-042 accumulates higher Hg in both roots and leaves, while line L-019 accumulates more metal in stems. In line L-019, Hg concentrations in the fruit showed significant differences being higher in the valves than in the seeds. The transfer factors were generally lower than 1 and indicates the low accumulation of Hg by cowpeas. The estimated daily Hg intake through cowpea consumption showed values far below the threshold of 0.57 μg kg-1 dw day-1 recommended by the World Health Organization. Our results show cowpea V. unguiculata as a good protein-rich food substitute of Hg-contaminated fish for populations living near gold mining sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Vicente Vergara-Flórez
- Facultad de Ingeniería, Universidad de Sucre, Carrera 28 No. 5-267, Sincelejo, Sucre, Colombia
| | - Andrea G Bravo
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034, Barcelona, Spain.
| |
Collapse
|
47
|
Du J, Guo Z, Li R, Ali A, Guo D, Lahori AH, Wang P, Liu X, Wang X, Zhang Z. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114213. [PMID: 32408418 DOI: 10.1016/j.envpol.2020.114213] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Brassica juncea L. is an attractive species in PTMs contaminated soil remediation ascribing to its high tolerance under stress and great accumulation capacity of metals. To identify the potential Cd/Zn accumulators from numerous different Chinese mustard cultivars for practical phytoremediation is a promising strategy in China. In present work, a pot experiment involving elevated Cd/Zn concentrations was performed among 21 cultivars. Regarding physiological and biochemical indicators under Cd/Zn stress, principal component analysis and cluster analysis were used for cultivar tolerance evaluation and classification. Results showed that BJ (Bao Jie, var. involutus) cultivar was distinguished as a potential phytoremediation candidate comparing with other cultivars. Moreover, BJ accumulated the maximum Cd content of 63.85 and 77.29 mg kg-1 DW in shoots and roots, respectively, and the maximum Zn uptake by BJ were 6693 and 4777 mg kg-1 DW in shoots and roots, respectively. Accordingly, BJ had the highest Cd/Zn tolerance, remarkable accumulation and translocation capacity (accumulation factor (AF) > 1 for Cd and Zn; translocation factor (TF) > 0.8 for Cd and TF > 1 for Zn). In addition, the superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities of the mustard increased initially under low Cd/Zn stress as compared to the control and then declined dramatically with the increasing metals exposure concentration. Therefore, the antioxidant enzymes may play a protective role against reactive oxygen species (ROS) under low Cd/Zn stress, whereas the defense system might be collapsed under relatively high Cd/Zn stress. Furthermore, the enhanced Cd/Zn exposure led to an increase in malondialdehyde (MDA) content in the mustard cultivars, indicating that Cd/Zn had induced more severe oxidative stress and higher degree of lipid peroxidation had occurred. The present investigation results indicated that BJ (Bao Jie, var. involutus), as a native cultivar, can be further applied in the field trials of phytoremediation practices in contaminated soil.
Collapse
Affiliation(s)
- Juan Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuejia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
48
|
Liu Y, Zhi L, Zhou S, Xie F. Effects of mercury binding by humic acid and humic acid resistance on mercury stress in rice plants under high Hg/humic acid concentration ratios. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18650-18660. [PMID: 32200472 DOI: 10.1007/s11356-020-08328-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Due to the nonsystematic nature of previous studies on mercury (Hg) mobility with humic substances (HS) in terrestrial ecosystems and the uncertainty of Hg accumulation in plants, oxygen-rich humic acid (HA), which is the main component of HS, was used as the target in this study. Batch sorption tests and a series of pot experiments were designed to investigate the effect of HS on Hg binding and therefore Hg uptake in rice plants under extreme conditions, i.e., a high Hg/HS concentration ratio. The results showed that HA was eligible for Hg binding, though it has a tiny proportion of sulfur according to its characteristics analysis. The binding of HA and Hg was a chemisorption process in a single layer that followed the pseudo-second order and Langmuir models, and it was also verified that the pH was dependent on the ion strength associated with high Hg/HA concentration ratios. Based on the pot experiments, the performance of HA with Hg was investigated. The Hg in the toxicity characteristic leaching procedure (TCLP) leachate under high Hg/HA concentration ratios declined significantly, and accordingly, all treatments met the concentration criteria of 0.1 mg/l (GB 5085.3-2007) for wastes after 30 days of exposure. At concentration ratios of 50, 25, and 10 μg Hg/mg HA, we observed that HA application promoted rice plant growth, as reflected in the increase of fresh weight of different organs. Regarding accumulation in the soil-plant system, the degradation of HA to smaller molecules by rhizosphere microorganisms and organic acids in roots made HA available for plant uptake through the vascular bundle in roots, thus promoting Hg transformation in plants to a certain extent. However, considering the decline in available Hg in the soil, the Hg concentrations of roots, straw, and grains in the ripening stage were found to be lower than those in the standalone Hg treatments. HA clearly has a direct effect on Hg and an indirect influence on plants exposed to Hg under extreme conditions (very high Hg/HA concentration ratios); thus, the biogeochemical behavior of Hg at high Hg/HA concentration ratios should be considered and further investigated.
Collapse
Affiliation(s)
- Yue Liu
- College of Environmental Science and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Liangliang Zhi
- College of Environmental Science and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shaoqi Zhou
- College of Environmental Science and Energy, South China University of Technology, Guangzhou, 510006, China.
- Guizhou Academy of Sciences, Guiyang, 550001, China.
- Key Laboratory of Subtropical Building Sciences, South China University of Technology, Guangzhou, 510641, China.
- Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou, 510006, China.
| | - Feng Xie
- Guizhou Academy of Testing and Analysis, Guiyang, 550001, China
| |
Collapse
|
49
|
|
50
|
Mousavi Kouhi SM, Moudi M. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10027-10038. [PMID: 31933083 DOI: 10.1007/s11356-019-07578-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Many areas throughout the world, mainly arid and semi-arid regions, are simultaneously affected by salinity stress and heavy metal (HM) pollution. Phytoremediation of such environments needs suitable plants surviving under those combined stresses. In the present study, native species naturally growing under an extreme condition, around Qaleh-Zari copper mine located in the eastern part of Iran, with HM-contaminated saline-sodic soil, were identified to find suitable plant species for phytoremediation. For this purpose, the accumulation of HMs (Cu, Zn, Cd, and Pb) in the root and shoot (stem and leaf) of the plants and their surrounding soils was determined to find their main phytoremediation strategies: phytoextraction or phytostabilization. Seven native species surviving in such extreme condition were found, including Launaea arborescens (Batt.) Murb, Artemisia santolina Schrenk, Pulicaria gnaphalodes (Vent.) Boiss, Zygophyllum eurypterum Boiss. & Buhse, Peganum harmala L., Pteropyrum olivieri Jaub. & Spach, and Aerva javanica (Burm. f.) Juss. ex Schult. Evaluation of phytoremediation potential of the identified species based on the calculated HM bioconcentration in roots, HM translocation from roots to shoots, and HM accumulation in the shoots revealed that all of the species were metal phytostabilizers rather than hyperaccumulators. Therefore, these native species can be used for phytostabilization in the HM-contaminated saline soils to prevent HMs entering the uncontaminated areas and groundwater. Compared with the biennial low-biomass hyperaccumulators, some native species such as Z. eurypterum and A. javanica may have more economic value for phytoremediation because of a significant accumulation of HMs in their relatively higher biomass.
Collapse
Affiliation(s)
| | - Maryam Moudi
- Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
| |
Collapse
|